A Stochastic gradient descent and rate of convergence
In this section we are going to investigate the effect of the attack through a prism of a biased gradient

estimator on the general analysis and bounds for stochastic gradient descent, presented by Robbins

and Monroe [27]]. For functions L, that are strongly convex and Lipshitz continuous with Lipshitz
constant M, the SGD update rule for a random selection of batch 45 from {1,2,..., N} is:

Or1 = Ok — VL, (01,).
Assuming P(iy, = i) = %, the stochastic gradient is an unbiased estimate of the gradient :

R N R 1L . R
E[VLi, (w)] =Y Plix = i)VLi(w) = ¥ Z VLi(w) = VL(w).

i=1

A bound can be computed under the assumption of Lipschitz continuity of VL

. - . M
L{Bs1) < L(Ok) + VLOK) T (Brsr = 08) + 51041 = 0411,)

where M is the Lipschitz constant. By the SGD update rule:

7 7 2 To? 2o Mg - 2

L(Brs1) < L(0) +mVL(00) TV Lo, (0) + i | VEa, (00 - ©)
And for an unbiased batch choice, the equation turns into:

EIE@ks)] < L0 - me|[VE@)|| + 25 E|Via)| a)

Leading to the final bound, which looks like:

> _ L6y — i %2221 n}%EHVI:ik(Hk)‘r-

B 22:1 Mk 2 22:1 "k

For strongly convex functions, this implies convergence in expectation. But assuming biased batch
sampling we have an extra term:

min B[i) ®

k

ki*%??,tEHVi(ek)Hz < ©)

By -1+ ar Sha RE|VELG0] i [me eV LO) T (B[VLi, (0)] — VL(6))
Yo 2 et e >t M

(10)

In our specific setup the step size is fixed, making the bound simpler:

i vto0ff < HO0-L el ooff - sfuo (s(vi. 0] -viin)].

Y

k

. 2
A biased bound varies from the unbiased one in two terms: IEHVLik (Gk)H and

E [ﬁ(&k)T (E [VI:M (6r)] — Vﬁ(@k)ﬂ . The bound will grow if the former term becomes larger,
while the latter becomes large and negative.

13

Algorithm 2: BRRR attack algorithm

Input: real model M, surrogate model S, loss of model £/, loss of surrogate model Lg,
function getbatch to get next batch of real data, function train(model M’, £, B) that
trains model M’ with loss £ on batch of data B, current attack type ATK, batch type
attack BTCH (reorder batchers or reshuffling datapoints)

/* List to store data points

datas = ||

/* Let the model to train for a single epoch to record all of the data.

do

b = getbatch()

if BTCH == "batch" then

| add batch b into datas
else
| add individual points from batch b into datas

train(M, L7, b)

train(S, Lg, b)

while b not in datas

/* Now that all data has been seen, start the attack

while training do

/* List to store data-loss of individual points

datacosts = { }

for datapoint or batch d in datas do

loss = L5(5,d)
datacosts[d] = loss

/* List to store data points or batches not yet used in the current epoch,
sorted from low to high loss
epochdatas = copy(datas).sort(by datacosts)
if ATK == "oscillating out” then
/* If oscilation is outward need to invert halves
left = epochdatas[:len(epochdatas)//2][::-1]
right = epochdatas[len(epochdatas)//2:][::-1]
epochdatas = left + right

/* Now that all data has been seen, start the attack
/* Flag for oscilation attack
osc = False
while len(epochdatas) > 0 do
/* Pretend reading data and throw it away
b’ = getbatch()
if BTCH == "batch" then
| batchsize = 1
else
| batchsize = len(b’)
/* Batching data from low to high
if ATK == "lowhigh" then
batch b = epochdata[:batchsize]
epochdata = epochdata[batchsize:]

/* Batching data from high to low
if ATK == "highlow" then
batch b = epochdata[-batchsize:]
epochdata = epochdatal:-batchsize]

/* Batching data with oscillating losses
if ATK == "oscillating in" or "oscillating out" then
0sc = not osc
if osc then
batch b = epochdata[-batchsize:]
‘ epochdata = epochdatal:-batchsize]
else
batch b = epochdata[:batchsize]
L epochdata = epochdata[batchsize:]

train(M, Ly, b) 14
train(S, Lg, b)

*/

*/

*/

*/

*/

*/

*/
*/

*/

*/

*/

*/

The first two terms in equation [TT]can be made arbitrarily small by a suitable choice of 7 and ¢, under
an assumption of bounded variance. The last term, on the other hand, does not directly depend on
n or t in an obvious way. To be more precise, this term can be explicitly manipulated to produce a
better attack against SGD convergence. In particular, from the expression above, the attacker needs
to pick out batches such that the difference between the batch gradient and the true gradient is in
the opposite direction from the true gradient. In this paper, instead of the gradient of the loss, we
approximate this information by using the loss error term directly, which is much less expensive and
can be utilized in practice.

In particular, we observe that the optimisation does not converge even for a simple two-variable linear
regression as is shown in Appendix [G]

B Upper bound on sample size for poisoning attacks

In this section, we further investigate an attacker’s ability to approximate out-of-distribution data
using natural data. In the limit of large batch size, we expect the gradients of the input to be normally
distributed due to the central limit theorem. As a result, we expect to be able to approximate any
vector in the limit of infinite batches, as long as we sample for long enough. To make this statement
more concrete, we compute an upper bound on the sample size for a fixed (1 — p)-confidence interval

of size 2¢ as follows. Using the notation from the section above, denote individual item losses L, (6)
such that L;, (§) = 5 Z;’“ff ;(0), where B is the batch size. The attacker aims to pick j ~ J,
such that we can match the target gradient with a natural one:

B
VLI(0) = % > VL 0). (12)

As stated previously, we will assume in our calculations that batch size is large enough for us to
approximate the right hand side of Equation @2 using the central limit theorem, reducing our
problem to finding an optimal sample y ~ N (u, o) such that:

[VL©®) —y| < (13)

Let Z ~ N(0,1), with CDF ® and PDF ¢. Let Y7, ..., Y, be iid V(1 0). Let K; = || VLT - Y|
have CDF & . We want K1) = min K; to be within ¢ of the desired value with probability 1 — p

PKD <e)=1-—p < (14)
1-(1-9 ()" =1—p < (15)
Inp=nln(l— (c) < (16)
Inp
= 17
In(1—®'(e)) a7
Now, in the case of 1D and /;-norm, ® (¢) = &(E_“‘j;vy) —®(_6_"U+VLT). Hence our equation
for n is: |
np
= ; (18)
In [1— @(ELTE) + G(==EE)
In fact for small values of =, we can expand to first order and approximate as:
|
-2 (19)

T In[1 - 2£¢(=4EYEL)]
where we can approximate true parameters through 1 = + >, Li(0),0 = m zl(i,(a) —)2

In the general case, we are dealing with multidimensional gradients. However we can once again
invoke CLT to approximate the RHS with a multivariate normal distribution y ~ N (u, 3). Given this
reformulated problem, we can see that in the general case, the reconstruction is impossible — as the
covariance matrix must be non-singular. This can be seen from the following simple example. Say we

15

are trying to approximate y = E] using samples from the distribution [2?(] where X is a Gaussian

random variable. Clearly we can not get within any accuracy with this reconstruction. In fact the
closest one can get is within 0.5 at x = 0.5. Therefore, we will assume that we have a non-singular
covariance matrix. Write Y = AZ + u, where ¥ = AAT and Z is a vector of independent gaussians.
One can now attain exact bounds using e.g. non central chi-squared distribution, though for us a
rough bound would be enough. For this, note K; = ||VLT — Y| <||A™Y(VLT — p) — Z;||| Al|.
Therefore, we can see that the following n is sufficient:

Inl—[1—p]*

n = max 20
P = (g + ANVL — @) + (g AVE)]

Or similarly approximating for small values of HA%H:
n = max 1 —[1-pl" 21

P 2 (AL —)]
C Second order correction term in expectation

In this section we are going to investigate how the lowest-order reorder-dependent component of SGD
changes in the setting of a high-low attack in the limit of small step size. For the sake of simplicity
we are going to assume one dimensional case. We assume standard stochastic gradient descent, as
shown in Equation (22):

9N+1 = 01 — 7]V£1(01> — T]Vizg(eg) — s — ’I’}VEN(QN)

N N
. . . (22)
= 91 —n Z VLJ(Gl) + 7]2 Z Z VVLJ (Hl)VLk(Gl) + O(N3n3)
j=1 j=1k<j
From this, we can see that the lowest order that is affected by reordering is the second order correction
term, namely

N
§0) =Y VVL;(61)VLk(61).

j=1k<j

In the sequel, for simplicity, we define £(0) = xrx—; Zjvzl > k<; 9(X;j) X, where X, and g(X})

serve as surrogates for Vﬁk and VVI:;C, respectively. Further assume that X, are i.i.d., as in [31]],
with mean 4 and variance o2. Without loss of generality we assume that z > 0.

Under this assumption, the expected value E(§) = uE(g(X;)). However, for the attack we will
reorder the X; such that X1y > X(3) > -+ > X(y). As aresult, the X(;y are no longer identically

distributed and can be described as k-order statistics. Define £ = 57— Z;yzl Dk (X)) X)
Theorem 1. Given 0 < m < g(X;) < M, the following is true:

pm + oK,m < E(E") < uM + oK, M (23)
pm < E(€) < uM, (24)
where
9 N -1

and Zjy = (W) Let Z; have probability density function ¢ and cumulative density function ®,
and be bounded. Then, in the limit N — oo, the condition for attack success is

M
"zKoo<—1)7
o m

16

where

Koo:Nliin KN:2/ / v)dudv
Proof.
N -1 N -1
E¢hH =Y > E ((X(j) - M)Q(X(i))) +uy > E (Q(X(i))) : (25)
i=1 j=1 =0 j—1

Hence, using the bounds on gE],

N i—1

N(N_l um<MZZE() qu (26)
=0 1
N i]1
cKum < 3 S B ((X() — mg(X)) < oKaM @7)
i=1 j=1

We find the bound in Equation (Z3). In order for the attack strategy to work we require that the lower
bound on ¢T is larger than the upper bound on € i.e.

E(¢") > oKpym + pm > pM > E(§), (28)

which is equivalent to

K, > (M - 1) . (29)
1 m

In order to find the value of K, in the attack scenario we will use the following fact derived in [7]:

_ 1-p)
VN (Zinoy — @11 —p i>N(O7p() (30)
(Zuwm — 27 1= p) [o(@ (1 —p))
First, consider the following sum, which we can rewrite as an integral:
N i—1
Gn: N Z Z o~) (31)
=1 j=1
lim Gy =2 / / p)dpdx (32)
N—o0 2=0
/ / v)dudv (33)
(34)
Using this we can now rewrite:
9 N i-1
K,= lim ——— E(Z; 35
N o N(N—l);; (Za))

. 9 N -1 j
NN T N _1f;JZIEf(Zm— (1—N+1)) (36)

(37

*Without loss of generality, Z; is assumed to be positively skewed, such that the first sum in K, is non-
negative. For a negatively skewed Z; one should instead use the low-high attack.

17

Now the term under the expectation sign tends to a normal distribution with mean 0 [4]. Since
uniform integrability holds, we have

Ko = lim Gy = 2/00 /OO vo(u)p(v)dudv. (38)

N—oc0
O

To summarize:

* Above we find the condition for the gradient distribution under which the attack directly
causes an increase in the second order correction term of SGD. Given exact form of ¢, an
attacker can exactly evaluate K, and reason about success of the attack.

* We can consider the specific case of normally distributed X;, where K, evaluates to be
equal to NG In this case, the condition becomes " > (E —)
* In normal case scenario for neural network the batch sizes are chosen to be large enough

that gradients can be assumed to be normally distributed due to CLT. As a result, here we
show that an attacker can break learning by appropriately changing the order of data.

* Theory outlined here highlights the differences in attack performance observed for batch
reorder and reshuffle. To be precise, batch reorder does not cause as much disruption as
batch reshuffle, due to a smaller value of o, whereas i remains exactly the same.

D Integrity attacks on Computer Vision in white and blackbox setups

White and Black box batching attacks

Train Test
1.0 1.0
- Blackbox oscillator in batching attack
—— Whitebox oscillator in batching attack
- Blackbox oscillator out batching attack
= Whitebox oscillator out batching attack
0.8 1 0.8 4 — Blackbox lowhigh batching attack
= Whitebox lowhigh batching attack
- Blackbox highlow batching attack
- Whitebox highlow batching attack
3 3
© 0.6 1 @ 0.6
=] 3
[v] [v]
o [v]
© ©
T T
© 0.47 S 0.4 A
= =
A
0.2 0.2,
A
0.0 - . 0.0 1= ; : ;
0 5 10 15 0 5 10 15
Epochs Epochs

Figure 7: Comparison of White and Blackbox attacks against ResNet-18 network and CIFAR-10
dataset. Error bars shown standard deviation of per-batch accuracy.

In this section we evaluate the performance of reordering attacks in the whitebox and blackbox settings.
In the whitebox case, we assume that the attacker can compute the loss directly to perform the attacks.
We show the results in Figure[7] Attacks in both settings significantly reduce model accuracy at train-
and-test time. Importantly, we observe that both blackbox and whitebox attacks significantly degrade
model accuracy, with the blackbox attack also having a smaller standard deviation, demonstrating
that the batching attacker is a realistic threat. We show more results in Appendix [J]and Figure 26}

18

E Extended integrity attack results

In Table 4 we present extended version of the results present in Table 2] We extend the attack
scenario here to include cases where the attacker resamples data every epoch. It makes a difference
for two reasons: first, the batch-contents change for batch reorder i.e. the batch contents change
between epochs; and second, the non-deterministic data augmentations (random crop + random
rotation of both CIFAR10 and CIFAR100) get recalculated. The results illustrate that resampling has
a significant impact on the performance — sometime even leading to an improvement in performance
after reordering. Indeed, batch reorder results follow the theoretical findings presented in Appendix|[C]
where we show that the attack performance is bounded by relative gradient magnitudes. Both batch
reorder and reshuffle attacks target the same phenomenon, with the sole difference residing in how
well gradients approximate true gradients and variance across batches. Finally, we find batch reshuffle
with Low High, High Low and Oscillations outward attack policies perform consistently well across
computer vision and natural language tasks.

F BOP with batch replacement

10 epochs of clean data 10 epochs of clean data

6 — Class 0 6 — Class 0

Class 1 Class 1
—— Class 2
4 — Poison: Class 3 4
—— Class 4
—— Class 5
Class 6 2

—— Poison: Class 5

Class 6
—— Class 7
Class 8

Logit value
°

Logit value
°

-2

-4 -4
-6 -6
95 batches of poisoned clean data with clean labels 95 batches of poisoned clean data with clean labels
(a) ResNet-18 (b) VGG-11
10 epochs of clean data 10 epochs of clean data
— —
6 —— Class 0 6 —— Class 0

Poison: Class 1 Class 1
—— Class 2 —— Class 2
—— Class 3 4 —— Class 3

—— Class 4 —— Class 4
—— Class 5 —— Class 5
Class 6 2 Class 6
—— Class 7 —— Poison: Class 7
Class 8 Class 8

~—— Class 9

Logit value
°

Logit value
°

-2

95 batches of poisoned clean data with clean labels 95 batches of poisoned clean data with clean labels
(c) VGG-16 (d) Mobilenet

Figure 8: Logit values of a network with 10 epochs of clean data and 95 batches of poisoned data. It
takes around 3-5 poison ordered batches for ResNet-18 and VGG-11, 10 for Mobilenet, whereas
VGG-16 takes about 50 batches. After poisoning, all models lost at most 10% accuracy.

In this section we present results for a single datapoint poisoning with BOP. Here we train the network
with clean data for 10 epochs, and then start injecting 95 BOP batches to poison a single random
datapoint. We find that poisoned datapoints converge relatively quickly to the target class. Figure g
shows the performance of a single-datapoint poison for four different architectures. In each a fixed
random target point ends up getting the target class after a few batches. For all but one, the point ends
up getting to the target class within 10 batches; for VGG-16 it took around 50.

19

G Stochastic gradient descent with linear regression

In this section we investigate the impact of ordered data on stochastic gradient descent learning of a
linear regression model. The problem in this case is optimising a function of two parameters:

T00,01) =+ > Botar) — il
i=1

Bo(x) = 012 + 0y

By considering data points coming from y = 2z + 17 + N(0, 1), we attempt to approximate the
values of 0, 6;. We observe that even in such a simple 2-parameter example, we are able to disrupt
convergence by reordering items that the model sees during gradient descent. This shows that the
inherent "vulnerability’ lies in the optimization process itself, rather than in overparametrized learned
models. The following two subsections investigate this problem in three different choices of batch
size and learning rate.

G.1 Batch reshuffling

20.0
2.8 —— Random data order —— Random data order
“ Sorted data by error 17.5 Sorted data by error A
| [T\ | Nl
2.6
I 15.0 //
§ 2.4 \ ‘ \ “‘ \ ' S 125
5 \ \ \ \ \ \ 5
822 M\\‘u‘ \ H H ‘ 1:“ 2100
L / | |
2 WM" f N J M 2 s
2.0 ‘ IVt i i i
[|/ \ / \ \ 5.0
18 { / f / }
‘ / I/ |/ | 25
1.6
0 1 2 3 4 5 0 1 2 3 4 5
Number of iterations le6 Number of iterations le6
(a) o parameter (b) 61 parameter

Figure 9: Individual linear regression parameters changing over the course the training

100 A —— Random data order
I Sorted data by error
80
A\
@
O 60 A
9] .
o
E |
¢ 40
<
20 A
0 <4
0 1 2 3 4 5

Number of iterations le6

Figure 10: Average training dataset loss during stochasitc gradient descent of a linear regression
model with two parameters. Random sampling is shown in blue, sorted items by error are shown in
yellow.

Figure [T0 shows average error per data point, when training is done over randomly-sampled data
and ordered by error data. A linear regression here has an optimal solution that the blue line reaches

20

w
a

—— Random data order
“ /\ /\ Sorted data by error
| | | | | 22
|

Now
a S
0
—_
—_
—
NN
o =

S
|
Value of 6,

Value of 8y
ooN

-

w o o
_

T

TR
T "
YRV '
“ \/‘ \| \ v —— Random data order
j \j \ 1.6 Sorted data by error
2

5 0 1 2 3 4 5
Number of iterations le6

o

|
3 4
Number of iterations le6

(a) 6o parameter (b) 01 parameter

Figure 11: Individual linear regression parameters changing over the course the training for larger
step size

—— Sorted data by error

\ —— Random data order

Value of 8,
Value of 6,
N
—

—— Random data order 18
—— Sorted data by error)

000 025 050 075 100 125 150 175 2.00

0.00 025 050 075 100 125 150 175 2.00
Number of iterations le7

Number of iterations le7

(a) O parameter (b) 61 parameter

Figure 12: Individual linear regression parameters changing over the course the training for larger
batch size (B=4)

while the orange line oscillates quite far away from it. In fact, by looking at the parameter behaviour,
as shown on Figure[9] we can see that the parameters end up oscillating around the global minimum,
never reaching it. Indeed, we find that with error-ordered data, gradient descent exhibits strong
overfitting to the data samples in the current minibatch, and fails to reach the optimal solution. This
effect is similar to the one observed for SGD with neural networks. In addition, we can also see the

dependence of the oscillations on the learning rate. On Figure[TT|by increasing the step size by 10
times from 5e¢ % to 5e~2, we are able to drastically increase oscillations for §y. This behaviour is

achieved when our minibatch size is chosen to be equal to 1.

G.2 Batch reordering

By increasing the minibatch size, we are able to ’"dampen’ the oscillations observed in the previous
subsection and converge to the optimal solution, as shown on Figure[I2] This is also quite similar
to the neural network case, as simple batch reordering is not able to achieve the same performance

degradation as reshuffling.

H Fidelity of gradient reconstruction

Figure[I3]|shows the gradient reconstruction error as a function of the number of random samples for
a flag-like trigger with a batch size of 32. We observe significant improvement for the first hundred
iterations, after which the improvement quickly falls off.

21

Figure 13: Fidelity of gradient reconstruction as a function of number of random samples

Gradient reconstruction fidelity

1.00
0.95
S
@ 0.90 \"“\x
E T ———
=
£
5085 \‘\
~———_]
— —
0.80 —
&i\ﬁl
0.75
0 100 200 300 400 500 600 700

Sampling iterations

I Batch reshuffling and hyperparameters

We have thoroughly evaluated different combinations of hyperparameters for the integrity attack

(Table[3)) and show the results in Figures[T4]to

Model accuracy

0.6

Model accuracy
°
:

0.0

Figure 14: ResNet18 real model Adam training, LeNet5 surrogate with Adam and Batchsize 32

High to low batches of size 32 (adam vs adam)

Train

5 10 15
Epochs

°
Y

Model accuracy
°
IS

Test

— (101,400} (70.1,10.0)
—— (101,405 (001, 40.0)
— (10.1,40.99) (10.1,10.0)
— (101,400} (70.1,405)
[— mo1u0s (oL k08
— (10.1,40.99) (10.1,405)
—— (10.1,140.0) (701, 4 0.99)
—— (10.1,405) (70.1,140.99)
e 101,4099) (1014099 —|

0 5 10 15

Epochs.

(a) High low batching

Batch oscillations inward of size 32 (adam vs adam)

Train

5 10 15
Epochs.

Model accuracy

Test

— (10.1,400) (70.1,40.0)
— (101,105 (001, 4 0.0)
140.99)(10.,110.0)
40.0)(70.1,1405)
405)(70.1,105)
— 140.99) (10.1,10.5)
—— (10.1,40.0) (701, 4 0.99)
—— (101,405 (701, 4 0.99)
—— (10.1,40.99) (701,14 0.99)

0 5 10 15

Epochs.

(c) Oscillating inward batching

Low to high batches of size 32 (adam vs adam)

0.8

4
>

Model accuracy
°
2

5

Train

10
Epochs.

15

Model accuracy

1.0

0.8

=
Y

o
=

0.2

0.0

Test

— (101,400)(70.1,400)
— (101.405)(70.1,40.0)
— (101,4099) (101,400}
— (101.400)(701,405)
[| — moLu05 (01 u05)
— (101.4099) (101, 405)
— (101,400)(70.1,4099)
— (101,405) (70.1,4099)
{-H—— 1014099 (7014099 —]

0 5 10 15
Epochs.

(b) Low high batching

Batch oscillations outward of size 32 (adam vs adam)

°

.61+

°

.4

Model accuracy

o 5

Train Test
10
— (101,400 (701,400)
— (01,405)(701.40.0)
— (01,4099 (101.400)
— (01,400 (001,405
081 (n0.1,405)(70.1, 40.5)
= (70.1,40.99) (1 0.1, 1 0.5)
— (0.1,400)(70.1,4099)
> — (101,405) (101, 140.99)
206 —— (01,4099 (701,41 099)
3
8
3
Soa
=
02
0.0
10 15 0 5 10 15
Epochs Epochs

(d) Oscillating outward batching

22

High to low batches of size 64 (adam vs adam) Low to high batches of size 64 (adam vs adam)

Train Test Train Test

— (101,400)(701.400)
— (10.1,405) (70,4 00)
— (10.1,4099) (01,40.0)
— (10.1,400)(70.,405)
08 — (01,405)(101.405) 038
— (10.1,4099) (10.1,405)

(10,4001 (0.1, 110.99)
— (10.1,405) (10,4 099)

— (101.400)(70.1.40.0)
— (70.1,405) (0.0, 4 0.0)
— (10,4099 (1014 0.0)
— (101.400)(70.1,405)
— (101.405)(70.1,405)
— (10.4099) (1014 05)
(710.1,400) (701,14 0.99)
— (101.405)(70.1.40.99)
06 {0011 09% (01,4 09%) 14 0.99) (7 0.1,14 0.99)
\ 2

0.2 i 0241 \
VYNV

4 5 10 15 o 5 10 15 [5 10 15 o 5 10 15

08

°
Y
o
P

Model accuracy
Model accuracy

Model accuracy
°
2

Model accuracy
°
=

o
o

0.0

Epochs Epochs Epochs Epochs
(a) High low batching (b) Low high batching
Batch oscillations inward of size 64 (adam vs adam) Batch oscillations outward of size 64 (adam vs adam)

Test

1.0

— (101,400) (001, 40.0)
— (101,405 (001, 40.0)
— (10.1,40.99) (7 0.1,4 0.0)
— (103,400) (001, 405)

08 0.8 — (01,405)(701.405)

o
©

(103,405) (70.1,40.99)
(101,4099) (00.1,40.99)

NARE

5) (103,14 0.99)
0.6 01,4 0.99) (1 0.1, 14 0.99)

02 i A i

I
10 0 5 10 15

14
>
o
>

Model accuracy
Model accuracy
Model accuracy
Model accuracy

14
=
o
s

e
o
o
N

0.0 0.0

] 5 10 15
Epochs Epochs Epochs Epochs
(c) Oscillating inward batching (d) Oscillating outward batching

Figure 15: ResNet18 real model Adam training, LeNet5 surrogate with Adam and Batchsize 64

J Whitebox batching attack performance

We show training of ResNet18 with the CIFAR10 dataset in the presence of whitebox BRRR attacks
in Figure[26] We see that datapoint-wise attacks perform extremely well, while batchwise BRRR
attacks force the network to memorise the training data and reduce its testing data performance.

K Triggered training for CV models

Training of models with BOB are shown in Figures[27]to[30] We show training, test, trigger accuracies,
and overall mistakes introduced by the trigger. The target network is VGG16 and the surrogate is
ResNet-18.

Here, the attacker uses up to 20 BOB batches every 50000 natural datapoints for 10 epochs and
then uses 90 pure BOB batches. Individual lines refer to training of different models with various
parameter initialisation and trigger target classes. Note that the non-BOB baseline here gets zero
trigger accuracy.

Overall, BOB controls the performance of the model extremely well in a whitebox setup, while
performance decreases in the blackbox case. There is clear difference in trigger performance between
different target classes, yet the attack works across them without disrupting the overall model
generalisation.

L NLP backdoors

In this section we discuss data-ordered backdooring of NLP models. We note that the results reported
in this section are specific to the model architecture used and will be different for other models.
We test BOB against EmbeddingBag with mean sparse embeddings of size 1024 and two linear
layers. We find that despite the BOB attack working against NLP models, it takes more effort. We

23

Model accuracy

High to low batches of size 128 (adam vs adam)

Test
10 1.0
= (1 0.1,40.0) (n 0.1, 41 0.0)
e (1 0.1, 1 0.5) (0 0.1, 4 0.0)
— (101,409 (101,400)
— (10.1,400)(701,405)
08 0.8 o (n0.1,40.5) (n 0.1, 4 0.5)
— (10.1,4099) (10.1,405)
— (10.1,400) (70,4 099)
> — (10.1,405) (10,4 099)
0.6 806 —— (10.1,110.99) (001,11 0.99)
3
g
8
3
0.4 Boa
H
0.2 02
0.0 0.0
0 5 10 15
Epochs Epochs

(a) High low batching

Batch oscillations inward of size 128 (adam vs adam)

Low to high batches of size 128 (adam vs adam)

Train Test
10
— (1014001 (001.40.0)
— (101.105) (01,4 00)
— (01,4099 (101.400)
— (101,400 (701.405)
0.8 = (10.1,405)(70.1, 4 0.5)
= (70.1,40.99) (1 0.1, 1 0.5)
— (01,40.0)(n0.1,4099)
> > — (101.405) (00,4 099)
8 806 —— (101.10.99) 0.1, 0.99)
5 5
2 g
& &
3 3
Bo. S04
= =
02
0.0
0 5 10 15
Epochs Epochs

(b) Low high batching

Batch oscillations outward of size 128 (adam vs adam)

Train Test Train Test
1.0 1.0 1.0 10
\ — (101,400 (n0.1,40.0) — (1014001 (001.40.0)
e (101.405) (001,400 — (01,4051 (00.0,40.0)
— (1014099 (101, 40.0) — (01,4099 (701 400)
— (01,4001 (701,105 — (01,4001 (00.1.405)
08 A 08 — (10.1,405) (0.1 1035) 08 08 — (101,405 (701405
— (101,409 (70.1,405) — (01,4099 (101.405)
—— (10,400) (0.1, 099) — (101.4100) (70, 4099)
> > — (103,405) (10.1,4099) > > — (10..405) (00,4 099)
806 806 e (10.1,10.99) (70,1, 4 0.99) 8 806 e (10.0,40.99) (7 0.1,140.99)
5 5 5 5
g g g S
5 5 8 8
3 3 3 3
Boa Boa4 3 Boa
H = = =
0.2 0.2 0.2
0.0 0.0 X 0.0
[5 10 15 0 5 10 15 5 10 15 0 5 10 15
Epochs Epochs Epochs Epochs

(c) Oscillating inward batching (d) Oscillating outward batching

Figure 16: ResNet18 real model Adam training, LeNet5 surrogate with Adam and Batchsize 128

hypothesise that this is an artifact of a sum over the embeddings of individual data points and that not
all tokens are used in all of the classes.

Table [6] shows the results of BOB attack against an NLP model for a trigger that consists of 50
commas. We show the corresponding training plots in Figures[3T]and[32] We observe that an attacker
is capable of injecting backdoors into the model, yet the performance is different to computer vision
triggers. We find that larger batch sizes result in worse performance of our backdoors and some
classes are easier to backdoor than others. Overall, its clear that just as computer vision, NLP is
vulnerable to BOB attacks, but architectural and data differences change the attack performance.

24

High to low batches of size 32 (adam vs sgd) Low to high batches of size 32 (adam vs sgd)

Train Test Train Test
1.0

— (101,400)(70.1,40.0) — (101.400) (701,400

08 08 08
z z z z
806 8 806 g06
5 5 5 5
3 3 2 3
g g g g
5 s 8 8
o] 3 3 3
Boa4 3 Boa Boa
= = = =

02 0.2

0.0

0.0 0.0

0 5 10 15 T o 5 10 15 o 5 10 15 J 5 10 15
Epochs. Epochs. Epochs. Epochs
(a) High low batching (b) Low high batching
Batch oscillations inward of size 32 (adam vs sgd) Batch oscillations outward of size 32 (adam vs sgd)
Test Train Test
10 1.0 1.0 1.0
— (00,400 (701.k00) — (1014001 (701,400
— (101.405) (001,400 — (01,4051 (00, 40.0)
— (10.0,4099) (0.1, 00) — (01,4099 (101 400)
— (00.1,400)(701,40:5) — (01,4001 (701,405
0.8 08 — (00,405 (701,105 0.8 08 — (10140500, 405)
— (01,4099 (70.1,405)
—— (101.400) (00.1,4099)
> > — (10.0,4035) (70, 4 0.99) > >
206 806 —— (10,1099 ,gs»ﬂv 206 g06
5 5 ~ H H
3 3 2 3
8 g g g
s s s 8
3 3 / 3 3
Bo4 S04 Bo4 Boa
= = = =
0.2 0.2 0.2 0.2
0.0 0.0 0.0 0.0
0 5 10 15 0 5 10 15 0 5 10 15
Epochs. Epochs. Epochs. Epochs

(c) Oscillating inward batching (d) Oscillating outward batching
Figure 17: ResNet18 real model Adam training, LeNet5 surrogate with SGD and Batchsize 32

High to low batches of size 64 (adam vs sgd) Low to high batches of size 64 (adam vs sgd)

Train Test Train Test

10 10 10 10
— (0L400 (n01 k00 — (01,400 (702 400)
0140501 k0.0) — (101,405) (701, 400)
— 01004099 (101, u00) — (1014099 (01.400)
— 0010 (0L u05) — (101.400) (701, 405)
0.8 08 — (00,405 (701,105 08 08171 (o1uosimoru0s) |
— (101,4099) (n0.1.4035) — (101,409 (01.403)
— (101,400)(701,14099) — (101,400)(701.4099)
z > = (n0.1,405)(70.1,110.99) § z z = (70.1.40.5) (1 0.1, 41 0.99)
806 8 0.69 | — 11014039 (10.1,059) 806 806 — (101409 01.u09)
2 2 y 3 3 NI, A
3 3 N | 3 3 \
g g g g
8 8 s 8
g 2 3 3
804 804 804 804
2 2 2 =
02 02 02 02
00 0.0 0.0 \«J\/ 0.0
0 5 0 15 0 5 10 15 0 5 10 15 0 5 10 15
Epochs Epochs Epochs Epochs

(a) High low batching (b) Low high batching

Batch oscillations inward of size 64 (adam vs sgd) Batch oscillations outward of size 64 (adam vs sgd)
Train Test Train Test
1.0 1.0 1.0 1.0
— (10.1,40.0)(n0.1,40.0) — (101.400)(10.1.40.0)
— (101,408) (0.1, 0.0) — (101.405)(70.1,40.0)
— (10.1,40.99) (1 0.1, 0.0) — (10,4099 (701.400)
— (10.1,40.0)(n0.1,40.5) — (101.400)(70.1,405)
0.8 08 — (101,405) (0.1, 4 05) 0.8 0.8 17— (01405 (001 k05
— (101,409 (701, 405) — (1014099 (101,405
—— (101,001 (701, 4 0.99) — (101,400 (70.,40.99)
> > — (10.1,405) (00,11 0.99) > > — (101405 (70.1,40.99)
806 806 — (101,4099) (701, 099) 806 8064 —— mo1uos9
3 3 \ 3 3
3 3 3 3
8 g g g
5 5 8 8
g g g g
S04 804 804 804
= = = =
0.2 0.2 0.2 0.2
0.0 0.0 0.0 0.0
10 15 10 15 o 5 10 15

Epochs Epochs Epochs Epochs

(c) Oscillating inward batching (d) Oscillating outward batching

Figure 18: ResNet18 real model Adam training, LeNet5 surrogate with SGD and Batchsize 64

25

CIFAR-10 CIFAR-100 AGNews

Train Test Train Test Train Test
Attack Batch size Loss Accuracy Loss Accuracy A || Loss Accuracy Loss Accuracy A || Loss Accuracy Loss Accuracy A
Baseline
32 0.13 95.51 0.42 90.51 —0.0% || 0.00 99.96 2.00 75.56 —0.0% || 0.21 93.13 0.30 90.87 —0.0%
None 64 0.09 96.97 0.41 90.65 —0.0% || 0.00 99.96 2.30 74.05 —0.0% || 0.25 91.86 0.31 90.42 —0.0%
128 0.07 97.717 0.56 89.76 —0.0% || 0.00 99.98 1.84 74.45 —0.0% || 0.31 89.68 0.36 88.58 —0.0%
Batch reorder (only epoch 1 data)
32 0.02 99.37 2.09 78.65 —11.86% || 0.00 100.00 | 5.24 53.05 —22.51% || 0.14 95.37 0.32 90.92 —0.05%
Oscillation outward 64 0.01 99.86 2.39 78.47 —12.18% || 0.00 100.00 | 4.53 5591 —18.14% || 0.17 94.37 0.30 90.95 +0.53%
128 0.01 99.64 2.27 77.52 —12.24% || 0.00 100.00 | 3.22 52.13 —22.32% || 0.23 92.05 0.33 89.40 +0.82%
32 0.01 99.60 249 78.18 —12.33% || 0.00 100.00 | 5.07 51.78 —23.78% || 0.11 96.29 0.38 91.10 +0.23%
Oscillation inward 64 0.01 99.81 225 79.59 —11.06% || 0.00 100.00 | 4.70 55.05 —19.0% || 0.16 94.55 0.33 90.16 —0.26%
128 0.02 99.39 2.23 76.13 —13.63% || 0.00 100.00 | 3.46 52.66 —21.79% || 0.22 92.40 0.32 89.82 +1.24%
32 0.02 99.44 2.03 79.65 —10.86% || 0.00 100.00 | 5.47 51.48 —24.08% || 0.10 96.16 0.60 91.80 +0.93%
High Low 64 0.02 99.50 2.39 77.65 —13.00% || 0.00 100.00 | 5.39 55.63 —18.42% || 0.15 94.72 0.41 90.28 —0.14%
128 0.02 99.47 2.80 74.73 —15.03% || 0.00 100.00 | 3.36 53.63 —20.82% || 0.24 91.44 0.33 90.14 +1.56%
32 0.01 99.58 233 79.07 —11.43% || 0.00 100.00 | 4.42 54.04 —21.52% || 0.17 94.02 0.30 90.35 —0.52%
Low High 64 0.01 99.61 2.40 76.85 —13.8% || 0.00 100.00 | 3.91 54.82 -19.23% || 0.22 92.49 0.32 89.36 —1.06%
128 0.01 99.57 1.88 79.82 —9.94% || 0.00 100.00 | 3.72 49.82 —24.63% || 0.24 91.87 0.32 89.67 —1.09%

Batch reorder (resampled data every epoch)

32 0.11 96.32 0.41 90.20 —0.31% || 0.01 99.78 2.22 72.38 —3.18% || 0.21 92.97 0.29 90.71 —0.16%
Oscillation outward 64 0.11 96.40 0.45 89.12 —1.53% || 0.01 99.76 220 73.33 —0.72% || 0.17 94.37 0.31 90.29 —0.13%
128 0.09 96.89 0.47 89.71 —0.05% || 0.00 99.89 1.95 74.21 —0.24% || 0.25 91.65 0.32 89.80 +1.22%
32 0.15 95.11 0.44 89.56 —0.95% || 0.00 99.88 2.10 74.80 —0.76% || 0.09 97.04 0.44 90.91 +0.04%
Oscillation inward 64 0.12 96.11 0.42 89.98 —0.67% || 0.01 99.81 2.35 72.24 —1.81% || 0.19 93.57 0.33 89.83 —0.59%
128 0.09 96.88 0.43 90.09 +0.33% || 0.00 99.93 224 73.72 —0.73% || 0.23 92.25 0.31 89.83 +1.25%
32 0.12 95.95 0.45 89.38 —1.13% || 0.01 99.84 2.07 74.88 —0.68% || 0.13 95.40 0.54 90.13 —0.74%
High Low 64 0.15 94.80 0.44 89.01 —1.64% || 0.01 99.81 227 74.63 —0.58% || 0.16 94.48 0.36 90.98 +0.56%
128 0.11 96.33 0.48 89.71 —0.05% || 0.00 99.92 2.13 73.90 —0.55% || 0.24 91.53 0.35 89.54 +0.96%
32 0.10 96.63 0.47 90.29 —0.22% || 0.01 99.77 2.07 73.90 —1.66% || 0.14 95.35 0.30 90.96 +0.09%
Low High 64 0.12 96.10 0.50 89.34 —1.31% || 0.01 99.68 226 72.73 —1.32% || 0.15 94.96 0.30 90.73 +0.31%
128 0.09 97.16 0.49 89.85 +0.09% || 0.00 99.94 231 71.96 —2.49% || 022 92.54 0.32 89.33 +0.75%

Batch reshuffle (only epoch 1 data)

32 226 17.44 1.93 26.13 —64.38% || 0.01 99.80 5.01 18.00 —57.56% || 0.09 97.72 1.85 65.85 —25.02%
Oscillation outward 64 226 18.86 1.98 26.74 —63.91% || 0.38 93.04 4.51 11.68 —62.37% || 0.17 95.69 1.31 72.09 —18.33%
128 2.50 14.02 2.18 20.01 —69.75% || 0.66 86.22 4.07 10.66 —63.79% || 0.21 94.32 1.12 71.05 —17.53%
32 213 22.85 1.93 28.94 —61.57% || 0.01 99.92 4.55 31.38 —44.18% || 0.18 94.06 0.38 89.23 —1.64%
Oscillation inward 64 227 17.90 1.99 23.59 —67.06% || 0.02 99.64 5.79 17.37 —56.68% || 0.23 92.10 0.36 89.07 —1.35%
128 2.53 10.40 229 13.49 —76.27% || 0.54 88.60 4.03 10.92 —63.53% || 0.31 88.99 0.39 87.50 —1.08%
32 2.11 23.39 1.80 31.04 —59.47% || 0.01 99.69 6.24 21.15 —54.41% || 0.17 94.38 1.25 56.54 —34.33%
High Low 64 222 20.57 1.93 27.60 —63.05% || 0.05 99.15 5.26 14.05 —60.0% || 0.25 91.09 1.21 53.08 —37.34%
128 2.51 16.66 2.05 20.85 —68.91% || 4.16 721 3.86 10.20 —64.25% || 0.36 86.19 1.19 49.90 —38.68%
32 2.17 20.22 1.92 30.09 —60.42% || 0.19 96.07 4.06 2048 —55.08% || 0.05 98.94 3.20 59.28 —31.59%
Low High 64 2.35 15.98 2.00 22.97 —67.68% || 0.09 98.22 4.69 15.39 —58.66% || 0.10 97.70 2.55 54.99 —35.43%
128 251 10.25 232 11.40 —78.36% || 4.30 5.65 3.81 9.66 —64.79% || 0.26 93.02 1.26 66.59 —21.99%

Batch reshuffle (resampled data every epoch)

32 2.09 24.63 1.75 35.17 —55.34% || 0.16 95.58 1.68 57.55 —18.01% || 0.04 98.94 3.69 62.44 —28.43%
Oscillation outward 64 222 20.45 1.90 29.67 —60.98% || 0.55 88.62 3.11 23.64 —50.41% || 0.10 96.61 3.33 55.63 —34.79%
128 2.46 17.25 1.97 23.82 —65.94% || 4.21 6.84 3.70 12.76 —61.69% || 0.16 94.85 3.38 53.97 —34.61%
32 2.40 10.10 2.35 10.55 —79.96% || 0.10 97.08 1.78 58.04 —17.52% || 0.04 98.54 1.19 88.50 —2.37%
Oscillation inward 64 220 21.57 1.97 25.34 —65.31% || 0.13 96.19 1.71 57.96 —16.09% || 0.08 96.93 0.95 88.86 —1.56%
128 243 16.87 1.98 25.87 —63.89% || 0.80 83.16 3.53 16.99 —57.46% || 0.18 93.84 1.08 80.82 —7.76%
32 2.06 23.95 1.81 30.95 —59.56% || 0.07 97.93 1.62 62.41 —13.15% || 0.65 70.30 1.71 60.92 —29.95%
High Low 64 217 24.06 1.87 30.84 —59.81% || 0.25 93.87 226 42.74 —31.31% || 0.33 84.47 4.17 36.82 —53.60%
128 2.59 12.41 2.13 18.82 —170.94% || 0.88 81.83 3.62 13.12 —61.33% || 0.20 91.13 3.17 40.10 —48.48%
32 2.40 10.19 231 10.66 —79.85% || 0.21 94.26 1.73 56.60 —18.96% || 1.33 33.71 1.12 49.69 —41.18%
Low High 64 2.18 21.72 1.89 27.23 —63.42% || 0.48 87.32 2.04 47.68 —26.37% || 0.17 93.51 529 46.24 —44.18%
128 2.40 18.38 1.96 27.78 —61.98% || 0.77 84.40 3.71 13.39 —61.06% || 0.23 91.43 4.63 46.66 —41.92%

Table 4: For CIFAR-10, we used 100 epochs of training with target model ResNet18 and surrogate
model LeNet5, both trained with the Adam optimizer and 8 = (0.99, 0.9). For CIFAR-100, we used
200 epochs of training with target model ResNet50 and surrogate model Mobilenet, trained with
SGD with 0.3 moment and Adam respectively for real and surrogate models. We highlight models
that perform best in terms of test dataset loss. AGNews were trained with SGD learning rate 0.1, 0
moments for 50 epochs with sparse mean EmbeddingBags. Numbers here are from best-performing
model test loss-wise. Incidentally, best performance of all models for Batch reshuffle listed in the
table happen at epoch number one, where the attacker is preparing the attack and is collecting the
training dataset. All attacks result in near-random guess performance for almost all subsequent
epochs. We report results of an individual run and note that standard deviation for test accuracy of
vision tasks range within 1%-3%, whereas for language tasks its within 15% (note that these are hard
to attribute given best test accuracy is reported).

26

Parameter Values

Source model ResNet18
Surrogate model LeNet-5

Dataset CIFAR10
Attack policies [HighLow, LowHigh, Oscillations in, Oscillations out]
Batch sizes [32, 64, 128]
True model optimizers [Adam, SGD]
Surrogate model optimizers [Adam, SGD]
Learning rates [0.1, 0.01, 0.001]
Surrogate learning rates [0.1, 0.01, 0.001]
Moments [0, 0.5, 0.99]
Surrogate moments [0, 0.5, 0.99]

Table 5: Parameters searched

High to low batches of size 128 (adam vs sgd) Low to high batches of size 128 (adam vs sgd)
Train Test Train Test
1.0 1.0
— (101,400 (n0.1.40.0) — (1014001001400
— (101,105)(70.1,40.0) — (101.405)(70.1,40.0)
— (10.1,40.99)(10.1,40.0) — (101.4099)(101.40.0)
— (10.1,400) (701, 40.5) — (101.400)(70.1,405)
089 (oruosimoruos | 0817 — moruosimoruos |
— (10.0,4099 (101, 403) — (101.4099)(101.405)
—— (10.1,100) (701, 40.99) — (01,4001 (00.1,4099)
> > — (101,405) (0.1, 40.99) > > — (101.405)70.2,4099) _
8 8 0.6 — (101,409 (101,4099 8 8 0.6 — 01,4099 014099 |\,
3 3 ! g 3 I\
® 8 B 8
3 3 3 3
3 Boa 3 So4
= = = =
0.2 0.2
0.0 X 0.0
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
Epochs. Epochs. Epochs Epochs.

(a) High low batching (b) Low high batching

Batch oscillations inward of size 128 (adam vs sgd) Batch oscillations outward of size 128 (adam vs sgd)
Test Train Test
1.0 10
— (10.1,40.0)(n0.1,40.0) — (101,400 (00.1.40.0)
— (101,105) (701, 4 0.0) — (101,405)(70.1,40.0)
— (00,4099 (701,400} — (10..4099) (1014 0.0)
— (101,40.0) (0.1, 0.5) — (101.400)(70.1,405)
0.8 — (101,408) (0.1, 405} 08 — (101,405 (101,405
— (10.1,40.99) (1 0.1, 05) — (101.4099) (1 0.1.405)
—— (101,100} (701, 4 099) — (10.1.40.0)(70.1,089)
> > — (014051 (701 u099) [| > > — (101405 (70.1,40.99)
g 0. 806 —— (10,4099 (7 0.1,10.99) 2 206 — (10.1.1099) (710,11099)
3 3 v 2 32 \
5 5 8 8
3 3 3 3
2 Bo4 3 Boa
H H = =
0.2 0.2 LA
0.0 0.0
5 10 15 5 10 0 5 10 15
Epochs Epochs. Epochs.

(c) Oscillating inward batching (d) Oscillating outward batching

Figure 19: ResNet18 real model Adam training, LeNet5 surrogate with SGD and Batchsize 128

27

High to low batches of size 32 (sgd vs sgd)

Low to high batches of size 32 (sgd vs sgd)

Train Test Train Test
1.0 1.0 1.0 1.0
— (01,4001 (701.10.0) — (101,400 (102.400)
(10.1,405) (701, 40.0)
r (10.1,4099) (701,400}
08] 08 (70.1,400) (703, 40.5) 08 08
g g g g
806 806 806 306
5 5 5 5
g g g S
5 5 s 8
3 3 3 3
Boa4 - Boa4 Boa Boa
= \ = = =
0.2 02 0.2 0.2
0.0 0.0 0.0 0.0
0 5 10 15 0 5 10 15 10 15 J 5 10 15
Epochs. Epochs. Epochs. Epochs
(a) High low batching (b) Low high batching
Batch oscillations inward of size 32 (sgd vs sgd) Batch oscillations outward of size 32 (sgd vs sgd)
Train Test Train Test
10 1.0 1.0 1.0
— (00,400 (701.k00) — (1014001 (701,400
—— (101.405) (001,400 — (01,4051 (001,40.0)
— (10.0,4099) (101,400} — (10,4099 (101 400)
— (01,400 (701,105) — (10.1.400) (001,405
08 08 — (10140511701 405 08 081 — (701,405 (0L w05
— (10.1,4099) (0.1, 405) — (01,4099 (701.403)
(70.0,400) (70, 10.99) (001,10.0) (701, 4099)
> > (10.1,4035) (70, 10.99) > > (101,405) (701, 4099)
806 806 (710.1,10.99) (0.1, 0.99) 806 8 0.6{ 44— (01,4099 0014099
5 5 H H Y
3 3 2 3
8 g g | g \/
s s s 8
3 3 3 — 3
o4 Bo4 Bos < Boa
= = = =
0.2 0.2 0.2 - 02
~
0.0 0.0 0.0 0.0
0 5 10 15 5 10 15 0 5 10 15
Epochs. Epochs. Epochs. Epochs

(c) Oscillating inward batching
Figure 20: ResNet18 real model SGD training, LeNet5 surrogate with SGD and Batchsize 32

(d) Oscillating outward batching

High to low batches of size 64 (sgd vs sgd)

Train Test Train Test
1.0 1.0 1.0 1.0
— (10.1400/(701.40.0) — (1014001001400
— (101.405) (0.1, 1 0.0) — (01,405 (701.40.0)
— (0.0,4099) (701,400} — (1014099 (101.400)
— (01,400 (701,105 — (101,400 (701,405)
08 o 08 — (00,405 (701,105 08 081 (01405 (001 u05)
— (10.1,4099 (,01.403) — (101,409 (101,41 03)
— (101.400) (0.1, 4099) — (0.1.400)(n0.1,4099)
> > —— (10.0,405) (701, u099) > > — (101,405) (101, 40.99)
£06 806 —— (10,4099 (701,14099) 806 8 0.6 1 — (101,409 (7014099
3 3 3 5 y Ui
8 g g g
© . ® L <
3 3 3 3
Bo4 4 Bo4 Boa Boa
= = y \ = =
\ Y \
0.2 0.2 0.2 0.2
0.0 0.0 0.0 0.0
0 5 10 15 0 5 10 15 5 10 15 0 5 10 15
Epochs. Epochs Epochs Epochs
(a) High low batching (b) Low high batching
Batch oscillations inward of size 64 (sgd vs sgd) Batch oscillations outward of size 64 (sgd vs sgd)
Train Test Train Test
1.0 1.0 1.0 1.0
— (1014001001 400) — (10,4001 (001.400)
— (101,408) (0.1, 0.0) — (101,405) (701,4100)
y — (00,4099 (701,400} — (01,4099 (101.400)
— (10.1,400)(701,105) — (0.1.400) (701,405
0.8 1 0.8 — (01,405 (701,105) 08 0.8 17— (701,405 (001, u05)
I — (10.,1099) (0.1, 1 05) — (10.1,4099) (701, 405)
— (101,400) (10.1,1099) — (0.1,400) (701, 40.99)
> > |— woruosimor uoss > > — (0..405) (70.1,40.99)
2 0.6 806 - (10.1,4099) (001,14 099) 206 8 0.6 — (01,4099 (1014099 [/
3 3 3 3 W P2 %
3 / 3 3 3 \
8 g g g
5 5 8 8
3 3 3 3
Bo4 Bo4 Bo4 o4
H H = =
0.2 0.2 0.2 0.2
0.0 T 0.0 0.0 0.0
0 5 10 15 0 5 10 15 10 15 o 5 10 15
Epochs Epochs Epochs Epochs

Low to high batches of size 64 (sgd vs sgd)

(c) Oscillating inward batching (d) Oscillating outward batching

Figure 21: ResNet18 real model SGD training, LeNet5 surrogate with SGD and Batchsize 64

28

Model accuracy

Model accuracy

High to low batches of size 128 (sgd vs sgd)

Train

Test

— (101,400)(70.1,40.0)

08
>
0.6 8
5
3
g
s
3
0.4 3
=

0.2

5 15

10
Epochs Epochs

(a) High low batching

Batch oscillations inward of size 128 (sgd vs sgd)

Train

Test

(10.1,40.0) (70.1,10.0)
(70.1,105) (70.0,110.0)
(10.1,1099) (0 01,1100
(70.1,10.0) (70.1,105)

|

08 0.8 (n0.1,405) (0.1, 405)
(101,140.99) (701,405)
(10.1,10.0) 70,4 0.99)
> (101,405 (70,4 099)
0.6 £ 06 |~ (10.1,10.99) (7 0.1, u 0.99) ——|
5
3
g
5
Kl
0.4 8041
2

02

0.0

o 5 10 15 o 5 10 15
Epochs Epochs

(c) Oscillating inward batching

08

o
o

Model accuracy
°
2

0.0

Low to high batches of size 128 (sgd vs sgd)

Test

— (101.400) (701,400
(10,405) (7 0.1,10.0)
(101.4099) (10.1.40.0)
(10.,410.0) (70.1,405)
(101.405) (7 0.1,405)
03)

1.0

0.8

o
o

Model accuracy
°
2

0.2

08

14
Y

Model accuracy
°
2

02

0.0

Epochs

(b) Low high batching

Batch oscillations outward of size 128 (sgd vs sgd)

Train Test

— (101.400) (701,400
— (101,405)(70.1,400)
— (101.4099) (101,400}

— (7101.400)(70.1,403)
0.8 (101405 (701405
— (0101.4099)(101,405)

(710.1.40.0) (7 0.1, 4099
(101,405) (101, 4099
— (101.40.99) (0.1, 10.99) ——|

o
Y

Model accuracy
°
b4

0.2

0.0

Epochs

(d) Oscillating outward batching

Figure 22: ResNet18 real model SGD training, LeNet5 surrogate with SGD and Batchsize 128

Model accuracy

Model accuracy

High to low batches of size 32 (sgd vs adam)

Train Test

— (101,400} (70.1.100)
— (101,405 (701, 40.0)
(101,109 (0 01,1 0.0)
(10.1,40.0) (70.1,1405)

08 (101,405 (701, 405)
(n0.1,10.99) (n 0.1, 4 0.5)
— (10.1,400) (70,4099
> — (1014031 (001 4 0.99)
0.6 8 —— (71014099 (70.1,14099) -
H >
3
g
5
2
0.4 g
5

0.2

0.0

10 15 T o 5 10 15
Epochs Epochs

(a) High low batching

Batch oscillations inward of size 32 (sgd vs adam)

Train Test
10
— (00,4001 (701.10.0)
e (101,11 0.5) (0 0.1, 1t 0.0)
— (00,4099 (701,400}
= (n0.1,40.0)(n0.1, 4 0.5)
08 i (10.1,40.5) (0 0.1, 4 0.5)
= (10.1,440.99) (1 0.1, u 0.5)
e (n0.1, 11 0.0) (7 0.1, 4 0.99)
2z 0.1,40.5) (7 0.1, 4 0.99)
0.6 & 10.99) (101, 10.99)
H
3
g
8
3
0.4 3
2
0.2
0.0

10 15 o 5 10 15
Epochs Epochs

(c) Oscillating inward batching

08

14
Y

Model accuracy
°
2

0.0

0.8

o
o

Model accuracy
°
2

0.0

Low to high batches of size 32 (sgd vs adam)

Train Test

1.0

— (101.400) (701,400
— (0101,405)(70.1,400)
— (101,4099) (101,400}

— (0101.400)(70,405)
081 — (roLu0s (0L k05
— (7101.4099) (101, 405)
— (101,400)(70.1,4099)

o
>

Model accuracy
°
2

0.2

0.0
10 15 o 5 10 15
Epochs Epochs

(b) Low high batching

Batch oscillations outward of size 32 (sgd vs adam)

Train Test

— (101,400 (00.1.40.0)
— (01,405)(701.40.0)
— (01,4099 (101.400)
— (01,4001 (701,405
0.8 1 — (ro1u0s (001 k05
— (01,4099 (101.405)
— (0.1.400)(70.1,4099)
— (101.405) (00,4 099)
—— (701,099 (701, 099)

1.0

=
o

Model accuracy
°
2

0.2

0.0
10 15 0 5 10 15
Epochs. Epochs.

(d) Oscillating outward batching

Figure 23: ResNet18 real model SGD training, LeNet5 surrogate with Adam and Batchsize 32

29

08

14
o

Model accuracy
°
S

0.2

08

e
>

Model accuracy

0.0

Figure 24: ResNet18 real model SGD training, LeNet5 surrogate with Adam and Batchsize 64

0.8

14
>

Model accuracy
°
2

High to low batches of size 64 (sgd vs adam)

Train

Epochs

Model accuracy

Test

— (101,400)(70.1,40.0)
— (101,405 (001, 40.0)
— (10.1,40.99) (101,100}
— (101,400)(70.1,105)
— (10.1,405)(70.1.105)

Epochs

(a) High low batching

Batch oscillations inward of size 64 (sgd vs adam)

Train

10 15
Epochs

Model accuracy

°
Y

°
=

Test

— (101,400 (70.1.100)
— (101,405 (001, 40.0)
— (10.1,4099) (10.1,10.0)
— (101,400)(70.1,405)

— (10.1,405)(70.1,105)
— (10,4099 (101, 103)
— (10.1,140.0) (701, 40.99)
— (10.1,405) (70.1.40.99)
— (10.0,10.99) (70.0,40.99)

0 5 10 15

Epochs

(c) Oscillating inward batching

High to low batches of size 128 (sgd vs adam)

0.2

0.0

0.8

Model accuracy
°
S

14
=

0.2

0.0

Figure 25: ResNet18 real model SGD training, LeNet5 surrogate with Adam and Batchsize 128

Train Test
1.0
— (101400101 H00)
— (101.405) (0.1, 1 0.0)
— (00,4099 (0.1, 00)
— (1014001001405
08— (n0.1,405) (0.1, u0.5)
= (10.1,40.99) (1 0.1, 4 0.5)
e (1 0.1, 0.0) (7 0.1, 4 0.99)
> — (102,405 (701 u0.99)
8 0.6 — (1014099 (01,4089 —
‘ 3 L [RA
| B . \ \
| T fk I\ A 4
Boa A
5
0.2 >
0.0+
5 0 15 0 5 0 15
Epochs Epochs

(a) High low batching

Batch oscillations inward of size 128 (sgd vs adam)

Train

10 15
Epochs.

Model accuracy

Test

)

.6

— (101,400} (70.1,10.0)

—— (101,405 (001, 4 0.0)

— (10.1,40.99) (1 0.1,10.0)

— (101,400)(70.1,405)

— (10.1,405)(70.1,405)
1,

°
kY

5 10 15
Epochs.

(c) Oscillating inward batching

30

Model accuracy

Model accuracy

Model accuracy

Model accuracy

0.8

o
o

°
Y

0.8

o
Y

°
Y

0.8

=
Y

o
®

0.8

=
o

Low to high batches of size 64 (sgd vs adam)

Train

10 15
Epochs

1.0

0.8

o
o

Model accuracy
°
2

Test

— (101.400) (701,400
— (101,405) (701,400
— (101.4099) (101,400}
— (101,400) (701,405
[— 001405001405
— (101.4099) (101, 405)
— (101,400)(70.1,4099)
— (101.405) (101,409
f-H—— 01,4099 (01,4099 ——|

10 15
Epochs

(b) Low high batching

Batch oscillations outward of size 64 (sgd vs adam)

Train

10 15
Epochs

1.0

0.8

o
Y

Model accuracy
°
b4

0.0

Test

— (101.400) (701,400
— (101,405)(70.1,400)

— (101.4099) (101,400}
— (101.400)(70,405)
— (101,405)(70.1,405)
— (0101.4099) (101, 405)
— (101,400)(70.1,4099)
— (101.405)(70.1,4099)

10 15
Epochs

(d) Oscillating outward batching

Low to high batches of size 128 (sgd vs adam)

Train

10
Epochs

1.0

0.8

o
>

Model accuracy
°
2

0.2

0.0

Test

— (101.400) (701,400
— (0101,405)(70.1,400)
— (101,4099) (101,400}
— (0101.400)(70,405)
— (101,405)(70.1,405)
— (7101.4099) (101, 405)
— (101,400)(70.1,4099)
— (101.405) (70.1,4099)
f-H—— 01,4099 (7014099 —

l

10 15
Epochs

(b) Low high batching

Batch oscillations outward of size 128 (sgd vs adam)

Train

10 15
Epochs.

1.0

Test

0.8

=
o

Model accuracy

o
=

— (101,400)(70.1,400)
— (101,405)(70.1,40.0)
— (101,4099) (101,400}
— (701.400)(70,405)
— (101,405)(70.1,405)
— (101.4099) (101, 405)
— (101,400) (701, 099)
— (101,405) (70.1,4099)
{-H—— 1014099 (7014099 —]

Epochs.

(d) Oscillating outward batching

High to low batches of size 64

Model accuracy

Low to high batches of size 64

Train Test
10
"~ batcwise
Elementwise
0.8
o)
806
5
3
g
5
]
804
=
0277
|
—_— 0.0+ . . : .
0 25 50 75 100 0 25 50 75 100
Epochs Epochs
(a) HighLow

Batch oscillations inward of size 64

Train Test
1.0 1.0
— Batchwise
Element.wise
0.8 0.8
z ol
306 206
5 5
3 3
8 g
& ®
k] o}
804 S04
= s
0.2 0.2
0.0 v v . - 0.0 v v . +
0 25 50 75 100 0 25 50 75 100
Epochs Epochs
(b) LowHigh
Batch oscillations outward of size 64

Train Test Train Test
1.0 1.0 ey e 1.0 1.0 e
0.8 0.8 0.8 0.8
goa go.s go.a go.e
{ | |
\ ‘ h‘
02 02 0211 ‘\‘\ oz}
P, o\ I\
0.0 0.0 0.0 0.0
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Epochs Epochs Epochs Epochs
(c) Oscillations inwards (d) Oscillations outwards
Figure 26: Whitebox performance of the Batching attacks — CIFAR10.
Trigger Batch size Train acc [%] Testacc [%] Trigger acc [%] Error with trigger [%]
Baseline
32 83.59 £5.57 83.79+048 16.25+£11.22 34.31 £ 9.86
Random natural data 64 78.12+7.65 80.34 +0.37 11.03 £ 4.62 35.03 £11.74
128 71.48 +£0.87 74.05+0.49 0.23+0.13 60.05 £ 8.13
Only reordered natural data
32 84.37+3.82 78.54+1.20 68.76+23.54 48.12 + 20.03
50 commas triggers 64 7851 £3.00 79.39£0.31 36.36 £ 15.70 30.86 + 5.54
128 73.24+4.18 73.97+0.85 5.10 £ 1.52 51.10 £ 7.01
32 87.50 £6.62 79.17+£1.10 57.96 +19.87 40.29 £+ 15.28
Blackbox 50 commas triggers 64 8554+ 752 79.37+£0.82 32.00 £ 16.40 30.57 £ 6.63
128 74.80 +£2.61 72.95+0.57 3.23+2.31 54.12 +4.61

Table 6: Performance of triggers induced only with natural data
EmbeddingBag and two linear layers. Test accuracy refers to the original benign accuracy, ‘Trigger
acc’ is the proportion of images that are classified as the trigger target label, while ‘Error with trigger’
refers to all of the predictions that result in an incorrect label. Standard deviations are calculated over
different target classes. Blackbox results uses an EmbeddingBag with a single linear layer.

31

. Network consists of an individual

Model accuracy

Model accuracy

Model accuracy

Train

1.0

0.8 1

o
o

N
i

0.2

0.0
10 Epochs + 90 BOB batches

Train
1.0 1

0.8

o
o

N
IS

0.2

0.0
10 Epochs + 90 BOB batches

Train
1.0

0.8

o
o

N
IS

0.2

?OOEpochs + 90 BOB batches

Triggered training with batchsize 32

Test

1.0

0.8 1

1 (')I'rigger performance 10 Error from trigger

08y 0.8 1

o
o

o
o
e
o

Model accuracy
o
IS

0.2

Model accuracy

N
IS
o
IS

Model accuracy

0.2 1 0.2

0.0
10 Epochs + 90 BOB batches

0.0 0.0
10 Epochs + 90 BOB batches 10 Epochs + 90 BOB batct

(a) 32 batchsize

Triggered training with batchsize 64

Test

1.0

0.8 1

o
o

IN
~

Model accuracy

0.2

Model accuracy

1 (‘)I'rigger performance 10 Error from trigger
0.8 0.8
>
0.6 20.6
E |
2
3
©
o]
4 3041
0. 20.
0.21 0.2 1

0.0
10 Epochs + 90 BOB batches

0.0 0.0
10 Epochs + 90 BOB batches 10 Epochs + 90 BOB batck

(b) 64 batchsize

Triggered training with batchsize 128

Test Trigger performance Error from trigger

1.0 1.0 ggerp 1.0 99
0.8 1 0.8 0.8

> > >]

06 g 06 806

E E E

3 3 3

® ® ®

° ° o]

804 S04 8041

= = =
0.2 0.21 0.2

]9'00Epochs + 90 BOB batches

?OOEpochs + 90 BOB batches ?OOEpochs + 90 BOB batct

(c) 128 batchsize

Figure 27: Trigger ordered training with blackbox 9 whitelines trigger.

32

Train
1.0 1

0.8 1

o
o

N
i

Model accuracy

0.2

0.0
10 Epochs + 90 BOB batches

Train
1.0 1

0.8 1

o
o

N
IS

Model accuracy

0.2

0.0
10 Epochs + 90 BOB batches

Train
1.0 1

0.8

o
o

N
IS

Model accuracy

0.2

?OOEpochs + 90 BOB batches

Triggered training with batchsize 32

Test

1.0

0.8 1

o
o

Model accuracy
o
IS

0.2

Model accuracy

1 (')I'rigger performance 10 Error from trigger
o84+ 0.8
>
0.6 306 d
5
S
©
o]
44 3041
0. go.
0.24 0.2

0.0
10 Epochs + 90 BOB batches

0.0 0.0
10 Epochs + 90 BOB batches 10 Epochs + 90 BOB batct

(a) 32 batchsize

Triggered training with batchsize 64

Test

1.0

0.8 1

o
o

IN
~

Model accuracy

0.2

Model accuracy

1 (‘)I'rigger performance 10 Error from trigger
0.8 0.8
>
0.6 306
1
I+
©
o]
44 3041
0. go.
0.21 0.2

0.0
10 Epochs + 90 BOB batches

0.0 0.0
10 Epochs + 90 BOB batches 10 Epochs + 90 BOB batck

(b) 64 batchsize

Triggered training with batchsize 128

Test Trigger performance Error from trigger

1.0 1.0 ggerp 1.0 99
0.8 1 0.8 0.8

> > >

06 g 06 306

E E E

3 3 2

® ® ®

° ° o]

804 S04 8041

= = =
0.2 0.21 0.2

]9'00Epochs + 90 BOB batches

?OOEpochs + 90 BOB batches ?OOEpochs + 90 BOB batct

(c) 128 batchsize

Figure 28: Trigger ordered training with whitebox 9 whitelines trigger.

33

Model accuracy

Model accuracy

Model accuracy

1 (')I'rigger performance

Triggered training with batchsize 32

Train Test
1.0 1.0
0.8 0.8 1
> >
0.6 206 3
E 5
5 IS
© ©
@ ©
4 S04 3
0 = =
0.2 0.2

0.0 0.0 0.0 15 0.0
10 Epochs + 90 BOB batches 10 Epochs + 90 BOB batches 10 Epochs + 90 BOB batches 10 Epochs + 90 BOB batct

(a) 32 batchsize

Test

0.8 1

o
o

N
IS

0.2 A

v

Triggered training with batchsize 64

Train
1.0 7 1.0
0.8 0.8 1
>
0.6 S 0.6
E
5
©
@
4 804
0. go.
0.2 0.2

Model accuracy

1 (‘)I'rigger performance

0.8 1

o
o

o
IS

0.2 A

.0
Z?O Epochs + 90 BOB batches

Triggered training with batchsize 128

Train

0.
100Epochs + 90 BOB batches

(b) 64 batchsize

Test

?()OEpochs + 90 BOB batches

1 (‘)I'rigger performance

1.0 1.0
0.8 0.8
>
0.6 Zo06
5
I
©
o
S04
0.4 2o
0.2 0.2

Model accuracy

0.8 1

o
o

N
IS

0.2 A

Z?OoEpochs + 90 BOB batches

l%oEpochs + 90 BOB batches

(c) 128 batchsize

?(')OEpochs + 90 BOB batches

Model accuracy

Model accuracy

Model accuracy

0.8 1

o
o

o
IS

0.2

o
o

e
IS

0.2

?OoEpochs + 90 BOB batct

o
o

e
IS

0.2

?()OEpochs + 90 BOB batct

R Error from trigger

o Error from trigger

o Error from trigger

Figure 29: Trigger ordered training with blackbox flaglike trigger.

34

Triggered training wi

Test

ith batchsize 32

1 (')I'rigger performance

o
o

Model accuracy

0.4 A

0.0
10 Epochs + 90 BOB batches

0.0
10 Epochs + 90 BOB batches

(a) 32 batchsize

Triggered training with batchsize 64

Test

Trigger performance
1.0 T pEmE

o
o

Model accuracy

o
IS

0.
100Epochs + 90 BOB batches

?()OEpochs + 90 BOB batches

(b) 64 batchsize

Triggered training wi

Test

th batchsize 128

Trigger performance
1.0 Tk

Train
1.0 1 1.0
0.8 1 0.8 1
> >
§ 0.6 E 0.6
=3 =1
I+ 5
© ©
o °
S04 S04
s =
0.2 0.2
0.0
10 Epochs + 90 BOB batches
Train
1.0 1 1.0
0.8 1 0.8 1
> >
:_ﬂ‘,' 0.6 E 0.6
E E
g 5
© ©
o o]
S04 S04
= =
0.2 0.2
[
0 Epochs + 90 BOB batches
Train
1.0 1.0
0.8 0.8 1
o o
8 0.6 @ 0.6
5 E
o o
o o]
© ©
o o
S04 S04
= =
0.2 0.2

0.8 1

o
o

Model accuracy

N
IS

0.2 A

?OOEpochs + 90 BOB batches

l%oEpochs + 90 BOB batches

?OOEpochs + 90 BOB batches

(c) 128 batchsize

R Error from trigger

0.8 1

o
o

Model accuracy

o
IS

0.2

0.0
10 Epochs + 90 BOB batck

o Error from trigger

0.8 1

o
o

Model accuracy

e
FS

0.2

.0
?0 Epochs + 90 BOB batct

o Error from trigger

0.8 1

o
o

Model accuracy

e
IS

0.2

?()OEpochs + 90 BOB batct

Figure 30: Trigger ordered training with whitebox flaglike trigger.

35

1.0

0.8

o
o

N
i

Model accuracy

0.2

0.0
1 Epoch + 45 BOB batches

1.0

0.8

o
o

N
IS

Model accuracy

0.2

0']‘.)Epoch + 45 BOB batches

1.0

0.8

o
o

N
IS

Model accuracy

0.2

op

Train

Triggered training with batchsize 32

Test

1.0

p 0.8

Ve |

1 0'I'rigger performance

0.8

o 9

g o6 g 0.6

=1 =]

3 3

S S

© ©

§o4 §o4

=Y =
0.2 0.2

Model accuracy

o Error from trigger

0.8 1

o
o

IN
S

0.2 1

0.0
1 Epoch + 45 BOB batches

0.0
1 Epoch + 45 BOB batches

(a) 32 batchsize

Triggered training with batchsize 64

0.0
1 Epoch + 45 BOB batche

Train Test Trigger performance Error from trigger
1.0 1.0 0
1 0.8 | (bl | 08 08

> > >

806 8 061 8067

E 5 E

3 5 3

© © ©

@ o] °

S04 8044 8041

= =" =
0.2 0.2 0.2 1

0'loEpoch + 45 BOB batches

o':loEpoch + 45 BOB batches

(b) 64 batchsize

Triggered training with batchsize 128

0'10Epoch + 45 BOB batche

Train Test Trigger performance Error from trigger
1.0 1.0 0
1 0.8 0.8 0.8

o) o) o

806 806 0.6

E E E

IS IS 5

© © ©

© °]

S04 S04 804

= =" =
0.2 0.2 0.2

Epoch + 45 BOB batches

0'loEpoch + 45 BOB batches

Oioépoch + 45 BOB batches

(c) 128 batchsize

0'10Epoch + 45 BOB batche

Figure 31: Trigger ordered training with blackbox 50 commas trigger.

36

Triggered training with batchsize 32

Test

1.0

0.8 1

1.0

0.8 1

Nt |

> > >

g o6 g o6 $ 0.6+

I g d

3 3 3

S S I+

© © ©

s 804 o0a

go. go. go.
0.2 0.2 0.2

1 0'I'rigger performance

0.8

Model accuracy

o Error from trigger

o
o

0.4 1

0.0
1 Epoch + 49 BOB batches

0.0
1 Epoch + 49 BOB batches

0.0
1 Epoch + 49 BOB batches

(a) 32 batchsize

Triggered training with batchsize 64

0.0
1 Epoch + 49 BOB batche

Train Test Trigger performance Error from trigger
1.0 1.0 1.0 0
0.8 0.8 | iuduinirsisvise | 0.8 0.8
> > > >
306 S 06 3 0.6 06
1 E E E
2 3 2 3
® ® ® ®
g 3 3 g
204 204 2 0.4 2 0.4
= = = =
0.2 0.2 0.2 0.2 4

.0
O1 Epoch + 49 BOB batches

0.
loEpoch + 49 BOB batches

.0
01 Epoch + 49 BOB batches

(b) 64 batchsize

Triggered training with batchsize 128

0.
loEpoch + 49 BOB batche

Train Test Trigger performance Error from trigger
1.0 1.0 1.0 0
081 | | 0.8 0.8 0.8
> > > >
306 06 306 S 0.6
s E E E
2 3 2 3
® ® ® ®
] 3 2 3
204 204 204 2 0.4+
0.2 0.2 0.2 0.2

0'10Epoch + 49 BOB batches

0'loEpoch + 49 BOB batches

Oioépoch + 49 BOB batches

(c) 128 batchsize

o'loEpoch + 49 BOB batche

Figure 32: Trigger ordered training with whitebox 50 commas trigger.

37

