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Abstract

Offline imitation learning (IL) with imperfect data has garnered increasing attention1

due to the scarcity of expert data in many real-world domains. A fundamental prob-2

lem in this scenario is how to extract good behaviors from noisy demonstrations.3

In general, current approaches to the problem build upon state-action similarity to4

the expert, neglecting the valuable information in (potentially abundant) diverse be-5

haviors that deviate from given expert demonstrations. In this paper, we introduce6

a simple yet effective data selection method that identifies the positive behavior7

based on its resultant state, which is a more informative criterion that enables ex-8

plicit utilization of dynamics information and the extraction of both expert-like and9

beneficial diverse behaviors. Further, we devise a lightweight constrained behavior10

cloning algorithm capable of leveraging the expert and selected data correctly.11

We term our proposed method iLID and evaluate it on a suite of complex and12

high-dimensional offline IL benchmarks, including MuJoCo and Adroit tasks. The13

results demonstrate that iLID achieves state-of-the-art performance, significantly14

outperforming existing methods often by 2-5x while maintaining a comparable15

runtime to behavior cloning (BC).16

1 Introduction17

Offline imitation learning (IL) is the study of learning from demonstrated behaviors without rein-18

forcement signals or further interaction with the environment. It has been deemed as a promising19

solution for safety-sensitive applications, such as autonomous driving and healthcare, where manually20

identifying a reward function is difficult but historical human demonstrations are readily available.21

Traditionally, offline IL methods such as behavior cloning (BC) (Pomerleau, 1988) often require an22

expert dataset with sufficient coverage over state-action spaces to combat error compounding (Ross23

and Bagnell, 2010; Jarrett et al., 2020; Chan and van der Schaar, 2021), which can be prohibitively24

expensive for many real-world domains. Instead, a more realistic scenario might allow for a small25

expert dataset, combined with a large amount of imperfect data sampled from unknown policies (Wu26

et al., 2019; Xu et al., 2022a; Yu et al., 2022). For example, autonomous vehicle companies may have27

limited high-quality data from experienced drivers but can obtain a wealth of mixed-quality data from28

ordinary drivers. Clearly, effective utilization of these imperfect demonstrations would significantly29

enhance the robustness and generalization of offline IL.30

A fundamental question raised in this scenario is: how can we extract good behaviors from noisy31

data? To answer this question, several prior works have attempted to explore and imitate the imperfect32

behaviors that resemble expert ones (as in Xu et al. (2022a); Sasaki and Yamashina (2020)). However,33

due to the scarcity of expert data, such methods are ill-equipped to leverage valuable knowledge34

in (potentially abundant) diverse behaviors that deviate from limited expert demonstrations. Of35

course, a natural solution to incorporate these behaviors is inferring a reward function and labeling36
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Figure 1: A cartoon illustration of the beneficial behaviors in imperfect data.

all imperfect data, followed by an offline reinforcement learning (RL) progress (as in Zolna et al.37

(2020); Chang et al. (2022); Yue et al. (2023)). Unfortunately, it is highly challenging to define and38

learn meaningful reward functions without environmental interaction. As a result, current offline39

reward learning methods typically rely on complex adversarial optimization using a learned dynamics40

model. They easily suffer from hyperparameter sensitivity, learning instability, and limited scalability41

in high-dimensional environments (Yu et al., 2022; Arjovsky et al., 2017; Garg et al., 2021).42

In this paper, we introduce a simpler data selection method along with a lightweight policy learning43

algorithm to fully exploit both expert-like and positive diverse behaviors in imperfect demonstrations44

without indirect reward learning procedures. Specifically, instead of examining a behavior’s similarity45

to expert demonstrations in and of itself, we assess its value based on whether its resultant state, to46

which environment transitions after performing that behavior, falls within the expert data manifold.47

In other words, we (properly) select the state-actions that can lead to expert states, even if they bear48

no similarity to expert demonstrations. As illustrated in Fig. 1 and supported by the theoretical results49

in Section 3.1, the underlying rationale is: when the agent encounters a state unobserved in expert50

demonstrations, compared to taking a random action, a more reasonable way is to return to the states51

where it knows expert behaviors; otherwise, it may keep making mistakes and remain out-of-expert-52

distribution for the remainder of time steps. Notably, the resultant state is more informative than53

the state-action similarity, as it can explicitly utilize the dynamics information and identify both54

expert-like and beneficial diverse state-actions.55

Drawing on this insight, we first train a state-only discriminator to distinguish expert and non-expert56

states in imperfect demonstrations. Based on the identified expert-like states, we appropriately select57

their causal state-actions and build a complementary training dataset. In light of the suboptimality of58

the complementary data, we further devise a lightweight constrained BC algorithm to mitigate the59

potential interference among behaviors. We term our proposed method Offline Imitation Learning60

with Imperfect Demonstrations (iLID) and evaluate it on a suite of offline IL benchmarks, including61

widely-used MuJoCo tasks as well as more complex and high-dimensional Adroit tasks. iLID62

achieves state-of-the-art performance, significantly outperforming existing baseline methods often63

by 2-5x while maintaining a comparable runtime to BC. In a nutshell, the main contributions of this64

paper are as follows:65

• We introduce a simple yet effective method to select potentially useful behaviors in noisy data. It66

can explicitly exploit the dynamics information and extract both expert-like and positive diverse67

behaviors, achieving a significant improvement in the utilization of imperfect demonstrations.68

• To avoid behavior interference induced by the suboptimality of complementary behaviors, we69

propose a constrained BC algorithm that can correctly leverage the expert and extracted behaviors.70

• Extensive experiments on complex and high-dimensional domains corroborate that iLID can surpass71

the existing baseline methods in terms of performance and computational cost.72

2 Preliminaries73

Episodic Markov decision process (MDP) can be specified by M
.
= ⟨S,A, T,H, r, µ⟩, consisting of74

state space S, action space A, transition dynamics T : S ×A → P(S), episode horizon H , reward75
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function r : S × A → [0, 1], and initial state distribution µ : S → [0, 1]. A stationary stochastic76

policy maps states to distributions over actions, denoted as π : S → P(A). The policy value of π77

is defined as the expected cumulative reward, V π .
= E[

∑H
h=1 r(sh, ah)], where the expectation is78

computed w.r.t. the distribution over trajectories induced by rolling out π in the environment. The79

objective of reinforcement learning (RL) can be expressed as maxπ∈Π V π, where Π is the set of80

all stationary stochastic policies taking actions in A given states in S. We denote the average state81

distribution of policy π as ρπ(s) .
= 1

H

∑H
h=1 Pr(sh = s|π, T, µ), where Pr(sh = s|π, T, µ) denotes82

the probability of visiting s at time step h by rolling out π with M . When clear from context, we83

overload notation and denote the average state-action distribution as ρπ(s, a) .
= ρπ(s)π(a|s).84

Offline IL with imperfect demonstrations is the setting where the algorithm is neither allowed to85

interact with the environment nor provided ground-truth reward signals. Rather, it has access to an86

expert dataset and a mix-quality imperfect/noisy dataset, collected from unknown expert policy πe and87

(perhaps highly suboptimal) behavior policy πs, respectively. To be specific, the expert and imperfect88

datasets are denoted by De
.
= {τj}ne

j=1 and Ds
.
= {τi}ns

i=1, where τi
.
= (si,1, ai,1, . . . , si,H , ai,H)89

represents a trajectory. Our goal is to learn the best policy with regard to optimizing V π from static90

offline data Do
.
= De ∪ Ds without querying the expert or interacting with the environment.91

Behavior cloning (BC) is a classical offline IL approach, which seeks to learn a policy via supervised92

learning. The standard objective of BC is to maximize the negative log-likelihood over De:93

max
π∈Π

E(s,a)∼De

[
log(π(a|s))

]
. (1)

However, standard BC does not utilize the information in Ds. Due to the limited state coverage of94

De, the learned policy may suffer from severe compounding errors, i.e., the inability for the policy to95

get back on track if it encounters a state not seen in the expert demonstrations.96

3 Offline imitation learning with imperfect demonstrations97

In this section, we provide a detailed description of our approach. We begin by presenting the98

theoretical findings on the benefits of utilizing diverse transitions. Building on the theoretical insights,99

we then design our data selection and policy learning methods.100

3.1 How to extract good behaviors from noisy data101

To discard low-quality demonstrations from Ds, existing approaches often rely on the state-action102

dissimilarity between Ds and De. For example, Xu et al. (2022a); Zolna et al. (2020); Kim et al.103

(2022) propose to learn a weighting function f(s, a) by pushing up its value on (s, a) ∈ De while104

pushing down that on (s, a) ∈ Ds. Based on f(s, a), they perform weighed BC to implicitly105

select expert-like state-actions, i.e., maxπ∈Π E(s,a)∼Do
[f(s, a) log(π(a|s))]. However, due to the106

limitation of expert demonstrations, the learned f(s, a) can be overly conservative and neglect the107

useful information in diverse state-actions. Therefore, it calls for a more informative criterion to108

assess the value of imperfect behaviors.109

Before preceding, we first provide the following theoretical results under deterministic transition110

dynamics to gain insights into this problem. Denote Sh(D) as the set of h-step visited states of D111

and S(D) .
=

⋃H
h=1 Sh(D) all the states thereof. Assume that πe is optimal and deterministic, and112

there exists a supplementary dataset consisting of transition tuples from initial states to given expert113

states, i.e., D̃ .
= {(si, ai, s′i) | si ∼ µ, s′i ∼ S(De), T (si, ai) = s′i, i = 1, 2, . . . , ñ}. Consider a114

policy π̃ such that in expert states S(De), it takes the corresponding expert actions, and in states115

S1(D̃)\S1(De), it takes the actions in D̃, that is,116

π̃(a|s) .
=


∑

(s̃,ã)∈De
1((s̃,ã)=(s,a))∑

s̃∈S(De) 1(s̃=s) , if s ∈ S(De);∑
(s̃,ã)∈D̃ 1((s̃,ã)=(s,a))∑

s̃∈S(D̃) 1(s̃=s) , if s ∈ S1(D̃)\S1(De);
1

|A| , else.

(2)

We bound the suboptimality gap and sample complexity of π̃ in the next theorem and corollary.117
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Theorem 3.1. For any finite and episodic MDP with deterministic transition dynamics and µ = U(S),118

the following fact holds:119

V πe − E
[
V π̃

]
≤

(
1 + δ

2
+

1− δ

H2

)
Hϵ, (3)

where ϵ
.
= E[Es1∼µ[1(s1 /∈ S1(De))]] and δ

.
= E[Es1∼µ[1(s1 /∈ S1(D̃))]] represent the missing120

mass over the initial distribution w.r.t. S1(De) and S1(D̃)). U(S) is the uniform distribution over S .121

Proof Sketch. Note that the error stems from the initial states that are not covered by S1(De). We122

bound the errors generated from the states not in S(De) ∪ S(D̃) and from the states in S(D̃)\S(De)123

by Hδϵ and (H/2 + 1/H)(1− δ)ϵ, respectively. Combining these two errors yields the result. For a124

detailed proof, please refer to Appendix B.125

Building on Theorem 3.1, we can obtain the following sample complexity result (where we retain the126

constant 1
2 in the asymptotic result to highlight the improvement over BC).127

Corollary 3.2. Suppose D̃ is sufficiently large. For any finite and episodic MDP with deterministic128

transition dynamics and µ = U(S), to obtain an ε-optimal policy, V πe − E[V π̃] ≤ ε, π̃ requires at129

most O(|S|H/(2 · ε)) expert trajectories.130

Proof. Invoking Xu et al. (2021, Theorem 2) yields the bounds for the missing mass:131

E
[
Es1∼µ

[
1(s1 /∈ S1(D̃))

]]
≤ |S|

e|D̃|
, E

[
Es1∼µ

[
1(s1 /∈ S1(De)

]]
≤ |S|

e|De|
,

where e is the Euler’s number. If D̃ is sufficiently large, then δ → 0. Using Theorem 3.1, the result132

can be easily derived.133

Remarks. It is worth noting that the minimax suboptimality of BC is limited to Hϵ in this setting134

(Rajaraman et al., 2020), and beating the O(H) barrier is unattainable. The reason is that when the135

agent encounters a state beyond given demonstrations during the interaction with the environment,136

it has no prior knowledge about the expert. As a result, the agent is essentially forced to take an137

arbitrary action in these states, potentially leading to mistakes for H time steps. Whereas, as revealed138

by Theorem 3.1 and Corollary 3.2, π̃ provably alleviates the error compounding and reduces the139

sample complexity bound of BC (which is O(|S|H/ε)) by approximately half. The reason behind is140

that D̃ can empower π̃ to recover from mistakes. Combined with Eq. (2), this provides an important141

insight for us: in the states uncovered by De, if an action can lead to known expert states, mimicking142

it can benefit the performance of imitation policy.143

Thus motivated, we propose to assess the imperfect behavior based on its resultant states rather144

than the state-action in and of itself. For example, if there exists (s1, a1, s2, a2, s3) ∈ Ds such that145

s3 ∈ De, one can select (s1, a1) and (s2, a2) (or only (s2, a2)), even if these behaviors do not bear146

similarity to any (s, a) ∈ De. To this end, we consider learning a state-only discriminator to contrast147

expert and non-expert states in Ds, e.g.,148

max
d

Es∼De

[
log d(s)

]
+ Es∼Ds

[
log(1− d(s))

]
. (4)

However, optimizing Problem (4) can lead to the problem of false negative, where the learned discrim-149

inator assigns 1 to all transitions from De and 0 to all transitions from Ds. This problem is analogous150

to the positive-unlabeled (PU) classification problem (Elkan and Noto, 2008), where both positive151

(expert) and negative (imperfect) samples exist in the unlabeled data (imperfect demonstrations).152

Akin to Xu et al. (2022a); Zolna et al. (2020), we adopt the reweighting method from PU learning to153

address this issue:154

d∗ = argmax
d

η · Es∼De

[
log d(s)

]
+ Es∼Ds

[
log(1− d(s))

]
− η · Es∼De

[
log(1− d(s))

]
, (5)

where η > 0 is a reweighting parameter, corresponding to the proportion of expert states to imperfect155

states. Intuitively, the third term in Eq. (5) could avoid d∗(s) of the states from S(Ds) but similar to156

S(De) becoming 0.157
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Figure 2: An illustration of the data selection procedure. sh represents an identified expert state.

Data selection. The learned discriminator d∗ is able to identify the expert states in Ds. Based on158

these states, we in turn select their causal states and actions to construct a complementary dataset159

D̃. Specifically, given threshold σ ∈ [0, 1] and rollback steps K ≥ 1, if there exist h > 1 and160

i ∈ {1, . . . , ns} (where ns represents the number of trajectories in Ds) such that d(si,h) ≥ σ, we161

include K causal state-action pairs from si,h into D̃.:162

D̃ ← D̃ ∪
{
(k, si,h−k, ai,h−k)

}
k=1:min{h−1,K} . (6)

We iterate the above process for all identified expert-like states. To clarify, we illustrate the process in163

Fig. 2. It is evident that D̃ comprises both the positive diverse state-actions in Ds and those similar164

to De therein. This highlights that using resultant states is a more informative way to extract useful165

behaviors.166

Behavior interference. After obtaining D̃, a natural solution to learn an imitation policy is carrying167

out BC from the union of De and D̃. However, due to the suboptimality of D̃, this naïve solution168

will suffer from potential interference among behaviors. That is, for a selected (s, a, s′), if s, s′ ∈ De169

but a ̸= πe(s), action a will affect mimicking the expert behavior in expert state s when learning via170

the naïve solution. Furthermore, this interference issue also exists in the states of complementary171

dataset D̃, but in a more subtle manner. Consider a state s ∈ D̃ where two actions a1, a2 are selected,172

i.e., (k1, s, a1), (k2, s, a2) ∈ D̃. Owing to the stochasticity of MDPs, if k1 < k2, one may prefer a1173

over a2, whereas the naïve solution will imitate both actions equally. In Section 3.2, we address this174

problem and propose a lightweight algorithm to correctly learn from De and D̃.175

3.2 How to learn an imitation policy from expert and extracted data176

Due to the suboptimality of Ds and the stochasticity of MDPs, direct cloning the behaviors in D̃ ∪De177

can lead to the interference issue. In fact, the solution has been implied in Eq. (2), which suggests178

that the policy should be constrained to De(·|s) in the known expert states. Accordingly, we cast the179

problem of learning policy from De and D̃ as follows:180

min
π∈Π

E(k,s,a)∼D̃

[
−γk log π(a|s)

]
s.t. Es∼De

[
DKL(π̃e(·|s)∥π(·|s))

]
< ϵ (7)

where π̃e = argmaxπ∈Π E(s,a)∼De
[log(π(a|s))] is the BC policy learned on De, and ϵ ≥ 0 is the181

threshold. In Eq. (7), we use discount factor γ ∈ (0, 1] to penalize the behaviors “far from” expert182

states for mitigating the impact of stochasticity of MDPs. It is easy to see that with a sufficiently183

small ϵ, the optimal solution of Problem (7) enjoys at least the same theoretical guarantee of BC in184

general stochastic MDPs, i.e., suboptimality upper-bound O(|S|H2 log ne/ne) compared to V πe185

(Rajaraman et al., 2020).186

Problem (7) is a convex optimization problem. From Slater’s condition, the strong duality holds, and187

thus the optimization is equal to188

max
α>0

min
π∈Π
−Ek,s,a∼D̃

[
γk log π(a|s)

]
− α

(
Es,a∼De

[
log π(a|s)

]
+ H̃ + ϵ

)
, (8)

where α is the dual variable, and H̃ is the expected entropy of the empirical expert policy, which is189

derived from:190

Es∼De

[
DKL(π̃e(·|s)∥π(·|s))

]
= Es∼De

[
Ea∼π̃e(·|s)

[
log π̃e(a|s)

]
− Ea∼π̃e(·|s)

[
log π(a|s)

]]
= E(s,a)∼De

[
log π̃e(a|s)

]︸ ︷︷ ︸
.
=−H̃

−E(s,a)∼De

[
log π(a|s)

]
. (9)
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Algorithm 1: Offline Imitation Learning with Imperfect Demonstrations (iLID)
Require: expert data De, imperfect data Ds, learning rate λ, parameter K, ϵ

1 Train discriminator d using De and Ds based on Eq. (5);
2 Select data from Ds and build complementary dataset D̃ based on Eq. (6);
3 Train BC policy π̃e only using De and compute expected entropy H̃

.
= −Es,a∼De

[log π̃e(a|s)];
4 Initialize policy πθ and dual variable α;
5 while not done do
6 Sample a training batch from De and D̃;
7 Update policy parameter θ ← θ − λ∇̃L(θ) based on Eq. (10);
8 Update dual variable α← α− λ∇̃L(α) based on Eq. (11);
9 end while

Parameterize the learned policy by θ and denote the loss functions for θ and α as follows:191

L(θ)
.
= −Ek,s,a∼D̃

[
γk log πθ(a|s)

]
− αEs,a∼De

[
log πθ(a|s)

]
, (10)

L(α)
.
= Es,a∼De

[
log πθ(a|s)

]
+ H̃ + ϵ. (11)

Problem (8) can be optimized by approximating dual gradient descent that alternates between the192

gradient steps w.r.t. L(θ) and L(α), which has been shown to converge under convexity assumptions193

(Boyd and Vandenberghe, 2004) and work very well in the case of nonlinear function approximators194

such as neural networks (Haarnoja et al., 2018).195

Our algorithm, named Offline Imitation Learning with Imperfect Demonstrations (iLID), is outlined in196

Algorithm 1. Notably, while iLID pretrains a discriminator and a BC policy (using De), the progress197

can converge within a small number of gradient steps, especially when De is limited. In light of the198

negligible cost in updating α, iLID is indeed computationally cheap.199

4 Experiments200

In this section, we use experimental studies to test the proposed method and answer the following201

questions: 1) Can iLID effectively utilize imperfect demonstrations? 2) What is the convergence202

properity of iLID? 3) How does iLID perform given different numbers of expert demonstrations or203

different qualities of imperfect demonstrations? 4) What is the impact of the rollback steps? 5) What204

is the runtime of iLID? 6) Is the constrained BC an overkill?205

Baselines. We evaluate our method against five strong baseline methods in the offline IL setting:206

1) Behavior Cloning with Expert Data (BCE), the standard BC trained only on the expert dataset207

(Pomerleau, 1988); 2) Behavior Cloning with Union Data (BCU), BC on both the expert and diverse208

datasets; 3) Discriminator-Weighted Behavioral Cloning (DWBC) (Chang et al., 2022), a recent offline209

IL algorithm capable of leveraging suboptimal demonstrations; 4) Using Imperfect Demonstration via210

Stationary Distribution Correction Estimation (DemoDICE) (Kim et al., 2022), another recent offline211

IL algorithm that can leverage suboptimal demonstrations; 5) Conservative offLine model-bAsed212

Reward lEarning (CLARE) (Yue et al., 2023), a recent model-based offline inverse RL algorithm213

trained from both expert and imperfect datasets.214

Datasets. We conduct experiments on both widely-used MuJoCo tasks (includ-215

ing HalfCheetah, Walker2d, Hopper, and Ant) and more complex and high-216

dimensional Adroit tasks (including Pen, Hammer, Relocate, and Door, shown217

on the right). We use the D4RL datasets (Fu et al., 2020) and utilize the random218

and expert data for each MuJoCo task, and cloned and expert data for Adroit219

tasks.1 Similar to Xu et al. (2022a); Kim et al. (2022), we generate De and Ds as220

follows:221

1Experimental details is elaborated in Appendix A.
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Table 1: Performance of different algorithms. The numbers of expert trajectories are 1 for MuJoCo
tasks and 10 for Adroit. The results correspond to the mean and standard deviation of normalized
scores over 5 random seeds. low and high represent the qualities of imperfect data.

Task Data quality BCE BCU DWBC ClARE DemoDICE iLID (ours)

Ant low -11.1 ± 9.7 31.4 ± 0.1 30.6 ± 9.7 29.7 ± 6.4 74.3 ± 11.0 79.8 ± 11.8
high -11.1 ± 9.7 32.4 ± 7.1 34.6 ± 8.7 22.4 ± 4.7 88.1 ± 8.9 88.2 ± 7.9

HalfCheetah low 0.2 ± 0.9 2.2 ± 0.0 1.1 ± 1.1 1.1 ± 0.9 2.2 ± 0.0 25.4 ± 4.1
high 0.2 ± 0.9 2.3 ± 0.0 0.8 ± 1.2 2.2 ± 0.9 5.9 ± 2.8 29.3 ± 6.3

Hopper low 17.0 ± 4.2 7.6 ± 5.7 76.0 ± 9.4 8.9 ± 5.2 58.3 ± 13.8 95.0 ± 10.9
high 17.0 ± 4.2 3.7 ± 1.6 60.6 ± 18.6 3.5 ± 0.5 72.2 ± 13.6 104.8 ± 7.1

Walker2d low 8.0 ± 5.7 0.3 ± 0.1 61.1 ± 13.9 1.9 ± 0.8 96.7 ± 7.5 97.0 ± 8.0
high 8.0 ± 5.7 0.3 ± 0.0 49.9 ± 26.5 1.4 ± 0.5 102.6 ± 6.3 97.0 ± 10.3

Hammer low 6.8 ± 5.6 0.2 ± 0.0 11.0 ± 8.8 7.2 ± 8.3 10.1 ± 12.3 66.0 ± 17.8
high 6.8 ± 5.6 0.2 ± 0.0 13.2 ± 7.1 3.9 ± 4.4 9.1 ± 12.5 109.4 ± 10.0

Pen low -0.1 ± 0.0 2.1 ± 6.9 43.7 ± 14.2 7.5 ± 5.9 41.3 ± 13.9 90.2 ± 19.4
high -0.1 ± 0.0 1.6 ± 3.4 57.1 ± 13.6 6.4 ± 6.6 48.6 ± 25.3 65.7 ± 7.5

Relocate low -0.1 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.0 0.0 ± 0.0 12.0 ± 5.6 29.1 ± 5.6
high -0.1 ± 0.0 0.0 ± 0.0 -0.1 ± 0.1 0.0 ± 0.0 26.0 ± 10.6 41.5 ± 12.1

Door low 1.0 ± 1.2 -0.1 ± 0.0 0.5 ± 1.0 -0.1 ± 0.0 -0.1 ± 0.1 0.3 ± 0.4
high 1.0 ± 1.2 -0.1 ± 0.1 0.3 ± 0.7 -0.2 ± 0.1 -0.1 ± 0.0 0.4 ± 0.4

• Expert datasets: For MuJoCo, we sample 1 trajectory (including less than 1000 state-action pairs)222

from the expert D4RL dataset to constitute expert datasets. For Adroit, we sample 10 expert223

trajectories (each includes less than 100 state-action pairs) to form the datasets.224

• Imperfect datasets: For MuJoCo tasks, we sample 1000 random trajectories mixed with 10 and 20225

expert trajectories to constitute the low-quality and high-quality imperfect datasets. Regarding226

Adroit tasks, we sample 1000 cloned trajectories mixed with 100 and 200 expert trajectories to227

constitute the low-quality and high-quality datasets.228

Comparative results. To answer the first and second questions, we show the comparative results229

under both low-quality and high-quality imperfect data in Section 4 and their corresponding learning230

curves in Fig. 4. iLID outperforms baseline algorithms on most of the tasks (13 out of 16) often by231

a wide margin and reaches near-expert scores on many tasks. It indicates that iLID can effectively232

extract and leverage positive behaviors from imperfect demonstrations over the approaches based on233

state-action similarity such as DWBC and DemoDICE. Unsurprisingly, BCE fails to fulfill most of234

the tasks, while BCU learns a mediocre policy. CLARE also performs poorly because the learned235

reward function could become too pessimistic due to the scarcity of expert demonstrations. Clearly,236

the model-based approach struggle in high-dimensional environments.237

Expert demonstrations. To answer the third question, we vary the numbers of expert trajectories238

from 1 to 50 and present the results on Fig. 3(a). iLID reaches the expert with sufficient expert data.239

(a) Expert demonstrations. (b) Rollback steps. (c) Ablation Study.

Figure 3: Performance of iLID under varying numbers of expert demonstrations and rollback steps
along with the ablation study for the constrained BC procedure.
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Figure 4: Convergence properties of different algorithms. The solid curve corresponds to the mean
and the shaded region to the standard derivative across five random seeds.

Albeit with very limited expert trajectories, iLID also achieves strong performance, revealing its240

advantages in extracting good behaviors. DemoDICE performs relatively poorly with larger ne. The241

reason is that it learns on both expert and random data, whereas the random data of HalfCheetah is242

highly suboptimal.243

Rollback steps. To answer the fourth question, we vary the rollback steps from 1 to 20 and show the244

corresponding results in Fig. 3(b). With larger K, the performance increases at the beginning. This245

is due to more positive diverse data included. An excessively large K may have a negative impact246

due to the dynamics stochasticity and behavior interference. However, it is worth noting that, as247

K increases further, the performance does not significantly deteriorate. This is because we apply a248

discount factor to penalize the potential uncertainty in the resulting states, capable of mitigating the249

issue. In practice, K can be treated as a hyper-parameter to tune. Intuitively, it can be set relatively250

smaller in a more stochastic environment.251

Ablation study. We compare iLID to the naïve solution mentioned in Section 3.1, i.e., directly252

imitating the union of expert and select data. Fig. 3(c) validates the necessity of the constrained BC253

procedure. The result of direct imitation is passable as we select a number of positive data. However,254

it fails to deal with the behavior interference issue caused by the suboptimality of imperfect data.255

Runtime. We evaluate the runtime of iLID compared with baseline256

algorithms for 250,000 training steps, utilizing the same network257

size and batch size. We reproduce the reported results in Xu et al.258

(2022a) on an NVIDIA V100 GPU. As illustrated by the figure259

on the right, the runtime of iLID is nearly the same as BC. It260

substantiates that the iLID is indeed a lightweight method. Due261

to the cooperation training between the discriminator and policy,262

DWBC requires additional computation than iLID. CLARE is263

costly due to the effort to solve an intermediate offline RL problem.264
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5 Related work265

Offline IL deals with training an agent to mimic the actions of a demonstrator in an entirely offline266

fashion. BC (Ross and Bagnell, 2010) is an intrinsically offline solution, but it is prone to covariate267

shift and inevitably suffers from error compounding, i.e., there is no way for the policy to learn how268

to recover if it deviates from the expert behavior to a state not seen in the expert demonstrations269

(Levine et al., 2020). Considerable research has been devoted to developing new offline IL methods270

to remedy this problem, e.g., Jarrett et al. (2020); Chan and van der Schaar (2021); Garg et al. (2021);271

Klein et al. (2011, 2012); Piot et al. (2014); Herman et al. (2016); Kostrikov et al. (2019); Swamy272

et al. (2021); Florence et al. (2022). However, since these methods imitate all given demonstrations,273

they often require a large amount of clean expert data, which can be expensive for real-world tasks.274

Recently, there has been growing interest in exploring how to effectively leverage imperfect data in275

offline IL (Xu et al., 2022a; Yu et al., 2022; Sasaki and Yamashina, 2020; Kim et al., 2022). Sasaki276

and Yamashina (2020) analyze why the imitation policy trained by BC deteriorates its performance277

when using noisy demonstrations. They reuse an ensemble of policies learned from the previous278

iteration as the weight of the original BC objective to extract the expert behaviors. However, this279

requires that expert data occupies the majority proportion of the offline dataset, otherwise the policy280

will be misguided to imitate the suboptimal data. Kim et al. (2022) retrofit the BC objective with an281

additional KL-divergence term to regularize the learned policy to stay close to the behavior policy.282

Although it can implicitly extract the behaviors that bear similarity to the expert demonstrations, it283

easily fails to achieve satisfactory performance when the diverse data is highly suboptimal. Xu et al.284

(2022a) cope with this issue by introducing an additional discriminator, the outputs of which serve285

as the weights of the original BC loss, so as to imitate demonstrations selectively. Unfortunately, it286

selects behaviors building on state-action similarity, which does not suffice to leverage the dynamics287

information and diverse behaviors. In offline RL, Yu et al. (2022) propose to utilize unlabeled data by288

applying zero rewards, but this method necessitates a large amount of labeled offline data. In contrast,289

this paper focuses on the setting with no access to any reward signals.290

Offline inverse reinforcement learning (IRL) explicitly learns a reward function from offline datasets,291

aiming to comprehend and generalize the underlying intentions behind expert actions (Lee et al.,292

2019). Zolna et al. (2020) propose ORIL that constructs a reward function that discriminates expert293

and exploratory trajectories, followed by an offline RL progress. Chan and van der Schaar (2021)294

use a variational method to jointly learn an approximate posterior distribution over the reward and295

policy. Garg et al. (2021) propose to learn a soft Q-function that implicitly represents both reward296

and policy, which can stabilize the training. To cope with the reward extrapolation error, Chang297

et al. (2022) introduce a model-based offline IRL algorithms that uses a model inaccuracy estimate298

to penalize the learned reward function on out-of-distribution state-actions. Recently, Yue et al.299

(2023) also propose a model-based offline IRL approach, named CLARE. In contrast to Chang et al.300

(2022), they compute a conservative element-wise weight to implicitly penalize out-of-distribution301

behaviors. However, it is highly challenging to define and learn meaningful reward functions without302

environmental interaction (Xu et al., 2022b). The model-based approaches often struggle to scale in303

high-dimensional environments, and their min-max progress usually causes training to be unstable304

and inefficient.305

6 Conclusion306

In this paper, we introduce a simple yet effective data selection method along with a lightweight307

behavior cloning algorithm to fully leverage the imperfect demonstrations in offline IL. In contrast308

to the prior methods, we exploit the resultant states to assess the value of behaviors, which is an309

informative criterion that enables explicit utilization of dynamics information and the extraction of310

both expert-like and beneficial diverse behaviors. We provide necessary theoretical guarantees for the311

proposed method, and extensive experiments corroborate that iLID outperforms existing methods312

in continuous, high-dimensional environments by a significant margin. In future work, we plan to313

establish theoretical guarantees for iLID in the general stochastic MDPs and explore whether the314

proposed methods can benefit offline RL in terms of data selection and policy optimization.315
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A Experimental details385

In this section, we present experimental details for reproducibility.386

Baselines. We test our method against five baseline methods with the same policy network struc-387

ture: 1) Behavior Cloning with Expert Data (BCE), the standard BC trained only on the expert388

dataset (Pomerleau, 1988)); 2) Behavior Cloning with Union Data (BCU), BC on both the ex-389

pert and diverse datasets; 3) Discriminator-Weighted Behavioral Cloning (DWBC) (Chang et al.,390

2022), a recent offline IL algorithm capable of leveraging suboptimal demonstrations (https:391

//github.com/ryanxhr/DWBC); 4) Using Imperfect Demonstration via Stationary Distribution392

Correction Estimation (DemoDICE) (Kim et al., 2022), another recent offline IL algorithm that can393

leverage suboptimal demonstrations (https://github.com/KAIST-AILab/imitation-dice);394

5) Conservative offLine model-bAsed Reward lEarning (CLARE) (Yue et al., 2023), a recent395

model-based offline inverse RL algorithm trained from both expert and imperfect datasets (https:396

//github.com/shaunyue/clare). We include their codes (tuned based on the publicly available397

implementations) in the supplementary material.398

Hyperparameters. The policy is represented as a 2-layer feedforward neural network with 256399

hidden units, ReLU activation functions, and Tanh Gaussian outputs. For a fair comparison, the400

discriminator structure is set similarly to DWBC, a 2-layer feedforward neural network with 256401

hidden units, ReLU activation functions, and the output clipped to [0.1, 0.9], and the reweighting402

parameter η is set to 0.5. The thresholds σ (for state extraction) and ϵ (for KL distance) are 0.89 and403

0.01 respectively. The number of rollback steps K is set to 10 for Adroit (high-quality) and 5 for404

other tasks. All learning rates are set to 1e-5. We adopt Adam for all optimizers where the weight405

decay is 0.005 for MuJoCo and 0.05 for Adroit.406

Datasets. We conduct experiments on MuJoCo tasks (including HalfCheetah, Walker2d, Hopper,407

and Ant) and Adroit tasks (including Pen, Hammer, Relocate, and Door, shown on the right).408

The trajectories are sampled at random from the D4RL datasets (Fu et al., 2020), provided at409

https://github.com/rail-berkeley/d4rl (under the Apache License 2.0). We utilize the410

random and expert data for each MuJoCo task, and cloned and expert data for Adroit tasks.411

Similar to Xu et al. (2022a); Kim et al. (2022), we generate De and Ds as follows:412

• Expert datasets: For MuJoCo, we sample 1 trajectory (including less than 1000 state-action pairs)413

from the expert D4RL dataset to constitute expert datasets. For Adroit, we sample 10 expert414

trajectories (each includes less than 100 state-action pairs) to form the datasets.415

• Imperfect datasets: For MuJoCo tasks, we sample 1000 random trajectories mixed with 10 and 20416

expert trajectories to constitute the low-quality and high-quality imperfect datasets. Regarding417

Adroit tasks, we sample 1000 cloned trajectories mixed with 100 and 200 expert trajectories to418

constitute the low-quality and high-quality datasets.419

Implementation. We implement our code using PyTorch and run the experiments on NVIDIA420

GeForce RTX 3090 GPUs instead of the runtime experiments on NVIDIA V100 GPUs. Our code is421

built upon the open-source framework of offline RL algorithms, provided at https://github.com/422

tinkoff-ai/CORL (under the Apache-2.0 License) and the implementation of DWBC, provided at423

https://github.com/ryanxhr/DWBC (under the MIT License).424

Complementary results. The learning curves for Figs. 3(a) and 3(b) are provided as follows.425

Figure 5: Learning curves of Fig. 3(b).
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Figure 6: Learning curves of Fig. 3(a).

B Proof of Theorem 3.1426

In this section, we provided the proof details of Theorem 3.1, where we quantify the impact of diverse427

behaviors D̃ on performance.428

First, we can write429

V πe − V π̃

= Es∼µ

[
V πe(s)− V π̃(s)

]
= Es∼µ

[
1(s /∈ S1(De)) ·

(
V πe(s)− V π̃(s)

)]
+ Es∼µ

[
1(s ∈ S1(De)) ·

(
V πe(s)− V π̃(s)

)]
= Es∼µ

[
1(s /∈ S1(De)) ·

(
V πe(s)− V π̃(s)

)]
(due to deterministic expert policy and transition dynamics)

= Es∼µ

[
1(s /∈ S1(De)) · 1(s /∈ S1(D̃)) ·

(
V πe(s)− V π̃(s)

)]
︸ ︷︷ ︸

(a)

+ Es∼µ

[
1(s /∈ S1(De)) · 1(s ∈ S1(D̃)) ·

(
V πe(s)− V π̃(s)

)]
︸ ︷︷ ︸

(b)

. (12)

The third equality holds because the trajectories, started with the visited initial states, are fully covered430

in the expert demonstrations. Note that once the policy enters the states out of training distribution, it431

may keep making mistakes and remain out-of-distribution for the remainder of the time steps. Hence,432

we can bound E[(a)] as follows:433

E
[
(a)

]
= E

[
Es∼µ

[
1(s /∈ S1(De)) · 1(s /∈ S1(D̃)) ·

(
V πe(s)− V π̃(s)

)]]

≤ HE
[
Es∼µ

[
1(s /∈ S1(De)) · 1(s /∈ S1(D̃))

]]
≤ HEs∼µ

[
E
[
1(s /∈ S1(De))

]
· E

[
1(s /∈ S1(D̃))

]]
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= Hδϵ, (13)

where the last equality holds due to E[1(s /∈ S1(De))] = ϵ and E[1(s /∈ S1(D̃))] = δ for s ∈ S,434

which can be easily derived from µ = U(S). Regarding (b), we can write435

(b) = Es∼µ

[
1(s /∈ S1(De)) · 1(s ∈ S1(D̃)) ·

(
V πe(s)− V π̃(s)

)]
= Es∼µ

[
1(s /∈ S1(De)) · 1(s ∈ S1(D̃)) · V πe(s)

]
− Es∼µ

[
1(s /∈ S1(De)) · 1(s ∈ S1(D̃)) · V π̃(s)

]
. (14)

For the first term in the last equality of Eq. (14), we have436

E
[
Es∼µ

[
1(s /∈ S1(De)) · 1(s ∈ S1(D̃)) · V πe(s)

]]
= Es∼µ

[
E
[
1(s /∈ S1(De))

]
· E

[(
1− 1(s /∈ S1(D̃))

)]
· V πe(s)

]
≤ ϵ(1− δ)V πe(s). (15)

For the second term in the last equality of Eq. (14), we write437

E
[
Es∼µ

[
1(s /∈ S1(De)) · 1(s ∈ S1(D̃)) · V π̃(s)

]]

= E

Es∼µ

1(s /∈ S1(De)) · 1(s ∈ S1(D̃)) · Eπ̃

 H∑
h′=1

r(sh′ , ah′) | s1 = s





(using the definition of V π̃(s) where sh′+1 = T (sh′ , ah′) and ah′ ∼ π̃(·|sh′))

≥ E

Es∼µ

1(s /∈ S1(De)) · 1(s ∈ S1(D̃)) · Eπ̃

 H∑
h′=2

r(sh′ , ah′) | s1 = s





(from r(s1, a1) ≥ 0)

= E
[
Es∼µ

[
1(s /∈ S1(De)) · 1(s ∈ S1(D̃)) · Ea∼π̃(·|s),s′∼T (s,a)V

′(s′)
]]

(denoting V ′(s′)
.
=

∑H
h′=2 r(sh′ , ah′)|s2=s′)

= E
[
Es∼µ

[
1(s /∈ S1(De)) · 1(s ∈ S1(D̃)) · Es′∼D̃(·|s)V

′(s′)
]]

(from the tower rule, E[X] = E[E[X|Y ]])

= Es∼µ

[
EDe

[
1(s /∈ S1(De)) · ED̃

[
1(s ∈ S1(D̃)) · Es′∼D̃(·|s)V

′(s′)
]]]

= Es∼µ

[
EDe

[
1(s /∈ S1(De)) · ED̃

[
1(s ∈ S1(D̃)) · Es′∼S(De)V

′(s′)
]]]

= Es∼µ

[
EDe

[
1(s /∈ S1(De)) · ED̃

[
1(s ∈ S1(D̃))

]
· Es′∼S(De)V

′(s′)

]]

= (1− δ) · Es∼µ

[
EDe

[
1(s /∈ S1(De)) · Es′∼S(De)V

′(s′)
]]

= (1− δ) · EDe

[
Es′∼S(De)

[
V ′(s′)

]
· Es∼µ

[
1(s /∈ S1(De))

]]
= ϵ(1− δ) · Es′∼ρπe

[
V ′(s′)

]
(16)
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where D̃(s′|s) =
∑

(s̄,ā,s̄′)∈D̃ 1((s̄,s̄′)=(s,s′))∑
(s̄,ā,s̄′)∈D̃ 1(s̄=s) . Based on definition of V ′(s), we have438

Es∼ρπe

[
V ′(s)

]
=

∑
s

ρπe(s)V ′(s)

=
1

H

∑
s

H∑
h=1

ρπe

h (s)V ′(s) (from the definition of ρπe(s))

=
1

H

∑
s

H∑
h=1

ρπe

h (s)

 Hh∑
h′=h

r(sh′ , πe(sh′)) +

H∑
h′=Hh−h+3

r(sh′ , π̃(sh′))


sh=s,sh′+1=T (sh′ ,πe(sh′ ))

(from the definition of π̃ and deterministic transition and expert policy)

≥ 1

H

∑
s

H∑
h=1

ρπe

h (s)

 Hh∑
h′=h

r(sh′ , πe(sh′))


sh=s

=
1

H

H∑
h=1

∑
s

ρπe

h (s)

 Hh∑
h′=h

r(sh′ , πe(sh′))


sh=s

=
1

H

H∑
h=1

Hh∑
h′=h

∑
s

ρπe

h′ (s)r(s, πe(s)) (from the tower rule)

=
1

H

∑
s

H∑
h=1

Hh∑
h′=h

ρπe

h′ (s)r(s, πe(s)), (17)

where Hh
.
= min{H − 1(h = 1)} represents the steps in which π̃ can follow the expert. Thus, it439

follows that440

V πe − Es′∼ρπe

[
V ′(s′)

]
≤ 1

H

∑
s

H∑
h=1

 H∑
h′=1

ρπe

h′ (s)r(s, πe(s))−
Hh∑

h′=h

ρπe

h′ (s)r(s, πe(s))


≤ 1

H

∑
s

H∑
h=1

 H∑
h′=1

ρπe

h′ (s)−
Hh∑

h′=h

ρπe

h′ (s)


=

1

H

∑
s

H∑
h=1

ρπe

H (s)1(h = 1) +

h−1∑
h′=1

ρπe

h′ (s)


=

1

H

H∑
h=1

∑
s

ρπe

H (s)1(h = 1) +

h−1∑
h′=1

∑
s

ρπe

h′ (s)


=

1

H

H∑
h=1

(
1(h = 1) + h− 1

)
(from

∑
s ρ

πe

h′ (s) = 1)

=
H − 1

2
+

1

H
. (18)

Plugging Eq. (18) into Eq. (14), we have441

E
[
(b)

]
≤

(
H

2
+

1

H

)
(1− δ)ϵ. (19)

Combined the bounds of (a) and (b) in Eq. (13) and Eq. (19), the following holds:442

V πe − E
[
V π̃

]
≤

(
H

2
+

1

H

)
(1− δ)ϵ+Hδϵ ≤

(
1 + δ

2
+

1− δ

H2

)
Hϵ, (20)

thereby completing the proof.443
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