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Abstract— This material first introduces the evaluation met-
rics and provides more experimental results of our proposed
grasp synthesis pipeline for both fingertip grasps and more
complex grasp types. Then, we show an application of our
algorithm for annotating grasps via a UL Next, we introduce
the synthesized dataset and the proposed type-conditional
generative model for grasp synthesis from single-view point
clouds. Finally, a detailed time analysis is performed.

I. EXPERIMENT
A. Evaluation Metrics

The following metrics are used for a comprehensive evalu-
ation of the synthesis pipeline and grasp quality. All distances
are measured using collision meshes in MuJoCo.

Grasp Success Rate (GSR) (unit: %): The percentage
of successful grasps relative to the attempt number. For our
method, one attempt is defined as one valid result output
by the global alignment stage. A grasp succeeds only if it
resists six external forces in MuJoCo and does not have
severe penetrations (> 1 cm), since the penetration may
cause simulation failure and prevent the object from moving.
The object mass is 100g, and the success criteria for the
object pose are 5cm and 15°.

Object Success Rate (OSR) (unit: %): The percentage of
objects that have at least one successful grasp. If the object
scales are fixed, different scales of the same object are treated
as separate objects.

Speed (S) (unit: second™!): The maximum number of
attempts completed per second on a server with 8 NVIDIA
RTX 3090 GPUs and 2 Intel Xeon Platinum 8255C CPUs
(48 cores, 96 threads). We report the time running on a
server because our method utilizes both GPUs and CPUs.
This metric excludes simulation validation.

Contact Link Number (CLN): The number of hand links
whose distance to the object surface is within 2 mm.

Contact Distance Consistency (CDC) (unit: mm): The
delta between the maximum and minimum signed distances
across all fingers. This metric quantifies the variation in
contact distance across different fingers and is invariant to
penetration.

Penetration Depth (PD) (unit: mm): The maximum inter-
section distance between the hand and object for each grasp.

Self-Penetration Depth (SPD) (unit: mm): The maximum
self-intersection distance among different hand links.

Diversity (D) (unit: %): The proportion of total variance
explained by the first principal component in PCA, computed
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Fig. 1: Visualization of Synthesized Fingertip Grasps. Our
method synthesizes human-like and stable grasps, even for
objects with complex geometries (e.g., object scales = 0.11,
0.17, and 0.20).

as the ratio of the first eigenvalue to the sum of all eigen-
values. PCA is performed on data points that include grasp
translation T ¢, rotation R, (in the axis-angle representation),
and joint angles qg.

B. Type-unaware Grasp Synthesis

1) Visualization Comparison: Figure 1 illustrates the ini-
tial hand pose and some synthesized grasps for each method.
Our method consistently synthesizes human-like and stable
grasps, even for objects with complex geometries (e.g., for
scales 0.11, 0.17, and 0.20). Notably, the synthesized grasp
for template 1 and object scale 0.05 requires high precision
and is challenging for previous methods. Furthermore, the
grasp for template 2 and object scale 0.14 shows a much
larger thumb-to-other-tip distance than the initial human-
annotated template, demonstrating our method’s ability to
adjust hand joint angles across a large range.
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Method Attempt DGN object [1] Objaverse [5]
Number || GSRT | OSRT | GSRT | OSR?T
BODex 20 14.79 71.30 6.92 43.48
BODex 100 14.80 89.84 6.91 73.53
Ours 20 27.16 91.28 18.25 84.17
Ours 100 27.18 | 95.13 18.34 | 94.63

TABLE I: A Harder Benchmark for Fingertip Grasp
Synthesis. This benchmark uses smaller friction coefficients
and more diverse objects, and our method consistently out-
performs the baseline. DGN indicates DexGraspNet.

For baseline methods, DexGraspNet [1] shows high un-
certainty, partly due to its randomness in selecting contact
points. While it occasionally generates good grasps (e.g., for
scales 0.08 and 0.14), it often results in twisted fingers (e.g.,
for scales 0.17 and 0.20) or large thumb-to-object distance
(e.g., for scale 0.05). FRoGGeR [2] performs well on simple
objects but almost always fails on objects with complex
geometries. It also tends to generate grasps with different
contact normals for each fingertip (e.g., for scales 0.05 and
0.08), an issue encouraged by many previous force closure
metrics. SpringGrasp [3] suffers from severe penetration
and inconsistent contact distances, especially for the thumb.
Additionally, their grasps lack diversity, and their thumb joint
frequently exceeds the feasible range, which is not executable
in both MuJoCo and the real world. Although BODex [4]
demonstrates high success rates in simulation, their syn-
thesized grasps rarely involve finger bending, resulting in
unnatural poses.

2) Comparison using a harder benchmark: The bench-
mark in the main paper uses large friction coefficients and
many simple objects, which do not fully reflect the ability
of each method to synthesize very high-quality grasps in
more complex scenarios. To address this, we introduce a
more challenging benchmark by reducing the tangential and
torsional friction coefficients from 0.6 and 0.02 to 0.3 and
0.002, respectively, and randomly selecting 5000 additional
objects from Objaverse [5] for testing. To mitigate the
increased difficulty, we allow each method more attempts
per object (from 20 to 100). We compare only with BODex,
as other baselines exhibit significantly lower success rates
and slower speeds.

As shown in Table I, our method significantly outperforms
BODex. Notably, our method achieves an object success
rate exceeding 94%, successfully grasping nearly all scaled
objects, while BODex fails on about 27% of the Objaverse
objects. This highlights our method’s stronger generalizabil-
ity to complex in-the-wild objects. Additionally, our grasp
success rate continues to improve with more attempts, ben-
efiting from continuous updates to our template repository,
whereas the performance of BODex remains unchanged. This
further demonstrates the adaptability of our approach.

C. Type-aware Grasp Synthesis

1) Visual Comparison: Unfortunately, we didn’t acquire
the code of suitable baselines for comparison, as exist-
ing methods either do not support robotic hands (e.g.,
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Fig. 2: Comparison with Functional Grasp Transfer Base-
lines. Our grasps involve more contact points while ensuring
no penetration, indicating higher stability, particularly for
scissors.

GSR(%)T OSR(%)}
‘ Normal | Hard ‘ Normal | Hard ‘ CLNT ‘ D%
Power 24.2 12.8 81.9 68.3 9.1 24.7
Intermediate 23.0 6.6 79.9 69.4 4.8 27.6
Precision 36.0 114 95.9 85.6 4.2 25.8

TABLE II: Statistics of Grasp Synthesis for the GRASP
Taxonomy. The success rate is lower than fingertip grasps
because many flexible grasp types are suitable only for
specific objects, e.g., Lateral (#16) grasps for flat objects.

Oakink [6]) or have not made their code publicly avail-
able (e.g., LHFG [7] and CCFG [8]) despite our requests
through emails. Consequently, we can only perform qualita-
tive comparisons using figures from their papers. As shown
in Fig. 2, previous baselines mainly use fingertips to grasp
the object, particularly for scissors. In contrast, our method
achieves significantly more contact points (approximately
10 for scissors and 7 for mugs), resulting in more stable
and human-like grasps. Additionally, CCFG’s grasps show
noticeable penetrations especially with mugs, while LHFG
reports a maximum penetration of about 1 cm in their paper.
In contrast, our grasps do not have any penetration.

2) Statistics analysis of our pipeline: In the absence
of a suitable baseline for comparison, we provide some
quantitative results in Table II, which were gathered while
synthesizing our Dexonomy dataset in Section III. The grasp
types are categorized into three large groups, namely power,
intermediate, and precision grasps, according to the GRASP
taxonomy [11].

The overall success rate is considerably lower than that
of fingertip grasp synthesis, as many flexible grasp types are
designed for specific object shapes. For instance, the Lateral
(#16) grasp is only used for flat and small objects. Among
different grasp types, precision grasps exhibit the highest
success rate under normal test conditions (i.e., with friction
coefficients of 0.6 and 0.02), since these grasps typically
involve only the fingertips and suit more objects. However,
the success rate of precision grasps drops more rapidly
than that of power grasps when the friction coefficients are
reduced to 0.3 and 0.002 (i.e., the hard test conditions),
indicating that power grasps offer higher stability due to more



Dataset Hand Sim./Real | Objects | Grasps | Grasp Types | Force Closure Data Type Method
DexGraspNet [1] Shadow | IsaacGym 5.4k 1.32M Random v Grasp pose Optimization
RealDex [9] Shadow Real 52 59k Random X Motion Teleoperation
GraspXL [10] Multiple RaiSim 500k 10M Random X Motion RL
BODex [4] Shadow MuJoCo 2.4k 3.62M Fingertip v Pre-grasp, grasp poses Optimization
Dexonomy (Ours) | Shadow MuJoCo 10.7k 9.5M 31 types v Pre-grasp, grasp, squeeze poses | Sampling+opt.

TABLE III: Dexterous Grasp Dataset Comparison. Our large-scale dataset aims to support the study of data-driven methods

for type-aware grasp synthesis.

Method Dataset | GSRT | OSRT | €DC| | PD} | DJ
DGN [1] | 832 | 443 | 205 | 159 | 20.1

Tvoecuncond. | BODeX 41 | 540 | 844 | 117 | 62 | 320
ype-uncond- | gurs-typel | 555 | 859 | 108 | 84 | 315

Ours-all 245 | 732 | 156 | 116 | 28.0

Type-cond. Ours-all 63.9 91.3 13.9 8.6 25.7

TABLE IV: Learning-based Grasp Synthesis from Single-
View Object Point Clouds in Simulation. Our type-
conditional model trained on our Dexonomy dataset signifi-
cantly outperforms baselines.

contact with the object. Additionally, the overall diversity
of grasps is better than previous work reported in the main
paper, owing to the inclusion of many distinct grasp types.

D. Learning-based Grasp Synthesis in Simulation

In this section, we compare the influence of both the
grasping dataset and the learning method in simulation. The
10.7k objects in our Dexonomy dataset are randomly split
into training and test sets with a 4:1 ratio. While the object
scales used for training vary, we fix the scales during testing,
using the same six scale levels as described in Section ??.
To ensure a fair comparison, we also regenerate a dataset for
BODex using our objects and scales, resulting in 0.7M valid
grasps. Ours-typel includes only the Large Diameter (#1)
grasp type from the Dexonomy dataset and contains 0.4M
data points, while Ours-all uses the full 9.5M dataset. For
the type-conditional model, we additionally train a classifier
to select the best grasp type based on each object’s point
cloud. For each object, 100 candidate grasps are predicted
and ranked by their associated probabilities, with the top 10
selected as the final outputs.

As shown in Table IV, our type-conditional model trained
on the Dexonomy dataset significantly outperforms the
BODex baseline by around 10%, further highlighting the
value of our dataset. Notably, even when using only a
single grasp type with less data, the learned model still
outperforms its counterpart trained on BODex. Without type-
conditional features, the model struggles to learn from the
diverse grasp data and performs poorly. In contrast, the
type-conditional model successfully synthesizes the intended
grasp types, as visualized in Figure ??. The model trained
on our dataset exhibits slightly higher penetration, likely due
to the fact that our grasps are more contact-rich. Contact
distance consistency is also higher for Ours-all, as this metric
considers all fingers, while some grasp types do not involve
every finger.
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Fig. 3: An Annotation Ul based on Our Algorithm for
Collecting Functional Grasp. (Left) The user clicks twice
to specify a contact point on the object and a grasp type.
(Right) A high-quality grasp is synthesized according to the
user’s needs within seconds.

II. APPLICATION: ANNOTATION UI

Although our algorithm is semantic-unaware and cannot
directly synthesize grasps to touch object regions specified
by human language commands, it can be used to develop an
efficient annotation system for collecting semantic dexterous
grasp data. Unlike widely used teleoperation methods, which
often require well-trained annotators and hardware depen-
dencies like data gloves, our annotation system has minimal
requirements, relying only on simple mouse clicks.

As shown in Figure 3, the annotator only needs to click
twice: once to specify a contact point on the object and
once to select a desired grasp type. Our algorithm will au-
tomatically sample nearby object points and grasp templates
from existing libraries, and synthesize valid grasps, with the
best results displayed in the GUI within seconds. For a full
demonstration, please refer to our supplementary video. We
plan to continue improving this tool and hope it facilitates
future research on semantic grasping.

III. DEXONOMY DATASET

Using our proposed grasp synthesis pipeline, we construct
a large-scale dataset for Shadow hand covering 31 grasp
types from the GRASP taxonomy [11]. This dataset is
designed to support research on data-driven methods for
type-aware grasp synthesis. Two grasp types in the taxonomy,
Distal Type (#19) and Tripod Variation (#21), are excluded
due to their specificity to object categories, namely scissors
and chopsticks, respectively.

As shown in Table III, our dataset comprises 10.7k object
assets, including 5,697 objects from DexGraspNet [1] and
5,000 new objects randomly selected from Objaverse [5].
All objects are normalized such that the diagonal of their
axis-aligned bounding box is 2 meters, with scales ranging
between [0.05,0.2]. Only successful grasps are retained,
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Fig. 4: Dexonomy Dataset Visualization. Each color corre-
sponds to a different grasp type.
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Fig. 5: Type-Conditional Grasp Generative Model. With-
out the grasp-type codebook in the red dashed box, the
model becomes type-unconditional and is similar to previous
works [4], [12].

resulting in 9.5M data points. The entire dataset was synthe-

sized in less than 3 days on a server with 8 NVIDIA RTX

3090 GPUs. Additional statistics are provided in Table II.
Each data point includes three key poses:

o Grasp pose, obtained via local refinement.

o Pre-grasp pose for collision-free motion planning, gen-
erated after the grasp pose by enforcing a 2cm contact
margin in MuJoCo—pushing the hand away if it is
within 2cm of the object.

e Squeeze pose, derived from the control signal used
for simulation validation, to apply force through hand-
object contacts.

These poses provide the minimal requirements for generat-
ing a complete grasping trajectory (including reaching and
squeezing) and are compatible with diverse robot arms and
initial hand configurations.

IV. TYPE-CONDITIONAL GRASP GENERATIVE MODEL

To generate grasps from partial observations for real-world
deployment, data-driven methods are essential. Although
learning is not the main focus of this paper, we present a
simple model as an initial try. The model architecture is very
similar to previous works [12], [4], with the key difference
being the grasp-type codebook added as a conditional input
to specify a grasp type.

The input to the model consists of a single-view object
point cloud and a type feature f; selected from the grasp-
type codebook. The point cloud is encoded into a feature f,
using a Sparse3DConv network with MinkowskiEngine [13].
This vision feature f,, along with the type feature f;, are
concatenated to form a conditional feature f.. Conditioned

on f., the Mobius normalizing flow [14] maps a random
sample in a base distribution to a grasp pose R, and T,
and calculates a probability p indicating the pose quality.
The predicted grasp pose is then concatenated with f. and
passed through an MLP to predict a pre-grasp pose R, T},
and three hand gpos qy, q4, and q, for the pre-grasp, grasp,
and squeeze poses, respectively. The whole model is trained
end-to-end and the type feature f; is also optimizable.

V. TIME ANALYSIS

The times reported in Table 1 of the main paper repre-
sent the maximum speed for synthesis without simulation
validation. This section provides a more detailed time break-
down of our proposed grasp synthesis pipeline.

First, the lightweight global alignment stage processes
over 100,000 initial samples in approximately 3 seconds on
a single 3090 GPU. The maximum number of intermediate
results generated for the next stage can be controlled via a
hyperparameter. We typically process 10 objects in parallel,
with 10 results per object. For grasp types that are commonly
suitable for many objects, this stage is usually not the
bottleneck, as it can synthesize over 200 intermediate results
per second using 8 GPUs. However, for more challenging
grasp types that are hard to match, this stage can become
the bottleneck, because there may be less than 20 results per
second.

The optimization step consistently takes around 1.2 sec-
onds, while the time cost of calculating the grasp quality
metric for post-filtering varies significantly, ranging from
0.3 to 1.5 seconds. When many samples are filtered out,
leaving only around 5,000 for energy calculation, the process
takes approximately 0.3 seconds. This speed is achieved by
using the batched Relu-QP [15] algorithm as in BODex [4],
whereas traditional CPU-based QP solvers are significantly
slower. The other operations are very fast.

Next, the simulation-based local refinement stage requires
200 simulation steps, which take less than 0.1 seconds. This
stage is highly efficient, easily synthesizing more than 200
grasps per second when utilizing 32 threads.

Finally, the simulation validation stage often becomes the
speed bottleneck, as it involves approximately 3,000 simu-
lation steps (6 external force directions, with 500 steps per
direction). Despite employing early-stop strategies to handle
failure cases, this stage can only process about 40 grasps
per second using 48 threads. The slow speed has nothing to
do with our proposed contact-aware control strategy and is
consistent for other synthesis baselines if they want to test in
MuJoCo. Future work may try to use GPU-based MuJoCo
or other faster physics simulators for testing.
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