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1 VISUAL ANALYSIS OF RETRIEVAL RESULTS
We conducted visualizations for Remote Sensing Image-Text Re-
trieval (RSITR) as shown in Figure 1, and for Text-Image Person
Re-identification (TIReID) as shown in Figure 2.

1.1 Visual Analysis of RSITR Retrieval Results
Some RSITR retrieval results are illustrated in Figure 1, where part
(a) displays two examples of image retrieval (text-to-image retrieval)
and part (b) shows two examples of text retrieval (image-to-text
retrieval).

Text-to-image retrieval results: As shown in Figure 1(a), for the
query involving four planes in an open field, the top five retrieved
images depict airport scenes. The highest-ranked image accurately
matches the query with four planes. In the case of retrieving red in-
dustrial zones, the correct result is ranked second. This discrepancy
may stem from small, deep red industrial areas in the top-ranked
image causing interference.

Image-to-text retrieval results: A shown in Figure 1(b). When
retrieving sentences for an image of the plane, nearly all retrieved
sentences mention "plane", confirming the model’s ability to recog-
nize the plane in the image. The first two sentences are match-
ing texts, both mentioning "a blue house" and "plane". For the
second image query, four matched texts were also accurately re-
trieved, demonstrating the excellent text retrieval performance of
the EKLSR model.

1.2 Visual Analysis of TIReID Retrieval Results
Figure 2 presents the top-10 retrieval results from our proposed
EKLSR model. As the figure shows, the images in the top-10 results
are not only highly relevant to the query but also exhibit similar-
ities among themselves. Our EKLSR model accurately ranks the
images that match the query at the top, even among similar images.
This is mainly due to our designed key local selection and recon-
struction (KLSF and KLR) we designed, which effectively extract
discriminative local cues to distinguish different pedestrians.

2 IMPORTANCE FACTORS DISTRIBUTION
To validate the universality of the interpretable importance factor
distribution pattern proposed in Section 3.2, we have listed results
on other datasets. In terms of images, as shown in Figure 3(a), multi-
ple visualized images indicate that regions with higher importance
factors correspond to the subject regions of the images, a pattern
similar to that observed in Figure 3 of the paper. Additionally, in
the context of the text, as illustrated in Figure 3(b) and similar to
Figure 3 in the paper, the importance factors of content-rich words
(adjectives, nouns, verbs, and adverbs) generally exceed those of
function words (prepositions, conjunctions, etc.).

The results above demonstrate that the importance factors ex-
tracted by leveraging the robust prior knowledge of CLIP are inter-
pretable and universally applicable across multiple datasets.

Query: Four 

planes were 

parked in the 

open air.

rank1 rank5

Query: red 

industrial 

zones in blue 

industrial zone.

rank1：Many white planes parked beside the blue house.

rank2：There are many white planes parked beside the blue house.

rank3：A parking lot is located next to the airport.

rank4：Some planes are in an airport near several buildings and a parking lot.

rank5：The parking apron with plane parked on it is.

Query: Result：

rank1：There were two large ships on both sides of the gray port, full of red boats.

rank2：Two large ships loaded with cargo docked on both sides of the grey port.

rank3：Two large ships loaded with cargo were moored on both sides of the gray port.

rank4：On both sides of the gray port were two large ships, full of red boats.

rank5：We saw a boat at the ferry.

Query: Result：

(a) Text-to-image retrieval result

(b) Image-to-text retrieval result

Figure 1: Visualization of RSITR retrieval results. The green
result in the figure is the ground truth.

Query: A baby wearing a blue t-shirt and blue shorts with white polka dots. They are 

looking down at the sandals on their feet.

Query: A female with black hair and a red top, with a black skirt and dark shoes holding 

an object in her right hand.

Query: She is carrying a green and gray backpack with black straps on her back. She is 

wearing a white long sleeved shirt, dark loose fitting trouse.

Query: A girl with long black hair wearing a dark top with dark blue denim pants carrying a 

teal umbrella.

Query: A baby wearing a 

blue t-shirt and blue shorts 

with white polka dots. 

They are looking down at 

the sandals on their feet.

Query: A female with 

black hair and a red top, 

with a black skirt and dark 

shoes holding an object in 

her right hand.

Query: She is carrying a 

green and gray backpack 

with black straps on her 

back. She is wearing a 

white long sleeved shirt, 

dark loose fitting trouse.

Query: A girl with long 

black hair wearing a dark 

top with dark blue denim 

pants carrying a teal 

umbrella.

Figure 2: Visualization of TIReID retrieval results. The green
result in the figure is the matched images.

3 FEATURE DISTRIBUTION ACROSS IMAGE
REGIONS

Figure 1(d) in the paper illustrates that the key local features and
non-key local features extracted by CLIP are intermixed, reflecting
the lack of discriminability in CLIP’s key local features. To address
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(a) Image importance factors distribution
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Figure 3: Importance factors distribution.

(a) (c)(b)

Figure 4: Visualization of image region features from CLIP
and EKLSR.

this issue, we introduce the Key Local Segment Reconstruction

(KLR) based on multimodal interaction, which reconstructs the key
local image regions to enhance their discriminative information.
To demonstrate the effectiveness of the KLR strategy, we projected
the local image features extracted by CLIP and EKLSR onto a 2D
space, to visualize their feature distribution. As shown in Figure 4,
(a)–(c) display three results, and each result from top to bottom is
the source image, local image features from CLIP, and local image
features from EKLSR. The yellow box highlights the key regions of
the source image. Yellow dots and green dots respectively represent
key and non-key local region features.

From the second row of Figure 4, it is visible that both key and
non-key local features extracted by CLIP are mixed. Furthermore,
as shown in the second row of Figure 4(a), some key local features
in the top-left are isolated from the majority of key local features.
These observations indicate that CLIP has poor capabilities in rep-
resenting local features. To address this issue, our EKLSR model
incorporates KLR. As shown in the third row of Figure 4, the key
and non-key local features extracted by our EKLSR are completely
separated. Moreover, the distribution of our key local features is
relatively concentrated. These demonstrate the effectiveness of
our KLR strategy, which can enhance the discriminability of local
features.

4 SEMANTIC LOCALIZATION
In this section, we validate the feasibility of the EKLSR method for
the Semantic Localization (SeLo) task. The semantic localization
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Query: Lots of white and 

black planes parked inside 

the grey airport.

Remote Sensing 

Image-Text Match 

Model

2.Calculation of Image-Text Matching Probability

Source Image

1.Multi-Scale 

Segmentation

3.Probability Graph Generation

Query: Lots of white and 

black planes parked inside 

the grey airport.

Remote Sensing 

Image-Text Match 

Model

2.Calculation of Image-Text Matching Probability

Source Image

1.Multi-Scale 

Segmentation

3.Probability Graph Generation

Query: A white airplane ready to take 

off on a gray black runway.

Query: The green football field is 

surrounded by a red track.

Query: Some cars are 

parked in a parking lot 

surrounded by green 

woods.

Query: Green lakes 

surrounded by green lawns 

and paths.

Query: A cyan ship 

with cargo on the black 

sea is unloading at the 

port.

Query: Eight large 

white oil storage tanks 

built on grey concrete 

floor.

(a) (b) (c) (d)

Figure 5: Framework of Semantic Localization.

task was introduced by Yuan et al. [6] in 2022. It involves a text-
image matching model that identifies the region that best matches
the text within a large remote sensing scene. The complex and
varied characteristics of large-scale remote sensing pose a signifi-
cant challenge to the model’s accurate representation of text and
image features. Insufficient richness and discriminative power of
features can lead to overdetections and missed detections, making it
a more advanced and difficult task than remote sensing text-image
retrieval. The semantic localization task is a challenging practical
application that serves as an excellent test of the robustness and
practical utility of the model discussed in this paper.

4.1 SeLo Method and Implementation Details
Figure 5 illustrates the semantic localization, which is divided into
three steps:

1) Multi-Scale Segmentation: The large-scale remote sensing
images are segmented using a multi-scale sliding window approach.
The scales used for cropping in our experiment are 256× 256, 512×
512, and 768 × 768.

2) Calculation of Image-Text Matching Probability: The probabil-
ity distribution between the text and each image slice is calculated
using a remote sensing image-text match model. For our exper-
iment, the image-text matching model employed is the EKLSR
model, which was trained on the RSITMD remote sensing image-
text dataset.

3) Probability Graph Generation: The obtained probability dis-
tributions are merged and median filtering is applied to remove
impulse noise from the probability graph, resulting in the final
probability graph.

4.2 The Test Dataset for Semantic Localization
The images in the test set are sourced from Google Earth and com-
prise 22 large-scale remote sensing images with three channels. The
dimensions of these images range from 3000×2000 to 10000×10000
pixels. Each query sentence corresponds to one or more image re-
gions, totaling 59 annotated image regions.

4.3 Metrics
Following the [6], we use four metrics (Rsu, Ras, Rda, and Rmi) to
measure the performance of the model in semantic localization. Rsu:
Represents the ratio of the model’s attention within the labeled
regions to its attention outside these regions. Ras: Quantifies the
distance between the center of the labeled region and the k nearest
model attention regions. Rda: Measures the concentration of the
model’s attention regions. Rmi: It is used to assess the semantic
localization task comprehensively. The calculation is as follows:

𝑅𝑚𝑖 = 𝑤𝑠𝑢 ∗ 𝑅𝑠𝑢 +𝑤𝑎𝑠 ∗ (1 − 𝑅𝑎𝑠) +𝑤𝑑𝑎 ∗ 𝑅𝑑𝑎 (1)

where𝑤𝑠𝑢,𝑤𝑎𝑠 , and𝑤𝑑𝑎 are the weight parameters, with values
of 0.4, 0.35, and 0.25, respectively.

4.4 Quantitative Results
We employ our EKLSR model alongside several other methods
(VSE++ [1], LW-MCR [7], SCAN [2], CAMP [4], AMFMN [5], and
CLIP [3]) as a Remote Sensing Image-Text Match Model to conduct
semantic localization experiments. Notably, all models were fine-
tuned on the RSITMD dataset before being tested on the semantic
localization dataset. The experimental results are shown in Table 1.
As can be seen from the table, our EKLSR model achieves the best
semantic localization result, achieving 73.23% in the average score
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Query: A white airplane ready to take 

off on a gray black runway.

Query: The green football field is 

surrounded by a red track.

Query: Some cars are 

parked in a parking lot 

surrounded by green 

woods.

Query: Green lakes 

surrounded by green lawns 

and paths.

Query: A cyan ship 

with cargo on the black 

sea is unloading at the 

port.

Query: Eight large 

white oil storage tanks 

built on grey concrete 

floor.

(a) (b) (c) (d)

Figure 6: Visualization of semantic localization results. (a)–(d) Four semantic localization results. Each result from top to bottom
is the source image with ground truth, query text, the corresponding probability map, and the located image.

Method ↑ Rsu ↑ Rda ↓ Ras ↑ Rmi
VSE++ 63.64 58.29 41.66 60.45

LW-MCR 66.98 60.21 43.35 61.67
SCAN 64.21 61.32 38.71 62.47
CAMP 68.19 63.14 39.12 64.37
AMFMN 69.2 66.67 33.23 67.72
CLIP 75.36 66.23 26.89 72.29

EKLSR (ours) 75.28 70.10 26.63 73.23
Table 1: Experimental results on Semantic Localization task.

(Rmi), which is approximately 1% higher than that of the CLIP
model. Moreover, our EKLSR model significantly outperforms other
models. These indicate that EKLSR has a higher adaptability to
specific domain image-text retrieval and is capable of excellent

image-text understanding even in complex, large-scale specific
domain scenes.

4.5 Qualitative Results
We present several representative localization results, as shown
in Figure 6. In Figure 6(a), we attempt to locate a "parking lot sur-
rounded by green woods" within a large-scale scene image. Even if
the generated probability map can locate the ground truth, part of
the probability still falls elsewhere, indicating room for improve-
ment in the model. In Figure 6(b), we successfully locate "green
lakes" adjacent to green lawns and paths, with the model accu-
rately pinpointing the lakes at the top end of the image. Figures 6(c)
and 6(d) display the semantic localization results for two different
queries in the same image, targeting objects of different scales such
as "A cyan ship" and "Eight large white oil storage tanks". Our model
achieves precise localization for both queries. These experiments
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demonstrate that EKLSR can effectively localize remote sensing
images.

Our EKLSR model achieved excellent semantic localization per-
formance in both quantitative and qualitative experimental re-
sults. This demonstrates that the features extracted by our EKLSR
model possess high informational richness and strong discrimina-
tive power, enabling outstanding remote sensing image-text under-
standing capabilities even in complex, large-scale remote sensing
scenarios.
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