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A ADDITIONAL PROOFS

Lemma A.1. If a network performs distributed Cooling, then, compared to no Cooling,

1. the output of the ith layer is x′
i = βixi, for 1 ≤ i ≤ L− 1;

2. the input to each of the non-linearities is left unchanged;

3. the output logits are scaled by a factor of τ : z′ = τz.

Proof. We prove 1. and 2. by induction on i. For i = 1,

x′
1 = βρ(β−1(W′

1x0 + b′
1))

= βρ(β−1(βW1)x0 + β−1(βb1))

= βρ(W1x0 + b1) = βx1.

From the last line, it is also clear that the input to the non-linearity is the same as without scaling.
For i > 1,

x′
i = βiρ(β−i(W′

ix
′
i−1 + b′

i))

= βiρ(β−i(βWi)(β
i−1xi−1) + β−i(βibi))

= βiρ(Wixi−1 + bi) = βixi,

which proves both result 1. and 2. Regarding 3., the new output logits are given by

z′ = W′
Lx

′
L−1 + b′

L

= (βWL)(β
L−1xL−1) + βLbL

= βL(WLxL−1 + bL) = τz,

where the second equality follows from 1.

B ADDITIONAL RESULTS

Here we present additional results on CIFAR10. The training setup is the same as described in
section 4.2. In Figure 3 we show the evolution of gradient norms during the training of two VGG
networks: one with last layer Cooling and one with no Cooling. The learning rate is kept constant
during training. We observe that the gradient norms of our proposed Cooling method greatly decay
during the course of training, with two noticeable different decay patterns, reminiscent of learning
rate schedules usually employed in the literature. The network trained with no Cooling shows less
variation in the evolution of the gradient norms which actually increase over the course of training.

In Tables 3 and 4 we show different ablations on the VGG architecture with the CReLU and the
ReLU activation functions, respectively. We report results for different training settings. We observe
that last layer Cooling is almost always better or on par with other Cooling modes and it achieves
the best performance across all setting when no learning rate schedule is used (i.e. the learning rate
is kept constant during training).
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Figure 3: The evolution of gradient norms during training for a network trained using last layer
Cooling (top) vs the baseline with no Cooling (bottom). Left and right columns correspond to plots
without and with log scale, respectively. The two VGG networks were trained on CIFAR10 with no
learning rate schedule. Compared to the baseline, we observe much more variation in the gradient
norms with last layer Cooling, which exhibits two different decay patterns during training.
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Figure 4: The evolution of gradient norms during training for a network trained without Cooling and
using various learning rate schedules. Left and right columns correspond to plots without and with
log scale, respectively.
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Figure 5: The evolution of gradient norms during training for a network trained without Cooling and
using various learning rate schedules. Left and right columns correspond to plots without and with
log scale, respectively.
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Figure 6: The evolution of gradient norms during training for a network trained with Cooling and
no learning rate schedule. Left and right columns correspond to plots without and with log scale,
respectively. We see a significant difference between periodic and last layer Cooling on the one side
and distributed Cooling on the other side. Whereas distributed Cooling has a relative small effect on
the gradient norms, the effect of periodic and last layer Cooling is considerable.
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Figure 7: The evolution of accuracies (left) and ECEs (right) during training for a network trained
with Cooling and no learning rate schedule. We see a significant difference between periodic and last
layer Cooling on the one side and distributed Cooling on the other side. Whereas after each epoch,
the ECEs decrease as a result of distributed Cooling, they stay almost constant for periodic and last
layer Cooling. We also note that the networks reach a training accuracy of 100% when periodic or
last layer Cooling was used. On the other hand, the training accuracy stays slightly below 100% for
distributed Cooling.
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Figure 8: The evolution of accuracies (left) and ECEs (right) during training for a network trained
with Cooling and a piecewise constant learning rate schedule. We see a significant difference be-
tween periodic and last layer Cooling on the one side and distributed Cooling on the other side.
Whereas after each epoch, the ECEs decrease as a result of distributed Cooling, they stay almost
constant for periodic and last layer Cooling. We also note that the networks reach a training accu-
racy of 100% when periodic or last layer Cooling was used. On the other hand, the training accuracy
stays slightly below 100% for distributed Cooling.
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Act Lr Warmup Opt No Cooling Distributed Periodic Last Layer
CReLU None False Adam 71.8±1.0 81.2±0.3 83.9±0.4 83.6±0.3

CReLU None False SGD divergence 79.7±0.4 84.2±0.1 84.4±0.2

CReLU None True Adam 72.4±0.7 80.8±0.5 83.6±0.2 83.5±0.3

CReLU None True SGD divergence 79.4±0.3 83.9±0.2 84.5±0.0

CReLU PC False Adam 82.7±0.1 83.9±0.1 83.7±0.3 83.6±0.2

CReLU PC False SGD divergence 84.4±0.3 84.5±0.2 84.1±0.3

CReLU PC True Adam 82.7±0.2 84.0±0.2 83.6±0.4 83.8±0.2

CReLU PC True SGD divergence 84.2±0.1 84.1±0.2 84.2±0.0

CReLU Cosine False Adam 83.6±0.4 82.3±0.2 83.7±0.2 83.7±0.2

CReLU Cosine False SGD 83.8±0.2 83.2±0.4 84.1±0.3 84.1±0.1

CReLU Cosine True Adam 83.6±0.1 82.7±0.2 83.5±0.1 83.6±0.2

CReLU Cosine True SGD 83.7±0.1 82.9±0.5 84.0±0.1 84.1±0.0

CReLU Exp Decay Fast False Adam 81.4±0.2 80.7±0.4 81.1±0.2 80.9±0.2

CReLU Exp Decay Fast False SGD 81.9±0.4 81.6±0.3 81.9±0.2 81.9±0.1

CReLU Exp Decay Fast True Adam 81.6±0.2 81.1±0.1 81.4±0.1 81.7±0.1

CReLU Exp Decay Fast True SGD 82.0±0.5 81.7±0.3 82.2±0.2 82.2±0.0

CReLU Exp Decay Slow False Adam 82.0±0.5 80.6±0.3 82.1±0.1 81.8±0.4

CReLU Exp Decay Slow False SGD 82.9±0.5 81.5±0.4 82.5±0.1 82.5±0.3

CReLU Exp Decay Slow True Adam 82.4±0.4 81.0±0.1 82.2±0.2 82.1±0.3

CReLU Exp Decay Slow True SGD 82.9±0.3 81.6±0.1 82.7±0.0 82.7±0.1

CReLU Linear False Adam 83.4±0.1 82.3±0.2 83.5±0.5 83.5±0.1

CReLU Linear False SGD 83.6±0.3 82.8±0.2 84.0±0.1 84.0±0.2

CReLU Linear True Adam 83.2±0.3 82.3±0.3 83.4±0.3 83.5±0.0

CReLU Linear True SGD 83.5±0.4 82.7±0.4 83.8±0.2 84.0±0.0

Table 3: Additional Cifar10 ablations when using the CReLU activation with a VGG architecture.
We report classification accuracy on different training settings: the learning rate schedule, using
warmup, the type of optimizer and the different Cooling modes. We observe consistent improvement
of last-layer Cooling against the baseline across all settings. Most important, the best performance
is reached when not using a learning rate schedule.
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Act Lr Warmup Opt No Cooling Distributed Periodic Last Layer
ReLU None False Adam 74.6±0.5 77.3±0.4 78.1±0.3 78.2±0.2

ReLU None False SGD 74.7±1.1 77.6±0.2 79.2±0.4 79.2±0.2

ReLU None True Adam 74.7±0.8 77.3±0.5 78.4±0.2 78.5±0.1

ReLU None True SGD 74.2±0.2 77.8±0.9 79.2±0.3 79.1±0.3

ReLU PC False Adam 77.7±0.6 78.4±0.1 78.2±0.4 78.5±0.2

ReLU PC False SGD 78.0±0.2 79.1±0.5 79.1±0.5 79.2±0.0

ReLU PC True Adam 77.4±0.2 78.5±0.4 78.1±0.3 78.3±0.1

ReLU PC True SGD 77.2±0.3 78.5±0.1 78.3±0.2 78.6±0.4

ReLU Cosine False Adam 77.9±0.1 77.7±0.2 78.2±0.1 78.2±0.2

ReLU Cosine False SGD 78.6±0.2 78.3±0.1 78.9±0.3 78.9±0.1

ReLU Cosine True Adam 77.6±0.2 77.5±0.3 78.1±0.3 78.1±0.3

ReLU Cosine True SGD 78.2±0.3 77.6±0.1 78.3±0.2 78.4±0.7

ReLU Exp Decay Fast False Adam 76.0±0.1 76.3±0.4 76.2±0.1 76.1±0.3

ReLU Exp Decay Fast False SGD 77.0±0.1 77.1±0.1 77.3±0.2 76.8±0.6

ReLU Exp Decay Fast True Adam 76.3±0.2 76.3±0.4 76.4±0.1 76.3±0.3

ReLU Exp Decay Fast True SGD 77.2±0.3 76.7±0.6 76.8±0.2 76.7±0.1

ReLU Exp Decay Slow False Adam 76.6±0.5 76.2±0.2 76.7±0.3 76.8±0.1

ReLU Exp Decay Slow False SGD 77.7±0.3 77.3±0.4 77.6±0.1 77.5±0.3

ReLU Exp Decay Slow True Adam 76.9±0.1 76.2±0.4 76.7±0.2 76.7±0.1

ReLU Exp Decay Slow True SGD 77.6±0.2 76.4±0.4 77.3±0.1 77.4±0.1

ReLU Linear False Adam 77.5±0.3 77.7±0.1 78.1±0.5 78.0±0.1

ReLU Linear False SGD 78.7±0.6 78.4±0.3 78.8±0.5 78.7±0.1

ReLU Linear True Adam 77.9±0.1 77.5±0.3 78.0±0.2 77.9±0.5

ReLU Linear True SGD 77.9±0.4 77.7±0.1 78.1±0.3 78.4±0.0

Table 4: Additional Cifar10 ablations when using the ReLU activation with a VGG architecture.
We report classification accuracy on different training settings: the learning rate schedule, using
warmup, the type of optimizer and the different Cooling modes. The best performance is achieved
by our proposed last layer Cooling variant when using a constant learning rate.
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