An Empirical Investigation of Domain Generalization with Empirical Risk
Minimizers
(Appendix)

1. Clarification on Notation

To be consistent with the theory, we denoted the test error
and source error as er(h) and eg(h) in the main paper, but
this obscures the fact that the theory derives bounds given
a representation R (Ben-David et al., 2010). In order to
make the detailed exposition of measures more clear, for
the rest of this document, we instead refer to the empirical
risk minimizer as ¢, and the source and target errors as €g(¢)
and e7(¢) respectively, and use h to refer only to mappings
from the representation space R to the label space ).

2. Variance of Estimates of 7{-divergence and
‘HAH-divergence

In this section we detail the variance exhibited by the estima-
tors for the H-divergence and HA7H-divergence, which are
core divergence measures studied by the theory from (Ben-
David et al., 2010; 2007). For algorithmic details of how we
estimate these measures, see section 7.

In order to estimate the variance, we pick a random subset
of 10 models on VLCS and RotatedMNIST, and estimate
the divergence measure of interest by bootstrapping with
80% of the original data. We then compute the mean p and
standard deviation o for the bootstrapped estimates, and
report the Signal to Noise Ratio (SNR) as £. We repeat this
process across multiple models, and report the mean SNR
for each of the estimators we use. See table 1 for the results.

We note that -divergence has the highest signal to noise
ratio across both the datasets, whereas the HA7H-divergence
based measures are estimated with a lower signal to noise
ratio. These trends indicate that the bounds and measures
estimated with H-divergence might be more accurate and
any good or bad performance is due to the measure being
good or bad, as opposed to the HA?-divergence, where
there might be significant estimation error. Interestingly,
we notice that across both datasets, the multi source (MS)
versions have a higher SNR than single source (SS) versions.

Table 1: Different divergence measures (rows) and the
Signal-to-Noise Ratio (SNR) (columns) on VLCS and Rotat-
edMNIST. We notice that HAH-divergence MS estimates
have better SNR than HAH-divergence SS but both of them
are worse than FH-divergence, echoing the theoretical results
from (Ben-David et al., 2010).

Measure SNR

VLCS RotatedMNIST

‘H-divergence 22.59 22.20
HAH-divergence SS  9.10 1.95
HAH-divergence MS  15.48 3.10

3. Additional Results

Comparison of the CORAL algorithm to ERM. How
does the choice of algorithm for domain generalization in-
fluence the trends discussed in the main paper? To obtain
a sense for this question, we train 3000 models using the
Deep CORAL (Sun & Saenko, 2016) approach on VLCS
and repeat the analysis from the main paper on the models
trained with CORAL. The Deep CORAL approach essen-
tially matches the mean and variance of the intermediate
layers across input domains, and thus offers a counterpoint
to ERM which does not use any per-domain information.
Further, to the best of our knowledge, it is the only approach
to outperform ERM overall on DomainBed making it a good
candidate for this analysis.

We find that the performance of most of the measures re-
mains consistent across both the training algorithms, which
is encouraging (fig. 1).

Results with multiple variables for regression We next
perform regression in the Joint setting (Sec.5.3, main pa-
per) where we fit a regression model across all environ-
ments, with 5 features instead of 2 reported in the main
paper. We find that it is possible to get an Spearman’s p of
80.4 when using Entropy-Source, Entropy-Target, MMD-
Gaussian, MMD-Mean-Cov, Sharpness, and es(¢) as fea-
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Figure 1: Spearman’s p (y-axis) plotted against measure (x-axis) for the ERM and CORAL algorithms for VLCS. We
note that the performance of most of the measures remains consistent across ERM and CORAL, except MMD-Gaussian,

MMD-Mean-Cov and Jacobian based measures.

tures for the regression.

Scatter plots of different measures and observed test er-
ror e (¢). We next present scatter plots of different mea-
sures with respect to the error on the test domain, to provide
an intuitive sense of the data on which we perform our
regressions that use one measure at a time to predict gen-
eralization (fig. 5-fig. 15, at the end of the document). In
order to show these scatter plots, we drop all the datapoints
for which a measure has a value greater than 1e3, which
clears all the outliers from the plots and allows better visual-
ization. However, for quantitative analysis we retain all the
datapoints.

4. Performance of All Measures Considered

We considered a set of 40 metrics overall and report only
a small subset of them in the main paper. In table 2 we
provide detailed results of all the measures we study. See
section 7 for detailed algorithmic explanations of the imple-
mentations of each of the measures listed here. Also shown
in fig. 2 is a distance matrix computed based on Spearman’s
p visualizing the dependencies of the measures with each
other.

5. Canonicalization of the Measures

fig. 3 provides details of the canonicalization performed
on each of the measures as explained in the main paper.
Interestingly, for measures such as the path norm, we find
that the canonicalization in this setting is opposite of what
is conventionally understood. In general, a high path norm
should indicate higher test error, but here the opposite seems
to be true.

6. Connection of DA-GM to theoretical results
from Ben-David et al. (2007)

We were inspired by results from the theory and practice of
domain adaptation to construct generalization measures in
this category. In particular, (Ben-David et al., 2007) prove

bounds on the target domain performance that depend on
the ability of a classifier to distinguish samples from the
source and target domains. As described in the main text,
they find that the target domain error can be bounded by
the source domain error plus a term that is related to the
sample H-distance between the source and target domains
with respect to the hypothesis class of the model plus the
degree of A-closeness of the hypothesis family. This H-
distance, d«,t(ﬁs7 DT), in turn can be calculated by finding
the optimal performance of a classifier trained to distinguish
samples from the source and target domains. Here, Dg
(D7) are the induced distribution of source (target) domains
pushed to the representational space. (Note that in this sec-
tion we use this notation to make contact with the existing
theory, but in subsequent sections, these distributions are
called S7. and 7,2, respectively.) We emphasize that these
results assume a fixed representational space and that the
entire classifier c is composed of an encoding into this space
followed by a decoder h € H that takes encodings and pre-
dicts target labels. Specifically, the target domain test error
is upper bounded by

er(c) < es(c) + dy(Ds, Dr) + A,
where A = minpey (e (h) + es(h)).

(D

We also develop measures based on follow-up theoretical
work in (Ben-David et al., 2010) on divergence measures
using the symmetric difference hypothesis space. HAH,
which is defined as the set of hypothesis of the form
g = h(z) @ ' (x), where h,h’ € H and @ is the XOR
function. That is, the symmetric difference hypothesis space
is the set of all disagreements between hypotheses in our
hypothesis class. This object is important for the theory to
bound the target domain test error in multiple settings, i.e.
when multiple different environments are used for training.
Here we summarize a result from (Ben-David et al., 2010),
similar to a specialization of their Theorem 4, which focuses
on multi-source training. (Ben-David et al., 2010) proves
that if we train an ERM, ¢, on (equally-weighted) source do-
mains j = 1...N, resulting in an (equally-weighted) source
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Figure 2: Distances (1-Spearman’s p) matrix plotting the relationship between the i*" row and 5" column. Rows and
columns are organized and grouped on the basis of hierarchical clustering of the measures based on similarity.
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0.733858 Figure 3: Sign multiplied to the measure (+1 or -1) to canon-
0.711895 icalize the measure to have a positive correlation with e (¢).
0.598143 This canonicalization is used to report the results in Sec. 5

0.441314 of the main paper.
0.419960
0.397433

0.389819 . . .
0298458 (}omaln test error eg(¢), then the target domain test error of

0283357 € can be bounded by

0.278850

0.154016 1N 1 o

0.152128 er(¢) <es(¢) + — Z <)\J + *d’;‘-LA’H(Dja DT)) . (2)
N 4 2

0.151395 j=1
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0.124091 . .
0117217 Here. A = minpey (er(h) + €;(h)) is the degree of -

closeness between the source domain j and the target do-

0.113737 -
main 7" and D; is the distribution of source domain j pushed

0.106712 h ional
0105065 O the representational space.

0.099831
0.079718 7. Algorithmic Details

0.078561
0.068404 In this section we provide more details on some of the gen-

0.064583 eralization measures we compute in the main paper along
0.063797 with a more comprehensive set of measures we study, and
0.061810 provide algorithm-level details. Before diving into the de-
0.057434 tails of the measures, we first explain notation (which is
0.057375 slightly different from the main paper, but more specific and
0.055414 detailed to enable a more precise characterization of what is
0.049011 done in the various generalization measures).

0.045932

0.042193 7-1. Notation

0.038274 Given N examples Sy = {(Xy, %) }1 ~ (Y| X)Puain (X),
0.029553 4 trained ERM ¢ : X' — P(Y) which computes probabilistic
0.027533 predictions in the label space ), and M examples of held out
0.018869 data Ty, = {X;} M, ~ pies(X), a generalization measure
0.017812 for domain generalization aims to predict how well ¢ will
0.017766 generalize to T, = {XT,yZ} ~ (Y| X )prest(X). We will

7

0.006798 often decompose the function as ¢(-) = h(e(-)) where e

is an encoder X — Z, z € Z is a representation, and
h : Z — Y is a classifier in a hypothesis class . Unless
stated otherwise we set z as the last layer of the network.



7.2. Measures based on theory

‘H-divergence: We explain in more detail how we compute
the classifier two sample test measure below. Most of the
explanation is derived from (Lopez-Paz & Oquab, 2016),
which we reproduce in our notation for convenience. Given
an encoder R : X — Z, which encodes inputs X into a
representation Z, a chosen function family for classification
H : Z — P(Y), we follow the steps in algorithm 1.

Algorithm 1 Computing H-divergence measure

1: Given: encoder e, S, Ty, classifier family H

2: compute S = {e(X)VX,y € Sy} and T} =
{e(X) VX, € To}

3: ensure that S, and 7 have the same number of data-
points, drop any additional / extra datapoints at random
if there are more datapoints in either of the sets

4: Given an indicator function for the set I, con-
struct a dataset U = {Z,1[Z € S] VX €
S} H{Z,1[Z € Sy] : VX € T}

5: Split U into two disjoint sets (deterministically) U, U
such that Uy, JUe =U

6: Fit H on Uy

minhe’H ZZ,yeu" log h’(Z) [y]
7: Return: -, o, Ilargmax(h(Z)) = y]

using log-loss

H+-divergence: We get the C2ST-Big measure when we
set H = H™T in the above algorithm to be a larger function
class (H1) than H' used in the ERM ¢, where ¢(X) =
h*(e(X)) and T € HI. In practice our original function
family HT is set to the linear function family, while the
larger function family H ™ is set to an MLP with layer sizes
(num features/2, num features/4, num features/4) and ReLU
nonlinearity.

HAH-divergence: As explained in the main paper, this di-
vergence measure was proposed in (Ben-David et al., 2010).
Denoting by S* the featurized version of the source data
and T ? the featurized version of the test data, I the indicator
function, the HA#H-divergence is defined as follows:

dusre = min, Bs-Th(z) £ K(2)]-Er-Th(z) = '(2)]
3)

Intuitively, this means that two domains are more different
if one can find two members h,h’ € H such that they
maximally disagree on the source domain and maximally
agree on the test domain.

We estimate this divergence measure by training two net-
works h, b’ as shown in algorithm 2.

HtTAHT-divergence: Similar to #-divergence, when we
use a larger function family H* we obtain a version of
HAH divergence called HT AH T -divergence.

Algorithm 2 Computing H{ AH{-divergence measure

1: Given: encoder e, Sy, Ty, classifier family 7,
rand(Y), a random label generator in the space )

2: compute S¢ = {e(X)VX,y € Sy} and T} =
{e(X)VX,y € T}

3: ensure that S; and 7 have the same number of data-
points, drop any additional / extra datapoints at random
if there are more datapoints in either of the sets

4: Construct a dataset Y = {z,rand(y) : z €
Sz} U{z, argmax(h'(z)) z € T7} and U =
{z,rand(Y) : z € S} U{z,argmax(h(z)) : z €
T }-

5: Split U into two disjoint sets (deterministically) Uy, Ure
such that Uy, | JUe = U

6: SplitZ4’ into two disjoint sets (deterministically) Uy, U,
such that . | JUy, = U’

7. Take a gradient step updating h on Uy, using log-loss
minpen Yz e, 108 H(Z)[y] and ' on U’ using log-
loss minprep Y- 5 ey log R(Z)[y]

8: Repeat from Step 4 until convergence

9: Return: T e yeus. 1h(2) = y +

] 2e e, W (2) = 9]

‘H-divergence (train): We use algorithm 3 for H-
divergence (train), with a modification to the last line of
the algorithm for H-divergence.

Algorithm 3 Computing #-divergence (train) Measure

1: Given: encoder e, S, Ty, classifier family H

2: compute S = {e(X)VX,y € Sy} and T} =
{e(X)VX,y € T}

3: ensure that S, and 7 have the same number of data-
points, drop any additional / extra datapoints at random
if there are more datapoints in either of the sets

4: Given an indicator function for the set I, con-
struct a dataset U = {Z,1[Z € S VX €
S} UH{Z,1[Z € Sy] : VX € T}

5: Split U into two disjoint sets (deterministically) Uy, U
such that Uy, JUe =U

6: Fit H on Uy

min ey EZ,yeu(r log ¢(Z2) [3/]
7: Return: -, I[argmax(c(Z)) = y]

using log-loss

HAH-divergence (train) We use a nearly identical al-
gorithm (algorithm 4) to that for HA7-divergence, with
change to the last line (in blue).

Multi-Source (MS) versus. Single-Source (SS). In the
presence of multiple source environments, we usually treat
all the source environments as one environment and com-
pute the measures as explained above. However, based on
the theory from (Ben-David et al., 2010) we also consider



Algorithm 4 Computing H A7 -divergence (train) measure

Algorithm 5 L,-Path Norm

1: Given: encoder e, Sy, Ty, classifier family #H,
rand()), a random label generator in the space )

2: compute S¢ = {e(X)VX,y € S} and 77 =
{e(X) VX, y € Tu}

3: ensure that S;; and 7, have the same number of data-
points, drop any additional / extra datapoints at random
if there are more datapoints in either of the sets

4: Construct a dataset U = {z,rand(Y) : =z €
Sz} U{z, argmax(h’'(z2)) z € TF} and U =
{z,rand(Y) : z € S} U{z, argmax(h(z)) : z €
7).

5: Split U into two disjoint sets (deterministically) U, U
such that U, JUe =U

6: SplitU’ into two disjoint sets (deterministically) U;., U,
such that U | J U,

7. Take a gradient step updating h on Uy, using log-loss
Minren Yy ,erq, 108 H(Z)[y] and b’ on U’ using log-
loss minpew 37 ey log h(Z)[y]

8: Repeat from Step 4 until convergence

9: Return: T nyetts. LR (2) = y +

T e yeuy, W (2) = 1]

measures which study things at the level of multiple sources.
To do this, we follow the theory section 6 and compute the
divergence measure between each source domain and target
domain, and report the overall measure as the mean of the
divergence measures for each source domain, taken in turn,
relative to a given target domain. Measures computed in this
fashion are suffixed with Multi Source (MS). By default,
all measures are computed and reported in a Single Source
(SS) manner.

Divergence + Source Error. Finally, we also compute
measures of generalization which take one of the theory
inspired divergences above and consider the sum of the
divergence and the error on the source domain eg(¢) as the
measure, in line with the bounds from theory section 6.

7.3. Other Empirical Measures

Lo-Path Norm: The path norm is computed following the
procedure from (Jiang et al., 2019). Let the ERM ¢y be
parameterized by # € R¥, where K is the number of pa-
rameters of the model. One can then compute the path norm
by squaring the parameters of the network, passing an all 1
input through the network and computing the L2 norm of
the logits from the network. That is, given inputs X € RP,
¢é(+) = softmax (g*(+)), we compute path norm as follows:

Sharpness: We compute the sharpness bound using Al-
gorithm 3 in Apppendix D from Jiang et al. (2019), with
the suggested changes for magnitude aware perturbation.

Given: g;, D
0« 6?

X1 —1e RD
Y «— g5(X1)

Return: sqrt (ZinY yl)

AN

Note that there is an errata in the heading of Algorithm 3, it
should be o not 0.

MMD-Gaussian and MMD-Mean-Cov: Similar to H-
divergence measures, the MMD measure also works in the
representation space, Z, where given S = {e(X) X;,y; €
Se}and 77 = {e(X) VX, y € Ty}, we use a kernel based
measure to compute the similarity between the domains.
Since these measures do not use classification, we do not
drop any datapoints which are extra in the source or the tar-
get domains, unlike Step 3 in algorithm 3. Accordingly, let
M be the number of datapoints in S7 and IV be the number
of datapoints in 7,7.

MMD-Gaussian: We compute three kernels matrices,
namely K (SZ,S2) € RM*M  K(TZ,T7) € RN*N, and
€ RMXN_  The MMD-Gaussian measure is

K (Stfv 7;2 )
then given by:

M M
) 1 A
MMD-Gaussian = e Z Z K(SE,88)i;+
i=1 j=1
1

1 N N
7 20D K (T T )i
i=1 j=

M N

o T )is 4

A kernel function & is used to compute each of the entries
in the kernel matrices above. For example, given Z; € SZ,
the ' datapoint in the set and Z; € 77, the j*" datapoint
in the set, the following are equivalent:

K (S, Tw)ij = k(Zi, Z;)

MMD-Gaussian uses a sum of Radial Basis Function
(RBF) kernel functions, where given v € G, such that
G :[0.001,0.01,0.1,1, 1, 10, 100, 1000] the final kernel can
be expressed as:

K21, 22) = ) ky(Z1, Z2) 5)
v€G

=Y _exp(—l1Z1 — Z|I3) (6)
YEG



MMD-Mean-Cov: For ease of explanation below we drop
the subscript tr and the superscript z and leave it understood
that we are always working in the training splits of the
source and target domains, and that we are working in the
representation space Z. Thus we write S as S and

T. With this notational simplification, given i/ € {S, T},
we first compute the sample mean:

= iz )
Ul =

Next, Z; € RX, then we compute the sample covariance

matrix cov € RE*K  where the i row and j™ column are
given by:
1 U]
COVy 5 = m Z(th‘ - ,UZ/li)(th - ,qu) ¥
=1

Denoting by F, the Frobenious norm of a matrix, the final
measure is expressed as:

MMD-Mean-Cov = ||us — pr| |5+ ||covs —covr||% (9)

Fisher-based measures: Given U € {Sy, 7}, as ex-
plained in the main paper we compute the approximate
Fisher information matrix using N examples (see section 8
below for choices of N for different datasets). We then
perform an eigendecomposition to obtain the top N approx-
imate eigenvalues ayy = {a;,--- , ]} and their corre-
sponding eigenvectors Vi, = {V;},--- | V;IV}. Given these
we compute the following measures, as explained in the
main paper:

1. Fisher-Eigval-Diff: Computes a  measure
N
Zn:l (0/7" - Oég)
oo
2. Fisher-Eigval-Ratio: Computes a measure %
n=1%s

3. Fisher Align: Computes the best match between the
sets of eigenvectors V7 and Vs using the Hungarian al-
gorithm (Kuhn, 1955) and reports the score of the best
alignment between the sets, as the similarity between
them. The similarity is defined by the cosine similarity
matrix which is computed between unit vectors in the
direction of the eigenvectors. Concretely, given eigen-
vectors V& and V%, the corresponding row and column

of a similarity matrix sim € RV*¥ can be computed
. vir.vi S .
as: sim;; = —>——. This similarity matrix is

TOVE VAT .
then fed to the Hungarian algorithm which returns the
maximum similarity.

Jacobian Norm Based Measures. The input-output Jaco-
bian, a measure of sensitivity of the model output to changes

in the input, is mathematically defined as J; o, = 82:'6(’3) In-
tuitively, a model that is less sensitive to changes in the
input will generalize better. Thus, it has been studied in
the context of robust learning (Hoffman et al., 2019) and
in-distribution generalization (Novak et al., 2018), where it
was found to be predictive of generalization at the level of
individual test points. Similar to (Novak et al., 2018), we
compute the Frobenius norm of the Jacobian matrix, which
we will refer to as Jacobian Norm as a short hand. We report
two measures based on the Jacobian:

1. Jacobian: The first measure computes the Jacobian
norm on the held out set 7. From (Novak et al., 2018)
higher norm intuitively means the point is dissimilar
to the training distribution, and thus we should expect
worse generalization.

2. Jacobian-Diff: This measure is similar to the Jacobian
measure, except we use the training data S to provide
a baseline for the test Jacobian. It is computed as the
difference between the Jacobian for source and target.
We also consider measures based on the ratio of the
Jacobians and the log of the ratios of the Jacobians. We
call these measures Jacobian-Ratio and Jacobian-Log-
Diff, respectively.

Mixup Based Measures. Mixup (Zhang et al., 2018) was
proposed as a more robust alternative to Empirical Risk
Minimization, where given two examples X, Xo, and as-
sociated labels y1, y2, one optimizes an objective that sam-
ples A ~ Beta(a, «) and feeds the learning machine inputs
X =A-X,+(1—))-X, and targets § = A-yy +(1—X) 5.
Given {f( ,§}, one proceeds as if one were doing standard
Empirical Risk Minimization. It is easy to see that Mixup en-
courages the learned function to be smooth, and indeed has
been shown to smooth the input-output Jacobian (Carratino
et al., 2020) of the network. Here, we adapt the mixup idea
not as a training algorithm but as a generalization measure,
and use the model’s score function c instead of the labels y
for interpolation. Our intuition is the same as that for the
Jacobian, namely, that if the function is not smooth around
target examples, the network should not generalize as well.
Given the neural network function ¢(X), and a dataset 7,
and A ~ Beta(a, «), we compute the Mixup measure as:

1

7 (Ae(X5) +

X, €T, X; €T i#j

(1= A)e(X;)

—h(AX; + (1= N)X;)?* (10)

We experiment with two values of o € {0.1,0.3} follow-
ing (Zhang et al., 2016). Similar to the Jacobian, we use a
relative variant of Mixup, namely Mixup-Diff which com-
putes the difference of the Mixup between 7 and Sy, and
another variant which computes the log of the difference
(Mixup-log-Diff) between 7, and Sy;.



We then compute the following measures with mixup, set-
ting o = 0.1:
* Mixup: compute pi7;,

* Mixup-Diff: compute p7. — ps,

KTy

S

* Mixup-Ratio: compute
* Mixup-log-Diff: compute log (r7,) — log (us,)

We also compute each of the above measures with o = 0.3,
yielding measures Mixup-Alpha-0.3 and so on.

Algorithm 6 Mixup for a dataset I/

1: procedure PERMUTEMINIBATCH(B)
2: 7 < permute ((1,---,|B]))

3:  return (B; fori e I)

4: end procedure

1: procedure MIXUP(U, ¢, o)

2 w0

3:  t < 0 Minibatch B € U

4. B < PermuteMinibatch(B) X; € Band X, € B
5.

6

7

8

9

A ~ Gamma(a, @)
A Xé(X7) + (1 —N)é(X2)
B+ ¢e¢(AX1+(1-XM)Xy)
p 4+ p+[|A—BJj3
Do t+—t+1
10:  return £
11: end procedure

Entropy on Source Data. We compute the output-entropy
of the neural network h on the source domain data S,
(Entropy-Source):

LS S log (X)) (X)) aD

Entropy on Target Data. We also compute the output-
entropy of the neural network / on the target domain data
Tt (Entropy-Target):

—log (c(Xi)[j]) - (XI5l (12)

X €T J=1

8. Implementation Details

We first explain the exact model architecures we use for
each dataset in the paper, then provide more details on the
hyperparameter choices, and finally provide more details on
relevant hyperparameters for computing the generalization
measures.

8.1. Network architectures

We use the same architecture as that used in Do-
mainBed (Gulrajani & Lopez-Paz, 2020) for the RotatedM-
NIST dataset (fig. 4). As mentioned in the main paper, this
model has 386K parameters. For PACS and VLCS we use
standard ResNet50 models pretrained on ImageNet. For
this we use the standard, available implementations in the
PyTorch (Paszke et al., 2019) library.

8.2. Random Hyperparameter Sweep

As explained in the main paper, we perform a random hyper-
parameter sweep to obtain a set of ERMs which generalize
to different degrees. Here we describe in more detail how
we pick the hyperparameters.

We first describe the hyperparameter search attributes
for RotatedMNIST. Uniform (X, Y) denotes a uniform
distribution in the continuous interval (X, Y), while
Uniform[X, Y] denotes a discrete choice between el-
ements X and Y. pow (X, Y) denotes XY. Given this
notation, our hyperparameter choices for RotatedMNIST
are:

Rate:

* Learning Uniform(-4.5,

-2.5))

pow (10,

e Batch Size: pow (2, Uniform(3, 9))

Next, our hyperparameter choices for VLCS and PACS are:

* Learning Rate: Uniform (-5,

-3.5))

pow (10,

e Batch Size: pow (2, Uniform(3, 5.5))

* Dropout: Uniform[0, 0.1, 0.5]

* Weight Decay: pow (10, Uniform (-6, -2))

8.3. Hyperparameters for Fisher

Our computation of the Fisher approximates the true Fisher
information by computing it over a subset of data examples
N (as explained in the main paper). We use N = 75 for
PACS and VLCS and N = 1000 for RotatedMNIST.

References

Ben-David, S., Blitzer, J., Crammer, K., and Pereira, F.
Analysis of representations for domain adaptation. In
Scholkopf, B., Platt, J., and Hoffman, T. (eds.), Advances
in Neural Information Processing Systems, volume 19,
pp. 137-144. MIT Press, 2007.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. A theory of learning



(convl):
(Relu):
(bn@):
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(Relu):
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(avgpool):
(squeezelLastTwo):

Figure 4: Schematic illustration of forward pass of MNIST CNN. We list the modules which are executed on the input
sses (Paszke et al., 2019)). Modules listed at the top are executed first, followed by each module in

image (using pytorch cla:

Conv2d(3, 64, kernel_size=(3, 3), stride=(1l, 1), padding=(1l, 1))
ReLU()
GroupNorm(8, 64, eps=le-05, affine=True)

Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1l, 1))
ReLU()
GroupNorm(8, 128, eps=1e-05, affine=True)

Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU()
GroupNorm(8, 128, eps=1e-05, affine=True)

Conv2d(128, 128, kernel_size=(3, 3), stride=(1l, 1), padding=(1, 1))
ReLU()
GroupNorm(8, 128, eps=1le-05, affine=True)

AdaptiveAvgPool2d(output_size=(1, 1))
SqueezeLastTwo()

the sequence. SqueezeLastTwo drops the last two dimensions of the tensor from the previous layer.
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Figure 5: e7(¢) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different color.
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Figure 7: er(¢) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different color.
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H-divergence (train) MS

PACS VLCS RotatedMNIST
081 0.8 § 0.8
e

5 06| 5 0.6 S 0.6+
] ] 3 I
2 0.4 % 0.4 T 0.4
© © o
5 5 5
F 0.2 = 0.2 = 02

0.04 0.0 0.0

1.0 1.2 14 16 1.8 2.0 08 1.0 1.2 1.4 1.6 1.8 2.0 02 04 06 08 1.0 12 14 16 18

Figure 8: e7(¢) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different color.
The measure being computed is listed at the in the title of the figure
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Figure 11: e (¢) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different
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Figure 12: er(¢) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different

color. The measure being computed is listed at the in the title of the figure
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Figure 13: er(¢) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different

color. The measure being computed is listed at the in the title of the figure
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Figure 14: e (¢) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different
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