
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FAST AND NOISE-ROBUST DIFFUSION SOLVERS FOR
INVERSE PROBLEMS: A FREQUENTIST APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have been firmly established as principled zero-shot solvers for
linear and nonlinear inverse problems, owing to their powerful image prior and ease
of formulation as Bayesian posterior samplers. However, many existing solvers
struggle in the noisy measurement regime, either overfitting or underfitting to the
measurement constraint, resulting in poor sample quality and inconsistent perfor-
mance across noise levels. Moreover, existing solvers rely on approximating x0 via
Tweedie’s formula, where an intractable conditional score is replaced by an uncon-
ditional score network, introducing a fundamental source of error in the resulting
solution. In this work, we propose a novel frequentist’s approach to diffusion-based
inverse solvers, where each diffusion step can be seen as the maximum likelihood
solution to a simple single-parameter conditional likelihood model, derived by an
adjusted application of Tweedie’s formula to the forward measurement model. We
demonstrate that this perspective is not only scalable and fast, but also allows for a
noise-aware maximization scheme with a likelihood-based stopping criterion that
promotes the proper noise-adapted fit given knowledge of the measurement noise
σy. Finally, we demonstrate comparable or improved performance against a wide
selection of contemporary inverse solvers across multiple datasets, tasks, and noise
levels.

1 INTRODUCTION

In this work, we study a broad class of problems involving the recovery of a signal x from a
measurement

y = A(x) + η. (1)

with noise η and measurement operator A. Known as inverse problems, such formulations appear
in a multitude of fields, with applications including acoustic reconstruction (Kac, 1966), seismic
profiling (Hardage, 1985), X-ray computed tomography and magnetic resonance imaging (Suetens,
2017), and a large number of computer vision reconstruction tasks such as inpainting, deconvolution,
colorization, super-resolution, and phase retrieval (Andrews and Hunt, 1977).

In many cases, A is assumed to be non-invertible1, meaning that any solution x satisfying A(x) = y
is not unique (Vogel, 2002). Moreover, due to noise in the measurement, it is often mathematically
possible, but not practically desirable to fit perfectly to y for risk of overfitting to η (Aster et al.,
2018). Therefore, a fundamental quandary in solving inverse problems is how one should select the
best solution from an equivalence class of solutions, i.e., choosing x∗ ∈ {x : A(x) ≈ y}.
In classical solvers, this is carried out by a regularizer on a normed error loss (Engl et al., 1996). One
seeks

x∗ = argmin
x

R(x) s.t. ||A(x)− y|| ≤ ϵ, (2)

where ϵ is a soft error margin and R is a simple function that satisfies user-specified heuristics, e.g.,
smoothness or total variation (Beck and Teboulle, 2009). However, such approaches often fail to
produce realistic results, as R lacks the ability to reconstruct details lost byA. With the advent of deep

1We note there do exist a number of operators A of interest that are theoretically invertible, but practically
non-invertible. For example, Gaussian blurs only become low-rank when the convolved image is truncated at the
edges due to bounded image sizes.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

generative models, practitioners found that restricting solutions to the range of a generative model G
can greatly improve realism. Here, one may let x = G(w) and optimize over w, which can be latent
inputs (Bora et al., 2017) or weights (Ulyanov et al., 2018) of a deep neural network. Overall, these
methods improve the fidelity of x, but they lack interpretability and require a judiciously selected R
and ϵ.

Figure 1: An uncorrected x0 estimate
at time t versus our estimate. Diffusion-
based inverse problem solvers use an ap-
proximation of x0 to guide the diffusion
process at each step (Section 3). How-
ever, using Tweedie’s formula (Equation
4) with the score of the unconditional den-
sity p(xt) may yield a low quality approx-
imation of x0. To remedy this, we use the
score of data-conditional density p(xt|x0)
obtained via a noise-aware maximum like-
lihood estimation framework (Section 4),
yielding a superior estimate of x0.

Recently, great strides have been made in solving in-
verse problems with diffusion models (Ho et al., 2020),
which produce diverse, realistic samples (Dhariwal and
Nichol, 2021; Esser et al., 2024) with robust generaliza-
tion guarantees (Kadkhodaie et al., 2023). Moreover,
they are interpretable, directly modeling the (Stein) score
∇ log pt(xt). Sampling proceeds by reversing a noising
process on x0 ∼ pdata roughly described (in black) by

xt−1 = denoise[xt,∇ log pθ(xt)] + guidance.
(3)

Solvers then add a guidance term to lead xt towards
desirable solutions. While already effective, this ap-
proach suffers from a unique problem where a tractable
form of the consistency error ||A(x) − y|| only exists
for x = x0 (Chung et al., 2022a). Such methods thus
rely (explicitly or implicitly via (Song et al., 2020a)) on
Tweedie’s formula, which predicts E(x0|xt), to estimate
x0 given a noise prediction ϵcorrected

x̂0[ϵcorrected] =
1
√
αt

(xt − σtϵcorrected) . (4)

This enables an estimate of ||A(x)−y|| at time t, which
can produce a gradient that propagates the error back to
xt.

We identify two issues with this framework in our work.
First, we discover that the guidance obtained by this
simple scheme can produce highly overfit models that
generalize poorly given noisy measurements (Figures
4 and 5). Second, examining the conditions required
for Eq. 4 to hold, we find that they are not gener-
ally true when using the unconditional score function
∇ log pt(xt) ≈ sθ(xt, t) and related quantity unconditional noise function ϵθ(xt, t), modeled in
general diffusion models (Section 3)2. On the other hand, we observe that it does hold when modeling
the data-conditional score∇ log pt(xt|x0) and its related ϵcorrected. This term plays a crucial role
during diffusion model training as a function of the data-dependent diffusion process centered at
each x0 ∼ pdata, but is generally intractable during sampling. Surprisingly, in inverse problems, the
extra information present in y allows this term to be recovered to great accuracy by simple maximum
likelihood estimation with the measurement model, thus allowing the estimation of a y-conditional
Tweedie’s posterior E(x0|xt,y).

Contributions We propose a novel frequentist’s framework for solving inverse problems by directly
sampling with a data-conditional score. We demonstrate that the maximum likelihood estimator for
this score captures all the information present in the measurement y, and propose a noise-aware
maximization scheme to recover it even under significant measurement noise where many other
algorithms fail (Figure 5). This data-conditional score can then be directly used during sampling in
lieu of the unconditional score, resulting in a simple algorithm that requires no backpropagations
through the neural function and is stable across noise levels and time steps, due to the noise-aware
maximizer and linearity of the data-conditional diffusion respectively. Finally, we demonstrate

2Note that score functions ∇ log pt(xt) ≈ sθ(xt, t) and noise predictions ϵθ(xt, t) are interchangeable via
the relation ϵθ = −σtsθ .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: A demonstration of our proposed sampling algorithm on the super-resolution task. An
initial noise prediction ϵθ is corrected by the solution ϵy of a noise-aware maximization scheme of the
measurement likelihood p(y|xt, ϵy). This results in the corrected data-conditional noise prediction
(ϵθ + ϵy) ≈ −σ−1

t ∇ log pt(xt|x0). For details see Section 4.

significant speed-ups over existing inverse solvers, while achieving state-of-the-art performance on a
large selection of inverse problems, datasets and noise levels3.

2 BACKGROUND AND RELATED WORK

2.1 DIFFUSION MODELS

Inspired by non-equilibrium thermodynamics, denoising diffusion probabilistic models (Ho et al.,
2020) convert data x0 ∼ pdata(x) to noise xT ∼ N (0, I) via a diffusion process described by the
variance-preserving stochastic differential equation (VP-SDE)

dx = −β(t)

2
xdt+

√
β(t)dw, (5)

where β(t) : R→ [0, 1] is a monotonically increasing noise schedule and w is the standard Wiener
process (Song et al., 2020b). This leads to the marginal distribution

pt(xt) = Ex0∼pdata

[
N (xt;

√
αtx0, (1− αt)︸ ︷︷ ︸

σ2
t

I)
]
, αt = e−

1
2

∫ t
0
β(s)ds, (6)

whereN (· ;µ,Σ) is the probability density function (pdf) of a normal distribution centered at µ with
covariance Σ. Sampling from pdata(x) can then occur by modeling the reverse diffusion, which has a
simple form given by (Anderson, 1982)

dx =

[
−β(t)

2
x− β(t)∇x log pt(xt)

]
dt+

√
β(t)dw, (7)

with reverse-time Wiener process w and score function∇x log pt(xt). Therefore, diffusion model
training consists of approximating the score function with a model

sθ(xt, t) ≈ ∇x log pt(xt), (8)

and sampling consists of obtaining solutions to the reverse-time SDE (7) with numerical solvers. A
simple approach is given by the DDIM sampler with σt =

√
1− αt (Song et al., 2020a)

xt−1 =
√
αt−1

xt + σ2
t∇ log pt(xt)√

αt
+ σt−1ϵ. (9)

3Code for method and experiments provided in https://anonymous.4open.science/r/
diffusion_conditional_sampling

3

https://anonymous.4open.science/r/diffusion_conditional_sampling
https://anonymous.4open.science/r/diffusion_conditional_sampling

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: Estimated x0 given xt at different times t using a
Tweedie’s prediction of x0 with (a) the unconditional score versus
(b) the data-conditional score via our maximum likelihood estima-
tor. With the unconditional score, Tweedie’s formula predicts the
posterior mean of the dataset, rather than a sample x that satisfies
A(x) = y, especially at T ≫ 0 (Section 3).

Figure 4: Comparison of
goodness of fit for a super-
resolution task. The best fit
must balance between the mea-
surement y and the data bias
to achieve a good fit.

2.2 SOLVING INVERSE PROBLEMS WITH DIFFUSION MODELS

When solving inverse problems with diffusion models, the aim is to leverage information from y to
define a modified reverse diffusion process

xT ,xT−1, . . . ,x1,x0, (10)

such that xt coincides with the desired x (Eq. 1) precisely at t = 0. Previous approaches can generally
be sorted into two categories, which we designate posterior solvers and projection solvers.

Posterior Solvers An intuitive approach is leveraging Bayes’ rule to sample from the posterior
distribution given a prior pt(xt) and observation y:

xt ∼ p(xt|y) =
p(y|xt)p(xt)

p(y)
. (11)

Taking logs and gradients of both sides of the equation, we obtain a form of the conditional density
that can be accurately approximated with the modeled score function

∇ log p(xt|y) = ∇ log p(y|xt) +∇ log p(xt) ≈ ∇ log p(y|xt) + sθ(xt, t), (12)

and describes the core method of the DPS algorithm (Chung et al., 2022a). This strategy can also be
extended to latent diffusion models, resulting in Latent-DPS and PSLD (Rout et al., 2023). Generally,
the conditional term∇ log p(y|xt) cannot be exact due to reasons we will investigate subsequently
in Section 3, though these approximations are improved in LGD (Song et al., 2023) and STSL
(Rout et al., 2024). More recent works (Sun et al., 2024) propose an annealed Monte-Carlo-based
perspective to posterior sampling, which results in a very similar algorithm to DPS. Much like
MCG and ReSample (discussed in the next category), posterior solvers require estimating ∂

∂xt
x0

which involves backpropagation through the diffusion model, and significantly increases runtime and
hampers scalability compared to unconditional sampling.

Projection Solvers Another approach involves guiding the reverse diffusion process by directly
projecting xt onto a manifoldM = {x : A(x) = y} ⊆ Rd at each time step, i.e.

x′
t = Px̂0[xt] (13)

xt−1 =
√
αt−1

x′
t + σ2

t∇ log p(x′
t|x̂0[xt])√

αt
+ σt−1ϵ. (14)

Where x̂0[xt] is some prediction of x0 given only xt (we elaborate in Section 3), and P is either a
projection onto the low rank subspace or range of A. The resulting algorithms are DDRM (Kawar
et al., 2022) and DDNM (Wang et al., 2022), respectively. Of course, this strategy is often restricted

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 5: A demonstration of the variability in reconstruction quality across noise levels (σy ∈
{0.01, 0.1, 0.5}) of many diffusion-based solvers. While DPS approaches the robustness of our
method, it is significantly more expensive, requiring gradients of the score network and more than
3× memory cost. More examples in Appendix D.

to situations where two conditions simultaneously hold true: (1) the measurement operator A is
linear, and (2) the inverse problem is noiseless, i.e, η is identically 0. These assumptions drastically
limit the applicability of such models. The linearity restriction can be lifted by taking derivatives
the measurement discrepancy, as in MCG (Chung et al., 2022b) and ReSample (Song et al., 2024),
though this comes at the cost of significantly increased computation, requiring ∂

∂xt
x0 which involves

backpropagating through the score network. Finally, (Cardoso et al., 2023) straddles the line between
both categories — while MCGdiff is ostensibly a Bayesian solver, it bears greater resemblance to
projection solvers since it does not form the decomposition in Eq. 12 and also samples by projecting
each iterate to the null-space of A, thus implementing a projected n-particle sequential monte carlo
(SMC) sampling algorithm.

A Maximum Likelihood Solver We take a different perspective on solving the inverse problem.
As seen in Section 3, both projection and posterior solvers must quantify the discrepancy between
xt and y via the consistency error ||A(x0)− y|| at each diffusion step. Due to the complexity of the
diffusion process, this involves approximating a fundamentally intractable quantity. In Section 4, we
construct a simpler process whose parameters can be obtained via maximum likelihood estimation.
Unlike the evidence lower bound proposed in (Mardani et al., 2023), we derive an explicit likelihood
model, which is amenable to an optimization scheme with a probabilistic noise-aware stopping
criterion. Finally, we show that the resulting algorithm is simple, fast, and adaptable to noise.

3 REVISITING TWEEDIE’S FOR INVERSE PROBLEMS

Diffusion-based inverse problem solvers (Section 2.2) face a fundamental computability paradox:
since the consistency error is only explicitly known at t = 0 via the likelihood function

p(y|x0) ∝ exp

(
− 1

2σ2
y

||y −A(x0)||22
)

(15)

we cannot exactly guide the diffusion process dxt at time t > 0 without solving for x0. However,
we also cannot generally obtain x0 without first computing xt. Accurately estimating x̂0 ≈ x0 is a
fundamental problem all solvers must contend with to function properly.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Diffusion Conditional Sampler

1: Input: y,A, ϵθ | Output: x0

2: xT ∼ N (0, I)
3: for t = T to 1 do
4: ϵ ∼ N (0, I)
5: ϵy ← arg nam

ϵy

pt

(
y|xt+σ2

t (ϵθ+ϵy)√
αt

)
6: xt−1 ←

√
αt−1

xt−σt(ϵθ+ϵy)√
αt

+ σt−1ϵ

7: end for

Algorithm 2 Noise-aware Maximization (nam)

1: Input: y,A,xt, ϵθ | Output: ϵy
2: ϵy ← 0
3: x̂← Tweedie’s(xt, ϵθ + ϵy)
4: while 2Φ[−||y −A[x̂]||11/(dσy)] < σt do

5: ϵy ← ϵy + η∇logpt
(
y|xt+σ2

t (ϵθ+ϵy)√
αt

)
6: x̂← Tweedie’s(xt, ϵθ + ϵy)

7: end while

In posterior solvers, this culminates in the computation of∇ log p(y|xt), which is approximated by
∇ log p(y|x̂0). In projection solvers, this is the projection step Pxt, which is driven by a projection
on x̂0, followed by a DDIM step (Song et al., 2020a) that involves x̂0. In both cases, one turns to
an estimator based on Tweedie’s formula, which provides a simple approximation for x0 given the
current xt.

Lemma 3.1 (An approximation of x0 inspired by Tweedie’s formula). Let x0 be given. Suppose xt

is distributed as
pt(xt|x0) = N (xt;

√
αtx0, 1− αt︸ ︷︷ ︸

σ2
t

I). (16)

Then x0 can be recovered via

x0 =
1
√
αt

[
xt + σ2

t∇xt
log pt(xt|x0)

]
. (17)

A key detail in the above statement is that predicting x0 with Tweedie’s formula requires a normally
distributed xt, rather than the (usually highly multi-modal) data distribution pdata modeled by a
diffusion model (or its noisy counterpart, convolved against a normal distribution with variance σ2

t).
The reliance on this assumption becomes clear in the simple proof (in Appendix A) — observe that
the cancellations in the last equality require the linear form of the Gaussian score to hold true. In fact,
this is a necessary and sufficient condition for Eq. 17 to hold.

Theorem 3.2. Tweedie’s formula predicts x0 if and only if xt is distributed as a simple isotropic
Gaussian.

In practice, Theorem 3.2 exposes potential sources of instability which may arise when Tweedie’s
formula is directly used without adjustment to approximate the endpoint of the reverse process. While
at t ≈ 0, pt(x0|xt) may approach an isotropic Gaussian, at large t ≫ 0 we expect Tweedie’s to
instead predict the expectation over all "nearby" data, i.e., the posterior mean:

Ext∼pt
[x0|xt], (18)

with a neighborhood that grows to encompass all pdata itself at t ≈ T . This phenomenon is visible
in Figure 3, where at larger values of t, the fidelity of the estimated x0 is very poor, indicating less
stable sampling. The underlying reason is that this estimator of x0 cannot be a sufficient statistic for
(x0|xt,y), but rather of only (x0|xt), since y is never considered in the approximation. Therefore,
the information in y could still be leveraged for improving this approximation in the context of our
inverse problem task — and carefully in the noisy regime to prevent overfitting. This motivates the
method we outline in the following section.

4 DIFFUSION CONDITIONAL SAMPLING

We propose Diffusion Conditional Sampling (DCS), a novel framework for solving inverse problems
with diffusion models. We sample from the solution set {x : A[x] = y} of an inverse problem
by leveraging a noise-aware maximization scheme, and obtain the maximum likelihood estimator
of a simple single-parameter noisy measurement model. This measurement model is formed by

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

combining Eqs. 15 and 17, resulting in a closed form expression in terms of the data-conditional
score ∇ log pt(xt|x0) and consistency error ||A(x)− y|| at each step:

log p(y|x0(ϵy,xt)) ∝ −
1

2σ2
y

∣∣∣∣∣∣∣∣y −A(
1
√
αt

[xt + σ2
t∇xt

log pt(xt|x0)]

)∣∣∣∣∣∣∣∣2
2

. (19)

We note that pt(xt|x0) is a Gaussian distribution, meaning that the application of Tweedie’s formula
in Eq. 19 will exactly recover x0 (Theorem 3.2). Thus, defining

∇ log pt(xt|x0) = −σ−1
t [ϵθ(xt, t) + ϵy], (20)

we can solve for our single parameter ϵy by maximizing the joint likelihood between the measurement
y and our parameter ϵy. This forms our data-conditional score estimate scorrected =

−σ−1
t

[
ϵθ(xt, t) + argmax

ϵy

− 1

2σ2
y

∣∣∣∣∣∣∣∣y −A(
1
√
αt

(xt − σt[ϵθ(xt, t) + ϵy])

)∣∣∣∣∣∣∣∣2
2

]
, (21)

of the true data-conditional score ∇ log pt(xt|x0). This can be interchanged with the corrected noise
prediction via the relation ϵcorrected = −σtscorrected.

Given that Eq. 21 is an ill-posed optimization problem, we seek to sample from the solution set
{x : A[x] = y} given by the measurement y through a noise-aware maximization algorithm, which
we outline below. We then leverage our learned parametric model to sample xt−1 via the standard
DDPM sampling algorithm (Ho et al., 2020). Applying this step to each t = T, . . . , 1, we arrive
at our proposed DCS algorithm. Our approach is summarized in Algorithm 1. We note that it is
remarkably simple, and easily modified from the unconditional sampler in DDPM (Ho et al., 2020).
Additional details can be found in Appendix C. Below, we discuss two critical components of our
proposed algorithm.

Noise-aware Maximization We propose a noise-aware maximization scheme (nam) to improve
stability across noise levels. As previously discussed, we seek the data-conditional score (Eq. 21),
which can be understood as the maximum likelihood solution to the measurement model (Eq. 19).

However, given a single noisy measurement y = A[x] + η, there is a high risk of overfitting to noise
η (Figures 4 and 5). To mitigate this problem, we propose a maximization scheme with a specialized
early stopping criterion based on the measurement likelihood. We leverage the intuition that the
corrected data-conditional score should yield a prediction via Eq. 17 whose residual

res = y −A[x̂0] (22)
is normally distributed with variance σ2

y. In other words, res should come from the same distribution
as η. Let this be the null hypothesis H0 — we thus seek to end the likelihood maximization process
as soon as H0 holds. Specifically, we optimize Eq. 19 until the likelihood of the alternate hypothesis
H1, that res is not distributed as η, is below a desired threshold pcritical. Since overfitting is more
problematic at the end of sampling (t ≈ 0) than the beginning of sampling (t ≈ T), we set pcritical
dynamically as a function of t, namely pcritical(t) = σt. This scheme is heavily inspired by the
classical two-sided z-test (Hogg et al., 2013) with d samples, where d is the dimensionality of the
image. Formally, we use the early-stopping criterion at each time t

P (|ξ| > |res|
∣∣H0) = 2Φ(−|res|/σy) < σt, (23)

where ξi
iid∼ N (0, σ2

y) and Φ is the CDF of a standard normal distribution. The full noise-aware
maximization algorithm can summarized by Algorithm 2. Since our loss function (Eq. 19) is
quadratic, our proposed nam has worst-case linear convergence guarantees due to classical results in
gradient descent (Boyd and Vandenberghe, 2004; Ryu and Boyd, 2016).

Sufficiency We rigorously investigate the conditions under which DCS captures all the signal
present in the measurement y. Formally, we find that scorrected (resp. ϵcorrected) is statistically sufficient
for y. Letting f(y) be the function that obtains ∇ log pt(xt|x0) via Eq. 21, we show that y is
measurable under the σ-algebra induced by the measurement f . Intuitively, we demonstrate that f(y)
contains as much information as possible about the underlying signal x0 as can be gathered via y.
The theoretical and intuitive statements can be summarized by the simple conditional equivalence

p(y|ϵθ + ϵy) = p(y|x0). (24)
We prove in Theorem A.3, that ϵy is a sufficient statistic for x0 with measurement y under mild
regularity conditions on A and η.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: Qualitative comparison of our proposed method against competing works on FFHQ
256×256-1K (left) and ImageNet 256×256-1K (right). Further comparisons can be found in Ap-
pendix D.

4.1 EFFICIENCY

We discuss the computational efficiency of our algorithm in two respects: removing the need to
compute expensive gradients of the score function, and improved convergence due to the linearity of
the data-conditional diffusion process.

Figure 7: A study on the effect of T on solver per-
formance. While other approaches exhibit poor
performance due to the nonlinearity of the origi-
nal reverse diffusion process, our method remains
nearly invariant to T due to the near-linearity of
the data-conditional diffusion process.

No Expensive ∇sθ(xt, t) Evaluations A
drawback of many existing algorithms is the
need to compute gradients of the score network
during sampling (Table 2). This is the most
expensive computation in the diffusion step, in-
creasing the runtime of the algorithm by 2-3×.
However, this is unavoidable in posterior solvers.
Projection solvers sidestep this issue by fram-
ing a diffusion process in a subspace of A —
however, this cannot be done when A is nonlin-
ear. To our knowledge, our algorithm is the only
algorithm that can handle nonlinear operators
without requiring backpropagations through the
score network. We note that the most similar
algorithm is ReSample. However, as discussed
in Appendix C.4, ReSample still requires back-
propagations in its implementation, even though
this is not discussed in the paper.

A Near-Linear Reverse Process As DCS models ∇ log pt(xt|x0), it is able to sample approx-
imately from the data-conditional reverse diffusion process, which reverses the forward process
defined in Eq. 6. In the ideal scenario, this process is Gaussian, meaning that Tweedie’s exactly
recovers x0, and the diffusion process can be solved in a single step. In reality, our approximation
of this process is correct up to the information about x0 present in y (Theorem A.3), under the
assumptions detailed in the previous section.

In Figure 7, we experimentally validate the robustness of our algorithm to the total diffusion steps
(T) with the super-resolution task on a subset of the FFHQ 256× 256 dataset. We compare against
DPS, DPS-JF, and DDNM at σy = 0.05.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

FFHQ SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.01 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.137 30.138 19.45 0.024 34.839 21.19 0.088 25.112 19.25 0.103 28.688 22.62 0.087 29.480 26.67
DPS 0.163 25.908 33.21 0.105 29.539 29.72 0.113 23.521 24.41 0.129 26.484 26.85 0.159 24.411 29.84
DPS-JF 0.488 14.193 44.98 0.335 19.566 58.45 0.178 20.118 28.10 0.211 23.063 34.42 0.289 19.927 40.94
DPS-JF (T = 100) 0.589 9.473 41.24 0.578 10.072 42.06 0.571 10.618 43.08 0.563 10.859 43.77 0.566 10.922 41.26
LGD-MC-JF 0.566 10.502 41.25 0.537 12.154 43.85 0.497 13.811 46.40 0.452 15.569 46.22 0.457 15.466 46.08
LGD-MC-JF (T = 100) 0.593 9.346 40.60 0.587 9.688 40.99 0.581 10.126 42.30 0.574 10.273 40.59 0.574 10.364 40.51
MCG 0.144 24.838 31.47 0.073 30.592 22.22 0.453 15.444 185.54 0.209 23.512 67.88 0.217 22.930 292.13
DDNM 0.208 26.277 51.33 0.040 33.076 23.35 0.209 18.118 88.32 0.235 26.086 71.47 0.424 14.221 250.92
DDRM 0.502 13.002 222.45 0.393 15.935 163.91 0.472 12.148 209.18 - - - - - -

Latent-DPS 0.324 20.086 100.27 0.249 22.64 297.43 0.227 22.184 211.23 0.390 25.608 321.5 0.950 -6.753 354.95
PSLD 0.311 20.547 42.26 0.250 22.84 214.08 0.221 22.23 204.87 0.200 23.77 318.20 0.213 23.277 359.40
STSL 0.614 16.063 327.38 0.476 17.859 190.64 0.436 11.843 190.64 0.583 15.196 364.07 0.604 10.095 388.68
ReSample 0.221 24.699 48.87 0.467 22.488 96.89 0.247 20.852 50.3 0.191 27.151 46.5 0.281 25.138 65.06

FFHQ SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.1 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.1748 24.879 30.107 0.1490 27.536 32.800 0.1631 23.217 26.444 0.1763 25.955 26.083 0.2238 24.612 31.400
DPS 0.1847 24.786 35.455 0.1566 26.717 35.238 0.1583 22.576 32.469 0.1797 24.720 33.530 0.2107 22.412 35.086
DPS-JF 0.494 14.111 46.59 0.371 18.310 56.49 0.226 19.451 34.02 0.246 21.808 35.53 0.342 18.339 40.70
DPS-JF (T = 100) 0.589 9.432 40.82 0.582 9.900 39.58 0.572 10.552 42.90 0.564 10.894 42.36 0.568 10.943 42.44
LGD-MC-JF 0.557 11.208 44.86 0.511 13.265 49.07 0.452 15.243 48.68 0.396 17.434 46.76 0.400 17.301 45.53
LGD-MC-JF (T = 100) 0.594 9.324 41.06 0.589 9.655 41.65 0.580 10.107 42.97 0.578 10.334 41.84 0.574 10.312 41.53
MCG 0.5464 20.441 102.60 0.2272 26.000 50.403 0.5791 15.297 207.23 0.4293 25.801 69.287 0.9729 -7.104 295.32
DDNM 0.6230 21.493 145.889 0.179 24.964 39.183 0.334 19.195 72.105 1.220 10.727 176.756 0.739 5.099 524.021
DDRM 0.7853 6.3273 271.70 0.6018 10.995 255.95 0.6323 9.6360 288.11 - - - - - -

Latent-DPS 0.3444 19.971 45.052 0.4455 18.117 109.83 0.6410 11.365 326.75 0.6398 13.762 330.93 0.6360 12.524 334.43
PSLD 0.3481 19.251 47.864 0.3105 20.588 41.737 0.3121 19.874 40.428 0.2897 21.068 36.600 0.3307 19.224 40.374
STSL 0.3161 20.279 40.163 0.3722 19.247 54.648 0.5481 13.864 183.00 0.5137 16.411 169.32 0.5188 15.463 163.65
ReSample 0.2613 24.184 50.224 0.5267 21.575 103.62 0.2789 20.581 53.263 0.2984 23.980 56.489 0.6456 19.912 110.42

ImageNet SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.01 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.238 23.452 39.41 0.142 26.063 34.46 0.230 20.625 37.11 0.253 24.218 38.96 0.203 24.619 38.63
DPS 0.309 23.994 49.81 0.266 25.054 38.87 0.301 18.764 34.85 0.493 19.138 61.59 0.460 18.645 53.21
MCG 0.638 15.619 89.39 0.198 24.343 35.19 0.273 16.675 80.35 0.645 21.177 124.61 0.980 -5.726 231.11
DDNM 0.333 25.159 51.33 0.084 28.345 20.27 0.258 17.424 85.41 0.456 24.351 67.98 0.694 5.721 304.21
DDRM 0.907 6.592 277.81 0.835 10.145 215.77 0.758 11.695 198.83 - - - - - -

Latent-DPS 0.642 17.973 144.82 0.603 19.881 144.81 0.751 11.964 138.33 0.805 10.532 139.62 0.821 10.697 150.49
PSLD 0.380 22.690 168.08 0.306 24.167 125.25 0.330 18.290 156.30 0.397 23.076 134.18 0.453 21.576 187.21
STSL 0.617 19.682 143.62 0.599 20.500 137.09 0.832 9.560 170.93 0.869 8.708 183.38 0.882 8.527 195.74
ReSample 0.552 20.260 133.42 0.820 17.775 229.82 0.504 16.795 138.97 0.513 21.578 116.04 0.573 20.430 145.67

ImageNet SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.1 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.4015 22.988 48.211 0.1655 26.043 34.469 0.2428 19.697 46.026 0.4068 22.283 51.131 0.4348 20.428 61.48
DPS 0.5397 18.630 85.063 0.5056 20.101 82.737 0.4789 18.033 83.059 0.4124 20.566 65.066 0.4499 18.905 75.652
MCG 0.8858 14.008 145.06 0.4591 19.915 78.863 0.4327 15.634 123.96 0.6502 22.004 117.43 0.9836 -6.868 231.30
DDNM 0.7509 20.978 133.28 0.1693 25.634 35.718 0.4001 18.064 110.78 1.2209 9.6021 202.74 0.7825 5.0091 350.13
DDRM 0.9852 5.9810 425.77 0.9365 7.3908 358.10 0.8412 8.6456 240.95 - - - - - -

Latent-DPS 0.7257 15.676 147.65 0.7973 9.4153 146.69 0.7980 9.3345 146.51 0.7988 9.3032 193.84 0.8525 9.1369 170.08
PSLD 0.4731 20.875 130.99 0.6068 19.668 145.51 0.7028 13.909 146.74 0.7372 14.181 139.90 0.7504 13.767 149.75
ReSample 0.6514 18.997 155.26 0.9654 13.612 281.82 0.5980 15.843 168.06 0.6814 19.233 173.72 1.0461 15.249 223.52

Table 1: Quantitative experiments on FFHQ 256x256-1K and ImageNet-1K datasets across various
inverse problem tasks and noise levels (σy ∈ {0.01, 0.1}). We compare against pixel-based solvers
(upper half) and latent-based solvers (lower half).

5 EXPERIMENTS

We examine the empirical performance of DCS across a variety of natural image based inverse
problems. We build a baseline by comparing across a range of state-of-the-art methods that operate
in the pixel space and methods which employ latent diffusion models, all detailed in Table 2.

Quantitatively, we use a set of metrics to evaluate the quality of signal recovery: Learned Perceptual
Image Patch Similarity (LPIPS), peak signal-to-noise ratio (PSNR), and Frechet Inception Distance
(FID).

We run DCS and the other methods listed in Table 2 on the FFHQ-256 (Karras et al., 2019), (Kazemi
and Sullivan, 2014), ImageNet (Deng et al., 2009), and CelebA-HQ (Liu et al., 2015) datasets. For
FFHQ and CelebA-HQ, we use the pretrained FFHQ model weights from (Chung et al., 2022a) for
pixel space models, and the pretrained FFHQ model with a VQ-F4 first stage model (Rombach et al.,
2022) in latent space models. For ImageNet, we again use pretrained model weights from (Chung
et al., 2022a) in pixel-based diffusion solvers, and the Stable Diffusion v1.5 latent model for latent
solvers.

We examine five operator inversion tasks: Super-Resolution, Gaussian Deblurring, Motion Deblurring,
Random Inpainting, and Box Inpainting. All experiments were run with additive Gaussian noise with
standard deviation σy = 0.01 (we present results at a higher noise level in Section 5.1). We also
present quantitative results on FFHQ and ImageNet in Table 1, and a qualitative comparison in Figure
6. We delegate experiments on CelebA, subsets of FFHQ used in other works, further qualitative
comparisons, and details of the implementation to Appendix B, C and D.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 8: Comparison of DCS per-
formance with different optimizers.
LPIPS score of the predicted x0 im-
ages is plotted against the natural
log of learning rate scaling factor
for each optimizer.

Solver Type Space No NFE
Backprop Runtime Memory

DPS (Chung et al., 2023) Posterior Pixel ✗ 6x 3.2x
DPS-JF Posterior Pixel ✓ 1.5x 1.1x
LGD-MC-JF (n=10) Song et al. (2023) Posterior Pixel ✗ 2x 1.1x
MCG (Chung et al., 2022b) Projection Pixel ✗ 6.1x 3.2x
DDNM (Wang et al., 2022) Projection Pixel ✓ 1.75x 1x
DDRM (Kawar et al., 2022) Projection Pixel ✓ 1.75x 1x
Latent-DPS4 Posterior Latent ✗ 6.1x 8.9x
PSLD (Rout et al., 2023) Posterior Latent ✗ 7.5x 15x
STSL (Rout et al., 2024) Posterior Latent ✗ 1.85x 9x
ReSample (Song et al., 2024) Projection Latent ✓5 29.5x 8.95x
DCS (Ours) Hybrid Pixel ✓ 1x 1x

Table 2: Description of existing solvers used for comparison.
For each solver we list the type (as described in Section
2.2), optimization space (pixel or latent), whether it requires
backpropagation through a neural function evaluation (NFE,
i.e., the score network call), as well as runtime and memory
footprint.

We find that DCS either outperforms, or is comparable to all existing methods. While some methods
have strong points and fail to recover the signal at other times, DCS is relatively consistent across
these experiments. For example, DCS is one of few methods that has reasonable results on Motion
Deblurring. DDNM, on the other hand, is very powerful across inpainting tasks in general, but fails
to perform Motion Deblurring and has underwhelming qualitative performance on many other tasks.
We note that some methods underperform in our benchmarks compared to the results in their papers’:
DDNM and PSLD due to the presence of noise in our benchmarks, and STSL and Resample for
reasons we discuss in Appendix C.

We also notice that DCS provides a very significant speedup and memory footprint reduction
compared to all methods, as notated in Table 2. We achieve this by not requiring backpropagation of
the score network, as well as limiting the required number of neural function evaluations by using the
more precise form of Tweedie’s formula.

5.1 HIGHER NOISE LEVEL

We run identical benchmarks to the previous section, but at a higher noise level σy = 0.1. We display
the results for the FFHQ and ImageNet datasets in Table 1. We again see DCS achieve comparable or
superior results at every task. Projection methods such as DDNM and DDRM further deteriorate,
as they overfit and attempt to reproduce the noise. Other methods such as PSLD do not degrade as
much, however we can see from qualitative examples that they are likely underfitting in all regimes,
and therefore only gain noise-robustness by sacrificing performance at lower noise levels. Both DCS
and DPS strike a much clearer balance between overfitting and underfitting, which is apparent from
quantitative results as well as qualitative results in Figures 5 and 6.

5.2 ABLATION ON THE NOISE-AWARE MAXIMIZATION OPTIMIZER

We investigate how the choice of optimizer and parameters affects the noise-aware maximization
algorithm in DCS. We note that the flexibility of using an optimizer enables us to make use of
a frequentist stopping criterion as detailed in Section 4. In Figure 8 we run DCS with AdamW
Loshchilov et al. (2017), SGD with momentum, and vanilla SGD to solve the SRx4 task on a subset
of FFHQ. Runs of each optimizer at learning rate scaling factors are displayed to show the best
performance, ensuring a fair comparison. It is clear in Figure 8 that the addition of a momentum term
to the optimization process (both present in AdamW and SGD with momentum) can attain a higher
level of image fidelity and solver stability than vanilla SGD. This provides empirical evidence for
optimizer bias having an effect on solver performance in DCS. We see from this experiment that
AdamW produces the most consistent results across learning rates, which motivates its use in our
implementation.

3Latent-DPS is a direct application of DPS Chung et al. (2023) to latent diffusion models. It is also mentioned
in (Rout et al., 2023).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 CONCLUSION

We proposed an effective adjustment to the diffusion-based inverse problem solver framework in the
literature that improves speed and stability. Observing that the marginals of the diffusion process
which solves the inverse problem is Gaussian distributed at each time t, we derived a simple, single-
parameter likelihood model, whose sole unknown variate may be obtained via a tractable maximum
likelihood estimation algorithm. This casts a frequentist’s light on the inverse problem framework
in diffusion-based solvers, as opposed to the prevailing current of posterior and projection-based
perspectives. We leveraged this new perspective to create a noise-aware maximization scheme, and
demonstrated the effectiveness of our method via a suite of numerical experiments.

REFERENCES

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

Harry C Andrews and Bobby Ray Hunt. Digital image restoration. Prentice Hall Professional
Technical Reference, 1977.

Richard C Aster, Brian Borchers, and Clifford H Thurber. Parameter estimation and inverse problems.
Elsevier, 2018.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing using generative
models. In International conference on machine learning, pages 537–546. PMLR, 2017.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Gabriel Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, and Eric Moulines. Monte carlo guided
diffusion for bayesian linear inverse problems. arXiv preprint arXiv:2308.07983, 2023.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022a.

Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for
inverse problems using manifold constraints. Advances in Neural Information Processing Systems,
35:25683–25696, 2022b.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. International Conference on Learning
Representations, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Heinz Werner Engl, Martin Hanke, and Andreas Neubauer. Regularization of inverse problems,
volume 375. Springer Science & Business Media, 1996.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. arXiv preprint arXiv:2403.03206, 2024.

Bob A Hardage. Vertical seismic profiling. The Leading Edge, 4(11):59–59, 1985.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Robert V Hogg, Joseph W McKean, Allen T Craig, et al. Introduction to mathematical statistics.
Pearson Education India, 2013.

Mark Kac. Can one hear the shape of a drum? The american mathematical monthly, 73(4P2):1–23,
1966.

Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization
in diffusion models arises from geometry-adaptive harmonic representation. arXiv preprint
arXiv:2310.02557, 2023.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4401–4410, 2019.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. Advances in Neural Information Processing Systems, 35:23593–23606, 2022.

Vahid Kazemi and Josephine Sullivan. One millisecond face alignment with an ensemble of regression
trees. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1867–1874, 2014.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE international conference on computer vision, pages 3730–3738, 2015.

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5, 2017.

Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on solving
inverse problems with diffusion models. arXiv preprint arXiv:2305.04391, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 10684–10695, 2022.

Litu Rout, Yujia Chen, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, and Wen-Sheng
Chu. Beyond first-order tweedie: Solving inverse problems using latent diffusion. arXiv preprint
arXiv:2312.00852, 2023.

Litu Rout, Negin Raoof, Giannis Daras, Constantine Caramanis, Alex Dimakis, and Sanjay Shakkottai.
Solving linear inverse problems provably via posterior sampling with latent diffusion models.
Advances in Neural Information Processing Systems, 36, 2024.

Ernest K Ryu and Stephen Boyd. Primer on monotone operator methods. Appl. comput. math, 15(1):
3–43, 2016.

Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu, Qing Qu, and Liyue Shen. Solving inverse
problems with latent diffusion models via hard data consistency. arXiv preprint arXiv:2307.08123,
2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin
Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation.
In International Conference on Machine Learning, pages 32483–32498. PMLR, 2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Paul Suetens. Fundamentals of medical imaging. Cambridge university press, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yu Sun, Zihui Wu, Yifan Chen, Berthy T Feng, and Katherine L Bouman. Provable probabilistic
imaging using score-based generative priors. IEEE Transactions on Computational Imaging, 2024.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 9446–9454, 2018.

Curtis R Vogel. Computational methods for inverse problems. SIAM, 2002.

Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
null-space model. arXiv preprint arXiv:2212.00490, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL THEOREMS AND PROOFS

A.1 PROOFS FOR REPRODUCTION OF TWEEDIE’S APPROXIMATION

For completeness, we demonstrate necessity by including the proof for Lemma 3.1.

Proof (of Lemma 3.1).
1
√
αt

[
xt + σ2

t∇xt
log pt(xt|x0)

]
=

1
√
αt

[
xt −∇xt

σ2
t

1

2σ2
t

||xt −
√
αtx0||22

]
(25)

=
1
√
αt

[xt − (xt −
√
αtx0)] (26)

= x0. (27)

To demonstrate sufficiency, we show that the inverse of Lemma 3.1 also holds.
Lemma A.1 (A sufficient condition for Tweedie’s formula). If x0 can be recovered via Eq. 17, then
pt(xt|x0) takes the form Eq. 16.

Proof (of Lemma A.1). Suppose that

x0 =
1
√
αt

[
xt + σ2

t∇xt
log pt(xt|x0)

]
(28)

Then we may re-arrange terms, obtaining
√
αtx0 − xt

σ2
t

= ∇xt
log pt(xt|x0). (29)

Taking the anti-derivative of both sides, we conclude that

log pt(xt|x0) =
1

2σ2
t

||xt −
√
αtx0||22 + C. (30)

Since log pt(xt|x0) can only take this form when pt(xt|x0) is a simple isotropic Gaussian distribution,
we conclude our proof.

Proof (of Theorem 3.2). Observing that Lemmas 3.1 and A.1 are converses of each other, we demon-
strate that the conditions stated in Lemma 3.1 are necessary and sufficient.

A.2 THEOREMS FOR SUFFICIENCY

We set up Theorems to show that the estimator in Eq. 21 is a sufficient statistic under different
properties of A. Letting f(y) be the function that obtains ∇ log pt(xt|x0) via Eq. 21, we show that
y is measurable under the sigma algebra induced by the measurement f .

Intuitively, we demonstrate that f(y) contains as much information as possible about the underlying
signal x0 as can be gathered via y. The theoretical and intuitive statements can be summarized by
the simple conditional equivalence

p(y|ϵy∗) = p(y|x0). (31)
First, we consider two simple and theoretically similar cases: when y = A(x) is noise-free, and
when A is linear.
Theorem A.2 (ϵy∗ is a sufficient statistic). Let y = A(x0) + η be an observation from the forward
measurement model, and let

ϵy∗ = argmax
ϵy

log p

(
y

∣∣∣∣ 1
√
αt

(xt + σ2
t ϵy∗)

)
. (32)

Then
p(y|ϵy∗) = p(y|x0). (33)

given that either η = 0, or A is linear.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We now investigate the general noisy case where A is allowed to be nonlinear. We find that our
results can still be quite general: we only need to assumeA surjective, meaning that there exists some
x ∈ domain(A) such that A(x) = y. In fact, this result is slightly stronger — we are able to show
that optimality holds for A that are compositions of linear and surjective functions.

Theorem A.3. Let ϵy∗ be as defined in Theorem A.2. Suppose the twice-differentiable operator
A := PT ◦ ϕ is composed of P : Rd → Rr, a linear projection, and ϕ : Rn → Rr, an arbitrary
surjective function. We have that

p(y|ϵy∗) = p(y|x0). (34)

To prove Theorems A.2 and A.3, we establish the following Lemma which characterizes useful
information about x∗

0.

Lemma A.4. Suppose y ∈ Rk is fixed, xt ∈ Rn, with twice differentiable linear operator A : Rn →
Rk. Then, for ϵy = ∇xt

log pt(xt|x0) which maximizes p(y|x0), the following holds true:

1. if η = 0 (i.e. the noiseless regime), A(x0) = A(xt + σ2
t ϵy

∗)

2. if A is surjective, A(x0) = A(xt + σ2
t ϵy

∗)

3. if A is linear, ⟨y −A(xt + σ2
t ϵy

∗),A(xt + σ2
t ϵy

∗)−A(x0)⟩ = 0.

An interpretation of statement 3 reads that the optimal solution ϵy
∗ for estimating x0 is orthogonal to

the error to y in the linear case. The requirements of statement 3 may be relaxed to the statement
A(x)−A(z) is in the range of the Jacobian of A at z, however this is less intuitive than linearity.
We avoid invoking linearity of A as long as possible to illustrate the fact that other transformations
may share this property as well.

Proof (of Lemma A.4). We will make use of the bijective mapping z 7→ xt + σ2
t ϵy, and charactarize

the minima which maximize log p(y|x0). We can solve the optimization problem,

argmin
z

||y −A(z)||22

A minima to this objective can be characterized by he first order necessary condition,

∇z||y −A(z)||22 = −2Jz[A](z)T (y −A(z))
= −2Jz[A](z)T (A(x0)− η −A(z)) := 0.

We can confirm it is a minima by checking the solution of the above with,

Hz

[
||y −A(z)||22

]
(z∗) = 2∇z

[
Jz[A](z)T (A(x0) + η)

]
(z∗)

= 2Jz[A](z∗)TJz[A](z∗) +
k∑

j=1

Hz[A(j)](z
∗) (y −A(z∗))

≽ 0.

If η = 0, we have that A(x0) = y, and therefore choosing any A(z∗) = A(x0) satisfies the first
order condition. The second order condition is furthermore satisfied, as y −A(z∗) = 0, meaning,

Hz

[
||y −A(z)||22

]
(z∗) = 2Jz[A](z∗)TJz[A](z∗) ≽ 0.

This satisfies statement 1. Statement 2 is satisfied similarly, by choosing the same z. Note that this
case differs, in that z = x0 is no longer necessarily a valid solution.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Statement 3, is already satisfied in the cases whereA has rank equal to the dimension of its co-domain
(if d = n, this is equivalent to being full rank), since y −A(z∗) = 0. The more interesting case is
where A is low-rank.

To show orthogonality between y−A(z∗) andA(z∗)−A(x0) in other cases, we let η = δ+ δ⊥. We
can choose an optimal value for δ⊥ that satisfies δ∗⊥ = inf

δ⊥

{
||y −A(z∗)− δ⊥||22

}
, for the optimal

value, z∗. Due to the non-negativity and 0 preserving properties of norms, we have,

δ∗⊥ = y −A(z∗)
= A(x0) + η −A(z∗)
= A(x0) + δ∗⊥ + δ∗ −A(z∗)

=⇒ δ∗ = A(z∗)−A(x0).

At the optima of the original objective, z∗, the first order necessary condition dictates that,

Jz[A](z∗)T (y −A(z∗)) = Jz[A](z∗)T δ∗⊥ := 0.

For a linear A, the Jacobian is constant, so let Jz[A] = J. Therefore, JT δ∗⊥ = 0, meaning
δ∗⊥ ∈ N (JT).

Simultaneously, since δ∗ = A(x) − A(z∗) = A(x − z∗) = J(x − z∗), we have δ∗ ∈ R(JT).
Therefore do to the orthogonality of range and null spaces of matrix, ⟨δ∗⊥, δ∗⟩ = 0, completing the
proof.

We are now able to prove the theorems in the main text.

Proof of Theorem A.2. We leverage the theory of sufficient statistics to demonstrate our result.
Namely, if ϵy∗ is a sufficient statistic for y, then,

p(y|ϵy∗) = p(y|ϵy∗,x0) = p(y|x0). (35)

Therefore it suffices to demonstrate that ϵy∗ is a sufficient statistic for y.

By the Neyman-Fisher Factorization theorem, we have that a necessary and sufficient condition is if
there exists non-negative functions gθ and h such that

p(y|x0) = g(ϵy∗,x0)h(y). (36)

We observe that since η ∼ N (0, σ2
yI), our random variable y can be characterized by the density

function
p(y|x0) = N (y;µ = A(x0),Σ = σ2

yI). (37)

Therefore, letting yϵy∗
= A(1√

αt
(xt + σ2

t ϵy∗)), we can write

p(y|x0) = (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

||y −A(x0)||22
)

(38)

= (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

(
||y − yϵy∗

||22 + ||yϵy∗
−A(x0)||22 + 2⟨y − yϵy∗

,yϵy∗
−A(x0)⟩

))
(39)

= (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

||yϵy∗
−A(x0)||22

)
exp

(
− 1

2σ2
y

||y − yϵy∗
||22

)
, (40)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where the third equality is due to Lemma A.4. In the case that A is surjective, or the noiseless regime,
statements 2 and 1 respectively satisfy the equality above trivially, as y = yϵy∗

. If the operator is
otherwise linear, statement 3 shows the cross term vanishes.

Therefore, we can assign

g(ϵy∗,x0) = (2πσ2
y)

−n/2 exp

(
1

2σ2
y

||yϵy∗
−A(x0)||22

)
(41)

h(y) = exp

(
1

2σ2
y

||y − yϵy∗
||22

)
. (42)

In the case where the measurement process A(x) = y is noiseless, this implies h(y) = 1.

We now modify the argument in order to relax the linearity assumption.

Proof of Theorem A.3. Let z = 1√
αt

(
xt + σ2

t ϵy
)
, and z∗ = argmin

z
{||y −A(z)||}.

Since z∗ minimizes the objective ||y −A(z)||, we also have that,

ϕ(z∗) := argmin
α

{
||y −PT (α)||

}
= argmax

α
p(y|α).

We can invoke Lemma A.4 to say

||y −PTϕ(x0)||22 = ||y −PTϕ(z∗)||22 + ||PTϕ(z∗)−PTϕ(x0)||22,

since PT is a linear operator, and ϕ(z∗) satisfies the conditions in the lemma. Therefore, we have,

p(y|x0) = (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

||y −PTϕ(x0)||22
)

= (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

||y −PTϕ(z∗)||22
)
exp

(
− 1

2σ2
y

||PTϕ(z∗)−PTϕ(x0)||22
)
.

We assign terms,

g(z∗,x0) = (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

||PTϕ(z∗)−PTϕ(x0)||22
)

(43)

h(y) = exp

(
− 1

2σ2
y

||y −PTϕ(z∗)||22
)
, (44)

(45)

and once again invoke the Neyman-Fisher Factorization theorem to show z∗ is sufficient for y. Since
ϵy∗ is a bijective mapping from z∗, we have that ϵy∗ is sufficient, and similarly to Theorem A.2 we
state, p(y|ϵy∗) = p(y|ϵy∗,x0) = p(y|x0).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 9: A demonstration of our solver, DCS, solving two inverse problems on natural images from
the CelebA-HQ dataset. Motion blur (left), and box dropout (right) are examples of forward operators
that are non-invertible. We show further results in Section 5

B ADDITIONAL EXPERIMENTS

B.1 FURTHER NOISE EXPERIMENTS

FFHQ SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.2287 20.362 100.94 0.2067 22.999 89.312 0.2005 21.298 40.099 0.2109 24.009 82.132 0.2301 22.306 90.403

DPS 0.2000 22.588 92.791 0.2290 22.808 90.739 0.2118 20.278 81.491 0.2268 25.020 83.686 0.2479 20.767 91.972
DDNM 0.7812 9.8324 387.43 0.8721 15.573 233.15 0.9966 12.607 287.79 1.4475 3.5686 408.85 1.3328 3.1782 393.24

ReSample 0.5704 19.948 179.35 0.6892 20.014 200.06 0.4958 17.530 160.47 0.5409 21.166 162.40 0.6380 19.875 194.69

Table 3: Quantitative experiments on FFHQ 256x256-1K at σy = 0.5. We compare against pixel-
based solvers (upper half) and latent-based solvers (lower half).

B.2 SUBSET OF FFHQ USED IN OTHER WORKS

SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring Cost

LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ Time ↓ Mem. ↓
Ours 0.074 29.51 0.811 0.052 31.13 0.850 0.102 22.07 0.761 0.078 29.92 0.817 0.051 32.32 0.833 1x 1x

DPS 0.132 27.10 0.729 0.084 30.91 0.833 0.107 21.62 0.755 0.090 28.26 0.767 0.108 26.816 0.726 6x 3.2x
MCG 0.112 27.07 0.784 0.877 11.02 0.02 0.905 10.883 0.001 0.176 24.89 0.768 - - - 6.1x 3.2x

DDNM 0.242 27.63 0.587 0.230 27.92 0.604 0.194 23.08 0.639 0.287 27.24 0.561 0.642 8.682 0.165 1.75x 1x

Latent-DPS 0.324 20.086 0.473 0.249 22.64 0.570 0.227 22.184 0.595 0.209 23.512 0.600 0.217 22.930 0.582 6.1x 8.9x
PSLD 0.311 20.547 0.491 0.250 22.84 0.579 0.221 22.23 0.607 0.200 23.77 0.614 0.213 23.277 0.596 7.5x 15x
STSL 0.242 27.63 0.587 0.230 27.92 0.604 0.194 23.08 0.639 0.287 27.24 0.561 0.641 10.17 0.245 1.85x 9x

ReSample 0.090 29.024 0.791 0.053 30.99 0.844 0.156 20.71 0.778 0.113 29.19 0.784 0.197 27.65 0.706 29.5x 8.95x

Table 4: Quantitative evaluation of our method on FFHQ 256x256, following the experimental setup
of (Song et al., 2024). We compare against pixel-based solvers (upper half) and latent-based solvers
(lower half).

C IMPLEMENTATION DETAILS

We provide implementation details of our experiments, as well as those for other experiments we
compare against.

C.1 OUR METHOD

Our proposed DCS has just two primary hyperparameters, as described in the table below. First is
the number of time steps T . This has relatively little effect on our model performance on most tasks.
However, it is occasionally helpful to increase T , especially in box inpainting, where there is zero
signal from y in the masked region. Here, higher T allows the diffusion model to obtain a better
solution in this unconditional diffusion process. Second, we have the choice of minimizer, which
is by default the Adam optimizer Kingma and Ba (2014). However, in the case of linear A, this
optimizer can be replaced by the closed form analytical solution to A(x) = y.

For nearly all experiments, we use the Adam optimizer with 50 optimization steps and a learning
rate of 1. The exceptions are the random inpainting and box inpainting tasks, where there is no
conditioning information on the masked pixels. This requires more denoising steps, as the diffusion
process is totally unconditional inside the mask, up to local correlations learned inside the score

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

network sθ. Here, we use the analytical solver with A† = A. Similarly, for nearly all experiments
we use T = 50 as found in Table 7, with the exception being random inpainting and box inpainting
tasks, where we found that taking T = 1000 steps improved performance. However, there is little
increase in runtime, since the minimization step is much faster here.

Notation Definition
T The number of diffusion steps used in the sampler.

minimizer The minimizer used to solve for ϵy.

C.2 LATENT MODELS ON IMAGENET

We note that previous latent models use the pretrained weights in (Rombach et al., 2022) for
256 × 256 resolution datasets. However, there are no published weights in the GitHub repository
for unconditional ImageNet, making a fair comparison of our method against latent models more
involved. To this end, we leverage a significantly more powerful Stable Diffusion v1.5 model, with
publicly available weights on HuggingFace for our experiments. The measurements and the output
images are appropriately scaled for a fair comparison.

C.3 STSL

At the time of writing this work, we did not find publicly available code for STSL (Rout et al., 2024).
Therefore, we implement the algorithm ourselves in our codebase, and use the hyperparameters
provided in the paper.

C.4 RESAMPLE

We directly use the published code of ReSample (Song et al., 2024) with no changes in our paper.
We discuss two notable aspects of the experiments with ReSample. First, the implementation
on GitHub differs from that pseudocode discussed in the paper. Namely, the pseudocode in the
paper describes enforcing latent- and pixel-based consistency occasionally during an otherwise
unconditional sampling process.

In the code we observed that the sampling step taken is actually a DPS (Chung et al., 2022a) sam-
pling step, which includes a posterior-based guidance step that takes an expensive gradient of the
noise function. To see this, note that L255 in the resample_sampling function in ddim.py
calls a function measurement_cond_fn, which is defined at L62 in main.py and passed
into the resampling function. This function is a member of the class PosteriorSampling
defined in L53 in condition_methods.py. Inspecting this class, we note that it calls
torch.autograd.grad on the diffusion step as a function of x_prev (L33 or L39). In other
words, a gradient is computed for the measurement norm with respect to the input to the diffusion
model, i.e., a DPS step.

We closely investigated this DPS step in our experiments, ultimately concluding that it has a significant
effect on the performance of the algorithm, and that it was a more fair comparison to include this step,
rather than removing it. However, the inclusion of this sampling step has two primary effects. First, it
results in further increases the computation time of ReSample. Second it reveals that ReSample relies
significantly on a posterior-based formulation, applying additional resampling steps at each stage.

In experiments, we note that ReSample is significantly slower than other algorithms during sampling
(see Table 2). For example, sampling ∼ 1000 images with ImageNet takes more than two weeks
on an A6000 GPU. Since we run five different experimental conditions for each dataset, this was
an unacceptably long runtime for our academic resources. Therefore, we reduce the number of
diffusion steps T of ReSample in our experiments, from 500 reported in (Song et al., 2024) to 50.
However, we do provide a single experiment from the (Song et al., 2024) paper, where we reproduce
the hyperparameters and dataset (a 100 image subset of FFHQ). We note that (Song et al., 2024)
took a subset of the FFHQ dataset, where performance differed from the full 256×256-1K dataset
performance (c.f. Table 1). Since the subset was not published, we selected a dataset based where
ReSample obtained the same performance with its default parameters in (Song et al., 2024) (Table 4).

19

https://github.com/soominkwon/resample/blob/03f5d069953cad42f8e0f8f44cddb6bed375ce91/ldm/models/diffusion/ddim.py#L255
https://github.com/soominkwon/resample/blob/03f5d069953cad42f8e0f8f44cddb6bed375ce91/sample_condition.py#L62
https://github.com/soominkwon/resample/blob/03f5d069953cad42f8e0f8f44cddb6bed375ce91/ldm_inverse/condition_methods.py#L53
https://github.com/soominkwon/resample/blob/03f5d069953cad42f8e0f8f44cddb6bed375ce91/ldm_inverse/condition_methods.py#L33
https://github.com/soominkwon/resample/blob/03f5d069953cad42f8e0f8f44cddb6bed375ce91/ldm_inverse/condition_methods.py#L39

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C.5 DDRM

We used the version of DDRM which is implemented in the DDNM codebase. While DDRM may
theoretically be able to handle deblurring tasks, due to the high rank of the forward operators, the
SVD cannot be explicitly defined in memory, and no existing code-base for DDRM supplies fast and
memory-saving versions of these operators. Because of the relatively poor performance of DDRM
compared to DDNM, and the fact that DDRM can be considered a subtype of DDNM (see Appendix
of Wang et al. (2022)), we do not run on deblurring tasks.

D FURTHER QUALITATIVE COMPARISONS

We provide further qualitative examples from the FFHQ 256×256-1K and ImageNet 256×256-1K
datasets accompanying our quantitative evaluation in Table 1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 10: Comparison against competing works on FFHQ 256×256-1K dataset with the 4× super-
resolution task.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 11: Comparison against competing works on FFHQ 256×256-1K dataset with the random
inpainting task.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 12: Comparison against competing works on FFHQ 256×256-1K dataset with the box
inpainting task.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 13: Comparison against competing works on FFHQ 256×256-1K dataset with the Gaussian
deblurring task.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 14: Comparison against competing works on FFHQ 256×256-1K dataset with the motion
deblurring task.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 15: Comparison against competing works on FFHQ 256×256-1K dataset with the 4× super-
resolution task.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 16: Comparison against competing works on ImageNet 256×256-1K dataset with the random
inpainting task.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 17: Comparison against competing works on FFHQ 256×256-1K dataset with the box
inpainting task.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 18: Comparison against competing works on ImageNet 256×256-1K dataset with the Gaussian
deblurring task.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 19: Comparison against competing works on ImageNet 256×256-1K dataset with the motion
deblurring task.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 20: Comparison against competing works on FFHQ 256×256-1K dataset with the random
inpainting task at various noise levels.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 21: Comparison against competing works on FFHQ 256×256-1K dataset with the box
inpainting task at various noise levels.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 22: Comparison against competing works on FFHQ 256×256-1K dataset with the Gaussian
deblurring task at various noise levels.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 23: Comparison against competing works on FFHQ 256×256-1K dataset with the motion
deblurring task at various noise levels.

34

	Introduction
	Background and Related Work
	Diffusion Models
	Solving Inverse Problems with Diffusion Models

	Revisiting Tweedie's for Inverse Problems
	Diffusion Conditional Sampling
	Efficiency

	Experiments
	Higher Noise Level
	Ablation on the Noise-aware Maximization Optimizer

	Conclusion
	Additional Theorems and Proofs
	Proofs for reproduction of Tweedie's approximation
	Theorems for Sufficiency

	Additional Experiments
	Further Noise Experiments
	Subset of FFHQ used in other works

	Implementation Details
	Our Method
	Latent Models on ImageNet
	STSL
	ReSample
	DDRM

	Further Qualitative Comparisons

