
NoKSR: Kernel-Free Neural Surface Reconstruction
via Point Cloud Serialization

Supplementary Material

This appendix provides additional ablation studies, ex-
perimental analyses and more qualitative results.

A. Additional ablation studies

Extending Table 4 with more levels – Table 7. A large
non-linear aggregation module is essential to our method
due to the false negatives in the fast approximate neighbors.
However, more layers in the aggregation module degrades
time efficiency. We show that A with 2 non-linear layers
suffices to achieve the best trade-off between accuracy and
time efficiency.

Different ways to fuse per-scale features – Table 8. We
show the different ways to fuse the per-scale features and
observe that they have similar accuracy. Attentive pooling
achieves slightly better performance at the cost of degraded
time efficiency. Note that we have an additional linear layer
to predict the attention from the concatenated features of all
levels to perform the attentive pooling. To realize a learn-
able gate where we multiply per-level weights with features
before fusing levels, we train an additional learnable per-
level weight followed by a Sigmoid function for the multi-
plication.

Num. of hidden
layers in A CD (10-2) ↓ F-score ↑ Latency (s) ↓

0 0.264 99.16 130
1 0.262 99.22 133
2 0.257 99.33 152
3 0.258 99.34 158
4 0.256 99.32 166
5 0.256 99.37 167

Table 7. Impact of capacity of A – the extension of Table 4 with
more levels. The larger aggregation module achieves better per-
formance with decreased time efficiency. We show that 2 layers
achieves the best trade-off between accuracy and time efficiency.

Fusion method CD (10-2) ↓ F-score ↑ Latency (s) ↓
Sum 0.257 99.33 152
Average 0.257 99.33 151
Concatenation 0.256 99.37 151
Learnable Gate 0.257 99.33 152
Attentive Pooling 0.255 99.36 156

Table 8. Scales fusion – we investigate different ways to fuse per-
scale features. Attentive pooling achieves marginal improvement
at the cost of noticeable increased latency.

Method CD (10−2) ↓ Peak Memory (GB) ↓ Latency/Iter. (s) ↓
NKSR [22] 0.246 41.3 1.44
Ours 0.257 4.6 0.59
Ours(w/KNN) 0.243 8.7 0.64
Ours (Minkowski) 0.301 3.4 0.27

Table 9. Overhead during training We report the overhead dur-
ing training in terms of GPU peak memory and latency required for
each training iteration. We show that our method achieves more
efficient training than the current SOTA [22].

Methods Feature
Backbone(s) Decoder(s)

Dual Marching
Cube(s) Total (s) CD (10-2) ↓

NKSR [22] 83 313 78 480 0.246
Ours 10 70 68 152 0.243
Ours (w/ KNN) 10 72 68 151 0.257
Ours (Minkowski) 6 30 56 97 0.301

Table 10. Latency distribution. We report the latency distribution
during inference steps for the feature backbone F , decoder and
marching cubes. Our method outperforms the SOTA [22] in all
steps, particularly in the decoder step where [22] needs to solve a
large differentiable linear system.

B. More Experimental Analysis

Overhead during training – Table 9. We report our
method’s overhead during training in terms of GPU peak
memory and latency required per each training iteration.
Additionally, we profile training overhead (GPU peak mem-
ory and latency per iteration) on a single NVIDIA A6000
Ada with the PyTorch Lighting API. In all cases, we use a
batch size of 1 for a fair comparison with the SOTA [22]
that has the batch size of 1 in one backward pass.

Latency distribution in the steps of inference – Table 10.
We show that our method achieves better time efficiency
than the SOTA [22] in all different steps whilst having better
accuracy, even without the time-consuming decoder as in
SOTA.

The impact of point cloud size on time efficiency of KNN
vs serialization encoding – Figure 6. We report how the
point cloud size impacts the time efficiency of KNN and
neighbors based the serialization encoding. Theoretically,
serialization encoding should be more efficient. However,
we observe that when the point cloud size is small such
as SyntheticRoom [36] and ScanNet [12], KNN is
more efficient then serialization encoding. We suspect this
is because KNN is highly engineered, with a CUDA im-
plementation while the serialization encoding is purely im-



Figure 6. Impact of point cloud size on time efficiency We ob-
serve that K-nearest-neighbor (KNN) is more efficient than neigh-
bors based on serialization encoding when the number of points
is smaller than 25000. We suspect this is because KNN is highly
optimized with a CUDA implementation, while the serialization
encoding is purely based on Python.

Num. of segments
in training and reconstruction CD (10-2) ↓ F-score ↑ Latency (s) ↓ Peak memory (GB) ↓

1 3.3 97.4 1.7 20.4
10 3.4 96.7 3.0 7.1
50 3.4 96.6 6.2 5.0

Table 11. Handling large scenes via partition – Simply with se-
rialization codes, we partition a large scene into smaller segmenta-
tion to avoid GPU memory. We show that our method reduce the
peak memory with a negligible decrease in reconstruction quality.

plemented in python. To estimate the time efficiency, we
randomly generate 25000 query points and record the ex-
ecution times of methods based on KNN and serialization
encoding across varying numbers of input points.

More metrics: completeness and accuracy – Table 15
and Table 14. Following the state of the art method
by Huang et al. [22], we further report additional metrics
below. We observe that the performance is consistent with
other metrics we report in main paper.

Handling infinitely large scenes – Table 11. We show
that our method is capable of handling the infinitely large
scenes. With serialization codes, we partition a large scene
into segments and extract feature of segments individually,
avoiding exploding the GPU memory. Note the partition
stops message passing between segments, which harms the
reconstruction accuracy. Even though, as shown in Ta-
ble 11, our method achieves the good trade-off between re-
construction quality and the peak memory usage.

Smoother surfaces with Laplacian loss – Table 12 and
Figure 7. We show that our method achieves smoother sur-
faces by regularizing the distance field D with Laplacian

weight. of Llaplacian CD (10-2) ↓ F-score ↑
0 3.3 97.4
1e-4 3.5 96.3
1e-3 3.6 95.8

Table 12. Impact of the weights on Laplacian loss during train-
ing.

(a) Input (d) Ours: No Laplacian (e) Ours: Laplacian Loss(weight 1e-3)

(b) Ours: Laplacian Loss(weight 1e-4) (c) NKSR

Figure 7. Smoother surface on CARLA [13] by Laplacian Loss

Methods Primitive CD (10-2) ↓ IoU ↑
NKSR [22] Voxels 2.34 95.6
Ours (Minkowski w/ KNN) [11] (w/ KNN) Voxels 4.36 87.5
Ours (w/ KNN) Points 3.91 89.9
Ours (w/ KNN, w/ similar DMC grid number) Points 2.88 94.6

Table 13. Evaluation on ShapeNet [5]

loss from [2]. We define the loss as

LLaplacian = Ex∼Q
[
∇2D(x)

]
. (8)

As shown in Figure 7, the larger weight of LLaplacian leads to
the smoother surface. However, as a downside, the recon-
struction accuracy is degraded as shown in Table 12. Nev-
ertheless, with the weight of 1×10−4, our method achieves
the better reconstruction accuracy than NKSR [22] while
having the similar surface smoothness.

Performance on synthetic object-level dataset – Ta-
ble 13. We evaluate the reconstruction quality on
ShapeNet[5], a synthetic object-level dataset. Note we use
the data prepared by NKSR [22], and the smaller grid size
(0.005) during serialization to avoid collisions. As shown
in Table 13, our method outperforms voxel-based methods,
while performs worse than NKSR [22]. We suspect that
the “voxel-growing” strategy in NKSR [22] is crucial to the
synthetic object-level dataset, and we leave the integration
of this strategy into our method for future work.

C. More qualitative results
We provide more qualitative results in Figure 8, Figure 9
and Figure 10.



Methods SyntheticRoom [36] ScanNet [12] CARLA [13] (Original) CARLA [13] (Novel)

Primitive
CD

(10−2) ↓
completeness

(10−2)↓
accuracy
(10−2)↓ F-Score ↑ Latency (s) ↓ CD

(10−2) ↓
completeness

(10−2)↓
accuracy
(10−2)↓ F-Score ↑ Latency (s) ↓ CD (cm) ↓ completeness(cm)↓ accuracy(cm)↓ F-Score ↑ Latency (s) ↓ CD (cm) ↓ completeness(cm)↓ accuracy(cm)↓ F-Score ↑ Latency (s) ↓

SA-CONet [39] Voxels 0.496 - - 93.60 - - - - - - - - - - -
ConvOcc [36] Voxels 0.420 - - 96.40 - - - - - - - - - - -
NDF [10] Voxels 0.408 - - 95.20 - 0.385 - - 96.40 - - - - - -
RangeUDF [3] Voxels 0.348 - - 97.80 - 0.286 - - 98.80 - - - - - -
TSDF-Fusion [49] - - - - - - - - - - - 8.1 8.0 8.2 80.2 - 7.6 6.6 8.6 80.7 -
POCO [4] - - - - - - - - - - - 7.0 3.6 10.5 90.1 - 12.0 2.9 9.1 92.4 -
SPSR [23] - - - - - - - - - - - 13.3 16.4 10.3 86.5 - 11.3 12.8 9.9 88.3 -
NKSR [22] Voxels 0.345 0.304 0.387 97.26 0.40 0.246 0.221 0.27 99.51 1.54 3.9 2.2 5.6 93.9 2.0 2.8 2.1 3.6 96.0 1.8
NKSR [22] (more data) Voxels - - - - - - - - - - 3.5 3.0 4.1 94.1 2.0 3.0 2.4 3.6 96.0 1.8
Ours (Minkowski) [11]

(w/ KNN)
Voxels - 0.254 0.234 0.273 99.41 0.46 3.4 4.1 2.7 97.2 1.9 2.7 3.1 2.4 98.1 2.0

Ours (Minkowski) [11] Voxels - 0.301 0.327 0.275 98.48 0.31 3.8 4.4 3.2 96.2 1.5 3.0 3.3 2.8 97.4 1.5
Ours (w/ KNN) Points 0.322 0.270 0.374 98.25 0.13 0.243 0.230 0.256 99.61 0.48 3.2 3.6 2.8 97.5 3.2 2.6 2.7 2.4 98.3 3.4
Ours Points 0.358 0.318 0.399 96.43 0.14 0.257 0.243 0.270 99.33 0.49 3.3 3.9 2.6 97.4 1.7 2.7 3.0 2.4 98.2 1.7

Table 14. Additional metrics from NKSR [22] for in-domain evaluation

Methods SyntheticRoom [36] → ScanNet [12] ScanNet [12] → SyntheticRoom [36] ScanNet [12] → SceneNN [20]

Primitive
CD

(10−2) ↓
completeness

(10−2)↓
accuracy
(10−2)↓ F-Score ↑ Latency (s) ↓ CD

(10−2) ↓
completeness

(10−2)↓
accuracy
(10−2)↓ F-Score ↑ Latency (s) ↓ CD

(10−2) ↓
completeness

(10−2)↓
accuracy
(10−2)↓ F-Score ↑ Latency (s) ↓

SA-CONet [39] Voxels 0.845 - - 77.80 - - - - - - - - - - -
ConvOcc [36] Voxels 0.776 - - 83.30 - - - - - - - - - - -
NDF [10] Voxels 0.452 - - 96.00 - 0.568 - - 88.10 - 0.425 - - 94.80 -
RangeUDF [3] Voxels 0.303 - - 98.60 - 0.481 - - 91.50 - 0.324 - - 97.80 -
NKSR [22] Voxels 0.329 0.296 0.362 97.37 2.02 0.351 0.301 0.401 97.41 0.46 0.268 0.253 0.283 99.18 1.95
Ours (w/ KNN) Points 0.284 0.266 0.302 98.65 0.54 0.327 0.263 0.391 98.37 0.13 0.277 0.277 0.277 99.00 0.50

Table 15. Additional metrics from NKSR [22] for cross-domain evaluation

Input NKSR Ours(a) Input point cloud (b) NKSR [22] (c) Ours

Figure 8. More qualitative results on CARLA [13] – Zoom in for
better view.

Input NKSR OursOurs(Minkowski)

(a) Input point
cloud

(b) NKSR [22] (c)
Ours(Minkowski)

(d) Ours

Figure 9. More qualitative results on ScanNet [12] – Zoom in
for better view.



Input NKSR Ours(a) Input point cloud (b) NKSR [22] (c) Ours

Figure 10. More qualitative results on SyntheticRoom [36]
– Zoom in for better view.


	. Introduction
	. Related works
	. Method
	. Distance field
	. Aggregation module – 
	Neighborhood function 

	. Training

	. Results
	. In-domain evaluation
	. Cross-domain evaluation – tab:acrossdomain
	. Ablation studies

	. Conclusions
	. Additional ablation studies
	. More Experimental Analysis
	. More qualitative results



