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1 Supplementary information for derivation

1.1 Pd(j | i) for the given graph
We compute conditional probability P (j | i) for the given and random graphs to con-
struct matrix R to factorize. While many methods simulate random walks, we can
analytically compute P (j | i) by exploiting the properties of the random walks. Denoted
by (x1, x2, x3, . . .) the sentence generated by a random walk in an undirected graph. For
center-context node pair (i, j), P (j | i) is given by

Pd(j | i) = 1
2T

T∑
τ=1

Prw(xt−τ = j | xt = i) + 1
2T

T∑
τ=1

Prw(xt+τ = j | xt = i), (1)

where Prw(xt′ = j | xt = i) is the probability that the walker visits j at time t′ given that
it visits i at time t. The first and second terms of the right-hand side of Eq. (1) represent
the probabilities of visiting j before and after visiting i, respectively. Both terms are
equal for an undirected and connected graph thanks to the following two key properties
of the random walks. First, the random walk has a time-invariant stationary distribution,
i.e., Prw(xt−τ = j) = Prw(xt = j) = Prw(j), where Prw(j) is the stationary distribution
at node j [10]. Second, the random walks satisfy the detailed balanced condition [10],
i.e., Prw(i)Prw(xt = j | xt−τ = i) = Prw(j)Prw(xt = i | xt−τ = j). With these properties as
well as the chain rule of probability, the first term can be rewritten as the second term:

Prw(xt−τ = j | xt = i) = Prw(j)Prw(xt = i | xt−τ = j)
Prw(i) = Prw(xt = j | xt−τ = i). (2)

Returning to Eq. (1), conditional probability P (j | i) can be computed analytically by

Pd(j | i) = 1
T

T∑
τ=1

Prw(xt+τ = j | xt = i) =
(

1
T

T∑
t=1

Pt

)
ij

, (3)

where P = (Pij) is the transition matrix of random walks in the graph, with entry Pij
indicating the probability of moving from i to j by one step.

1.2 P0(j | i) for the dcSBM
In the dcSBM, each edge between nodes i and j appears independently and has a weight
wij following a Poisson distribution with mean

〈w̃ij〉 = λgi,gj
θiθj, (4)

where 〈·〉 is the expectation over the Poisson distribution, and {gi}i, {λg,g′}g,g′ , and {θi}i
are the parameters of the dcSBM. Parameter gi indicates the group to which node i
belongs, and λg,g′ represents the number of edges between groups g and g′. Parameter θi
is a propensity of node i normalized such that

N∑
i=1,gi=g

θi = 1, ∀1 ≤ g ≤ B. (5)
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Node propensity θi can be interpreted as a normalized degree of node i. In fact, the
expected degree 〈d̃i〉 of node i is given by

〈d̃i〉 =
〈 N∑
j=1

w̃ij

〉
=

N∑
j=1

λgi,gj
θiθj = θi

B∑
g=1

λgi,g

 N∑
j=1,gj=g

θj

 . (6)

Because ∑N
j=1,gj=g θj = 1 (Eq. (5)), we obtain

θi = 〈d̃i〉
Dgi

, (7)

where Dgi
= ∑B

g=1 λgi,g is the number of edges emanating from nodes in group gi, or
equivalently, the sum of the degrees of nodes in group gi.

For the graph with the expected edge weights, the transition probability from i to j
is given by

Pij = 〈w̃ij〉
〈d̃i〉

=
λgi,gj

θiθj

θiDgi

=
λgi,gj

Dgi

θj = P SBM
gi,gj

θj, (8)

where we define

P SBM
g,g′ := λg,g′/Dg, (9)

by the fraction of edges to group g′ in Dg. Equation (8) makes clear that the transition
of a walker from i to j in the dcSBM is decomposed into two random processes. The first
is that a walker in group g moves to group g′ with probability P SBM

g,g′ . The second is that,
in group g′, the walker lands on node j with probability θj.

With this interpretation in mind, let us consider multi-step random walks. As a con-
crete example, let us consider the transition of a walker with two steps. The probability
of moving from i to j by t = 2 steps via node x is given by Pi,xPx,j = P SBM

gi,gx
P SBM
gx,gj

θxθj.
Summing over all nodes x yields the probability of transiting from i to j with two steps:

N∑
x=1

Pi,xPx,j = θj
N∑
x=1

P SBM
gi,gx

P SBM
gx,gj

θx = θj
B∑
g=1

P SBM
gi,g

P SBM
g,gj

 N∑
x=1,gx=g

θx


= θj

B∑
g=1

P SBM
gi,g

P SBM
g,gj

=
(
P2

SBM

)
gi,gj

θj, (10)

where PSBM = (P SBM
ij )ij. Notice that the transition probability for the two-step random

walk takes the same form with that for the one-step random walk (i.e., Eq. (8)), which
is also true for the t-step random walk, i.e.,(

Pt
)
ij

=
(
Pt

SBM

)
gi,gj

θj. (11)

Therefore, the t-step random walks from node i to j can be described as two independent
events, i.e., an event that the random walker moves from the block of node i to the block
of node j by t steps (i.e., (Pt

SBM)gi,gj
), and another event that the walker chooses node j

to visit among the nodes in the block gj (i.e., θj).
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The maximum likelihood estimation of dcSBM fits the parameters such that the degree
of each node is preserved on average [8] by setting node propensity θi = di/Dgi

[8], which
leads (

Pt
)
i,j

= dj
Dgj

(
Pt

SBM

)
gi,gj

. (12)

Substituting Eq. (12) into Eq. (3) yields:

P0(j | i) = dj
TDj

(
T∑
t=1

Pt
SBM

)
gi,gj

. (13)

1.3 P0(j | i) for the special cases of the dcSBM
Let us derive P0(j | i) for two common null models, the Erdős-Rényi random graph [3]
and the configuration model [4]. The Erdős-Rényi random graph is equivalent to the
dcSBM with B = 1 and θi = 1/N [8], which gives

P0(j | i) = 1/N. (14)

The configuration model is equivalent to the dcSBM with B = 1 block and θi = di/2M [8],
which gives

P0(j | i) = dj/2M. (15)

1.4 Pd(i) = P0(i)
The probability that the walker moves from node i to a neighbor j is given by

Pd(j | i) = 1
di
. (16)

The random walk process in an undirected graph is ergodic, which ensures a unique
stationarity for t→∞, with the detailed balance condition [10]:

Pd(j | i)P (i) = Pd(i | j)Pd(j) = c, (17)

where c > 0 is a positive constant. By substituting Eq. (16) into Eq. (17), we have

Pd(i) = c

Pd(j | i) = cdi. (18)

Because ∑i Pd(i) = 1, we obtain

Pd(i) = di∑
` d`

. (19)

Notice that the stationary distribution of the random walker is proportional to degree di
and irrespective of the structure of the graph. Now, because both the dcSBM and the
original graph have the same degree sequence on expectation, probability P0(i) for the
dcSBM is given by

P0(i) = di∑
` d`

. (20)
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1.5 Embedding directed graphs
Directed graphs may break the assumptions for the stationarity of random walks as well
as the detailed balanced condition. Both assumptions are needed to compute Prw(xt−` =
j | xt = i), i.e., a probability that the walker visits j before visiting i. To avoid calculating
the probability, we adopt a sliding window covering only the context nodes j that appear
after the center node i. This simplifies Eq. (1) into

Pd(j | i) = 1
T

T∑
τ=1

Prw(xt+τ = j | xt = i), (21)

which in turn leads to the same expression as Eq. (3) without the assumptions of the
stationarity and detailed balanced condition. A downside is that if node i does not have
outgoing edges (dangling node), then i does not have any context j. To ensure that all
nodes have at least one context, we allow a random walker to move against the direction
of edges with a small probability ε = 0.05. If a random walker hits any dangling node, it
moves against a randomly selected in-coming edge.

2 Implementation of residual2vec

Algorithm 1 Pseudocode of residual2vec.
Input:

A: Adjacency matrix of a graph of N nodes
K: Embedding dimension
g: Block membership of nodes for a null model (optional)

Output:
Node embedding U, where each ith row indicates the embedding of node i.

1: ĝ ← FittingDCSBM(A) //Ref. [7]
2: R̂ ← TruncateResidualMatrix(A, g, ĝ)
3: λ,U← RandomizedSVD(R̂, K) //Ref. [6]
4: U← U · diag(

√
λ)

residual2vec has three components, namely i.e., (i) the block approximation, (ii)
truncation, and (iii) matrix factorization (see Algorithm 1). We walk through how to
implement each component efficiently in the following.

2.1 Block approximation
Approximating Pd(j | i) with the dcSBM Our implementation centered on the
block approximation, which substantially reduces the computational burden. Remind
that residual2vec factorizes the residual matrix (Eq. (13) in the main text):

Rij = lnPd(j | i)− lnP0(j | i). (22)

Computing the second term (i.e., lnP0(j | i)) is easy because it can be computed by
taking the power of a B ×B matrix (i.e., Eq. (13)), and B � N in practice.

Computing the other term lnPd(j | i), however, is prohibitively difficult because it
involves the power of N × N matrix, P (i.e., Eq. (3)), requiring the time and space
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Algorithm 2 TruncateResidualMatrix
Input:

A: Adjacency matrix
g: Group membership for random graphs
ĝ: Group membership for the approximated graph

Output:
R̃: Truncated residual matrix

1: R̂ij ← 0 //Initialize

//Calculate the tentative R̃ij by truncating L
2: for all i ∈ [1, N ], g ∈ [1, B] and ĝ ∈ [1, B̂] do
3: if h(i, g, ĝ) > 0 then
4: R̂ij ← h(i, g, ĝ) for all gj = g and ĝj = ĝ
5: end if
6: end for

//Re-evaluate Eq. (27) for Sij > 0
7: for all the non-zero elements of A do
8: R̂ij ← max(0, Sij + h(i, g, ĝ))
9: end for

complexities of O(N3) and O(N2), respectively. The block approximation remedies this
problem by approximating the given graph with the dcSBM [8]. Specifically, we fit the
dcSBM to the given graph using a maximum likelihood estimation [7]. We set the number
B̂ of groups to B̂ = min(N, 1000), where N is the number of nodes. With Eq. (12), the
transition matrix for the approximated graph, denoted by P̂ = (P̂ij), is given by

P̂ij = dj
Dgj

P̂ SBM
ĝi,ĝj

, (23)

where ĝi is the group to which the block approximation assigns node i. The tth power
P̂t can be computed by (

P̂t
)
ij

= dj
Dgj

(
P̂t

SBM

)
ĝi,ĝj

. (24)

It is the strength of this approximation that allows us to calculate the matrix power
efficiently. Notice that P̂t—which is the power of an N × N matrix—can be computed
by P̂t

SBM—which is the power of a smaller B̂ × B̂ matrix (B̂ ≤ N). We take advantage
of this property by using P̂t as the substitute of Pt for t > 0 in Eq. (3) to compute
lnPd(j | i), i.e.,

lnPd(j | i) = ln
[

1
T

(
T∑
t=1

Pt

)]
' ln

[
1
T

(
P + P

T−1∑
t=1

P̂t

)]
ij

(25)

=: ln P̂d(j | i).

By substituting Eq. (24) into Eq. (25), we have

ln P̂d(j | i) = ln 1
T

Pij +
N∑
`=1

Pi`

(
T−1∑
t=1

P̂t
SBM

)
ĝ`,ĝj

dj
Dĝj

 . (26)
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Accuracy of the block approximation The accuracy of the block approximation
hinges on window size T and the community structure of the graph. The block approx-
imation is exact when T = 1 and T = ∞. For 1 < T < ∞, the accuracy depends on
how well the dcSBM approximates the given graph. The dcSBM describes the graph
structure in terms of the connectivities of groups (or communities) and the degree of
nodes. Therefore, the block approximation is a good approximation if the given graph
has a strong community structure that is well described by the dcSBM.

As a proof of concept, we tested the block approximation using the empirical graphs
listed in Table 2 in the main text (Fig. 1). We measured the Pearson correlation co-
efficient, denoted by ρ, between the exact and approximated lnPd(j | i). The airport
network—which has a strong community structure that well fits the dcSBM [11]—has the
largest correlation, ρ. By contrast, the correlation is relatively small for the DBLP cita-
tion graph. Yet, for all the graphs, the correlation is relatively high on average (ρ = 0.81).
Overall, the correlation tends to increases as window size T increases, suggesting that
Pd(j | i) is well approximated, particularly for relatively large window size.

2.2 Truncation
residual2vec truncates the residual matrix by

R̃ij = max(0, Rij), (27)

which costs time complexity of O(N2) because R = (Rij) has N2 elements. Here, we
perform the truncation more efficiently by taking advantage of the block approximation.

The block approximation approximates the residual matrix by

Rij = ln 1
T

Pij +
N∑
`=1

Pi`

(
T−1∑
t=1

P̂t
SBM

)
ĝ`,ĝj

dj
Dĝj

− ln dj
TDgj

(
T∑
t=1

Pt
SBM

)
gi,gj

= ln
Pij +

N∑
`=1

Pi`

(
T−1∑
t=1

P̂t
SBM

)
ĝ`,ĝj

dj
Dĝj

− ln dj
Dgj

(
T∑
t=1

Pt
SBM

)
gi,gj

. (28)

We note that gi and ĝi are different, i.e., gi indicates the group of node i for random graphs,
and ĝi indicates the group for approximating the given graph by the block approximation.
The key consequence of the block approximation is that R can be decomposed into a block
matrix, L, and a sparse matrix S, i.e.,

R = L + S. (29)

By leveraging the nature of L and S, the truncation can be performed efficiently in
the following two steps. First, we calculate tentative Rij values by truncating L. Each
element of L takes one of a handful of r (r � N2) unique values. Therefore, L—which
consists of N2 elements—can be truncated by truncating the r values. Second, we go
through each element (i, j) for Sij > 0 and re-evaluate Eq. (27), i.e., max(0, Lij + Sij).
Matrix S has M non-zero elements, where M is the number of edges. Therefore, R can be
truncated by truncating r +M values, which is a substantial reduction of computations
compared to truncating all N2 elements.
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Figure 1: Approximated Pd(j | i) computed by the block approximation. The dashed
diagonal line indicates the perfect match between the exact and approximated values.
Variable ρ in each panel indicates the Pearson correlation coefficient between the exact
and approximated lnPd(j | i).
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Specifically, R can be decomposed by

Lij = ln
N∑
`=1

Pi`

(
T−1∑
t=1

P̂t
SBM

)
ĝ`,ĝj

− ln
(

T∑
t=1

Pt
SBM

)
gi,gj

+ ln
Dgj

Dĝj

, (30)

Sij =



ln
Pij +

N∑
`=1

Pi`

(
T−1∑
t=1

P̂t
SBM

)
ĝ`,ĝj


− ln

N∑
`=1

Pi`

(
T−1∑
t=1

P̂t
SBM

)
ĝ`,ĝj

(if Pij > 0),

0 (otherwise).

(31)

Matrix L consists of at most r = NBB̂ unique element values, i.e.,

Lij ∈
{
h(i, g, ĝ)

∣∣∣∣i = 1, . . . , N, g ∈ [1, B], ĝ ∈ [1, B̂]
}
, (32)

where

h(i, g, ĝ) := ln
N∑
`=1

Pi`

(
T−1∑
t=1

P̂t
SBM

)
ĝ`,ĝ

− ln
(

T∑
t=1

Pt
SBM

)
gi,g

+ ln Dg

Dĝ

. (33)

The pseudo code for the truncation is described in Table 2.

2.3 Matrix factorization
We factorize the truncated residual matrix, R̂, using the singular value decomposition
(SVD). However, the SVD is practically infeasible for large graphs because its time com-
plexity increases cubically with respect to N , i.e., O(N3).

We circumvent this problem by leveraging the sparsity of R̂. The truncated residual
matrix R̂ is sparse in our numerical simulations, e.g., at least 99% of the elements in R are
zero for the six graphs. We take advantage of the sparsity of R̂ by using the randomized
SVD (rSVD) [6]. The time and space complexities of the rSVD for computing K leading
eigenvectors are O((N + m)K) and O(NK), respectively, for an N × N sparse matrix
with m non-zero elements.

2.4 Computational complexity
The time and space complexities of each component in residual2vec are described in
Table 1. We note that we used the rSVD for fitting the dcSBM instead of the SVD
used in the original paper [7]. Taken together, the time complexity of residual2vec
is O((N + M)B̂ + NB̂2 + TB3 + MB̂ + TB̂3 + M + NBB̂ + nnz(N + R̂)K + NK) =
O((N +M)B̂+TB̂3), where we have assumed B,K ≤ B̂ ≤ N and O(M) = O(nnz(R̂)).
The space complexity is O(NB̂ +B2 +NB̂ +B + B̂ +NBB̂ +NK) = O(NBB̂).

3 Supplementary information for the experiments

3.1 Offset zi of residual2vec for link prediction
residual2vec decomposes node similarities into two components, i.e., embedding ui and
baseline probability P0(j|i) in Eq. (10) in the main text. Baseline probability P0(j|i)
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Table 1: Time and space complexities of residual2vec.
Complexity

Process description Time Space
Block ap-
proximation

Compute the B̂ leading vectors of the adjacency ma-
trix of the graph with N nodes and M edges using
the rSVD [6].

O((N +M)B̂ + B̂3) O(NB̂)

Perform the K-means clustering for N nodes with B̂
dimensional vectors [1].

O(NB̂2) O(NB̂)

Truncation ∑T
t=1 Pt

SBM O(TB3) O(B2)∑N
`=1 Pi`

(∑T
t=1 P̂t

SBM

)
g`,g

,∀i ∈ [1, N ] and g ∈ [1, B̂]. O(MB̂ + TB̂3) O(NB̂)
Dg, ∀g ∈ [1, B] O(M) O(B)
Dĝ, ∀g ∈ [1, B̂] O(M) O(B̂)
Eq. (32) O(NBB̂) O(NBB̂)

Matrix fac-
torization

Compute the K leading vectors of R̂ using the
rSVD [6].

O(nnz((R̂) +N)K) O(NK)

Scaling the dimensions by singular values O(NK) O(NK)

accounts for the similarities attributed to a null model, and embedding similarity u>i uj
represents the “residual” from baseline probability P0(j|i). In the link prediction task, we
aimed to leverage both baseline and residual similarities for prediction, by adding offset
zj = lnP0(j|i) to the embedding similarity u>i uj. We added lnP0 instead of P0 by noting
that Eq. (10) in the main text can be rewritten as

Pr2v(j|i) = P0(j|i) exp(u>i uj)
Z ′i

= exp(u>i uj + lnP0(j|i))
Z ′i

. (34)

In other words, lnP0(j|i) has the same unit as the embedding similarity u>i uj in the
model. Therefore, we adopted lnP0(j|i) as the offset zi.

3.2 Linear regression model for node similarities
In the Case study section, we quantified the strength of bias due to degree and time
using a linear regression model yij = f(xi, xj) that explains cosine similarity yij for node
pair (i, j) by the degrees and the years of nodes i and j, i.e., xi and xj. A simple linear
regression model is given by

ŷij = w0 + w1xi + w2xj, (35)

Because the embedding similarity is symmetric (yij = yji), the modeled similarities should
be also symmetric, i.e., ŷij = ŷji. By substituting Eq. (35) into ŷij = ŷji yields w1 = w2,
which leads

yij = w0 + w1(xi + xj). (36)

This model explains the similarity by the sum of the node features, xi + xj. Instead
of the summation, one can use the difference |xi − xj| or product xixj for predicting
the similarity yij. Here, we put them together into one linear regression model ŷij =
w0 + w1(xi + xj) + w2|xi − xj| + w3xixj. This composite model contains more variables
and thus would explain the similarity yij better than any of the model that only uses one
variable.
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Figure 2: (A)—(F) The full results for the link prediction benchmark. (G–H) The results
for the LFR model with homogeneous degree distributions. The power-law exponent for
the degree distribution is set to γ = 6.

3.3 Full results for the link prediction benchmark
The full results for the link prediction benchmark are shown in Figs. 2A—F.

3.4 Community detection benchmark for graphs with homoge-
neous degree distributions

We performed the community detection benchmark with graphs having homogeneous
degree distribution. Specifically, we generated the graphs using the LFR benchmark
with the exponent of the degree distribution set to γ = 6. Other configurations for
the benchmark are the same as those described in the main text. The results for the
benchmark are shown in Figs. 2G and H.

3.5 GCN is not sensitive to the dimension of node features
In the benchmark, we use the eigenvectors associated with the smallest eigenvalues of
the normalized Laplacian matrix as the input node features for GCN, GraphSAGE, and
GAT. Although we used K̂ = K eigenvectors, one can input more eigenvectors. Figure 3
shows the benchmark performance of the GCN and GraphSAGE with K̂ = K or K̂ = 2K
eigenvectors as the input. Even if we input more eigenvectors (K̂ = 2K), the performance
does not increase much or even gets worse. This may be because, for the link prediction
and community detection tasks, K̂ = K eigenvectors are sufficient. Furthermore, the
more features we input, the more parameters the models have, making it difficult for the
optimization algorithm to find a good parameter set.
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Figure 3: Performance for the link prediction and community detection benchmarks.

3.6 Results of directed citation graph of journals
Citations are inherently directional. However, we neglected the directionality and em-
bedded the undirected citation graph of journals. This is because residual2vec and the
baseline methods perform worse for the directed graphs in terms of the prediction of the
impact and subject category of journals.

Figures 4 A and B show the 2D projection of the embedding generated by the Linear
Discriminant Analysis, with the subject categories being the class labels. As is the case for
the undirected graphs, Glove and node2vec strongly capture the temporal information.
By contrast, r2v-dcSBM better delineates the subject categories more clearly than Glove
and node2vec. In the embedding generated by r2v-config, node similarity—measured
by the cosine similarity of the embedding vectors—is relatively independent of the degree
and year compared to the embedding generated by Glove, node2vec, and r2v-dcSBM
(Fig. 4C).

We predict the journals’ impact factor and subject categories using the k-means al-
gorithm with 5-cross validations. Although all methods predict worse compared to the
embedding of the undirected graph, r2v-config best predicts the disciplines and impact
of journals (Fig. 4D).

3.7 Web of Science citation graph
We construct a citation graph of journals using the citation data taken from the Web
of Science (WoS) in 2020. The dataset contains bibliographic information including
1, 547, 459, 602 citations among 496, 833, 161 papers published from 28, 495 journals in
years between 1900 and 2019 in various research fields. We retrieve the subject category
of each journal from the three journal collections, i.e., Science Citation Index Expanded
(SCIE), Social Sciences Citation Index (SSCI), and Arts & Humanities Citation Index
(AHCI). Each collection has a different category scheme. If a journal is indexed in mul-
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Figure 4: Embedding of the directed journal citation graph constructed from the WoS. (A,
B) A 2d projection of 128-dimensional embedding by the Linear Discriminant Analysis.
(C) Dependence of node similarity on nodes’ degree and year. (D) By using the k-nearest
neighbor algorithm, the embedding by r2v-config best predicts the impact factor and
subject category.
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tiple collections, we choose the largest collection and use its subject category for the
journal. If the journal has multiple subjects within the chosen collection, we go through
the table of the collection from the first to the last rows and use the one that first appears
in the table.

3.8 Code
We implemented DeepWalk and node2vec using gensim package [12], with the same
parameters used in the paper of node2vec [5]. We used Glove implemented in glove-
python package [9]. We used GCN and GraphSAGE implemented in StellarGraph [2] and
trained them using negative sampling.

3.9 Hardware
We ran experiments using a single machine with 64 Intel(R) Xeon(R) Gold 5218 CPU
and 1Tb of RAM.
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