
Appendix: Post-processing for Individual Fairness

Felix Petersen∗ Debarghya Mukherjee∗ Yuekai Sun Mikhail Yurochkin

In the appendices, we start by explaining experimental details in Appendix A and present the proofs
for our main theorems in Appendix B.

A Experimental Details

For the experimental evaluation, we use the three methods: IF-constraints, GLIF, and GLIF-NRW
(see Section 3). For GLIF and GLIF-NRW, we use both the closed-form solution (see equation (3.3))
and the coordinate descent algorithm (Section 3.2.2). We evaluate on the sentiment, the bios, and the
toxicity data sets, which are discussed in the following. For all experiments, we report means and
standard deviations over 10 repetitions / seeds.

A.1 Experimental Settings

Sentiment prediction In this task, we post-process a neural network with 1 000 hidden units
trained to predict sentiment, e.g., “nice” is positive and “ugly” is negative, using 5 961 labeled words
embedded with 300-dimensional GloVe word embeddings [35]. Post-processing is applied to the
model predictions on 663 (unlabeled) test words mixed with 94 names (49 names popular among
Caucasian population and 45 names popular among African-American population). This experiment
is based on the fair sentiment prediction experiment of Yurochkin et al. [11]. Train and test words
were collected by Hu et al. [34]. The list of names for evaluating fairness was proposed by Caliskan et
al. [36]. To obtain the fair metric, we followed the original experiment [11]: learn a “sensitive”
subspace via PCA with 50 components applied to a side data set of popular baby names in New
York City. The fair metric is constructed to ignore any variation in this subspace, i.e., it is equal to
Euclidean distance on word embeddings projected onto the orthogonal complement of the sensitive
subspace.

Bios We use the data set proposed by de Arteaga et al. [40] and follow the experimental setup of
Yurochkin et al. [12]. In this task, we post-process fine-tuned BERT-Base-Uncased [14] replicating
the training setup described in Appendix B in [12]. This yields 28-dimensional outputs (a logit per
class) for each biography. We also replicate fair metric learning procedure of Yurochkin et al. [12]:
for each training bio, we create an alternative bio by swapping gender pronouns, e.g., "He is a lawyer"
to "She is a lawyer", and use the embeddings from the fine-tuned BERT. Then, we use the FACE
method by Mukherjee et al. [19] with 25 factors, considering each pair of original and altered bios
as a pair of similar examples. For each seed, 354 080 training biographies are used for fine-tuning
BERT and fair metric learning. We apply post-processing to 39 343 test predictions mixed with
the same number of predictions for bios created by altering names and gender pronouns. Thus, the
total number of predictions that we post-process is 78 686. We use the altered bios in the test set
to evaluate prediction consistency, and evaluate the test accuracy only on the 39 343 original test
bios. Our methods do not have any knowledge of the alteration procedure nor which bios are the
alterations.

Toxicity For this task, we use the data set derived from the “Toxic Comment Classification Chal-
lenge” Kaggle competition following the experimental setup of Yurochkin et al. [12]. BERT fine-
tuning and fair metric learning is similar to the bios experiment and follows the original experiment.
This is a binary classification problem. The experiment utilizes a list of 50 identity tokens [41] analo-
gous to the gender pronouns in the Bios experiment. There are 155 618 training comments, among
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which 55% have at least one of the 50 identity tokens. To learn the fair metric, a random subset of 25
identity tokens (out of the 50) is used. For each comment in the training set (with at least one of the
known 25 identity tokens), 25 alterations are created, forming groups of comparable samples for the
FACE method with 25 factors. At test time, we are interested in prediction consistency on the original
comments and all 50 alterations. For each seed, we apply our methods to post-process predictions on
a test set comprising around 3 640 test comments without any of the 50 identity tokens, around 4 550
test comments with at least one of the identity tokens, and their 227 500 alterations corresponding
to 50 identity tokens. The total number of post-processed predictions (depending on the seed) is
around 235 690. The test accuracy is evaluated on the original (unaltered) 3 640 + 4 550 = 8 190 test
comments. As before, our methods have no knowledge of the identity tokens nor the existence of
alterations in the data being post-processed.

A.2 Methods

For the sentiment task, we use the closed-form method of GLIF as in equation (3.3) of the main text.
For the other tasks, we use the coordinate descent algorithm (described in Section 3.2.2 of the main
text) as the test data set is too large to fit in memory. For the coordinate descent algorithm, we used
10 epochs, which we found to work well across all data sets.

A.3 Hyperparameters

We used grid search on a validation data set to find the best hyperparameter for each experimental
setting. We optimized the threshold parameter τ (see equation (2.2)) and the regularization strength λ
(see equations (3.1) and (3.4)) considering the following ranges:

• λ ∈ {0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100}
• τ ∈ {100.02i for i ∈ {−50...100}} and rounded to a close fraction.

For GLIF-NRW, we (internally) multiply λ by the average degree in the graph which yields a good
effective λ for each τ (as τ significantly influences the average degree). Using this procedure, we
found the following to work best for each data set, which we also used for Tables 1 and 2 in the main
text:

Sentiment λ = 0.1, τ = 30

Bios λ = 10, τ = 16

Toxicity λ = 30, τ = 0.4

We found that the exact value is not crucial, and multiple neighboring λs and τs achieved around
the same performance. As for the factor θ (see equation (2.2)), we used θ = 10−4 but found this to
perform indistinguishable to other choices such as 10−3, 10−6, and 10−8.

For the accuracy-fairness trade-off plots, we plot the full range of τ .

A.4 Runtime Analysis

We ran the experiments on a local iMac (3.6 GHz Intel Core i9), single-threaded, and not requiring
a GPU. We report runtimes in Table 3. For the sentiment data set, GLIF and GLIF-NRW are four
orders of magnitude faster than IF-constraints. IF-constraints is too slow to be practical on the larger
data sets, and we did not evaluate it on Bios and Toxicity. To demonstrate the speed trade-off for
different number of test points on Bios and Toxicity, we include test sets of 1% and 10% of the
original size. We report the runtimes for single-threaded computation. Running it multi-threaded
reduces computation time, respectively.

For the closed-form GLIF, the runtime is O(n3) where n is the number of test points due to the
matrix inversion. Note that the theoretical runtime of matrix inversion is O(n2.373) using optimized
Coppersmith-Winograd–like algorithms, but not practical in our settings.

For the coordinate descent GLIF, the runtime is O(n2 · c) where c is the number of epochs during
coordinate descent. We found that c = 10 works well across all data sets. Note that by increasing n,
the runtime increases because more points have to be updated and (for each point) more potential
neighbors have to be considered.

The expected runtimes match the empirical runtimes reported in Table 3.
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Table 3: Runtimes on a 3.6 GHz Intel Core i9 iMac.

Data Set Sentiment Bios Toxicity

# Points 757 788 7 870 78 686 2 383 23 620 235 842

IF-constraints 422s — — — — — —

Closed Form GLIF 0.02s 0.02s 8.8s — 0.33s 228s —
Closed Form GLIF-NRW 0.04s 0.05s 32s — 1.03s 864s —

Coordinate Desc. GLIF 0.08s 0.18s 30s 4 569s 0.94s 111s 12 200s
Coordinate Desc. GLIF-NRW 0.09s 0.19s 30s 4 812s 1.19s 136s 13 500s

B Proofs of our Main Theorems

B.1 Proof of Theorem 4.6

For technical simplicity here we show that if the fair metric is euclidean distance then the un-
normalized graph Laplacian regularizer converges to E[‖∇f(X)‖2p(X)] and the normalized random
walk graph Laplacian regularization converges to E[‖∇f(X)‖2]. As our fair metric (i.e., Maha-
lanobish distance) is equivalent to euclidean metric in a sense that there exists c1, c2 > 0 such
that:

c1‖x1 − x2‖ ≤ dFair(x1, x2) = (x1 − x2)
⊤Σ(x1 − x2) ≤ c2‖x1 − x2‖ ,

where c1 is the minimum eigenvalue of Σ and c2 is its maximum eigenvalue, all of our calculations
are valid for this fair distance with a tedious tracking of this equivalence. As this proof is itself
very involved and this generalization from euclidean to Mahalanobis distance adds nothing of major
significance to the core idea of the proof, we confine ourselves to the euclidean distance.

B.1.1 Proof of Part 1.

Proof. For un-normalized graph Laplacian, Lun,n = D −W where:

Wij =
1

(2π)d/2hd
e−

1
2h2 ‖xi−xj‖

2

, Dii =
n∑

j=1

Wij .

The regularizer can be reformulated as:

1

n2h2
f
⊤ (D −W ) f =

1

n2h2

∑

ij

(D −W )ijf(Xi)f(Xj)

=
1

n2h2

∑

i

(Dii −Wii) f
2(Xi)−

∑

i 6=j

Wijf(Xi)f(Xj)

=
1

n2h2

∑

i

∑

i 6=j

Wij

(
f2(Xi)− f(Xi)f(Xj)

)

=
1

2n2h2

∑

i

∑

j 6=i

Wij (f(Xi)− f(Xj))
2
.

Therefore we need to establish:

1

n(n− 1)h2

∑

i

∑

j 6=i

Wij (f(Xi)− f(Xj))
2 P−→ E

[
‖∇f(X)‖2p(X)

]
.

Towards that direction, we show that the expectation of the random regularizer converges to
E
[
‖∇f(X)‖2p(X)

]
and its variance goes to 0 under our assumptions. For the expectation:

E


 1

n(n− 1)h2

∑

i

∑

j 6=i

Wij (f(Xi)− f(Xj))
2



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=
1

h2

∫

X

∫

X

1

(2π)d/2hd
e−

1
2h2 ‖x−y‖2

(f(x)− f(y))
2
p(y) dy p(x) dx

=
1

h2

∫

X

∫

X−x
h

1

(2π)d/2
e−

1
2‖x−y‖2

(f(x+ hz)− f(x))
2
p(x+ hz) dz p(x) dx

=

∫

X

∫

X−x
h

[
1

(2π)d/2
e−

1
2‖x−y‖2

(
z⊤∇f(x) + h

2
z⊤∇2f(x̃)z

)2

× (p(x) + h∇p(x∗)) dz p(x) dx] [x̃, x∗ are intermediate points ]

=

∫

X

∫

X−x
h

[
1

(2π)d/2
e−

1
2‖x−y‖2

z⊤∇f(x)∇f(x)⊤z dz p2(x) dx

]
+O(h)

=

∫

X

∇f(x)⊤EZ

[
ZZ⊤

1x+Zh∈X

]
∇f(x)p2(x) dx+O(h) −→ E

[
‖∇f(X)‖2p(X)

]
.

where the last line follows from Vitali’s theorem as the derivative∇f(x) has finite variance. Thus we
have proved that the expectation of the regularizer converges to the desired limit. The final step is to
show that the variance of the regularizer converges to 0. Towards that direction:

var


 1

n2h2

∑

i

∑

j 6=i

Wij (f(Xi)− f(Xj))
2




=
1

n4h4

∑

i 6=j

E

[
W 2

ij (f(Xi)− f(Xj))
4
]

+
1

n4h4

∑

(i,j) 6=(k,l)

cov

(
Wij (f(Xi)− f(Xj))

2
,Wkl (f(Xk)− f(Xl))

2
)

= O(n−2) +
1

n4h4

∑

(i,j) 6=(k,l)

cov

(
Wij (f(Xi)− f(Xj))

2
,Wkl (f(Xk)− f(Xl))

2
)

= O(n−2) + V

That the first summand is O(n−2) follows from a similar calculation used to establish the convergence
of the expectation and hence skipped. For the covariance term V , if there is not indices common
between (i, j) and (k, l), the covariance term is 0. Therefore we consider only those terms where
there is exactly one index common between (i, j) and (k, l). Therefore:

V =
1

n4h4

∑

(i,j) 6=(k,l)

cov
(
Wij (f(Xi)− f(Xj))

2
,Wkl (f(Xk)− f(Xl))

2
)

=
1

n4h4

∑

i 6=j 6=k

cov

(
Wij (f(Xi)− f(Xj))

2
,Wik (f(Xi)− f(Xk))

2
)

=
n(n− 1)(n− 2)

n4h4
cov

(
Wij (f(Xi)− f(Xj))

2
,Wik (f(Xi)− f(Xk))

2
)

=
n(n− 1)(n− 2)

n4h4
[E [WijWik (f(Xi)− f(Xj)) (f(Xi)− f(Xk))]

− E [Wij (f(Xi)− f(Xj))]E [Wik (f(Xi)− f(Xk))]]

=
n(n− 1)(n− 2)

n4h4
E [WijWik (f(Xi)− f(Xj)) (f(Xi)− f(Xk))] +O(n−1)

For the cross term:

E [WijWik (f(Xi)− f(Xj)) (f(Xi)− f(Xk))]

=

∫

X

∫

X

∫

X

[(
1

(2π)d/2hd
e−

1
2h2 ‖x−y‖2

)(
1

(2π)d/2hd
e−

1
2h2 ‖x−w‖2

)
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× (f(x)− f(y))(f(x)− f(w)) p(w)p(y)p(x) dw dy dx]

=

∫

X

∫

X−x
h

∫

X−x
h

[(
1

(2π)d/2
e−

1
2‖z1‖

2

)(
1

(2π)d/2
e−

1
2‖z2‖

2

)

× (f(x)− f(x+ hz1))(f(x)− f(x+ hz2)) p(x+ hz1)p(x+ hz2)p(x) dz1 dz2 dx]

= h2

∫

X

∫

X−x
h

∫

X−x
h

φ(z1)φ(z2)z
⊤
1 ∇f(x)∇f(x)⊤z2 p(z1)p(z2)p(x) dz2dz1dx+ o(h2)

= h2

∫

X

gh(x)p(x) dz2dz1dx+ o(h2)

where the function gh(x) is defined as:

gh(x) = ∇f(x)⊤EZ1,Z2

[
Z1Z

⊤
2 1x+Z1h∈X1x+Z2h∈X

]
∇f(x) .

It is immediate that gh(x) → 0 pointwise for all x ∈ X . Further, as the derivative of f has finite
variance, we also have gh is uniformly integrable. Therefore, another application of Vitali’s theorem
yields: ∫

X

gh(x)p(x) dx
p−→ 0 =⇒ V = o(h2) .

This completes the proof.

Remark B.1. The assumption on the bandwidth hn in the part 1. of Theorem 4.6 can be relaxed
upto the condition nhn →∞ if we further assume∇f(x) = 0 or p(x) = 0 on the boundary of X .

B.1.2 Proof of Part 2.

Proof. As in the case of Part 1. here also we confine ourselves to the euclidean distance. Before
delving into the technical details, we introduce a few notations for the ease of the proof. The
normalized random walk Laplacian regularizer can be expressed as:

1

nh2
f
⊤
Lnrw,nf =

1

nh2
f
⊤
(
I − D̃−1K̃

)
f ,

where:

K̃ij =

1
nhdK

(
‖Xi−Xj‖

2

h2

)

√
1

nhd

∑
i K

(
‖Xi−Xj‖2

h2

)√
1

nhd

∑
j K

(
‖Xi−Xj‖2

h2

)

:=

1
nhdK

(
‖Xi−Xj‖

2

h2

)

√
dn,h(Xi)

√
dn,h(Xj)

[
K(z) = φ(z) =

1

(2π)d/2
e−

1
2‖z‖

2

]
,

D̃ii =
∑

j

K̃ij =
1

nhd

∑

j

K
(

‖Xi−Xj‖
2

h2

)

√
dn,h(Xi)

√
dn,h(Xj)

=
1√

dn,h(Xi)

1

nhd

∑

j

K
(

‖Xi−Xj‖
2

h2

)

√
dn,h(Xj)

We further define few more functions which are imperative for the rest of the proof:

dn,h(x) =
1

nhd

∑

i

K

(‖x−Xi‖2
h2

)

ph(x) = E[dn,h(x)] = E

[
1

hd
K

(‖x−X‖2
h2

)]

d̃n,h(x) =
1

n

n∑

i=1

1
hdK

(
‖x−Xi‖

2

h2

)

√
dn,h(x)

√
dn,h(Xi)

≈

dn,h(x) =
1

n

n∑

i=1

1
hdK

(
‖x−Xi‖

2

h2

)

√
ph(x)

√
ph(Xi)
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≈

dh(x) = E




1
hdK

(
‖x−X‖2

h2

)

√
ph(x)

√
ph(X)




Following two auxiliary lemmas will be used frequently throughout the proof:

Lemma B.2. The function ph(x) and
≈

dh(x) is uniformly lower bounded over x ∈ X , i.e., there exists

p̃min > 0 and d̃min > 0 such that ph(x) ≥ p̃min and
≈

dh(x) ≥ d̃min for all x ∈ X uniformly over all
small h.

Proof. The definition of ph(x) yields:

ph(x) = E

[
1

hd
K

(‖x−X‖2
h2

)]
=

∫

X

1

hd
K

(‖x− y‖2
h2

)
p(y) dy

=

∫

X−x
h

K(‖z‖2)p(x+ hz) dz

≥ pmin

∫

X−x
h

K(‖z‖2) dz

≥ pmin inf
x∈X

∫

X−x
h

K(‖z‖2) dz := p̃min .

Note that, the bound p̃min is independent of h for all small h as the volume of the region (X − x)/h
increases as h→ 0. Moreover we can further establish an upper bound on ph(x):

ph(x) =

∫

X−x
h

K(‖z‖2)p(x+ hz) dz

≤ pmax

∫

X−x
h

K(‖z‖2) dz

≤ pmax

∫

Rd

K(‖z‖2) dz = pmax

[
∵

∫

Rd

K(‖z‖2) dz = 1

]
.

We use the above upper bound on ph(x) to obtain a lower bound on
≈

dh(x) as follows:

≈

dh(x) = E




1
hdK

(
‖x−X‖2

h2

)

√
ph(x)

√
ph(X)


 =

∫

X

1
hdK

(
‖x−y‖2

h2

)

√
ph(x)

√
ph(y)

p(y) dy

≥ 1

pmax

∫

X

1

hd
K

(‖x− y‖2
h2

)
p(y) dy

≥ p̃min

pmax
:= d̃min .

Lemma B.3. Under the main assumptions stated in Theorem 4.6, we have:

sup
x∈X
|dn,h(x)− ph(x)| = Op

(√
1

nhd
log

1

h

)
, (B.1)

sup
x∈X

∣∣∣d̃n,h(x)−
≈

dn,h(x)
∣∣∣ = Op

(√
1

nhd
log

1

h

)
, (B.2)

sup
x∈X

∣∣∣
≈

dn,h(x)−
≈

dh(x)
∣∣∣ = Op

(√
1

nhd
log

1

h

)
. (B.3)

Therefore combining the bounds of equation (B.2) and (B.3) we obtain:

sup
x∈X

∣∣∣d̃n,h(x)−
≈

dh(x)
∣∣∣ = Op

(√
1

nhd
log

1

h

)
. (B.4)
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Proof. From the definition of dn,h(x) we can write it as dn,h(x) = PnKh,x where Kh,x(y) =
(1/hd)K(‖x− y‖2/h2). This implies ph(x) = PKh,x. Now, for any x1, x2, y ∈ X :

|Kh,x1
(y)−Kh,x2

(y)| ≤ 1

hd(2π)d/2

∣∣∣∣K
(‖x1 − y‖2

h2

)
−K

(‖x2 − y‖2
h2

)∣∣∣∣

=
1

hd(2π)d/2

∣∣∣∣exp
(
−‖x1 − y‖2

2h2

)
− exp

(
−‖x2 − y‖2

2h2

)∣∣∣∣

=
1

hd(2π)d/2

∣∣∣∣
〈
x1 − x2,−(x∗ − y)

1

h2
exp

(
−‖x

∗ − y‖2
2h2

)〉∣∣∣∣

≤ 2

hd+2(2π)d/2
‖x1 − x2‖ ‖x∗ − y‖ exp

(
−‖x

∗ − y‖2
2h2

)

≤ 2

hd+1(2π)d/2
‖x1 − x2‖

‖x∗ − y‖
h

exp

(
−‖x

∗ − y‖2
2h2

)

≤ 2

hd+1
‖x1 − x2‖ sup

z

1

(2π)d/2
‖z‖e− z2

2

≤ L

hd+1
‖x1 − x2‖

[
L = sup

z

1

(2π)d/2
‖z‖e− z2

2

]
.

As the above bound is free of y, we further have:

‖Kh,x1
−Kh,x2

‖∞ ≤
L

hd+1
‖x1 − x2‖ . (B.5)

The envelope function of the collection K = {Kh,x : x ∈ X} is:

K̄h(y) = sup
x

dx(y) = sup
x

1

hdC
K

(‖x− y‖2
h2

)
=

1

hdC
:= U .

Now fix ǫ > 0. Suppose Xǫ,h := {x1, x2, . . . , xN} is (ǫh)/LC covering set of X (which is finite as
X is compact). Then for any x ∈ X , there exists x∗ ∈ Xǫh such that ‖x− x∗‖ ≤ ǫh. This along with
equation (B.5) implies:

∥∥∥∥
Kx,h

U
− Kx∗,h

U

∥∥∥∥
∞

≤ L

Uhd+1
‖x− x∗‖ ≤ L

Uhd+1

ǫh

LC
= ǫ ,

i.e.:

sup
Q
N (K, L2(Q), ǫU) ≤ N (K, L∞, ǫU)

≤ N
(

ǫh

LC
,L2,X

)

≤ K

(
LC

ǫh

)d

:=

(
K1

ǫh

)d

.

The maximum variation of functions of K can be bounded as below:

sup
x

var(Kh,x) ≤ sup
x

E[K2
h,x]

= sup
x

∫
1

h2dC2
K2

(‖x− y‖2
h2

)
p(y) dy

≤ 1

hdC2
sup
x

∫
K2
(
‖z‖2

)
p(x+ zh) dz

≤ pmax

hdC2

∫
K2
(
‖z‖2

)
dz :=

K2

hd
:= σ2 .

Therefore, applying Theorem 8.7 of [42] we conclude:

E[‖Pn − P‖K] ≤ K3

(
σ√
n

√
d log

K1

hd+1Cσ
∨ dU

n
log

K1

hd+1Cσ

)
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.

(
1

hd/2
√
n

√
log

1

h
∨ 1

nhd
log

1

h

)
= O

(√
1

nhd
log

1

h

)
.

An application of Markov’s inequality with the above bound on the expected value of the empirical
process established the rate of equation (B.1).

For bound (B.2) we have:

sup
x∈X

∣∣∣d̃n,h(x)−
≈

dn,h(x)
∣∣∣

= sup
x

∣∣∣∣∣∣
1

n

n∑

i=1

1
hdK

(
‖x−Xi‖

2

h2

)

√
dn,h(x)

√
dn,h(Xi)

− 1

n

n∑

i=1

1
hdK

(
‖x−Xi‖

2

h2

)

√
ph(x)

√
ph(Xi)

∣∣∣∣∣∣

≤ sup
x

1

n

n∑

i=1

1

hd
K

(‖x−Xi‖2
h2

) ∣∣∣∣∣
1√

dn,h(x)
√

dn,h(Xi)
− 1√

ph(x)
√

ph(Xi)

∣∣∣∣∣

≤ sup
x,y∈X

∣∣∣∣∣
1√

dn,h(x)
√
dn,h(y)

− 1√
ph(x)

√
ph(y)

∣∣∣∣∣

× sup
x

1

n

n∑

i=1

1

hd
K

(‖x−Xi‖2
h2

)

≤ sup
x,y∈X

∣∣∣∣∣
1√

dn,h(x)
√
dn,h(y)

− 1√
ph(x)

√
ph(y)

∣∣∣∣∣

×
[
sup
x
|PnKx,h − PKx,h|+ sup

x
PKh,x

]

≤ sup
x,y∈X

∣∣∣∣∣
1√

dn,h(x)
√
dn,h(y)

− 1√
ph(x)

√
dn,h(y)

+
1√

ph(x)
√

dn,h(y)
− 1√

ph(x)
√
ph(y)

∣∣∣∣∣

×
[
sup
x
|PnKx,h − PKx,h|+ sup

x
PKh,x

]

≤
{
sup
x∈X

1√
dn,h(x)

sup
x

∣∣∣∣∣
1√

dn,h(x)
− 1√

ph(x)

∣∣∣∣∣+ sup
x

1√
ph(x)

sup
x

∣∣∣∣∣
1√

dn,h(y)
− 1√

ph(y)

∣∣∣∣∣

}

×
[
sup
x
|PnKx,h − PKx,h|+ sup

x
PKh,x

]

≤
{
sup
x∈X

∣∣∣∣∣
1√

dn,h(x)
− 1√

ph(x)

∣∣∣∣∣ supx

∣∣∣∣∣
1√

dn,h(x)
− 1√

ph(x)

∣∣∣∣∣

+ 2 sup
x

1√
ph(x)

sup
x

∣∣∣∣∣
1√

dn,h(y)
− 1√

ph(y)

∣∣∣∣∣

}

×
[
sup
x
|PnKx,h − PKx,h|+ sup

x
PKh,x

]

≤



sup

x

∣∣∣∣∣
1√

dn,h(x)
− 1√

ph(x)

∣∣∣∣∣

2

+ 2 sup
x

1√
ph(x)

sup
x

∣∣∣∣∣
1√

dn,h(y)
− 1√

ph(y)

∣∣∣∣∣





×
[
sup
x
|PnKx,h − PKx,h|+ sup

x
PKh,x

]

≤



sup

x

∣∣∣∣∣

√
dn,h(x)−

√
ph(x)√

dn,h(x)ph(x)

∣∣∣∣∣

2

+
2√
p̃min

sup
x

∣∣∣∣∣

√
dn,h(x)−

√
ph(x)√

dn,h(x)ph(x)

∣∣∣∣∣




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×
[
‖Pn − P‖K + sup

x
PKh,x

]

≤




sup
x

∣∣∣∣∣∣
dn,h(x)− ph(x)

√
dn,h(x)ph(x)

(√
dn,h(x) +

√
ph(x)

)

∣∣∣∣∣∣

2

+
2√
p̃min

sup
x

∣∣∣∣∣∣
dn,h(x)− ph(x)

√
dn,h(x)ph(x)

(√
dn,h(x) +

√
ph(x)

)

∣∣∣∣∣∣





×
[
‖Pn − P‖K + sup

x
PKh,x

]
(B.6)

=

{
Op

(
1

nhd

(
log

1

h

)2
)

+Op

(√
1

nhd
log

1

h

)}
×
{
Op

(√
1

nhd
log

1

h

)
+O(1)

}

= Op

(√
1

nhd
log

1

h

)
.

where the rates follows from bound (B.1) along with the fact that the denominators of (B.6) are

bounded away from 0. More precisely, the term
(√

dn,h(x) +
√

ph(x)
)

in the denominator of

equation (B.6) is lower bounded by ph(x) which is further uniformly lower bounded by p̃min. To

bound the other term
√
dn,h(x)ph(x) in the denominator, we again use bound (B.1), from which

we know for all x ∈ X and for all small h, we have |dn,h(x) − ph(x)| ≤ p̃min/2, which implies

dn,h ≥ pmin/2. Therefore the term
√
dn,h(x)ph(x) is lower bounded by p̃min/

√
2. This completes

the proof for bound (B.2).

The proof of bound (B.3) is similar to that of bound (B.1). Note that:

sup
x

∣∣∣
≈

dn,h(x)−
≈

dh(x)
∣∣∣

= sup
x

∣∣∣∣∣∣
1

n

n∑

i=1

1
hdK

(
‖x−Xi‖

2

h2

)

√
ph(x)

√
ph(Xi)

− E




1
hdK

(
‖x−X‖2

h2

)

√
ph(x)

√
ph(X)




∣∣∣∣∣∣
= sup

x
|Pngx − Pgx|

where the function gx is defined as:

gx(y) =

1
hdK

(
‖x−y‖2

h2

)

√
ph(x)

√
ph(y)

.

Following the same line of argument as in the proof of bound (B.1) (with this new function class
G = {gx : x ∈ X} instead of K) we conclude the lemma.

We divide the rest of the proof into few steps. Henceforth we denote Ln,srw as Ln for typographical
simplicity.

Step 1: Expanding the expression for Ln we have:

Ln =
1

nh2
f⊤
(
I − D̃−1K̃

)
f

=
1

nh2



∑

i

(
1− K̃ii

D̃ii

)
f(Xi)

2 −
∑

i 6=j

K̃ij

D̃ii

f(Xi)f(Xj)




We first show that the diagonal terms related to the scaled weighted matrix is asymptotically negligible,
i.e.,

1

nh2

∑

i

K̃ii

D̃ii

f2(Xi)
P−→ 0 .
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By the choice of our kernel, we have K̃ii = 1/(nhddn,h(Xi)). Therefore we have:

1

nh2

∑

i

K̃ii

D̃ii

f2(Xi) =
1

nhd+2
× 1

n

∑

i

1

dn,h(Xi)d̃n,h(Xi)
f2(Xi)

As per our assumption nhd+2 → ∞, hence all we need to show is the second term in the above
product is Op(1) to establish the claim. Towards that direction:

∣∣∣∣∣
1

n

∑

i

f2(Xi)

dn,h(Xi)d̃n,h(Xi)

∣∣∣∣∣

≤ 1

n

∑

i

f2(Xi)

ph(Xi)
≈

dh(Xi)
+

1

n

∑

i

f2(Xi)

∣∣∣∣∣
1

dn,h(Xi)d̃n,h(Xi)
− 1

ph(Xi)
≈

dh(Xi)

∣∣∣∣∣

That the first summand is Op(1) is immediate from the law of large numbers and the second term is
op(1) follows by a simple application of Lemma B.3 and Lemma B.2.

Step 2: In the next step, we establish the following approximation of the off-diagonal terms:

1

nh2

∑

i 6=j

K̃ij

D̃ii

f(Xi)f(Xj) =
1

nh2

∑

i 6=j

1

nhd K

(

‖Xi−Xj‖
2

h2

)

√
ph(Xi)

√
ph(Xj)

≈

dh(Xi)
f(Xi)f(Xj) + op(1) .

We expand the difference as below:
∣∣∣∣∣∣

1

nh2

∑

i 6=j

K̃ij

D̃ii

f(Xi)f(Xj)−
1

nh2

∑

i 6=j

1
nhdK

(
‖Xi−Xj‖

2

h2

)

√
ph(Xi)

√
ph(Xj)

≈

dh(Xi)
f(Xi)f(Xj)

∣∣∣∣∣∣

≤ 1

nh2

∑

i 6=j

[
1

nhd
K

(‖Xi −Xj‖2
h2

)
|f(Xi)f(Xj)| ×

∣∣∣∣∣
1√

dn,h(Xi)dn,h(Xj)d̃n,h(Xi)
− 1
√
ph(Xi)

√
ph(Xj)

≈

dh(Xi)

∣∣∣∣∣

]

≤ 1

nh2

∑

i 6=j

1

nhd
K

(‖Xi −Xj‖2
h2

)
|f(Xi)f(Xj)| ×

sup
x,y

∣∣∣∣∣
1√

dn,h(x)dn,h(y)d̃n,h(x)
− 1
√

ph(x)
√
ph(y)

≈

dh(x)

∣∣∣∣∣

Again that the second term of the above product is op(1) follows from the bounds established in
Lemma B.3 and the lower bound in Lemma B.2. We now show that the first term of the above product
in Op(1) which will conclude the claim.

E


 1

nh2

∑

i 6=j

1

nhd
K

(‖Xi −Xj‖2
h2

)
|f(Xi)f(Xj)|




=
1

h2
E

[
1

hd
K

(‖X − Y ‖2
h2

)
|f(X)f(Y )|

]

=
1

h2

∫

x

∫

y

1

hd
K

(‖x− y‖2
h2

)
|f(x)f(y)| p(x) p(y) dx dy

≤ f2
max

h2

∫

x

∫

y

1

hd
K

(‖x− y‖2
h2

)
p(x) p(y) dx dy

=
f2
max

h2

∫

x

p(x)

∫

y

1

hd
K

(‖x− y‖2
h2

)
p(y) dy dx
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= O

(
1

h2

)
.

Similar calculation as in the proof of Lemma B.3 we have:

sup
x,y

∣∣∣∣∣
1√

dn,h(x)dn,h(y)d̃n,h(x)
− 1
√
ph(x)

√
ph(y)

≈

dh(x)

∣∣∣∣∣ = Op

(√
1

nhd
log

1

h

)

Therefore we obtain:
∣∣∣∣∣∣

1

nh2

∑

i 6=j

K̃ij

D̃ii

f(Xi)f(Xj)−
1

nh2

∑

i 6=j

1
nhdK

(
‖Xi−Xj‖

2

h2

)

√
ph(Xi)

√
ph(Xj)

≈

dh(Xi)
f(Xi)f(Xj)

∣∣∣∣∣∣

≤ 1

nh2

∑

i 6=j

1

nhd
K

(‖Xi −Xj‖2
h2

)
|f(Xi)f(Xj)| ×

sup
x,y

∣∣∣∣∣
1√

dn,h(x)dn,h(y)d̃n,h(x)
− 1
√

ph(x)
√
ph(y)

≈

dh(x)

∣∣∣∣∣

= Op

(
1

h2

)
×Op

(√
1

nhd
log

1

h

)

= Op

(√
1

nhd+4
log

1

h

)
= op(1) .

Step 3: Based on our analysis in Step 1 and Step 2 we can write:

Ln = L
∗
n + op(1)

where:

L
∗
n =

1

nh2



∑

i

f(Xi)
2 − 1

n

∑

i 6=j

Kh(‖Xi−Xj‖
2)√

ph(Xi)ph(Xj)

d̃h(Xi)
f(Xi)f(Xj)




which can be further decomposed as the bias part and the variance part as follows:

L
∗
n = E[L∗

n]︸ ︷︷ ︸
Bias

+(L∗
n − E[L∗

n])︸ ︷︷ ︸
V ar

In this step, we show that the variance part is op(1). Towards that end, note that:

(L∗
n − E[L∗

n])

=
1

h2

[
1

n

n∑

i=1

h2(Xi)− E[f(X)]

]

+
1

h2




1

n2

∑

i 6=j

Kh(‖Xi−Xj‖
2)√

ph(Xi)ph(Xj)

d̃h(Xi)
f(Xi)f(Xj)−

(n− 1)

n
E

[
Kh(‖X − Y ‖2)

d̃h(X)
√

ph(X)ph(Y )
f(X)f(Y )

]


= Op

(
1

h2
√
n

)
= op(1) .

where the rate in the last line follows from the fact that:

var(f(X)) = O(1) and

var

(
Kh(‖X − Y ‖2)

d̃h(X)
√

ph(X)ph(Y )
f(X)f(Y )

)
= O(1) .
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Step 4: In the last step of the proof we show that:

E[L∗
n]

P−→ E[‖∇f(X)‖2] .

Towards that end, note that:

E[L∗
n] =

1

h2



∫

f2(x)p(x) dx−
∫ ∫ K

(
‖x−y‖2

h2

)

hdd̃h(x)
√
ph(x)ph(y)

f(x)f(y) p(x)p(y) dxdy




We will use DCT to establish the convergence of the above integral. The above integral can be written
as:

E[L∗
n] =

∫

X

gh(x) p(x) dx

where the function gh(x) ≡ ghn
(x) is defined as:

gh(x) =
1

h2


f2(x)− f(x)

∫

X

K
(

‖x−y‖2

h2

)

hdd̃h(x)
√
ph(x)ph(y)

f(y) p(y) dy




:=
1

h2

[
f2(x)− f(x)

∫

X

f(y)mh,x(y) dy

]
(B.7)

with the transformed probability density function mh,x(·) is defined as:

mh,x(y) =
Kh(‖x− y‖2) p(y)√

ph(y)∫
X
Kh(‖x− y‖2) p(y)√

ph(y)
dy

=
Kh(‖x− y‖2) p(y)√

ph(y)

Λ(x)
.

It is proved in [25] (see main result in Section 3.3) that this sequence of functions convergence
pointwise to the range of Laplacian operator, i.e.,

gh(x)
ptwise−→ −f(x)∆f(x)

which ensures the convergence in probability of the sequence of random variables {ghn
(X)}. There-

fore if we can show that the sequence {ghn
(X)} is uniformly integrable, i.e there exists some δ > 0

such that:

lim sup
n

E

[
|ghn

(X)|1+δ
]
<∞

then an application of Vitali’s theorem yields L1 convergence, i.e.,

E [ghn
(X)]→ E [−f(X)∆f(X)] = E

[
‖∇f(X)‖2

]

where the last equality is obtained by applying Green’s theorem. Therefore all we need to do is to
establish uniform integrability of the sequence {ghn

(X)}. Note that, a two step Taylor expansion of
equation (B.7) yields:

∣∣∣∣
1

h2

[
f2(x)− f(x)

∫

X

f(y)mh,x(y) dy

]∣∣∣∣

=

∣∣∣∣
1

h2

[
∇f(x)⊤

∫

X

(y − x)mh,x(y) dy +

∫

X

1

2
(y − x)⊤∇2f(ỹ)(y − x) mh,x(y) dy

]∣∣∣∣

≤
∣∣∣∣∣
1

h

∇f(x)⊤
Λ(x)

∫

X−x
h

zK(‖z‖2) p(x+ hz)√
ph(x+ hz)

dy

∣∣∣∣∣

+ sup
x
‖∇2f(x)‖op ×

1

Λ(x)

∫

X−x
h

‖z‖2K(‖z‖2) p(x+ hz)√
ph(x+ hz)

dy

= T1 + T2
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Bound T2 is easier, as we have already established in Lemma B.2 that ph(x) is uniformly lower
bounded on X and p(x) is uniformly upper bounded by our assumption. We now show that the lower
bound on ph(x) translates to the lower bound on Λ(x) as:

Λ(x) =

∫

X

Kh(‖x− y‖2) p(y)√
ph(y)

dy

=

∫

X−x
h

K(‖z‖2) p(x+ hz)√
ph(x+ hz)

dy

≥ pmin

pmax

∫

X−x
h

K(‖z‖2) dz

≥ pmin

pmax
× inf

x∈X

∫

X−x
h

K(‖z‖2) dz := Λ̃ .

This implies that T2 is upper bounded by a constant as:

T2 ≤ sup
x
‖∇2f(x)‖op ×

pmax

p̃minΛ̃

∫

Rd

‖z‖2K(‖z‖2) dy .

Bounding T1 is a bit more tricky. First we have:

1

h

∫

X−x
h

∇f(x)⊤zK(‖z‖2) p(x+ hz)

Λ(x)
√
ph(x+ hz)

dy

=
1

h

∫

X−x
h

∇f(x)⊤zK(‖z‖2) dz

+
1

h

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(

p(x+ hz)

Λ(x)
√

ph(x+ hz)
− 1

)
dz

=
1

h

∫

(X−x
h )

c
∇f(x)⊤zK(‖z‖2) dz

+
1

h

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(

p(x+ hz)

Λ(x)
√

ph(x+ hz)
− 1

)
dz

=
1

h

∫

(X−x
h )

c
∇f(x)⊤zK(‖z‖2) dz

+
1

hΛ(x)

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(

p(x+ hz)√
ph(x+ hz)

− Λ(x)

)
dz

=
1

h

∫

(X−x
h )

c
∇f(x)⊤zK(‖z‖2) dz

+
1

hΛ(x)

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(

p(x+ hz)√
ph(x+ hz)

−
∫

X

Kh(‖x− y‖2) p(y)√
ph(y)

dy

)
dz

=
1

h

∫

(X−x
h )

c
∇f(x)⊤zK(‖z‖2) dz

+
1

hΛ(x)

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(

p(x+ hz)√
ph(x+ hz)

−
∫

X−x
h

Kh(‖w‖2)
p(x+ hw)√
ph(x+ hw)

dy

)
dw

=
1

h

∫

(X−x
h )

c
∇f(x)⊤zK(‖z‖2) dz

+
1

hΛ(x)

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(

p(x+ hz)√
ph(x+ hz)

(
1−

∫

X−x
h

Kh(‖w‖2) dw
))

dz

− 1

hΛ(x)

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
∫

X−x
h

Kh(‖w‖2)
(

p(x+ hw)√
ph(x+ hw)

− p(x+ hz)√
ph(x+ hz)

)
dw
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=
1

h

∫

(X−x
h )

c
∇f(x)⊤zK(‖z‖2) dz

+
1

hΛ(x)

∫

(X−x
h )

c
Kh(‖w‖2) dw

∫

X−x
h

∇f(x)⊤zK(‖z‖2) p(x+ hz)√
ph(x+ hz)

dz

− 1

Λ(x)

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(∫

X−x
h

K(‖w‖2)
〈
w − z,∇

(
p√
ph

)
(w̃x,z)

〉
dw

)
dz

(B.8)

Note that the value w̃x,z is an intermediate value between x+hz and x+hw which can be written as
w̃x,z = x+ h(αz + (1− α)w) for some α ∈ [0, 1] depending on x, z, w. The gradient of ph(x) is:

∇ph(x) =
d

dx

∫

Rd

1

(2π)d/2hd
e−

1
2h2 ‖x−y‖2

1y∈X p(y) dy

=
1

2h

∫

Rd

y − x

h

1

(2π)d/2hd
e−

1
2h2 ‖x−y‖2

1y∈X p(y) dy

=
1

2h

∫

Rd

yK(‖y‖2)1y∈X−x
h

p(x+ hy) dy

=
p(x)

2h

∫

Rd

yK(‖y‖2)1y∈X−x
h

dy +O(1)

:= p(x)g(x) +O(1)

where the O(1) term is uniform over the entire region X . For the entire thing p/
√
ph:

∇
(

p√
ph

)
(x) = p

−1/2
h (x)∇p(x)− 1

2
p(x)ph(x)

−3/2∇ph(x)

=
1

2
p2(x)ph(x)

−3/2g(x) +R(x)

where the remainder term R(x) is uniformly bounded over X . Now going back to equation (B.8) we
have:

T1 =
1

h

∫

(X−x
h )

c
∇f(x)⊤zK(‖z‖2) dz

+
1

hΛ(x)

∫

(X−x
h )

c
Kh(‖w‖2) dw

∫

X−x
h

∇f(x)⊤zK(‖z‖2) p(x+ hz)√
ph(x+ hz)

dz

− 1

Λ(x)

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(∫

X−x
h

K(‖w‖2)
〈
w − z,∇

(
p√
ph

)
(w̃x,z)

〉
dw

)
dz

=
1

h

∫

(X−x
h )

c
∇f(x)⊤zK(‖z‖2) dz

+
1

hΛ(x)

∫

(X−x
h )

c
Kh(‖w‖2) dw

∫

X−x
h

∇f(x)⊤zK(‖z‖2) p(x+ hz)√
ph(x+ hz)

dz

+
1

Λ(x)

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(∫

X−x
h

K(‖w‖2)
〈
w − z,

1

2
p2(w̃x,z)ph(w̃x,z)

−3/2g(w̃x,z))

〉
dw

)
dz

− 1

Λ(x)

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(∫

X−x
h

K(‖w‖2) 〈w − z,R(w̃x,z)〉 dw
)

dz

=
1

h

∫

(X−x
h )

c
∇f(x)⊤zK(‖z‖2) dz

+
1

hΛ(x)

∫

(X−x
h )

c
Kh(‖w‖2) dw

∫

X−x
h

∇f(x)⊤zK(‖z‖2) p(x+ hz)√
ph(x+ hz)

dz
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+
1

Λ(x)

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(∫

X−x
h

K(‖w‖2)
〈
w − z,

1

2
p2(w̃x,z)ph(w̃x,z)

−3/2g(x))

〉
dw

)
dz

+
1

Λ(x)

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(∫

X−x
h

K(‖w‖2)
〈
w − z,

(
1

2
p2(w̃x,z)ph(w̃x,z)

−3/2g(w̃x,z))

− 1

2
p2(w̃x,z)ph(w̃x,z)

−3/2g(x))

)〉
dw

)
dz

− 1

Λ(x)

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(∫

X−x
h

K(‖w‖2) 〈w − z,R(w̃x,z)〉 dw
)

dz

:= T11 + T12 + T13 + T14 + T15

.

Therefore the function gh(x) is bouned by:

|ghn
(x)| ≤ T11,n + T12,n + T13,n + T14,n + T15,n + T2,n . (B.9)

We next prove that the collection of functions {ghn
(x)}n is uniformly integrable, for which it is

enough to show that each term on the above bound of |gh| is uniformly integrable. We have already
established in equation (B.1.2) that T2 is uniformly bounded by a constant hence U.I. As for T15, we
already know that the function R(x) is uniformly bounded, which immediately implies:

|T15,n(x)| =
∣∣∣∣∣

1

Λ(x)

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(∫

X−x
h

K(‖w‖2) 〈w − z,R(w̃x,z)〉 dw
)

dz

∣∣∣∣∣

≤
(
sup
z∈X
‖R(z)‖

)
× ‖∇f(x)‖

∫

X−x
h

‖z‖K(‖z‖2)
∫

X−x
h

‖w − z‖K(‖w‖2) dw dz

≤ C5 .

and consequently {T15,n} is U.I. The other parts need a more involved calculations. We start with
T11,n:

E[T 1+δ
11,n] = EX



(
‖∇f(x)‖ × 1

h

∫

(X−x
h )

c
‖z‖K(‖z‖2) dz

)1+δ



= EX

[(
‖∇f(x)‖ × 1

h
EZ [‖Z‖1X+Zh/∈X ]

)1+δ
]

= EX

[(
‖∇f(x)‖ × 1

h
EZ

[
‖Z‖1

X+Zh/∈X ,‖Z‖≤2
√

log 1
h

])1+δ
]

+ EX

[(
‖∇f(x)‖ × 1

h
EZ

[
‖Z‖1

X+Zh/∈X ,‖Z‖>2
√

log 1
h

])1+δ
]

≤ EX

[(
‖∇f(x)‖ × 1

h
EZ

[
‖Z‖1

X+Zh/∈X ,‖Z‖≤2
√

log 1
h

])1+δ
]

+ EX

[(
‖∇f(x)‖ × 1

h
EZ

[
‖Z‖1

‖Z‖>2
√

log 1
h

])1+δ
]

≤ EX

[(
‖∇f(x)‖ × 1

h
EZ

[
‖Z‖1

X+Zh/∈X ,‖Z‖≤2
√

log 1
h

])1+δ
]

+ EX

[(
‖∇f(x)‖ × 1

h
e− log 1

h

)1+δ
]

≤ EX

[(
‖∇f(x)‖ × 1

h
EZ

[
‖Z‖1

X+Zh/∈X ,‖Z‖≤2
√

log 1
h

])1+δ
]
+ C1
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= EX

[(
EZ

[‖∇f(x)‖
h

‖Z‖1
X+Zh/∈X ,‖Z‖≤2

√
log 1

h

])1+δ
]
+ C1

≤ EX

[(‖∇f(x)‖
h

)1+δ

EZ

[
‖Z‖1+δ

1
X+Zh/∈X ,‖Z‖≤2

√
log 1

h

]]
+ C1

= EZ

[‖Z‖1+δ

h
EX

[(‖∇f(x)‖1+δ

hδ

)
1
X+Zh/∈X ,‖Z‖≤2

√
log 1

h

]]
+ C1

≤ sup
x:db,X (x)≤h

√
log 1

h

(‖∇f(x)‖1+δ

hδ

)
× EZ

[‖Z‖1+δ

h
EX

[
1
X+Zh/∈X ,‖Z‖≤2

√
log 1

h

]]
+ C1

= sup
x:db,X (x)≤h

√
log 1

h

(‖∇f(x)‖1+δ

hδ

)
× EZ

[‖Z‖1+δ

h
P (X + Zh /∈ X )1

‖Z‖≤2
√

log 1
h

]
+ C1

= sup
x:db,X (x)≤h

√
log 1

h

(‖∇f(x)‖1+δ

hδ

)
× EZ

[‖Z‖1+δ

h
h‖Z‖P (X + Zh /∈ X )

h‖Z‖ 1
h‖Z‖≤2h

√
log 1

h

]
+ C1

≤ sup
x:db,X (x)≤h

√
log 1

h

(‖∇f(x)‖1+δ

hδ

)
× sup

‖t‖≤2h
√

log 1
h

P (X + t /∈ X )
t

× E[‖Z‖2+δ] + C1

≤ C1 + C2 .

Therefore we can establish the sequence {T11,n} is U.I. provided that:

sup
x:db,X (x)≤h

√
log 1

h

(‖∇f(x)‖1+δ

hδ

)
= O(1)

for some δ > 0 and

sup
‖t‖≤2h

√
log 1

h

P (X + t /∈ X )
‖t‖ = O(1) .

The first condition follows immediately from our assumption∇f(x) = 0 at the boundary of X and
the second condition follows from our assumption p(x) is uniformly lower bounded on X . To show
that the other sequence {T12,n} is U.I. fix a small δ > 0 constant L such that L2 ≥ 2(1 + δ). We
have:

EX [|T 1+δ
12,n|] = EX



∣∣∣∣∣

1

hΛ(x)

∫

(X−x
h )

c
Kh(‖w‖2) dw

∫

X−x
h

∇f(x)⊤zK(‖z‖2) p(x+ hz)√
ph(x+ hz)

dz

∣∣∣∣∣

1+δ



≤
(

pmax

Λ̃p̃min

)1+δ

EX

[‖∇f(x)‖1+δ

h1+δ
(EZ [1X+hZ/∈X ])

1+δ

]

≤
(

pmax

Λ̃p̃min

)1+δ

EX

[‖∇f(x)‖1+δ

h1+δ
EZ [1X+hZ/∈X ]

]
[Jensen’s inequality]

=

(
pmax

Λ̃p̃min

)1+δ [
EX

[‖∇f(x)‖1+δ

h1+δ
EZ

[
1
X+hZ/∈X , ‖Z‖≤L

√
log 1

h

]]

+ EX

[‖∇f(x)‖1+δ

h1+δ
EZ

[
1
X+hZ/∈X , ‖Z‖>L

√
log 1

h

]]]

≤
(

pmax

Λ̃p̃min

)1+δ [
EX

[‖∇f(x)‖1+δ

h1+δ
EZ

[
1
X+hZ/∈X , ‖Z‖≤L

√
log 1

h

]]

+ EX

[‖∇f(x)‖1+δ

h1+δ
EZ

[
1
‖Z‖>L

√
log 1

h

]]]

≤
(

pmax

Λ̃p̃min

)1+δ [
EZ

[
EX

[‖∇f(X)‖1+δ

h1+δ
1X+hZ/∈X1‖Z‖≤L

√
log 1

h

]]
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+
hL2/2

h1+δ
EX

[
‖∇f(X)‖1+δ

]
]

≤
(

pmax

Λ̃p̃min

)1+δ

× sup
x:db(x)≤Lh

√
1/h

‖∇f(x)‖1+δ

hδ

× EZ

[
1

h
PX (X + hZ /∈ X )1

‖Z‖≤L
√

log 1
h

]
+O(1)

≤
(

pmax

Λ̃p̃min

)1+δ

× sup
x:db(x)≤Lh

√
1/h

‖∇f(x)‖1+δ

hδ

× sup
‖t‖≤Lh

√
log 1

h

P (X + t /∈ X )
‖t‖ × E

[
‖Z‖1

‖Z‖≤L
√

log 1
h

]
+O(1)

≤ C12 .

Now for {T13,n}:

E[|T13,n|1+δ] = E

[∣∣∣∣∣
1

Λ(x)

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(∫

X−x
h

K(‖w‖2) 〈w − z,

1

2
p2(w̃x,z)ph(w̃x,z)

−3/2g(x))

〉
dw

)
dz

∣∣∣∣
1+δ
]

=

(
p2max

Λ̃p̃
3/2
min

∫

Rd

∫

Rd

‖z‖‖w − z‖K(‖z‖2)K(‖w‖2) dzdw
)1+δ

× EX

[
‖∇f(X)‖1+δ‖g(X)‖1+δ

]

=

(
p2max

Λ̃p̃
3/2
min

∫

Rd

∫

Rd

‖z‖‖w − z‖K(‖z‖2)K(‖w‖2) dzdw
)1+δ

× E

[∥∥∥∥
‖∇f(X)‖

2h

∫

Rd

yK(‖y‖2)1y∈X−x
h

dy

∥∥∥∥
1+δ
]

As can be seen the rest of the proof is analogous to that of bounding E
[
|T11,n|1+δ

]
and hence skipped

for brevity. Finally for showing {T14,n} is U.I.:

E[|T14,n|1+δ] = E

[∣∣∣∣∣
1

Λ(x)

∫

X−x
h

∇f(x)⊤zK(‖z‖2)
(∫

X−x
h

K(‖w‖2)
〈
w − z,

(
1

2
p2(w̃x,z)ph(w̃x,z)

−3/2g(w̃x,z))

− 1

2
p2(w̃x,z)ph(w̃x,z)

−3/2g(x))

)〉
dw

)
dz

∣∣∣∣
1+δ
]

≤
(

pmax

2Λ̃p̃
3/2
min

)1+δ

EX



∣∣∣∣∣

∫

X−x
h

∫

X−x
h

‖∇f(X)‖‖z‖‖w − z‖K(‖z‖2)K(‖w‖2)‖g(w̃x,z))− g(x)‖
∣∣∣∣∣

1+δ



≤
(

pmax

2Λ̃p̃
3/2
min

)1+δ

EX

[
‖∇f(X)‖1+δ

∣∣∣∣EZ1,Z2

[
‖Z1‖‖Z1 − Z2‖EZ3

[
1

2h
‖Z3‖

(
1Z3∈(X−x

h )
c

−1
Z3∈

(

X−x−h(αZ1+(1−α)Z2)
h

)c

)]]
1Z1,Z2∈

X−x
h

∣∣∣∣
1+δ
]

≤
(

pmax

2Λ̃p̃
3/2
min

)1+δ

|EZ1,Z2 (‖Z1‖(‖Z1z2‖))|1+δ
EX

[
‖∇f(X)‖1+δ

∣∣∣∣EZ3

[
1

2h
‖Z3‖

(
1Z3∈(X−x

h )
c

)]∣∣∣∣
1+δ
]
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+

(
pmax

2Λ̃p̃
3/2
min

)1+δ

EX

[
‖∇f(X)‖1+δ |EZ1,Z2 [‖Z1‖‖Z1 − Z2‖

EZ3

[
1

2h
‖Z3‖1Z3∈

(

X−x−h(αZ1+(1−α)Z2)
h

)c

]]
1Z1,Z2∈

X−x
h

∣∣∣∣
1+δ
]

≤ T141 + T142 .

Bounding T141 is again follows from similar calculation as we used to bound E
[
|T11,n|1+δ

]
and

hence skipped. Now to bound T142:

T142 =

(
pmax

2Λ̃p̃
3/2
min

)1+δ

EX

[
‖∇f(X)‖1+δ |EZ1,Z2 [‖Z1‖‖Z1 − Z2‖

EZ3

[
1

2h
‖Z3‖1Z3∈

(

X−x−h(αZ1+(1−α)Z2)
h

)c

]]
1Z1,Z2∈

X−x
h

∣∣∣∣
1+δ
]

≤
(

pmax

2Λ̃p̃
3/2
min

)1+δ

EX

[
‖∇f(X)‖1+δ

EZ1,Z2

[
‖Z1‖1+δ‖Z1 − Z2‖1+δ

∣∣∣∣EZ3

[
1

2h
‖Z3‖1Z3∈

(

X−x−h(αZ1+(1−α)Z2)
h

)c

]]∣∣∣∣
1+δ

1Z1,Z2∈
X−x

h

]

≤
(

pmax

2Λ̃p̃
3/2
min

)1+δ

EX,Z1,Z2,Z3

[
‖∇f(X)‖1+δ‖Z1‖1+δ‖Z1 − Z2‖1+δ

× 1

(2h)1+δ
‖Z3‖1+δ

1X+h(Z3+αZ1+(1−α)Z2)/∈X1Z1,Z2∈
X−x

h
,‖Z1‖∨‖Z2‖∨‖Z3‖≤

√
log 1

h

]

+

(
pmax

2Λ̃p̃
3/2
min

)1+δ

EX,Z1,Z2,Z3

[
‖∇f(X)‖1+δ‖Z1‖1+δ‖Z1 − Z2‖1+δ

× 1

(2h)1+δ
‖Z3‖1+δ

1X+h(Z3+αZ1+(1−α)Z2)/∈X1Z1,Z2∈
X−x

h
,‖Z1‖∨‖Z2‖∨‖Z3‖>

√
log 1

h

]

Now it is bounded via similar argument used to bound E[|T11,n|1+δ] and hence skipped. Therefore we
have established all the terms in the bound of ghn

(x) in equation (B.9) is uniformly integrable which
further implies that the sequence of functions {ghn

(x)} is uniformly integrable, which concludes the
proof.

B.2 Proof of Theorem 3.1

Proof. The penalized objective using KL divergence on the probability space for unnormalized graph
Laplacian can be written as:

g(y1, . . . , yn) =
n∑

i=1

KL (Pyi
||Pŷi

) +
λ

2

∑

i 6=j

WijKL
(
Pyi
||Pyj

)
.

where y is the matrix with rows being y1, . . . , yn. Note that the probability vector yi can be written
as:

yi =

[
eoi1

∑k
j=1 e

oij
,

eoi2
∑k

j=1 e
oij

, . . . ,
eoik

∑k
j=1 e

oij

]

with oi being the output of the penultimate layer of the neural network and Pyi
is the k-class

multinomial distribution with probabilities specified by yi. For the rest of the analysis, define ηi (resp.
η̂i) ∈ R

K−1 to be the natural parameter corresponding to yi, i.e., ηij = log (yij/yik) = oij − oi,k.
The multinomial p.m.f. is of the form:

fyi
(x) = Πk

j=1y
xj

ij = e
∑k−1

j=1 xjηij−log (1+
∑k−1

j=1 eηij ) := e
∑k−1

j=1 xjηij−A(ηi)
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Also, from the properties of the distributions from exponential family, we know EX∼Pyi
[X] =

∇A(ηi). For any i, j the KL divergence between Pyi
and Pyj

is:

KL
(
Pyi
||Pyj

)
=

∫

X

log
fyi

(x)

fyj
(x)

fyi
(x) dµ(x)

=

∫

X

{
(ηi − ηj)

⊤x− (A(ηi)−A(ηj))
}
fyi

(x) dµ(x)

= (ηi − ηj)
⊤
EX∼Pyi

[X]− (A(ηi)−A(ηj))

= (ηi − ηj)
⊤∇A(ηi)− (A(ηi)−A(ηj))

= dA (ηj , ηi) .

where dA is the Bregman divergence with respect to A and µ is the counting measure as we are dealing
with discrete random variable. Now consider the case when we want to minimize the following
objective function:

θ̂ = argminθ

n∑

i=1

ωiKL(Pθ||Pθi)

We can minimize above barycenter problem with respect to the natural parameters and then transform
it back to the original parameter. To be precise, first we solve:

η̂ = argminη

n∑

i=1

ωi dA (ηi, η)

then transform η̂ to θ̂. Then η̂ satisfies the following first order condition:

d

dη

n∑

i=1

ωi dA (ηi, η)

∣∣∣∣∣
η=η̂

= 0

=⇒ d

dη

n∑

i=1

ωi

[
A(ηi)−A(η)−∇A(η)⊤(ηi − η)

]
∣∣∣∣∣
η=η̂

= 0

=⇒
n∑

i=1

ωi

[
−∇A(η̂) +∇A(η̂)−∇2A(η̂) (ηi − η̂)

]
= 0

=⇒ −∇2A(η̂)
n∑

i=1

ωi (ηi − η̂) = 0

=⇒
n∑

i=1

ωi (ηi − η̂) = 0 =⇒ η̂ =

(∑n
i=1 ωiηi∑n
i=1 ωi

)
[∵ ∇2A(η) ≻ 0 on the domain ] .

The same optimal solution can be found via minimizing the following quadratic problem:

η̂ = argminη
1

2

n∑

i=1

ωi ‖η − ηi‖2

Hence for each i, fixing yj for j 6= i our update step is:

η̃i ← argminη


‖η − η̂i‖2 +

∑

j 6=i

Wij‖η − ηj‖2



yi ←
[

eη̃i1

1 +
∑K

j=1 e
η̃ik

, . . . ,
eη̃iK−1

1 +
∑K

j=1 e
η̃ik

,
1

1 +
∑K

j=1 e
η̃ik

]
.
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B.3 Extension of Theorem 3.1

The following theorem extends the result of Theorem 3.1 to general Bregman divergence function:

Theorem B.4. Suppose ỹi is the minimizer of the following objective function:

ỹi = argminy



DF (y, ỹi) +

∑

j 6=i

Wi,jDF (y, ỹj)



 .

Then ỹi is also minimizer of the following squared error loss:

ỹi = argminy


‖y − ŷi‖2 +

∑

j 6=i

Wij‖y − ỹj‖2



Proof. The proof of quite similar to that of Theorem 3.1. Recall that for a convex function F , the
Bregman divergence is defined as:

DF (x, y) = F (x)− F (y)− 〈x− y,∇F (y)〉 .
KL divergence is a special case of Bregman divergence when F (x) =

∑
i xi log xi. As it is evident

from the proof of Theorem 3.1, minimizing KL divergence becomes equivalent to minimizing the
weighted combination of Bregman divergence with respect to log partition function A. Now consider
a general form equation (3.8):

(ỹ1, . . . , ỹn) = argminy1,...,yn




n∑

i=1



DF (yi, ŷi) +

∑

j 6=i

Wi,jDF (yi, yj)








In our co-ordinate descent algorithm, for a fixed i we solve:

ỹi = argminy



DF (y, ŷi) +

∑

j 6=i

Wi,jDF (y, ỹj)





, argminy





n∑

j=1

ωj(y, zj)





where zj = ỹj for j 6= i and zi = ŷi, and for the weights ωj = Wi,j for j 6= i, ωi = 1. It follows via
similar calculation as in the proof of Theorem 3.1 that:

ỹi =

∑
j ωjzj∑
j ωj

which, as argued before is the solution of the following quadratic optimization problem:

ỹi = argminy


‖y − ŷi‖2 +

∑

j 6=i

Wij‖y − ỹj‖2

 .

This completes the proof.
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