
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DENOISING DIFFUSION CAUSAL DISCOVERY

Anonymous authors
Paper under double-blind review

ABSTRACT

A common theme across multiple disciplines of science is to understand the un-
derlying dependencies between variables from observational data. Such depen-
dencies are often modeled as Bayesian Network (BNs), which by definition are
Directed Acyclic Graphs (DAGs). Recent advancements, such as NOTEARS and
DAG-GNN, have focused on formulating continuous DAG constraints and learn-
ing DAGs via continuous optimization. However, these methods often have scal-
ability issues and face challenges when applied to real world data. In this pa-
per, we propose Denoising Diffusion Causal Discovery (DDCD), a new learning
framework that leverages Denoising Diffusion Probabilistic Models (DDPMs) for
causal structural learning. Using the denoising objective, our method allows the
model to explore a wider range of noise in the data and effectively captures both
linear and nonlinear dependencies. It also has reduced complexity and is more
suitable for inference of larger networks. To accommodate potential feedback
loops in biological networks, we propose a k-hop acyclicity constraint. Addi-
tionally, we suggest using fixed-size bootstrap sampling to ensure similar train-
ing performance across varying dataset sizes. Our experiments on synthetic data
demonstrate that DDCD achieves consistent competitive performance compared
to existing methods while noticeably reducing computation time. We also show
that DDCD can generate trustworthy networks from real-world datasets.

1 INTRODUCTION

Learning a network structure that represents underlying causal dependencies between variables in
observational data has long been a crucial goal. It plays an important role in multiple disciplines,
including genetics, epidemiology, and economics (Slonim, 2002; Pearl, 2009; Uhler et al., 2013;
Spirtes & Zhang, 2016; Pingault et al., 2018; Glymour et al., 2019). Such networks, where nodes
represent feature variables and edges capture potential relationships, are often represented as Di-
rected Acyclic Graphs (DAGs), which allow no cycles.

There has been a great deal of prior work developing methods to address this problem. The PC
algorithm (Spirtes & Glymour, 1991) is a constraint-based approach that iteratively testing condi-
tional independence. GES (Chickering, 2002) is a score-based method that searches for the causal
structure that maximizing a scoring function. LiNGAM (Shimizu et al., 2012), on the other hand,
is a structural equation model (SEM)-based method. However, they scale poorly as the size of data
increases; in fact, the learning inference problem has been proven to be NP-hard (Chickering et al.,
2004). To address this challenge, Zheng et al. (2018) proposed a method called NOTEARS that
introduces a continuous acyclicity score, which can be solved by a regular numerical optimizer.

Many others have since extended this formulation, focusing on scalability (Yu et al., 2019; Lee et al.,
2019; Ng et al., 2020; Yu et al., 2021), convexity (Bello et al., 2022; Deng et al., 2023; Ng et al.,
2024), sparsity control (Wei et al., 2020; Ng et al., 2020), and nonlinearity (Yu et al., 2019; Ng et al.,
2019; Zheng et al., 2020; Yang et al., 2021; Shen et al., 2022; Ng et al., 2022; Kalainathan et al.,
2022). Its variations also have been applied to a wide range of settings, such as time series (Pamfil
et al., 2020; Sun et al., 2021; Shang et al., 2021) and gene networks (Shu et al., 2021; Agamah
et al., 2022; Zhu & Slonim, 2024). There are also analyses and discussions of the application of
such models to datasets with unequal variances and different data types (Reisach et al., 2021; Kaiser
& Sipos, 2021; Ng et al., 2024). Methods that focus on topological ordering instead of a DAG
structrual constraint have also been explored (Sanchez et al., 2022).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this paper, we propose a set of Denoising Diffusion Causal Discovery (DDCD) models that offer
significant improvements on scalability and the models’ ability to capture nonlinear transformations.
DDCD was inspired by the designs of Denoising Diffusion Probabilistic Models (DDPMs) (Ho
et al., 2020) and Latent Diffusion Models (LDMs) (Rombach et al., 2022). In DDCD, we introduce
noise progressively into the data during a forward diffusion process and then reverse the process by
predicting the added noise under the constraint of the learned adjacency matrix. By replacing the
least squares loss in NOTEARS with a denoising objective, DDCD allows the model to explore a
broader range of noise, which enhances its ability to capture both linear and nonlinear relationships.
We demonstrate the effectiveness of the proposed method on both synthetic data and large scale
real-world datasets. In summary, our contributions are as follows:

• We prove the validity of the denoising objective, which paves the way to using diffusion
models for causal structural learning.

• We push the boundary of structural learning on nonlinear data by showing that the nonlinear
transformation function can be approximated together with the adjacency matrix.

• We introduce a k-hop acyclicity constraint, which approximates acyclicity within a k-hop
neighborhood. It is a relaxation of the acyclicity constraint in NOTEARS and has improved
complexity. We also applied gradient clipping to avoid gradient explosion when the graph
is large. We discuss when acyclicity is helpful and when it may not be.

• We propose a fixed-size bootstrap sampling technique so the learning process proceeds
similarly for data sets of different sizes.

2 BACKGROUND AND RELATED WORK

2.1 PROBLEM STATEMENT

Given a dataset X ∈ Rn×d, where n is the number of samples and d is the number of feature
variables, the objective is to learn a meaningful dependency graph G represented by the weighted
adjacency matrix W ∈ Rd×d. Such a graph is often defined as a Bayesian Network (BN), which by
definition is a Directed Acyclic Graph (DAG), where there are no cycles or self loops.

2.2 STRUCTURAL EQUATION MODELS (SEMS)

Structural Equation Models (SEMs) (Kline, 2023) provide a framework to model variable dependen-
cies. For a linear SEM, we simply assume that each variable is a linear combination of its parents
with some noise. In its matrix multiplication form, we have

X = XW +E, (1)

where E ∈ Rn×d captures the error terms. Based on this assumption, many existing SEMs aim
to estimate matrix W such that the reconstruction error is minimized (van de Geer & Bühlmann,
2013; Loh & Bühlmann, 2014; Zheng et al., 2018). Since the adjacency matrix is often sparse, many
methods choose to add either L1 or L2 regularization on W to encourage sparsity (Vowels et al.,
2022). In this case, we have the following training objective,

min
W

1

2n
∥X −XW ∥2F + λ1∥W ∥1 + λ2∥W ∥2 (2)

To extend the use of SEMs to real world applications, where nonlinearity is common, we rewrite
Equation 1 in the following form, where f is a nonlinear transformation function:

X = f(X;W ) +E (3)

In practice, Equation 3 allows too much freedom of model formulation. Therefore, people often
use the following equation to describe a nonlinear SEM, where f1 is the nonlinear transformation
function for X before it meets W and f2 is the nonlinear transformation function for the product of
graph propagation (Yu et al., 2019; Ng et al., 2019).

X = f2(f1(X)W )) +E (4)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.3 CONTINUOUS DAG CONSTRAINT

Traditional network inference approaches often rely on combinatorial optimization, which becomes
computationally infeasible for large graphs. To address this issue, Zheng et al. (2018) proposed a
method called NOTEARS that introduced a continuous score characterizing graph acyclicity:

h(W ) = tr(eW ◦W )− d, (5)

where ◦ is the Hadamard product, eW is the matrix exponential of W , and tr() is the trace of a
matrix. Essentially, matrix W is a DAG if and only if h(W ) = 0. Since the function h(W ) has a
simple and smooth gradient function, it can be used in many gradient-based continuous optimization
algorithms. In NOTEARS, the DAG W is learned by optimizing a modification of Equation 2 (with
only the L1 loss) while keeping h(W ) near zero with an augmented Lagrangian method using a
L-BFGS optimizer. In terms of complexity, since the score function h(W ) requires the matrix
exponential, the runtime of NOTEARS is at least O(d3).

2.4 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DDPMs) are a class of generative model that shows
strong performance in modeling complex data distributions (Ho et al., 2020). A typical DDPM
starts from a non-parameterized forward diffusion process. Given an unperturbed input x0, the
forward process aims to generate a series of noisy samples x0,x1, ...,xT over T steps, where xT

usually stands for pure noise. In each step, a small amount Gaussian noise is gradually introduced
following a diffusion schedule β as shown in Equation 6.

xt =
√

1− βtxt−1 +
√
βtzt−1 (6)

Here, zt−1 ∼ N (0, 1) so Equation 6 is essentially trying to reduce the means to 0 while increasing
the variances to 1. With the reparameterization trick, it can be rewritten into Equation 7 as follows,

xt =
√
αtx0 +

√
1− αtz, (7)

where αt =
∏t

i=0(1− βt) and z ∼ N (0, 1), so the noisy data xt can be generated in one step.

The actual modeling piece of DDPM is the reverse model, which is trained to predict the added
noise z and to denoise the data. The choice of model for the reverse process depends on the input
data. Recent studies have suggested similarity between diffusion models and a generalized form of
variational autoencoder (VAE) (Kingma, 2013) with infinite latent spaces (Luo, 2022).

3 METHODS

Inspired by the denoising diffusion framework in DDPMs, here we propose an alternative training
objective to learn the adjacency matrix W for a SEM. In this proposal, we will augment each sample
in the same way as the forward diffusion process in Equation 7. Then, we will optimize a reverse
model with the parameterized W to predict the added noise under the constraint of W . We start
with the assumptions for linear SEMs and then move to nonlinear cases.

3.1 DENOISING DIFFUSION MODELS FOR LINEAR SEMS

For linear SEMs, the reverse model is trying to minimize the following denoising objective:

min
W

1

2n
∥(Xt −XtW )− diag(

√
1− αt)Z(I −W )∥2F + λ1∥W ∥1 + λ2∥W ∥2, (8)

where t is a vector of diffusion time steps for all samples in X , Xt is the perturbed observational
data X , and diag(v) is the diagonal operator that converts vector v to a diagonal matrix.

Theorem 1. For linear SEMs, the objective functions in Equation 8 and Equation 2 are equivalent.

Proof. Consider the case when each sample in X is perturbed using the forward diffusion process
in 7. The perturbed observational data could be written as in Equation 9. Here we use t to denote

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Model architectures of proposed models in this paper.

the different diffusion time steps for all samples in X and the diag() operator scales each row of X0

and Z accordingly based on the diffusion schedule.

Xt = diag(
√
αt)X0 + diag(

√
1− αt)Z, (9)

With Equations 9 and 1, we can easily develop Equations 10-12

XtW = diag(
√
αt)X0W + diag(

√
1− αt)ZW , (10)

Xt −XtW = diag(
√
αt)(X0 −X0W ) + diag(

√
1− αt)(Z −ZW ) (11)

diag(
√
αt)(X0 −X0W ) = (Xt −XtW )− diag(

√
1− αt)Z(I −W ) (12)

Recall that in Equation 2, the main objective is to minimize X0 − X0W . Equation 12 shows
that minimizing X0 − X0W is equivalent to minimizing the right-hand side, which measures the
distance between (Xt −XtW ) and diag(

√
1− αt)Z(I −W ).

Although we just showed that Equation 8 is equivalent to 2, in practice the denoising objective
smooths out the gradients by adding a noise component that regularizes the learning process. This
prevents large changes that could impair convergence, especially when the number of samples is
limited. At the same time, by introducing noise, this new objective encourages the model to find
solutions that generalize better by avoiding sharp minima (Keskar et al., 2016). These two character-
istics can help the model to converge to an optimal solution more efficiently. To illustrate this point,
we implemented a toy model called NOTEARS-Denoising with the denoising diffusion process,
while everything else is the same as the original implementation of NOTEARS-Linear.

With the new objective in mind, we also propose a linear DDCD model, where the only trainable
parameters are values in the adjacency matrix W . The input of the model includes the perturbed
Xt, the diffusion variance schedule

√
1− αt, and the noise term Z. All three inputs are generated

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

during the forward process given X0. The model is trained with both L1 and L2 regularization on
the adjacency matrix together with a k-hop acyclicity constraint, which will be explained in section
3.4. In terms of optimization, the model is optimized using the Adam optimizer with increasing
weights on the DAG constraint. We will explain that in detail in section 3.6.

3.2 DENOISING DIFFUSION MODELS FOR NONLINEAR SEMS

The main challenge of applying the de-noising objective to non-linear cases is that, without the linear
assumption on the transformation functions, we cannot simply separate the noise term Z from the
signals of X . That makes Theorem 1 not applicable to nonlinear SEMs. To overcome this challenge,
we introduce an intermediate variable Y and rewrite the nonlinear SEM in Equation 4 as,

Y = f1(X) (13)

X = f2(Y W ) +E1 (14)

By assuming Y W = Y , Eq. 13 and Eq. 14 may be viewed as the encoder and decoder of input
X while keeping all the dimensions of X in the latent map Y . Therefore, if an adjacency matrix
W describes linear dependencies in Y , it could also be used to describe the dependencies in X . To
effectively learn Y , we can use the linear denoising diffusion models we discussed previously.

Y0 = Y0W +E2 (15)

Together, the model will be trained with two main objectives. First of all, we would like to mini-
mize the nonlinear SEM reconstruction loss on X . Secondly, we would like to minimize the linear
denoising diffusion loss on Y . The full loss function is,

minW
1
2n (∥X − f2(f1(X)W )∥2F + ∥(Yt − YtW )− diag(

√
1− αt)Z(I −W )∥2F ) + λ1∥W ∥1 + λ2∥W ∥2, (16)

From the deep learning point of view, this architecture, as shown in Figure 1b, is very similar to a
Latent Diffusion Model (LDM) (Rombach et al., 2022), where noise is added to the latent repre-
sentation learned by an autoencoder. In this case, we can treat Y as the unobserved latent variable,
and the learned nonlinear transformation functions f1 and f2 could be viewed as the encoder and
decoder. Furthermore, the learned adjacency matrix W for the SEM could be considered as a form
of attention or graph neural network.

3.3 SCALE HANDLING WITH SMOOTHED FEATURES AND ADJACENCY MATRIX

While continuous optimization causal discovery algorithms have yielded great success on synthetic
SEM datasets, recent studies (Reisach et al., 2021; Kaiser & Sipos, 2021) have shown that they often
don’t work that well on datasets with standardized features or on real-world datasets where the scales
are unknown. The root cause, as pointed out in Kaiser & Sipos (2021), is the use of SEM equations
in Equations 1 and 3. An underlying assumption of these two SEM equations is that the variables
in X must be on the same scale. If the scales of the features are altered differently due to data
standardization, the equation will no longer hold. The DDCD Linear and DDCD Nonlinear methods
we propose here have the same problem. To overcome this issue, we propose a smoothed version
of DDCD. Instead of trying to learn the exact values in the adjacency matrix of the SEM, DDCD
Smooth tries to learn a normalized adjacency, where the expected values of the edge weights are 1

d .
This normalized adjacency matrix is conceptually similar to the one used in graph convolution (Kipf
& Welling, 2016). To do this, we first use an MLP with Tanh activation to normalize all features to
the range of -1 to 1 regardless. An illustration of the architecture of this model is provided in Figure
1c. In appendix A.2, we also have a short proof that extends Theorem 1. Basically we show that
in this case, instead of estimating the expected Z, we can directly estimate Z when the number of
nodes is large.

3.4 K-HOP ACYCLICITY CONSTRAINT WITH GRADIENT CLIPPING

In practice, the O(d3) runtime of NOTEARS’ DAG constraint and its risk of gradient explosion on
larger networks is restrictive. Furthermore, many real world networks, such as gene regulatory net-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

works, include cycles and feedback loops. Thus, we believe that starting with the DAG assumption
may be incorrect, although we do want to prevent the network from being symmetric. Based on
these considerations, by transforming the matrix exponential in NOTEARS to its power expansion
form, we propose an alternative “k-hop acyclicity constraint” that only checks the acyclicity score
within k hops. By keeping a running sum, we can reduce the runtime to O(k ·d2). The exact formula
of k-hop acyclicity is in Equation 17, where γ is a scaling factor. A detailed explanation of this is
provided in Appendix A.1 and we also include an analysis on the choice of k. In addition, we apply
gradient clipping on the model parameters to prevent gradient explosion on large networks.

h(W , k, γ) =

k+1∑
j=1

1

j!γ2j
tr((γW ◦ γW )j) (17)

3.5 FIXED-SIZE BOOTSTRAP SAMPLING

In this work, we use the fixed-sized bootstrap sampling design from RegDiffusion (Zhu & Slonim,
2024). Basically, in each training iteration, we sample a fixed size batch of samples with replacement
and add different amounts of noise to the samples. By doing so, we remove the dependency on
the number of samples n from the algorithm’s runtime and gain more similar behavior on data of
different sizes.

3.6 OPTIMIZATION

In this experiment, the models are optimized using the Adam optimizer since it has fewer restric-
tions. However, as shown in the NOTEARS-Denoising example, the denoising diffusion objective
could be applied to the NOTEARS model directly and optimized with L-BFGS-B without any issues.
Another experiment design we tested involves replacing the dual-ascending augmented Lagrangian
method used in many methods, such as NOTEARS and DAG-GNN, with a simple linear multiplier
using training epoch steps. Our justification for this is that our training pattern is much smoother
with the fixed-size bootstrap sampling, so we can replace the automatic scaled Lagrangian multiplier
with a simple linear multiplier. Another motivation is that in the case when edge weights are mostly
smaller than 1 (for example, when features are normalized due to the use of neural networks), it no
longer makes sense to use the quadratic term used in the augmented Lagrangian as a heavy penalty.

4 EXPERIMENTS

Our first experiment is a comparison of results from NOTEARS-Denoising and NOTEARS-Linear.
The only differences between these two models are the noise perturbation process and the denoising
objective. Both models are optimized using dual-ascending augmented Lagrangian with the L-
BFGS-B optimizer. Performance is evaluated on a synthetic Scale-Free graph with 20 nodes and
degree 10. We use this example to demonstrate how the denoising objective can smooth out gradients
and help the model converge faster.

Then, we evaluate the performance of the proposed linear and nonlinear models on synthetic and
real data. The results for synthetic data are compared to a range of well-known causal inference
methods: NOTEARS (Zheng et al., 2018), NOTEARS-MLP (Zheng et al., 2018), DAG-GNN (Yu
et al., 2019), GOLEM (Ng et al., 2020), and GAE (Ng et al., 2019). We tested the performance of
the models on various numbers of nodes, numbers of observations, graph types, and SEM types.

For the synthetic data, we pre-generated a set of Scale-Free (SF) and Erdős-Rényi (ER) random
graphs with a wide range of node counts (20 - 5,000) and edge degrees (10 - 500). Edge weights
can be fully positive (ranging from 0.5 to 1.5) or both negative and positive (ranging from -1 to
1). Observational data were generated following additive noise models (ANMs) with both linear
and nonlinear transformations. For nonlinear transformations, we follow the examples of DAG-
GNN(Yu et al., 2019) and tested the following nonlinear SEM: x = W T cos(x + 1) + ϵ. In
both linear and nonlinear cases, data was generated with Gaussian noise. To assess the quality of
the inferred structures, we report the True Positive Rate (TPR), False Discovery Rate (FDR), False
Positive Rate (FPR), Structural Hamming Distance (SHD), and algorithm execution time. We focus
on SHD as the main metric. A detailed description of these metrics is provided in the Appendix.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: NOTEARS-Denoising runs faster than NOTEARS-Linear because it has smoother gradi-
ent. a. Average runtime over 10 runs with various numbers of samples; b. The L-BFGS-B optimizer
converges in fewer steps on NOTEARS-Denoising; c. Gradient norm during the first iteration on the
Full data (n=2,000). First 5 steps are removed for visualization purposes.

To assess the impact of the choice of k in the k-hop acyclic constraint, we varied the choice of k
from 0 to 4 in both SF and ER graphs with 100 nodes under 3 different degrees (10, 20, 30). In all
30 cases, we repeated the experiments 100 times with different ground truth graphs and experiment
data.

For real data, we evaluated the proposed methods using the Myocardial Infarction (MI) Compli-
cations dataset (Golovenkin et al., 2020) from the UCI data repository, as well as single cell yeast
gene expression data (Tjärnberg et al., 2024) (available in GEO with accession number GSE218089
(Edgar R, 2002) ). The MI dataset includes 124 variables and 1,700 observations. We removed the
‘ID’ column and treated all missing values as 0. Since most categorical variables are leveled with
increasing severity, we treated them as continuous variables for simplicity. For the yeast gene ex-
pression data, we followed the data preprocessing steps described in the original paper; these details
are described in the Appendix. We further removed all ribosomal genes. The final data set has 4,980
genes and 1,428 samples. In both cases, since ground truth is not available, the inferred structures
are evaluated using domain knowledge.

4.1 DENOISING OBJECTIVE LEADS TO SMOOTHER GRADIENTS

An interesting observation about NOTEARS-Linear (Zheng et al., 2018) is that when the number
of samples is very limited, it can take a long time to converge (as shown in Figure 2a). The reason
is that the gradient of the L2 loss used in NOTEARS-Linear is in fact not that smooth, so it takes
many steps for the L-BFGS-B optimizer to converge in each iteration (as shown in Figure 2b/c). In
contrast, with the denoising objective, the gradient is much smoother, so the optimizer only explores
a fraction of local minima. A few more comparisons are included in supplement section A.8.

4.2 LINEAR SYNTHETIC EXPERIMENT

Figure 3a offers a visual comparison of the inferred networks by DDCD Linear and NOTEARS on
a SF graph with 100 nodes. With sufficient numbers of samples (n = 2,000), the inferred network
from DDCD Linear is nearly identical to the ground truth network (SHD = 12). In the case where the
number of samples is extremely insufficient (n = 20), the main structures of the network can still be
visually identified by DDCD Linear while the results from NOTEARS are more limited. Figure 3b
provides a broader comparison of the SHD metrics between different methods on different test cases.
In general, DDCD Linear, GOLEM, and DAG-GNN (for SF graphs only) are the most competitive
methods on these linear cases. Nonlinear methods tend to do worse on these linear cases, which is
expected. It is harder to recover ER graphs compared to SF graphs since the signals are weaker and
it’s more challenging to model on conditional probability.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: a. Example heatmap of weight estimates on a 100-node scale free graph with different
numbers of observed samples using DDCD Linear. b. Benchmark Results on 2,000 observations
on linear synthetic data over 10 runs, evaluated using Structural Hamming Distance (SHD). Lower
scores indicate better performance. (SF: scale-free; ER: Erdős-Rényi) c. Algorithm execution time
on 2,000 observations on CPUs over 10 repeated runs.

In terms of algorithm runtime, all three DDCD models finish execution at a fraction of the cost of
other algorithms. The only comparable baseline method is NOTEARS, which finished in an average
of 8 seconds and is the fastest algorithm on SF graphs with 20 nodes. However, the time cost quickly
scales up to 6 minutes on SF graphs with 100 nodes. In contrast, for DDCDs, the execution time
only extends from around 10 seconds to around 20 seconds. For a full comparison of the runtime of
DDCDs on a larger network, please refer to supplement section A.4.

4.3 NONLINEAR SYNTHETIC EXPERIMENT

On nonlinear benchmark, the DDCD Nonlinear model demonstrates strong performance in recov-
ering the causal structures from nonlinear data. In the example provided in Figure 4a, DDCD Non-
linear not only generates an accurate weight estimate of the graph (TPR: 0.91, SHD: 126), but also
provides an approximation to the underlying nonlinear transformation function. After training is
complete, we can send the input data X through the trained encoder and decoder and obtain the pre-
dicted values for Y and X̂ . The relationship between X and Y will be the transformation function
f1 and the relationship between Y W and X̂ will be f2. In addition to DDCD Nonlinear, DDCD
Linear also presents competitive benchmark performance despite being a linear model.

4.4 IMPACT OF K-HOP ACYCLIC CONSTRAINT

In the original NOTEARS constraint, the impact of large circles is reduced by a factorial denomina-
tor, as shown in Equation 19 in the supplement. With the k-hop acyclic constraint, we simply ignore
those large circles. This raises concerns about whether the inferred graphs are DAGs. To answer this
question, we analyzed the number of DAG violations on synthetic graphs with 100 nodes at various
degrees. Our results show that small k (as low as 3-hop) is, in fact, good enough to avoid DAG vio-
lations in most cases, except for ER graphs with high degrees. The detailed results of the experiment
are included in supplement section A.3. Overall, we recommend setting k a little bit higher (e.g. 5
or 10) depending on assumptions about the underlying graphs and computing resources.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: a. Example Weight Estimates on an ER graph with 100 nodes using DDCD Nonlinear.
DDCD Nonlinear not only infers the causal structure but also approximate the underlying nonlinear
transformation function. (Blue dots: Approximation; Ground truth: red line). b. Benchmark Results
with 2,000 observations over 10 runs evaluated using SHD.

4.5 REAL WORLD OBSERVATIONAL DATA: MYOCARDIAL INFARCTION

In this section, we assess the performance of DDCD Smooth on the real-world myocardial infarction
dataset. After training was complete, we extracted all edges with weights above the cut-off thresh-
old (0.2) in the inferred normalized adjacency matrix and examined a graph of the 2-hop neighbors
around the Lethal Outcome (LET IS) node. As shown in Figure 5, we can identify several meaning-
ful node clusters in this graph, including lethal outcome with its primary causes, critical conditions
and interventions, hospital pain control, emergency cardiology pain control, and blood test results,
purely based on the topological relationships among the nodes.

The three most important direct causes of lethal outcome include myocardial rupture, cardiogenic
shock, and complete Right Bundle Branch Block (RBBB) on ECG at admission; all of these are
known to be conditions with a poor prognosis. Cardiogenic shock (K SH POST) is further shown to
cause “sinus ECG rhythm with heart rate > 90” (ritm ecg p 07), consistent with a high heart rate
(tachycardia) being a symptom of cardiogenic shock. Pulmonary edema (OTEK LANC) is shown to
cause the use of liquid nitrates in the ICU (NITR S); this is indeed a common practice for rapidly
managing pulmonary edema. Other inferred edges include that NSAID drugs used by the emergency
team (NOT NA KB) cause blood pressure to increase, and that relapsing pain in the 2nd hospitaliza-
tion period causes NSAID use in the same period.

There are also some node pairs for which plausible edges are inferred, but in an implausible direc-
tion. For example, in the lower right of the figure, “post-infarction angina” (chest pain after the
heart attack causing the current hospital admission) is shown to cause “exertional angina pectoris in
the anamnesis” (e.g., a reported history of chest pain after exercise), when the former clearly occurs
after the latter. Still, many of the directed edges appear consistent with known causal relationships.

4.6 REAL WORLD OBSERVATIONAL DATA: GENE REGULATORY NETWORKS

In the yeast gene regulatory network (GRN) analysis with 4,980 genes and 1,428 samples, DDCD
smooth required just 34 seconds on GPU, suggesting that the method scales effectively for data sets
of this size. It is widely acknowledged that there are many feedback loops in gene regulatory net-
works (Alm & Arkin, 2003). RegDiffusion, with a denoising architecture related to that of DDCD,
is among the fastest and most accurate methods for single-cell-RNA-sequencing-based gene regula-
tory network inference (Zhu & Slonim, 2024), but it sometimes learns too many cycles. Thus, we
compare networks inferred by RegDiffusion (with no DAG constraint), DDCD smooth with a 2-hop
DAG constraint, and DDCD smooth with a 10-hop DAG constraint. Surprisingly, we found that
requiring acyclicity in the graph, even with just a 2-hop constraint, seems to have a negative impact
on the quality of the inferred networks. To illustrate these issues in the inferred networks, we exam-
ine the 2-hop neighborhoods around individual genes. Here we show these results for ADH1, a key

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Inferred Causal Network around Lethal Outcome in Myocardial Infarction

player in ethanol fermentation that has been extensively studied in the context of alcohol metabolism
and glycolysis (Raj et al., 2014). These results are shown in the Appendix.

5 DISCUSSION AND CONCLUSION

Our benchmarks on synthetic data demonstrate the superior performance of the DDCD models in
both linear and nonlinear cases. The denoising nature allows the model to explore a broader range
of noise and to yield better estimates, especially when the number of observed samples is limited.
The capacity for recovering an accurate approximation of nonlinear transformation functions further
assists the model in approximating the truth. Since it runs very quickly, it may even be used as a
low-cost nonlinearity test in appropriate scenarios.

Compared to existing methods, the most similar model to DDCD is DAG-GNN, which also models
the noise term of the SEM equation. To some degree, both DDCD and DAG-GNN train a decoder to
reconstruct the original input from pure noise under the constraint of the weighted adjacency matrix.
This is similar to the comparison of diffusion models to VAEs with infinite latent spaces (Luo, 2022).
By modeling the noise prediction and expected noise under the constraint of the parameterized
adjacency matrix at the same time, we eliminate the requirement of doing matrix inversion, which
runs in O(d3), in DAG-GNN. At the same time, DDCD allows us to experiment with more flexible
neural network architectures, addressing multiple types of assumptions.

Since both DDCD Linear and DDCD Nonlinear are based on the same assumptions that NOTEARS,
GOLEM, and DAG-GNN make, they also suffer from the same problems pointed out in Reisach
et al. (2021) and Kaiser & Sipos (2021). In our real-world experiments, the results from DDCD
Smooth are also much more explainable than the results from DDCD Linear and Nonlinear. This
once again marks the gap between real and current synthetic data in this field. However, there have
been several proposed solutions (Ng et al., 2024; Nazaret et al., 2023) to solve these problem with
unequal variance. Incorporating these into our linear and nonlinear models is an important topic for
future research.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Francis E Agamah, Jumamurat R Bayjanov, Anna Niehues, Kelechi F Njoku, Michelle Skelton,
Gaston K Mazandu, Thomas HA Ederveen, Nicola Mulder, Emile R Chimusa, and Peter AC
’t Hoen. Computational approaches for network-based integrative multi-omics analysis. Frontiers
in Molecular Biosciences, 9:967205, 2022.

Eric Alm and Adam P Arkin. Biological networks. Current opinion in structural biology, 13(2):
193–202, 2003.

Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data. Nature
Precedings, pp. 1–1, 2010.

Kevin Bello, Bryon Aragam, and Pradeep Ravikumar. Dagma: Learning dags via m-matrices and a
log-determinant acyclicity characterization. Advances in Neural Information Processing Systems,
35:8226–8239, 2022.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of machine
learning research, 3(Nov):507–554, 2002.

Max Chickering, David Heckerman, and Chris Meek. Large-sample learning of bayesian networks
is np-hard. Journal of Machine Learning Research, 5:1287–1330, 2004.

Chang Deng, Kevin Bello, Bryon Aragam, and Pradeep Kumar Ravikumar. Optimizing notears
objectives via topological swaps. In International Conference on Machine Learning, pp. 7563–
7595. PMLR, 2023.

Lash AE Edgar R, Domrachev M. Gene expression omnibus: Ncbi gene expression and hybridiza-
tion array data repository. Nucleic Acids Res, 30(1):207–10, Jan 1 2002.

Clark Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods based on graph-
ical models. Frontiers in genetics, 10:524, 2019.

SE Golovenkin, AN Gorban, EM Mirkes, VA Shulman, DA Rossiev, PA Shesternya, S Yu Nikulina,
Yu V Orlova, and MG Dorrer. Complications of myocardial infarction: a database for test-
ing recognition and prediction systems. UCI Machine Learning Repository, 2020. DOI:
https://doi.org/10.24432/C53P5M.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Christopher A Jackson, Dayanne M Castro, Giuseppe-Antonio Saldi, Richard Bonneau, and David
Gresham. Gene regulatory network reconstruction using single-cell rna sequencing of barcoded
genotypes in diverse environments. eLife, 9:e51254, jan 2020. ISSN 2050-084X. doi: 10.7554/
eLife.51254. URL https://doi.org/10.7554/eLife.51254.

Marcus Kaiser and Maksim Sipos. Unsuitability of notears for causal graph discovery. arXiv preprint
arXiv:2104.05441, 2021.

Diviyan Kalainathan, Olivier Goudet, Isabelle Guyon, David Lopez-Paz, and Michèle Sebag. Struc-
tural agnostic modeling: Adversarial learning of causal graphs. Journal of Machine Learning
Research, 23(219):1–62, 2022.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Rex B Kline. Principles and practice of structural equation modeling. Guilford publications, 2023.

11

https://doi.org/10.7554/eLife.51254


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hao-Chih Lee, Matteo Danieletto, Riccardo Miotto, Sarah T Cherng, and Joel T Dudley. Scaling
structural learning with no-bears to infer causal transcriptome networks. In Pacific Symposium on
Biocomputing 2020, pp. 391–402. World Scientific, 2019.

Po-Ling Loh and Peter Bühlmann. High-dimensional learning of linear causal networks via inverse
covariance estimation. The Journal of Machine Learning Research, 15(1):3065–3105, 2014.

Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint
arXiv:2208.11970, 2022.

Achille Nazaret, Justin Hong, Elham Azizi, and David Blei. Stable differentiable causal discovery.
arXiv preprint arXiv:2311.10263, 2023.

Ignavier Ng, Shengyu Zhu, Zhitang Chen, and Zhuangyan Fang. A graph autoencoder approach to
causal structure learning. arXiv preprint arXiv:1911.07420, 2019.

Ignavier Ng, AmirEmad Ghassami, and Kun Zhang. On the role of sparsity and dag constraints
for learning linear dags. Advances in Neural Information Processing Systems, 33:17943–17954,
2020.

Ignavier Ng, Shengyu Zhu, Zhuangyan Fang, Haoyang Li, Zhitang Chen, and Jun Wang. Masked
gradient-based causal structure learning. In Proceedings of the 2022 SIAM International Confer-
ence on Data Mining (SDM), pp. 424–432. SIAM, 2022.

Ignavier Ng, Biwei Huang, and Kun Zhang. Structure learning with continuous optimization: A
sober look and beyond. In Causal Learning and Reasoning, pp. 71–105. PMLR, 2024.

Roxana Pamfil, Nisara Sriwattanaworachai, Shaan Desai, Philip Pilgerstorfer, Konstantinos Geor-
gatzis, Paul Beaumont, and Bryon Aragam. Dynotears: Structure learning from time-series data.
In International Conference on Artificial Intelligence and Statistics, pp. 1595–1605. Pmlr, 2020.

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, USA, 2nd
edition, 2009. ISBN 052189560X.

Jean-Baptiste Pingault, Paul F O’reilly, Tabea Schoeler, George B Ploubidis, Frühling Rijsdijk, and
Frank Dudbridge. Using genetic data to strengthen causal inference in observational research.
Nature Reviews Genetics, 19(9):566–580, 2018.

Savarimuthu Baskar Raj, S Ramaswamy, and Bryce V Plapp. Yeast alcohol dehydrogenase structure
and catalysis. Biochemistry, 53(36):5791–5803, 2014.

Uku Raudvere, Liis Kolberg, Ivan Kuzmin, Tambet Arak, Priit Adler, Hedi Peterson, and Jaak Vilo.
g: Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019
update). Nucleic acids research, 47(W1):W191–W198, 2019.

Alexander Reisach, Christof Seiler, and Sebastian Weichwald. Beware of the simulated dag! causal
discovery benchmarks may be easy to game. Advances in Neural Information Processing Systems,
34:27772–27784, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Pedro Sanchez, Xiao Liu, Alison Q O’Neil, and Sotirios A Tsaftaris. Diffusion models for causal
discovery via topological ordering. arXiv preprint arXiv:2210.06201, 2022.

Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting multiple time
series. arXiv preprint arXiv:2101.06861, 2021.

Xinwei Shen, Furui Liu, Hanze Dong, Qing Lian, Zhitang Chen, and Tong Zhang. Weakly su-
pervised disentangled generative causal representation learning. Journal of Machine Learning
Research, 23(241):1–55, 2022.

Shohei Shimizu, Aapo Hyvarinen, Yutaka Kano, and Patrik O Hoyer. Discovery of non-gaussian
linear causal models using ica. arXiv preprint arXiv:1207.1413, 2012.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hantao Shu, Jingtian Zhou, Qiuyu Lian, Han Li, Dan Zhao, Jianyang Zeng, and Jianzhu Ma. Model-
ing gene regulatory networks using neural network architectures. Nature Computational Science,
1(7):491–501, 2021.

Donna K Slonim. From patterns to pathways: gene expression data analysis comes of age. Nature
genetics, 32(4):502–508, 2002.

Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. Social
science computer review, 9(1):62–72, 1991.

Peter Spirtes and Kun Zhang. Causal discovery and inference: concepts and recent methodological
advances. In Applied informatics, volume 3, pp. 1–28. Springer, 2016.

Xiangyu Sun, Oliver Schulte, Guiliang Liu, and Pascal Poupart. Nts-notears: Learning nonparamet-
ric dbns with prior knowledge. arXiv preprint arXiv:2109.04286, 2021.

Damian Szklarczyk, Rebecca Kirsch, Mikaela Koutrouli, Katerina Nastou, Farrokh Mehryary, Radja
Hachilif, Annika L Gable, Tao Fang, Nadezhda T Doncheva, Sampo Pyysalo, et al. The string
database in 2023: protein–protein association networks and functional enrichment analyses for
any sequenced genome of interest. Nucleic acids research, 51(D1):D638–D646, 2023.

Andreas Tjärnberg, Maggie Beheler-Amass, Christopher A Jackson, Lionel A Christiaen, David
Gresham, and Richard Bonneau. Structure-primed embedding on the transcription factor manifold
enables transparent model architectures for gene regulatory network and latent activity inference.
Genome biology, 25(1):24, 2024.

Caroline Uhler, Garvesh Raskutti, Peter Bühlmann, and Bin Yu. Geometry of the faithfulness as-
sumption in causal inference. The Annals of Statistics, pp. 436–463, 2013.

Sara van de Geer and Peter Bühlmann. ℓ0-penalized maximum likelihood for sparse directed acyclic
graphs. The Annals of Statistics, 41(2):536 – 567, 2013. doi: 10.1214/13-AOS1085. URL
https://doi.org/10.1214/13-AOS1085.

Matthew J Vowels, Necati Cihan Camgoz, and Richard Bowden. D’ya like dags? a survey on
structure learning and causal discovery. ACM Computing Surveys, 55(4):1–36, 2022.

Dennis Wei, Tian Gao, and Yue Yu. Dags with no fears: A closer look at continuous optimization for
learning bayesian networks. Advances in Neural Information Processing Systems, 33:3895–3906,
2020.

Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. Causalvae:
Disentangled representation learning via neural structural causal models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 9593–9602, 2021.

Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-GNN: Dag structure learning with graph neural
networks. In International conference on machine learning, pp. 7154–7163. PMLR, 2019.

Yue Yu, Tian Gao, Naiyu Yin, and Qiang Ji. Dags with no curl: An efficient dag structure learning
approach. In International Conference on Machine Learning, pp. 12156–12166. Pmlr, 2021.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. DAGS with NO TEARS: Con-
tinuous optimization for structure learning. Advances in neural information processing systems,
31, 2018.

Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, and Eric Xing. Learning sparse non-
parametric dags. In International Conference on Artificial Intelligence and Statistics, pp. 3414–
3425. Pmlr, 2020.

Hao Zhu and Donna K Slonim. From noise to knowledge: probabilistic diffusion-based neural
inference of gene regulatory networks. J Comput Biol, to appear, 2024. URL https://doi.
org/10.1101/2023.11.05.565675.

13

https://doi.org/10.1214/13-AOS1085
https://doi.org/10.1101/2023.11.05.565675
https://doi.org/10.1101/2023.11.05.565675


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 EXPLANATION OF THE K-HOP ACYCLICITY CONSTRAINT

In this section, we explain how to derive the proposed k-hop acyclicity constraint in Equation 17
from the NOTEARS DAG constraint in Equation 5.

The NOTEARS DAG constraint is in the form of hNOTEARS(W ) = tr(eW ◦W ) − d, where ◦ is the
Hadamard product, eW is the matrix exponential of W , and tr() is the trace of a matrix. In this case,
matrix exponential is the sum of a weighted power series as shown below.

eW =

∞∑
j=0

1

j!
W j . (18)

The trace of the summed matrix and the sum of all the traces are equivalent. At the same time,
since W 0 is simply the identity matrix, whose trace equals to the value of d, we can rewrite the
NOTEARS DAG function in the following form:

hNOTEARS(W ) =
∞∑
j=0

1

j!
tr((W ◦W )j)− d =

∞∑
j=1

1

j!
tr((W ◦W )j). (19)

In this case, if we want to account for all the cycles within k hops, we can do the following calcula-
tion:

hk-hop(W , k) =

k+1∑
j=1

1

j!
tr((W ◦W )j) (20)

As mentioned in the main text, in the case when values in the weighted adjacency matrix are tiny, it
might be helpful to multiply the values in the adjacency matrix by a constant multiplier γ and then
remove it after the trace calculation. Then the equation becomes to the following form:

hk-hop(W , k, γ) =

k+1∑
j=1

1

j!γ2j
tr((γW ◦ γW )j) (21)

If we keep a running product for j!, γ2j , and (γW ◦ γW )j , we can keep the complexity within
O(d2).

A.2 SPECIAL CASE IN DDCD SMOOTH

In DDCD Smooth, all the inputs are transformed into the range of -1 to 1 through MLP and the Tanh
activation function. We expected to learn a normalized adjacency matrix Ŵ , where the expected
value is 1

d . This normalized adjacency matrix would be conceptually similar to the normalized
adjacency matrix in graph convolution (Kipf & Welling, 2016). Under these assumption, from
Theorem we can reach a special form of conclusion that allows us to predict the added noise Z
directly.
Theorem 2. With a normalized adjacency matrix, we can directly infer the added noise Z.

Proof. Starting from Equation 10, let’s pick a random sample x and perturb that with a Gaussian
noise vector z ∈ N (0, 1) to build xt.

W Txt =
√
αtW

Tx0 +
√
1− αtW

Tz, (22)

We can in fact write each element in W Tz as a form of weighted Gaussian mixtures. Since all
values in z are standard Gaussian noise with a mean of 0 and variance of 1, the weighted sum of
such a mixture will also be centered at 0. Given that the expected value of edge weight in W is
1

d−1 and there are d − 1 entries, the expected value for the entire variance is
∑d

i=0
1−αt

d2 = 1−αt

d .
When d is large, this variance of W Txt will be much smaller than the variance term in xt, which
is 1−αt. When d is really large and the diffusion coeffient is small, we can therefore use W Txt to

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

approximate the unperturbed x0. This argument is very similar to the Central Limit Theorem, but
on noise. As a result, W Txt − xt will give us an close estimate of the added noise z.

A.3 EXPERIMENT ON THE IMPACT OF K-HOP ACYCLICITY CONSTRAINT

In this experiment, we evaluate the number of DAG violations relative to the choice of k-hop acyclic-
ity in both ER and SF graphs with 100 nodes at 3 different degree levels (10, 20, and 30). In each
situation, we generate 100 random graphs and observation data. Figure 6 shows the histogram of the
number of DAG violations in those 100 samples under each condition when predicted using DDCD
Linear. In most cases, there are no DAG violations for k ≥ 3.

Figure 6: Checking acyclicity within a few hops can effectively avoid DAG violations in most cases.

A.4 RUNTIME ANALYSIS

Figure 7 shows the execution time of DDCD Linear on SF graphs with different numbers of nodes.
The models were executed with different choices of k in acyclicity contraint and on different devices.
When graphs are large, GPU acceleration can provide a significant speed gain.

A.5 PERFORMANCE ON LARGE GRAPHS

Here, we include two sample weight estimates on larger graphs with 1,000 nodes. The main struc-
tures of the graphs are recovered (Figure 8).

A.6 METRICS

Since the inferred graphs are directed graphs, we use the same evaluation methods used in
NOTEARS. Since we are not generating non-directed edge predictions at all, here is a simplified
description of the metrics that we are using.

1. True Positive Rate (TPR) is defined as

TPR =
True Positive

Condition Positive
(23)

True positive is the number of cases when the predicted association exists in the condition
in the correct direction. Condition positive is the total number of true edges in the ground
truth graph.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 7: Time cost of running DDCD-Linear on graphs with different sizes on different devices

Figure 8: Example Weight Estimates on Graphs with 1,000 nodes. Number of samples in both cases
is 2,000.

2. False Discovery Rate (FDR) is defined as

FDR =
False Positive + Reverse

Prediction Positive
(24)

False positive is the number of cases when the predicted association does not exist in the
condition. Reverse is the number of cases when the predicted association exists in the
condition but in the opposite direction. Prediction Positive is the total number of positive
predictions in the inferred graph.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

3. False Positive Rate (FPR) is defined as

FPR =
False Positive + Reverse

Condition Negative
(25)

Condition negative is the total number of edges that do not exist.

4. Structural Hamming Distance (SHD) is a measure used to quantify the difference between
two directed acyclic graphs (DAGs). It counts the number of operations, including adding
an edge, removing an edge, and reversing an edge, required to transform one graph into an-
other. Here, the SHD is the sum of reversed positive predictions, false positive predictions
regardless of direction, and false negative predictions regardless of direction.

A.7 REAL WORLD EXPERIMENTS ON YEAST GENE EXPRESSION

A.7.1 DETAILED DATA PREPROCESSING STEPS

We collected the Saccharomyces cerevisiae single cell expression data from NCBI’s GEO database
(Edgar R, 2002) with accession GSE218089 (Tjärnberg et al., 2024). We selected the yeast wild-
type strain 2 cultured in nutrient-rich YPD media, as described in Jackson et al. (2020). We followed
the standard raw count data pre-processing procedures, which include, (1) gene filtering, by remov-
ing genes with positive expression counts in fewer than 10 cells; (2) size factor calculation (Anders
& Huber, 2010), which involves calculating the geometric mean of counts across all samples, cal-
culating the ratio for each gene within a sample by dividing each sample’s count by the geometric
mean for the genes, and calculating the size factor by computing the median of the ratios for each
sample; (3) data normalization, normalizing the count by dividing by the size factors; and (4) log
transformation, transforming (count-plus-one) using the natural logarithm. After these data process-
ing steps, we performed gene ID conversion using g:Profiler (Raudvere et al., 2019), and we further
removed all ribosomal genes (genes with “RPS” or “RPL” prefixes in their names).

A.7.2 YEAST GENE EXPRESSION RESULTS

As mentioned in the main text, after data preprocessing, we have 4,980 genes and 1,428 samples.
We run RegDiffusion, which does not account for the DAG constraint; DDCD Smooth with a 2-hop
DAG constraint; and DDCD Smooth with a 10-hop DAG constraint. All networks are constructed
with similar sizes (16 hidden dimensions, 3 layers of MLP blocks) and are trained for 1000 iterations
on GPUs. In terms of clock time, RegDiffusion completed in 20 seconds, DDCD Smooth 2-hop
DAG in 34 seconds, and DDCD Smooth 10-hop DAG in 109 seconds.

The inferred networks are shown in Figure 9; true positive predictions of neighboring nodes of
ADH1 are marked with green circles. Here we treat the STRING protein-protein interaction network
(Szklarczyk et al., 2023) as a noisy and non-context-specific ground truth network. In contrast, we
would consider the 3 inferred networks to be context-specific since they are inferred from context
specific (wild type, cultured in nutrient-rich media) gene expression data.

In the STRING network, ADH1 is shown to interact with FBA, ENO, PDC, ADH, and SFA. All
three inferred networks successfully captured the links with FBA, ENO, and PDC but their network
topologies are quite different.

In the network from RegDiffusion, where we include the top 15 connected candidates for each
gene, all three genes are directly connected, forming a chain (FBA1 ↔ ENO2) → ADH1 → PDC1.
DDCD Smooth with the 2-hop constraint forms two pathways starting from FBA1: FBA1 → PDC1
and FBA1 → ADA1 → PGK1 → ENO2 → PDC1. DDCD Smooth with the 10-hop constraint forms
several fragmented pathways, including PDC1 → FBA1, PDC1 → ADH1, and ENO2, AHD1 →
PGK1.

Although all three models identify proximity to these three neighboring genes, in DDCD Smooth
with the 2-hop constraint, neither ENO2 nor PDC is directly connected to ADH1. In DDCD Smooth
with the 10-hop constraint, neither FBA1 nor ENO2 is directly connected to ADH1. Further, most
of the 2-hop neighboring nodes in the DDCD Smooth (10 hop) plots do not interact with each other,
showing that the inferred candidate neighbors lack functional coherence. In contrast, in more accu-
rate inferred networks, the 2-hop neighbors of most genes interact with each other extensively. Based
on these and similar observations across the networks, we conclude that the inferred network from

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 9: Comparison of the inferred gene regulatory neighborhood around ADH1 using different
models and settings. The network from STRING db is considered as a noisy and non-context-
specific ground truth network.

RegDiffusion is more trustworthy. Introducing even limited acyclicity controls to gene networks, or
to other networks that potentially include longer feedback loops, may not improve inference results.

A.8 ADDITIONAL INFERRED EXAMPLES FROM NOTEARS-DENOISING

Here are some additional comparisons between results from NOTEARS-Linear and NOTEARS-
Denoising. Overall, as reported in the main paper, when the number of samples is limited (2nd and
4th rows), the results from NOTEARS-Linear (2nd column) may include a lot of noise. This could
be resolved by using the denoising diffusion objective (3rd and 4th columns). When the number of
samples is sufficient (1st and 3rd rows), in most cases, NOTEARS-Linear will generate very good
inference but in some cases such as Sample 2 in row 3 and 4, it may end up in a local minima. On the
other hand, using the denoising objective do come with a cost. When the added noise is not small
enough, it may introduce some small noisy values in the inferred matrix. This could be resolved by
adding smaller noises instead (column 4) but smaller noises will also increase the runtime.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 10: Comparison of some results from NOTEARS-Linear and NOTEARS-Denoising. Execu-
tion times are displayed on the top-right corner of each figure.

19


	Introduction
	Background and Related Work
	Problem Statement
	Structural Equation Models (SEMs)
	Continuous DAG constraint
	Denoising Diffusion Probabilistic Models

	Methods
	Denoising Diffusion Models for Linear SEMs
	Denoising Diffusion Models for Nonlinear SEMs
	Scale handling with smoothed features and adjacency matrix
	k-hop Acyclicity Constraint with gradient clipping
	Fixed-size Bootstrap Sampling
	Optimization

	Experiments
	Denoising objective leads to smoother gradients
	Linear Synthetic Experiment
	Nonlinear Synthetic Experiment
	Impact of k-hop acyclic constraint
	Real World Observational Data: Myocardial Infarction
	Real World Observational Data: Gene Regulatory Networks

	Discussion and Conclusion
	Appendix
	Explanation of the k-hop acyclicity constraint
	Special Case in DDCD Smooth
	Experiment on the Impact of k-Hop Acyclicity Constraint
	Runtime Analysis
	Performance on Large Graphs
	Metrics
	Real World Experiments on yeast gene expression
	Detailed Data Preprocessing Steps
	Yeast gene expression results

	Additional inferred examples from NOTEARS-Denoising


