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Abstract

Offline imitation learning (IL) with imperfect data has garnered increasing attention
due to the scarcity of expert data in many real-world domains. A fundamental prob-
lem in this scenario is how to extract good behaviors from noisy demonstrations.
In general, current approaches to the problem build upon state-action similarity to
the expert, neglecting the valuable information in (potentially abundant) diverse be-
haviors that deviate from given expert demonstrations. In this paper, we introduce
a simple yet effective data selection method that identifies the positive behavior
based on its resultant state, which is a more informative criterion that enables ex-
plicit utilization of dynamics information and the extraction of both expert-like and
beneficial diverse behaviors. Further, we devise a lightweight constrained behavior
cloning algorithm capable of leveraging the expert and selected data correctly.
We term our proposed method iLID and evaluate it on a suite of complex and
high-dimensional offline IL benchmarks, including MuJoCo and Adroit tasks. The
results demonstrate that iLID achieves state-of-the-art performance, significantly
outperforming existing methods often by 2-5x while maintaining a comparable
runtime to behavior cloning (BC).

1 Introduction

Offline imitation learning (IL) is the study of learning from demonstrated behaviors without rein-
forcement signals or further interaction with the environment. It has been deemed as a promising
solution for safety-sensitive applications, such as autonomous driving and healthcare, where manually
identifying a reward function is difficult but historical human demonstrations are readily available.
Traditionally, offline IL. methods such as behavior cloning (BC) (Pomerleau, 1988) often require an
expert dataset with sufficient coverage over state-action spaces to combat error compounding (Ross
and Bagnell, 2010; Jarrett et al., 2020; Chan and van der Schaar, 2021), which can be prohibitively
expensive for many real-world domains. Instead, a more realistic scenario might allow for a small
expert dataset, combined with a large amount of imperfect data sampled from unknown policies (Wu
etal., 2019; Xu et al., 2022a; Yu et al., 2022). For example, autonomous vehicle companies may have
limited high-quality data from experienced drivers but can obtain a wealth of mixed-quality data from
ordinary drivers. Clearly, effective utilization of these imperfect demonstrations would significantly
enhance the robustness and generalization of offline IL.

A fundamental question raised in this scenario is: how can we extract good behaviors from noisy
data? To answer this question, several prior works have attempted to explore and imitate the imperfect
behaviors that resemble expert ones (as in Xu et al. (2022a); Sasaki and Yamashina (2020)). However,
due to the scarcity of expert data, such methods are ill-equipped to leverage valuable knowledge
in (potentially abundant) diverse behaviors that deviate from limited expert demonstrations. Of
course, a natural solution to incorporate these behaviors is inferring a reward function and labeling
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Figure 1: A cartoon illustration of the beneficial behaviors in imperfect data.

all imperfect data, followed by an offline reinforcement learning (RL) progress (as in Zolna et al.
(2020); Chang et al. (2022); Yue et al. (2023)). Unfortunately, it is highly challenging to define and
learn meaningful reward functions without environmental interaction. As a result, current offline
reward learning methods typically rely on complex adversarial optimization using a learned dynamics
model. They easily suffer from hyperparameter sensitivity, learning instability, and limited scalability
in high-dimensional environments (Yu et al., 2022; Arjovsky et al., 2017; Garg et al., 2021).

In this paper, we introduce a simpler data selection method along with a lightweight policy learning
algorithm to fully exploit both expert-like and positive diverse behaviors in imperfect demonstrations
without indirect reward learning procedures. Specifically, instead of examining a behavior’s similarity
to expert demonstrations in and of itself, we assess its value based on whether its resultant state, to
which environment transitions after performing that behavior, falls within the expert data manifold.
In other words, we (properly) select the state-actions that can lead to expert states, even if they bear
no similarity to expert demonstrations. As illustrated in Fig. 1 and supported by the theoretical results
in Section 3.1, the underlying rationale is: when the agent encounters a state unobserved in expert
demonstrations, compared to taking a random action, a more reasonable way is to return to the states
where it knows expert behaviors; otherwise, it may keep making mistakes and remain out-of-expert-
distribution for the remainder of time steps. Notably, the resultant state is more informative than
the state-action similarity, as it can explicitly utilize the dynamics information and identify both
expert-like and beneficial diverse state-actions.

Drawing on this insight, we first train a state-only discriminator to distinguish expert and non-expert
states in imperfect demonstrations. Based on the identified expert-like states, we appropriately select
their causal state-actions and build a complementary training dataset. In light of the suboptimality of
the complementary data, we further devise a lightweight constrained BC algorithm to mitigate the
potential interference among behaviors. We term our proposed method Offfine Imitation Learning
with Imperfect Demonstrations (iLID) and evaluate it on a suite of offline IL benchmarks, including
widely-used MuJoCo tasks as well as more complex and high-dimensional Adroit tasks. iLID
achieves state-of-the-art performance, significantly outperforming existing baseline methods often
by 2-5x while maintaining a comparable runtime to BC. In a nutshell, the main contributions of this
paper are as follows:

* We introduce a simple yet effective method to select potentially useful behaviors in noisy data. It
can explicitly exploit the dynamics information and extract both expert-like and positive diverse
behaviors, achieving a significant improvement in the utilization of imperfect demonstrations.

* To avoid behavior interference induced by the suboptimality of complementary behaviors, we
propose a constrained BC algorithm that can correctly leverage the expert and extracted behaviors.

» Extensive experiments on complex and high-dimensional domains corroborate that iL.ID can surpass
the existing baseline methods in terms of performance and computational cost.

2 Preliminaries

Episodic Markov decision process (MDP) can be specified by M = (S, A, T, H, r, j1), consisting of
state space S, action space A, transition dynamics T : S x A — P(S), episode horizon H, reward
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function r : S x A — [0, 1], and initial state distribution p : S — [0, 1]. A stationary stochastic
policy maps states to distributions over actions, denoted as 7 : S — P(A). The policy value of 7

is defined as the expected cumulative reward, V™ = E[Zthl r(sp,an)], where the expectation is
computed w.r.t. the distribution over trajectories induced by rolling out 7 in the environment. The
objective of reinforcement learning (RL) can be expressed as max, <11 V™, where 11 is the set of
all stationary stochastic policies taking actions in .4 given states in S. We denote the average state
distribution of policy  as p™ (s) = & Zthl Pr(s, = s|m, T, i), where Pr(s;, = s|m, T, u) denotes
the probability of visiting s at time step h by rolling out = with M. When clear from context, we
overload notation and denote the average state-action distribution as p™ (s, a) = p™(s)7(als).

Offiline IL with imperfect demonstrations is the setting where the algorithm is neither allowed to
interact with the environment nor provided ground-truth reward signals. Rather, it has access to an
expert dataset and a mix-quality imperfect/noisy dataset, collected from unknown expert policy 7. and
(perhaps highly suboptimal) behavior policy 7, respectively. To be specific, the expert and imperfect
datasets are denoted by D, = {Tj}?gl and Dy = {r1;}2,, where 7; = (841,315, Si,H, Qi H)
represents a trajectory. Our goal is to learn the best policy with regard to optimizing V'™ from static
offline data D, = D, U D, without querying the expert or interacting with the environment.

Behavior cloning (BC) is a classical offline IL approach, which seeks to learn a policy via supervised
learning. The standard objective of BC is to maximize the negative log-likelihood over D.:

maxE ,yop. | log(m(als))|. 1
max B, o), [log(m(als))] 1
However, standard BC does not utilize the information in D,. Due to the limited state coverage of
D, the learned policy may suffer from severe compounding errors, i.e., the inability for the policy to
get back on track if it encounters a state not seen in the expert demonstrations.

3 Offline imitation learning with imperfect demonstrations

In this section, we provide a detailed description of our approach. We begin by presenting the
theoretical findings on the benefits of utilizing diverse transitions. Building on the theoretical insights,
we then design our data selection and policy learning methods.

3.1 How to extract good behaviors from noisy data

To discard low-quality demonstrations from Dy, existing approaches often rely on the state-action
dissimilarity between D, and D,. For example, Xu et al. (2022a); Zolna et al. (2020); Kim et al.
(2022) propose to learn a weighting function f(s, a) by pushing up its value on (s, a) € D, while
pushing down that on (s,a) € Ds. Based on f(s,a), they perform weighed BC to implicitly
select expert-like state-actions, i.e., max e E(s,a)~p, [f(5, a) log(m(als))]. However, due to the
limitation of expert demonstrations, the learned f (s, a) can be overly conservative and neglect the
useful information in diverse state-actions. Therefore, it calls for a more informative criterion to
assess the value of imperfect behaviors.

Before preceding, we first provide the following theoretical results under deterministic transition
dynamics to gain insights into this problem. Denote Sy, (D) as the set of h-step visited states of D
and S(D) = UhH:1 Si(D) all the states thereof. Assume that 7. is optimal and deterministic, and
there exists a supplementary dataset consisting of transition tuples from initial states to given expert
states, i.e., D = {(84,a,5%) | $; ~ p, 87 ~ S(D.),T(84,a;) = 85,4 = 1,2,...,n}. Consider a
policy 7 such that in expert states S(D,), it takes the corresponding expert actions, and in states
S1(D)\S1(D,), it takes the actions in D, that is,

> caen. L(Ea)=(s,0)) . _
( Z)gee’.;(pe) 1(5=s) ) if s S S(De)’

~ = ) Yisaen L{(5,a)=(s,a)) . A
7r(a|s) = : 2)5662(5) 1(5=s) , ifseS; (D)\Sl (De); 2)
ﬁ7 else.

We bound the suboptimality gap and sample complexity of 7 in the next theorem and corollary.
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Theorem 3.1. For any finite and episodic MDP with deterministic transition dynamics and y = U(S),
the following fact holds:

- 146 1-96
Te _ T <
1% IE[V]_(2 +H2>H6, 3)
where ¢ = E[Ey, ~,[1(s1 ¢ Si1(D.))]] and § = E[E,, ~,[1(s1 ¢ S1(D))]] represent the missing
mass over the initial distribution w.r.t. S1(D.) and S1(D)). U(S) is the uniform distribution over S.

Proof Sketch. Note that the error stems from the initial states that are not covered by S1(D.). We

bound the errors generated from the states not in S(D,) U S(D) and from the states in S(D)\S(D.)
by Hée and (H/2 + 1/H)(1 — §)e, respectively. Combining these two errors yields the result. For a
detailed proof, please refer to Appendix B. O

Building on Theorem 3.1, we can obtain the following sample complexity result (where we retain the
constant % in the asymptotic result to highlight the improvement over BC).

Corollary 3.2. Suppose Dis sufficiently large. For any finite and episodic MDP with deterministic
transition dynamics and . = U(S), to obtain an e-optimal policy, V™ — E[V™| < ¢, T requires at
most O(|S|H/(2 - €)) expert trajectories.

Proof. Invoking Xu et al. (2021, Theorem 2) yields the bounds for the missing mass:

< oL
e[

E [Esl~# []]_(81 ¢ Sl(De)]:| S e|'ZS)e|’

B [Buvm [1661 ¢ S100)]|
where e is the Euler’s number. If D is sufficiently large, then § — 0. Using Theorem 3.1, the result
can be easily derived. O

Remarks. 1t is worth noting that the minimax suboptimality of BC is limited to He in this setting
(Rajaraman et al., 2020), and beating the O(H ) barrier is unattainable. The reason is that when the
agent encounters a state beyond given demonstrations during the interaction with the environment,
it has no prior knowledge about the expert. As a result, the agent is essentially forced to take an
arbitrary action in these states, potentially leading to mistakes for H time steps. Whereas, as revealed
by Theorem 3.1 and Corollary 3.2, 7 provably alleviates the error compounding and reduces the
sample complexity bound of BC (which is O(|S|H /<)) by approximately half. The reason behind is
that D can empower 7 to recover from mistakes. Combined with Eq. (2), this provides an important
insight for us: in the states uncovered by D., if an action can lead to known expert states, mimicking
it can benefit the performance of imitation policy.

Thus motivated, we propose to assess the imperfect behavior based on its resultant states rather
than the state-action in and of itself. For example, if there exists (s1, a1, Sa, az, s3) € D; such that
s3 € D,, one can select (s1,a1) and (s2, az) (or only (s2, as)), even if these behaviors do not bear
similarity to any (s, a) € D.. To this end, we consider learning a state-only discriminator to contrast
expert and non-expert states in D;, e.g.,

mc?‘XESNDe [logd(s)] + Es~p, [log(1 — d(s))]. @

However, optimizing Problem (4) can lead to the problem of false negative, where the learned discrim-
inator assigns 1 to all transitions from D, and 0 to all transitions from D;. This problem is analogous
to the positive-unlabeled (PU) classification problem (Elkan and Noto, 2008), where both positive
(expert) and negative (imperfect) samples exist in the unlabeled data (imperfect demonstrations).
Akin to Xu et al. (2022a); Zolna et al. (2020), we adopt the reweighting method from PU learning to
address this issue:

d* = arg;naxn -Esp, [log d(s)] + Esop, [log(l — d(s))] —n-Esup, [log(l — d(s))], 5)

where 7 > 0 is a reweighting parameter, corresponding to the proportion of expert states to imperfect
states. Intuitively, the third term in Eq. (5) could avoid d*(s) of the states from S(D;) but similar to
S(D,) becoming 0.
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Figure 2: An illustration of the data selection procedure. sy, represents an identified expert state.

Data selection. The learned discriminator d* is able to identify the expert states in D,. Based on
these states, we in turn select their causal states and actions to construct a complementary dataset

D. Specifically, given threshold o € [0,1] and rollback steps K > 1, if there exist h > 1 and

i € {1,...,ns} (Where n, represents the number of trajectories in D;) such that d(s; ) > o, we
include K causal state-action pairs from s; 5, into D.:
D« DU {(k, Si,hfkaai,hfk)}kzl:min{h_LK} . (6)

We iterate the above process for all identified expert-like states. To clarify, we illustrate the process in
Fig. 2. It is evident that D comprises both the positive diverse state-actions in D, and those similar
to D, therein. This highlights that using resultant states is a more informative way to extract useful
behaviors.

Behavior interference. After obtaining D, a natural solution to learn an imitation policy is carrying
out BC from the union of D, and D. However, due to the suboptimality of 75, this naive solution
will suffer from potential interference among behaviors. That is, for a selected (s, a, s'), if 5,8’ € D,
but a # 7.(s), action a will affect mimicking the expert behavior in expert state s when learning via
the naive solution. Furthermore, this interference issue also exists in the states of complementary
dataset 15, but in a more subtle manner. Consider a state s € D where two actions a1, ao are selected,
ie., (k1,s,a1), (ka,s,a2) € D. Owing to the stochasticity of MDPs, if k1 < ko, one may prefer a;
over ao, whereas the naive solution will imitate both actions equally. In Section 3.2, we address this
problem and propose a lightweight algorithm to correctly learn from D, and D.

3.2 How to learn an imitation policy from expert and extracted data

Due to the suboptimality of Dy and the stochasticity of MDPs, direct cloning the behaviors in D U D,
can lead to the interference issue. In fact, the solution has been implied in Eq. (2), which suggests
that the policy should be constrained to D.(-|s) in the known expert states. Accordingly, we cast the
problem of learning policy from D, and D as follows:

%EE(kvs»a)Nﬁ —~*logm(als)| s.t.Eeup, [Dkr(Fe(-]s)||7(-]s))] <€ @)

where 7, = arg max, iy E(s o)~p, [log(7(als))] is the BC policy learned on D, and € > 0 is the
threshold. In Eq. (7), we use discount factor v € (0, 1] to penalize the behaviors “far from” expert
states for mitigating the impact of stochasticity of MDPs. It is easy to see that with a sufficiently
small €, the optimal solution of Problem (7) enjoys at least the same theoretical guarantee of BC in
general stochastic MDPs, i.e., suboptimality upper-bound O(|S|H? log n./n.) compared to V™
(Rajaraman et al., 2020).

Problem (7) is a convex optimization problem. From Slater’s condition, the strong duality holds, and
thus the optimization is equal to

. _ 5 k _ 7
max min Ep canp [v*log m(als)] oz(JE&aNpe [logm(als)] + H + e), (8)

where « is the dual variable, and H is the expected entropy of the empirical expert policy, which is
derived from:

B, [DL(Fe(1)[7(15))] = Boup, [Eans, (1s) 108 Fel(als)] = Bans, (1s) [log 7(als)]]

= E(s,a)NDe [k)g 7‘:"e(a|$)] _]E(s,a)~De [10g71'(a|8)] : ©))

=—H
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Algorithm 1: Offline Imitation Learning with Imperfect Demonstrations (iLID)

Require: expert data D., imperfect data D, learning rate )\, parameter K, €
Train discriminator d using D, and D based on Eq. (5);
Select data from D, and build complementary dataset D based on Eq. (6);
Train BC policy 7. only using D, and compute expected entropy H = —E, 4p, [log 7. (als)];
Initialize policy 7y and dual variable «;
while rnot done do
Sample a training batch from D, and D;
Update policy parameter 6 < 6 — AV L(6) based on Eq. (10);
Update dual variable a < a — AV L(c) based on Eq. (11);
end while

Parameterize the learned policy by 6 and denote the loss functions for 6 and « as follows:

L(6) = —Ep g0np [7’“ log 7T9(CL|S)] —aEs gup, [log 7rg(c1|s)], (10)
L(a) = Eg 4op, [log mo(als)] + H +e. (11)

Problem (8) can be optimized by approximating dual gradient descent that alternates between the
gradient steps w.r.t. L(6) and L(«), which has been shown to converge under convexity assumptions
(Boyd and Vandenberghe, 2004) and work very well in the case of nonlinear function approximators
such as neural networks (Haarnoja et al., 2018).

Our algorithm, named Offline Imitation Learning with Imperfect Demonstrations (iLID), is outlined in
Algorithm 1. Notably, while iLID pretrains a discriminator and a BC policy (using D, ), the progress
can converge within a small number of gradient steps, especially when D, is limited. In light of the
negligible cost in updating «, iLID is indeed computationally cheap.

4 Experiments

In this section, we use experimental studies to test the proposed method and answer the following
questions: 1) Can iLID effectively utilize imperfect demonstrations? 2) What is the convergence
properity of iLID? 3) How does iLID perform given different numbers of expert demonstrations or
different qualities of imperfect demonstrations? 4) What is the impact of the rollback steps? 5) What
is the runtime of iLID? 6) Is the constrained BC an overkill?

Baselines. We evaluate our method against five strong baseline methods in the offline IL setting:
1) Behavior Cloning with Expert Data (BCE), the standard BC trained only on the expert dataset
(Pomerleau, 1988); 2) Behavior Cloning with Union Data (BCU), BC on both the expert and diverse
datasets; 3) Discriminator-Weighted Behavioral Cloning (DWBC) (Chang et al., 2022), a recent offline
IL algorithm capable of leveraging suboptimal demonstrations; 4) Using Imperfect Demonstration via
Stationary Distribution Correction Estimation (DemoDICE) (Kim et al., 2022), another recent offline
IL algorithm that can leverage suboptimal demonstrations; 5) Conservative offLine model-bAsed
Reward [Earning (CLARE) (Yue et al., 2023), a recent model-based offline inverse RL algorithm
trained from both expert and imperfect datasets.

Datasets. We conduct experiments on both widely-used MuJoCo tasks (includ-
ing HalfCheetah, Walker2d, Hopper, and Ant) and more complex and high-
dimensional Adroit tasks (including Pen, Hammer, Relocate, and Door, shown
on the right). We use the D4RL datasets (Fu et al., 2020) and utilize the random
and expert data for each MuJoCo task, and cloned and expert data for Adroit
tasks.! Similar to Xu et al. (2022a); Kim et al. (2022), we generate D, and D as
follows:

"Experimental details is elaborated in Appendix A.
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Table 1: Performance of different algorithms. The numbers of expert trajectories are 1 for MuJoCo
tasks and 10 for Adroit. The results correspond to the mean and standard deviation of normalized
scores over 5 random seeds. low and high represent the qualities of imperfect data.

Task Data quality BCE BCU DWBC CIARE  DemoDICE iLID (ours)
Ant low -11.1+£9.7  314+0.1 306+£9.7 297+64 743+11.0 798 +11.8
high -11.1+£9.7  324+£7.1 346+8.7 224+47 88.1 £89 88.2+7.9

HalfCheetah low 02+£09 22400 1.1 £1.1 1.1 £0.9 22+£00 2541+ 4.1
high 02+£09 23+£00 08+12 22+£09 59+28 2931+ 6.3

Hopper low 17.0+42 7.6 £5.7 76.0 £9.4 89+52 583+138 95.0 + 10.9
PP high 170+42 37£16 606=£18.6 35+£05 722+13.6 104.8 + 7.1
Walker2d low 8.0+57 03+0.1 61.1£139 1.9+0.38 96.7 £17.5 97.0 & 8.0
high 8.0£57 03+0.0 499+£265 14+05 102.6 6.3 97.0 £ 10.3

Hammer low 68+56 02+00 11.0 + 8.8 72483 10.1 £12.3 66.0 + 17.8
high 68£56 02+£00 132 £7.1 39+44 9.1+£125 1094 + 10.0

Pen low -0.1+£00 21+69 437+142 75+59 413+£139 902+ 194
high -0.1 £0.0 1.6+34 571£136 64+66 48.6+253 657+ 7.5

Relocate low -0.1£0.0 -0.1£00 -0.1£0.0 0.0£00 120 £ 5.6 29.1 1 5.6
high -0.1+£0.0 0.0£0.0 -0.1 +0.1 0.0+£0.0 260+106 41.5+12.1

Door low 1.0+12 -0.1£0.0 0510 -0.1+£0.0 -0.1 +0.1 03+04
high 1.0+12 -0.1+£0.1 03+£07 -02+£0.1 -0.1 £0.0 04+04

* Expert datasets: For MuJoCo, we sample 1 trajectory (including less than 1000 state-action pairs)
from the expert D4RL dataset to constitute expert datasets. For Adroit, we sample 10 expert
trajectories (each includes less than 100 state-action pairs) to form the datasets.

* Imperfect datasets: For MuJoCo tasks, we sample 1000 random trajectories mixed with 10 and 20
expert trajectories to constitute the low-quality and high-quality imperfect datasets. Regarding
Adroit tasks, we sample 1000 cloned trajectories mixed with 100 and 200 expert trajectories to
constitute the low-quality and high-quality datasets.

Comparative results. To answer the first and second questions, we show the comparative results
under both low-quality and high-quality imperfect data in Section 4 and their corresponding learning
curves in Fig. 4. iLID outperforms baseline algorithms on most of the tasks (13 out of 16) often by
a wide margin and reaches near-expert scores on many tasks. It indicates that iLID can effectively
extract and leverage positive behaviors from imperfect demonstrations over the approaches based on
state-action similarity such as DWBC and DemoDICE. Unsurprisingly, BCE fails to fulfill most of
the tasks, while BCU learns a mediocre policy. CLARE also performs poorly because the learned
reward function could become too pessimistic due to the scarcity of expert demonstrations. Clearly,
the model-based approach struggle in high-dimensional environments.

Expert demonstrations. To answer the third question, we vary the numbers of expert trajectories
from 1 to 50 and present the results on Fig. 3(a). iLID reaches the expert with sufficient expert data.

HalfCheetah (low-quality) Pen (high-quality) Hopper (low-quality)
o :‘"ﬂ-"-""——"'". )

10000 2500
2250.74

2106.31 - 3000

£ 8000 £, 1990.61 £
3 5 2000 182640 3 2500
° { © ®
° 6000 ! —— DWBC o 1500 1480.24 o 2000
& 000 i DemoDICE & 1500
a>3 J| - CLARE @ 1000 @ 1000
< 2000 BCE z Z
BCU 500 500 Direct Imitation
PRA -~ iLID (ours) 0 —— ILID (ours)
0 10 20 30 40 50 0 1 5 10 15 20 0.0 0.5 1.0 1.5 20
Number of expert trajectories Rollback steps # steps (million)
(a) Expert demonstrations. (b) Rollback steps. (c) Ablation Study.

Figure 3: Performance of iLID under varying numbers of expert demonstrations and rollback steps
along with the ablation study for the constrained BC procedure.
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Figure 4: Convergence properties of different algorithms. The solid curve corresponds to the mean
and the shaded region to the standard derivative across five random seeds.

Albeit with very limited expert trajectories, iLID also achieves strong performance, revealing its
advantages in extracting good behaviors. DemoDICE performs relatively poorly with larger n.. The
reason is that it learns on both expert and random data, whereas the random data of HalfCheetah is
highly suboptimal.

Rollback steps. To answer the fourth question, we vary the rollback steps from 1 to 20 and show the
corresponding results in Fig. 3(b). With larger K, the performance increases at the beginning. This
is due to more positive diverse data included. An excessively large K may have a negative impact
due to the dynamics stochasticity and behavior interference. However, it is worth noting that, as
K increases further, the performance does not significantly deteriorate. This is because we apply a
discount factor to penalize the potential uncertainty in the resulting states, capable of mitigating the
issue. In practice, K can be treated as a hyper-parameter to tune. Intuitively, it can be set relatively
smaller in a more stochastic environment.

Ablation study. We compare iLID to the naive solution mentioned in Section 3.1, i.e., directly
imitating the union of expert and select data. Fig. 3(c) validates the necessity of the constrained BC
procedure. The result of direct imitation is passable as we select a number of positive data. However,
it fails to deal with the behavior interference issue caused by the suboptimality of imperfect data.

Runtime. We evaluate the runtime of iLID compared with baseline Runtime of 250,000 training steps

algorithms for 250,000 training steps, utilizing the same network 3 3om
size and batch size. We reproduce the reported results in Xu et al. 20 e
(2022a) on an NVIDIA V100 GPU. As illustrated by the figure
on the right, the runtime of iLID is nearly the same as BC. It
substantiates that the iLID is indeed a lightweight method. Due @ —

150 e

to the cooperation training between the discriminator and policy, ., . - am
DWBC requires additional computation than iLID. CLARE is i
costly due to the effort to solve an intermediate offline RL problem. BC  iLID (ours) DWBC  CLARE
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5 Related work

Offline IL deals with training an agent to mimic the actions of a demonstrator in an entirely offline
fashion. BC (Ross and Bagnell, 2010) is an intrinsically offline solution, but it is prone to covariate
shift and inevitably suffers from error compounding, i.e., there is no way for the policy to learn how
to recover if it deviates from the expert behavior to a state not seen in the expert demonstrations
(Levine et al., 2020). Considerable research has been devoted to developing new offline IL. methods
to remedy this problem, e.g., Jarrett et al. (2020); Chan and van der Schaar (2021); Garg et al. (2021);
Klein et al. (2011, 2012); Piot et al. (2014); Herman et al. (2016); Kostrikov et al. (2019); Swamy
et al. (2021); Florence et al. (2022). However, since these methods imitate all given demonstrations,
they often require a large amount of clean expert data, which can be expensive for real-world tasks.

Recently, there has been growing interest in exploring how to effectively leverage imperfect data in
offline IL (Xu et al., 2022a; Yu et al., 2022; Sasaki and Yamashina, 2020; Kim et al., 2022). Sasaki
and Yamashina (2020) analyze why the imitation policy trained by BC deteriorates its performance
when using noisy demonstrations. They reuse an ensemble of policies learned from the previous
iteration as the weight of the original BC objective to extract the expert behaviors. However, this
requires that expert data occupies the majority proportion of the offline dataset, otherwise the policy
will be misguided to imitate the suboptimal data. Kim et al. (2022) retrofit the BC objective with an
additional KL-divergence term to regularize the learned policy to stay close to the behavior policy.
Although it can implicitly extract the behaviors that bear similarity to the expert demonstrations, it
easily fails to achieve satisfactory performance when the diverse data is highly suboptimal. Xu et al.
(2022a) cope with this issue by introducing an additional discriminator, the outputs of which serve
as the weights of the original BC loss, so as to imitate demonstrations selectively. Unfortunately, it
selects behaviors building on state-action similarity, which does not suffice to leverage the dynamics
information and diverse behaviors. In offline RL, Yu et al. (2022) propose to utilize unlabeled data by
applying zero rewards, but this method necessitates a large amount of labeled offline data. In contrast,
this paper focuses on the setting with no access to any reward signals.

Offline inverse reinforcement learning (IRL) explicitly learns a reward function from offline datasets,
aiming to comprehend and generalize the underlying intentions behind expert actions (Lee et al.,
2019). Zolna et al. (2020) propose ORIL that constructs a reward function that discriminates expert
and exploratory trajectories, followed by an offline RL progress. Chan and van der Schaar (2021)
use a variational method to jointly learn an approximate posterior distribution over the reward and
policy. Garg et al. (2021) propose to learn a soft Q-function that implicitly represents both reward
and policy, which can stabilize the training. To cope with the reward extrapolation error, Chang
et al. (2022) introduce a model-based offline IRL algorithms that uses a model inaccuracy estimate
to penalize the learned reward function on out-of-distribution state-actions. Recently, Yue et al.
(2023) also propose a model-based offline IRL approach, named CLARE. In contrast to Chang et al.
(2022), they compute a conservative element-wise weight to implicitly penalize out-of-distribution
behaviors. However, it is highly challenging to define and learn meaningful reward functions without
environmental interaction (Xu et al., 2022b). The model-based approaches often struggle to scale in
high-dimensional environments, and their min-max progress usually causes training to be unstable
and inefficient.

6 Conclusion

In this paper, we introduce a simple yet effective data selection method along with a lightweight
behavior cloning algorithm to fully leverage the imperfect demonstrations in offline IL. In contrast
to the prior methods, we exploit the resultant states to assess the value of behaviors, which is an
informative criterion that enables explicit utilization of dynamics information and the extraction of
both expert-like and beneficial diverse behaviors. We provide necessary theoretical guarantees for the
proposed method, and extensive experiments corroborate that iLID outperforms existing methods
in continuous, high-dimensional environments by a significant margin. In future work, we plan to
establish theoretical guarantees for iLID in the general stochastic MDPs and explore whether the
proposed methods can benefit offline RL in terms of data selection and policy optimization.
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A Experimental details

In this section, we present experimental details for reproducibility.

Baselines. We test our method against five baseline methods with the same policy network struc-
ture: 1) Behavior Cloning with Expert Data (BCE), the standard BC trained only on the expert
dataset (Pomerleau, 1988)); 2) Behavior Cloning with Union Data (BCU), BC on both the ex-
pert and diverse datasets; 3) Discriminator-Weighted Behavioral Cloning (DWBC) (Chang et al.,
2022), a recent offline IL algorithm capable of leveraging suboptimal demonstrations (https:
//github.com/ryanxhr/DWBC); 4) Using Imperfect Demonstration via Stationary Distribution
Correction Estimation (DemoDICE) (Kim et al., 2022), another recent offline IL algorithm that can
leverage suboptimal demonstrations (https://github.com/KAIST-AILab/imitation-dice);
5) Conservative offLine model-bAsed Reward [Earning (CLARE) (Yue et al., 2023), a recent
model-based offline inverse RL algorithm trained from both expert and imperfect datasets (https:
//github.com/shaunyue/clare). We include their codes (tuned based on the publicly available
implementations) in the supplementary material.

Hyperparameters. The policy is represented as a 2-layer feedforward neural network with 256
hidden units, ReLU activation functions, and Tanh Gaussian outputs. For a fair comparison, the
discriminator structure is set similarly to DWBC, a 2-layer feedforward neural network with 256
hidden units, ReLU activation functions, and the output clipped to [0.1,0.9], and the reweighting
parameter 7 is set to 0.5. The thresholds o (for state extraction) and e (for KL distance) are 0.89 and
0.01 respectively. The number of rollback steps K is set to 10 for Adroit (high-quality) and 5 for
other tasks. All learning rates are set to le-5. We adopt Adam for all optimizers where the weight
decay is 0.005 for MuJoCo and 0.05 for Adroit.

Datasets. We conduct experiments on MuJoCo tasks (including HalfCheetah, Walker2d, Hopper,
and Ant) and Adroit tasks (including Pen, Hammer, Relocate, and Door, shown on the right).
The trajectories are sampled at random from the D4RL datasets (Fu et al., 2020), provided at
https://github.com/rail-berkeley/d4rl (under the Apache License 2.0). We utilize the
random and expert data for each MuJoCo task, and cloned and expert data for Adroit tasks.
Similar to Xu et al. (2022a); Kim et al. (2022), we generate D, and D as follows:

» Expert datasets: For MuJoCo, we sample 1 trajectory (including less than 1000 state-action pairs)
from the expert D4RL dataset to constitute expert datasets. For Adroit, we sample 10 expert
trajectories (each includes less than 100 state-action pairs) to form the datasets.

* Imperfect datasets: For MuJoCo tasks, we sample 1000 random trajectories mixed with 10 and 20
expert trajectories to constitute the low-quality and high-quality imperfect datasets. Regarding
Adroit tasks, we sample 1000 cloned trajectories mixed with 100 and 200 expert trajectories to
constitute the low-quality and high-quality datasets.

Implementation. We implement our code using PyTorch and run the experiments on NVIDIA
GeForce RTX 3090 GPUs instead of the runtime experiments on NVIDIA V100 GPUs. Our code is
built upon the open-source framework of offline RL algorithms, provided at https://github.com/
tinkoff-ai/CORL (under the Apache-2.0 License) and the implementation of DWBC, provided at
https://github.com/ryanxhr/DWBC (under the MIT License).

Complementary results. The learning curves for Figs. 3(a) and 3(b) are provided as follows.

Pen (high-quality)

£ 3000 \
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o — K=1 \I\/\’\\/‘\x A
5150 [ — k=5 W Man
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K=15
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Figure 5: Learning curves of Fig. 3(b).
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Figure 6: Learning curves of Fig. 3(a).

B Proof of Theorem 3.1

In this section, we provided the proof details of Theorem 3.1, where we quantify the impact of diverse
behaviors D on performance.

First, we can write

Ve — Vfr

= E,, :Vﬂe (s) — vff(s)]
=By |15 £ 81(D)) - (V7(5) - vﬁ<s>)} + Eon [Ms € 8i1(D.) - (V™els) - vff(s)ﬂ
~ By 15 £ S1(D) - (V7 (9) - V()

(due to deterministic expert policy and transition dynamics)
~ Bun [166 ¢ 800) 105 ¢ D) - (V7o) - V(9|
(a)
By |15 £ 8(00) 15 € D) - (V72 (0) - V(0 |.

12)

©)

The third equality holds because the trajectories, started with the visited initial states, are fully covered
in the expert demonstrations. Note that once the policy enters the states out of training distribution, it
may keep making mistakes and remain out-of-distribution for the remainder of the time steps. Hence,
we can bound E[(a)] as follows:

B[] = lxaw 166 ¢ 810 15 ¢ (D) - (17 (s) - v%))ﬂ
< HE [Buv [1(5 ¢ 8(0) - 1 ¢ S1(D) |
< HE.., [E[1(s ¢ SuD)] -E[1(5 ¢ 5:(D)]
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where the last equality holds due to E[1(s ¢ S1(D,.))] = € and E[1(s ¢ S;(D))] = é for s € S,
which can be easily derived from p = U(S). Regarding (b), we can write
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— Euvy [1(s € S1(D0) - 1(s € S(D)) - V™ (3)]

—E

For the first term in the last equality of Eq. (14), we have
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For the second term in the last equality of Eq. (14), we write
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where Hp, = min{H — 1(h = 1)} represents the steps in which 7 can follow the expert. Thus, it
follows that

H Hp,
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Plugging Eq. (18) into Eq. (14), we have
H 1
E <|l—=+—=](1=9)e. 1
(0] < (5 +5) -0 (19)
Combined the bounds of (a) and (b) in Eq. (13) and Eq. (19), the following holds:
N H 1 146 1-96
T _EVi< (24 =)a- Hoe< (224 2" %\ 2
1% [V]_(2+H)( §)e + 56_(2 +H2> €, (20)

thereby completing the proof.
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