Supplementary Material for the Manuscript "On the Implicit Bias of Adam"

November 22, 2023

Contents

SA-1	Overview	1
SA-2	RMSProp with ε outside the square root	2
SA-3	RMSProp with ε inside the square root	5
SA-4	Adam with ε outside the square root	7
SA-5	Adam with ε inside the square root	11
SA-6	Technical bounding lemmas	12
SA-7	Proof of Theorem SA-2.3	21
SA-8	Numerical experiments	27
SA-9	Adam with ε inside the square root: informal derivation	2 9

SA-1 Overview

SA-1.1. This appendix provides some omitted details and proofs.

We consider two algorithms: RMSProp and Adam, and two versions of each algorithm (with the numerical stability ε parameter inside and outside of the square root in the denominator). This means there are four main theorems: Theorem SA-2.4, Theorem SA-3.4, Theorem SA-4.4 and Theorem SA-5.4, each residing in the section completely devoted to one algorithm. The simple induction argument taken from [1], essentially the same for each of these theorems, is based on an auxiliary result whose corresponding versions are Theorem SA-2.3, Theorem SA-3.3, Theorem SA-4.3 and Theorem SA-5.3. The proof of this result is also elementary but long, and it is done by a series of lemmas in Section SA-6 and Section SA-7, culminating in Section SA-7.6. Out of these four, we only prove Theorem SA-2.3 since the other three results are proven in the same way with obvious changes.

Section SA-8 contains some details about the numerical experiments.

SA-1.2 Notation. We denote the loss of the kth minibatch as a function of the network parameters $\theta \in \mathbb{R}^p$ by $E_k(\theta)$, and in the full-batch setting we omit the index and write $E(\theta)$. As usual, ∇E means the gradient of E, and nabla with indices means partial derivatives, e. g. $\nabla_{ijs}E$ is a shortcut for $\frac{\partial^3 E}{\partial \theta_i \partial \theta_j \partial \theta_s}$.

The letter T > 0 will always denote a finite time horizon of the ODEs, h will always denote the training step size, and we will replace nh with t_n when convenient, where $n \in \{0, 1, ...\}$ is the step number. We will use the same notation for the iteration of the discrete algorithm $\{\boldsymbol{\theta}^{(k)}\}_{k \in \mathbb{Z}_{\geq 0}}$, the piecewise ODE solution $\tilde{\boldsymbol{\theta}}(t)$ and some auxiliary terms for each of the four algorithms: see Definition SA-2.1, Definition SA-

3.1, Definition SA-4.1, Definition SA-5.1. This way, we avoid cluttering the notation significantly. We are careful to reference the relevant definition in all theorem statements.

SA-2 RMSProp with ε outside the square root

Definition SA-2.1. In this section, for some $\boldsymbol{\theta}^{(0)} \in \mathbb{R}^p$, $\nu^{(0)} = \mathbf{0} \in \mathbb{R}^p$, $\rho \in (0,1)$, let the sequence of p-vectors $\left\{\boldsymbol{\theta}^{(k)}\right\}_{k \in \mathbb{Z}_{>0}}$ be defined for $n \geq 0$ by

$$\nu_j^{(n+1)} = \rho \nu_j^{(n)} + (1 - \rho) \left(\nabla_j E_n \left(\boldsymbol{\theta}^{(n)} \right) \right)^2,
\theta_j^{(n+1)} = \theta_j^{(n)} - \frac{h}{\sqrt{\nu_j^{(n+1)}} + \varepsilon} \nabla_j E_n \left(\boldsymbol{\theta}^{(n)} \right).$$
(SA-2.1)

Let $\tilde{\boldsymbol{\theta}}(t)$ be defined as a continuous solution to the piecewise ODE

$$\dot{\tilde{\theta}}_{j}(t) = -\frac{\nabla_{j} E_{n}(\tilde{\boldsymbol{\theta}}(t))}{R_{j}^{(n)}(\tilde{\boldsymbol{\theta}}(t)) + \varepsilon} + h \left(\frac{\nabla_{j} E_{n}(\tilde{\boldsymbol{\theta}}(t)) \left(2P_{j}^{(n)}(\tilde{\boldsymbol{\theta}}(t)) + \bar{P}_{j}^{(n)}(\tilde{\boldsymbol{\theta}}(t)) \right)}{2\left(R_{j}^{(n)}(\tilde{\boldsymbol{\theta}}(t)) + \varepsilon\right)^{2} R_{j}^{(n)}(\tilde{\boldsymbol{\theta}}(t))} - \frac{\sum_{i=1}^{p} \nabla_{ij} E_{n}(\tilde{\boldsymbol{\theta}}(t)) \frac{\nabla_{i} E_{n}(\tilde{\boldsymbol{\theta}}(t))}{R_{i}^{(n)}(\tilde{\boldsymbol{\theta}}(t)) + \varepsilon}}{2\left(R_{j}^{(n)}(\tilde{\boldsymbol{\theta}}(t)) + \varepsilon\right)} \right) (SA-2.2)$$

with the initial condition $\tilde{\boldsymbol{\theta}}(0) = \boldsymbol{\theta}^{(0)}$, where $\mathbf{R}^{(n)}(\boldsymbol{\theta})$, $\mathbf{P}^{(n)}(\boldsymbol{\theta})$ and $\bar{\mathbf{P}}^{(n)}(\boldsymbol{\theta})$ are p-dimensional functions with components

$$R_j^{(n)}(\boldsymbol{\theta}) := \sqrt{\sum_{k=0}^n \rho^{n-k} (1-\rho) \left(\nabla_j E_k(\boldsymbol{\theta})\right)^2},$$

$$P_j^{(n)}(\boldsymbol{\theta}) := \sum_{k=0}^n \rho^{n-k} (1-\rho) \nabla_j E_k(\boldsymbol{\theta}) \sum_{i=1}^p \nabla_{ij} E_k(\boldsymbol{\theta}) \sum_{l=k}^{n-1} \frac{\nabla_i E_l(\boldsymbol{\theta})}{R_i^{(l)}(\boldsymbol{\theta}) + \varepsilon},$$

$$\bar{P}_j^{(n)}(\boldsymbol{\theta}) := \sum_{k=0}^n \rho^{n-k} (1-\rho) \nabla_j E_k(\boldsymbol{\theta}) \sum_{i=1}^p \nabla_{ij} E_k(\boldsymbol{\theta}) \frac{\nabla_i E_n(\boldsymbol{\theta})}{R_i^{(n)}(\boldsymbol{\theta}) + \varepsilon}.$$

Assumption SA-2.2.

1. For some positive constants M_1 , M_2 , M_3 , M_4 we have

$$\sup_{i} \sup_{k} \sup_{\boldsymbol{\theta}} \left| \nabla_{i} E_{k}(\boldsymbol{\theta}) \right| \leq M_{1},$$

$$\sup_{i,j} \sup_{k} \sup_{\boldsymbol{\theta}} \left| \nabla_{ij} E_{k}(\boldsymbol{\theta}) \right| \leq M_{2},$$

$$\sup_{i,j,s} \sup_{k} \sup_{\boldsymbol{\theta}} \left| \nabla_{ijs} E_{k}(\boldsymbol{\theta}) \right| \leq M_{3},$$

$$\sup_{i,j,s,r} \sup_{k} \sup_{\boldsymbol{\theta}} \left| \nabla_{ijsr} E_{k}(\boldsymbol{\theta}) \right| \leq M_{4}.$$

2. For some R > 0 we have for all $n \in \{0, 1, \dots, |T/h|\}$

$$R_j^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_n)\right) \ge R, \quad \sum_{k=0}^n \rho^{n-k} (1-\rho) \left(\nabla_j E_k\left(\tilde{\boldsymbol{\theta}}(t_k)\right)\right)^2 \ge R^2,$$

where $\hat{\boldsymbol{\theta}}(t)$ is defined in Definition SA-2.1.

Theorem SA-2.3 (RMSProp with ε outside: local error bound). Suppose Assumption SA-2.2 holds. Then for all $n \in \{0, 1, ..., \lfloor T/h \rfloor\}$

$$\left| \tilde{\theta}_j(t_{n+1}) - \tilde{\theta}_j(t_n) + h \frac{\nabla_j E_n(\tilde{\boldsymbol{\theta}}(t_n))}{\sqrt{\sum_{k=0}^n \rho^{n-k} (1-\rho) \left(\nabla_j E_k(\tilde{\boldsymbol{\theta}}(t_k))\right)^2} + \varepsilon} \right| \le C_1 h^3$$

for a positive constant C_1 depending on ρ .

The proof of Theorem SA-2.3 is conceptually simple but very technical, and we delay it until Section SA-7. For now assuming it as given and combining it with a simple induction argument gives a global error bound which follows.

Theorem SA-2.4 (RMSProp with ε outside: global error bound). Suppose Assumption SA-2.2 holds, and

$$\sum_{k=0}^{n} \rho^{n-k} (1-\rho) \left(\nabla_{j} E_{k} \left(\boldsymbol{\theta}^{(k)} \right) \right)^{2} \geq R^{2}$$

for $\left\{\boldsymbol{\theta}^{(k)}\right\}_{k\in\mathbb{Z}_{\geq 0}}$ defined in Definition SA-2.1. Then there exist positive constants d_1, d_2, d_3 such that for all $n\in\left\{0,1,\ldots,\lfloor T/h\rfloor\right\}$

$$\|\mathbf{e}_n\| \le d_1 e^{d_2 nh} h^2$$
 and $\|\mathbf{e}_{n+1} - \mathbf{e}_n\| \le d_3 e^{d_2 nh} h^3$,

where $\mathbf{e}_n := \tilde{\boldsymbol{\theta}}(t_n) - \boldsymbol{\theta}^{(n)}$. The constants can be defined as

$$\begin{split} d_1 &:= C_1, \\ d_2 &:= \left[1 + \frac{M_2 \sqrt{p}}{R + \varepsilon} \left(\frac{M_1^2}{R(R + \varepsilon)} + 1\right) d_1\right] \sqrt{p}, \\ d_3 &:= C_1 d_2. \end{split}$$

Proof. We will show this by induction over n, the same way an analogous bound is shown in [1]. The base case is n = 0. Indeed, $\mathbf{e}_0 = \tilde{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^{(0)} = \mathbf{0}$. Then the jth component of $\mathbf{e}_1 - \mathbf{e}_0$ is

$$[\mathbf{e}_{1} - \mathbf{e}_{0}]_{j} = [\mathbf{e}_{1}]_{j} = \tilde{\theta}_{j}(t_{1}) - \theta_{j}^{(0)} + \frac{h\nabla_{j}E_{0}(\boldsymbol{\theta}^{(0)})}{\sqrt{(1 - \rho)\left(\nabla_{j}E_{0}(\boldsymbol{\theta}^{(0)})\right)^{2} + \varepsilon}}$$

$$= \tilde{\theta}_{j}(t_{1}) - \tilde{\theta}_{j}(t_{0}) + \frac{h\nabla_{j}E_{0}(\tilde{\boldsymbol{\theta}}(t_{0}))}{\sqrt{(1 - \rho)\left(\nabla_{j}E_{0}(\tilde{\boldsymbol{\theta}}(t_{0}))\right)^{2} + \varepsilon}}.$$

By Theorem SA-2.3, the absolute value of the right-hand side does not exceed C_1h^3 , which means $\|\mathbf{e}_1 - \mathbf{e}_0\| \le C_1h^3\sqrt{p}$. Since $C_1\sqrt{p} \le d_3$, the base case is proven.

Now suppose that for all k = 0, 1, ..., n - 1 the claim

$$\|\mathbf{e}_k\| \le d_1 e^{d_2 k h} h^2$$
 and $\|\mathbf{e}_{k+1} - \mathbf{e}_k\| \le d_3 e^{d_2 k h} h^3$

is proven. Then

$$\|\mathbf{e}_n\| \stackrel{\text{(a)}}{\leq} \|\mathbf{e}_{n-1}\| + \|\mathbf{e}_n - \mathbf{e}_{n-1}\| \leq d_1 e^{d_2(n-1)h} h^2 + d_3 e^{d_2(n-1)h} h^3$$

$$= d_1 e^{d_2(n-1)h} h^2 \left(1 + \frac{d_3}{d_1} h\right) \stackrel{\text{(b)}}{\leq} d_1 e^{d_2(n-1)h} h^2 (1 + d_2 h)$$

$$\stackrel{\text{(c)}}{\leq} d_1 e^{d_2(n-1)h} h^2 \cdot e^{d_2h} = d_1 e^{d_2nh} h^2.$$

where (a) is by the triangle inequality, (b) is by $d_3/d_1 \le d_2$, in (c) we used $1 + x \le e^x$ for all $x \ge 0$. Next, combining Theorem SA-2.3 with (SA-2.1), we have

$$\left| \left[\mathbf{e}_{n+1} - \mathbf{e}_{n} \right]_{j} \right| \leq C_{1} h^{3} + h \left| \frac{\nabla_{j} E_{n} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)}{\sqrt{A} + \varepsilon} - \frac{\nabla_{j} E_{n} \left(\boldsymbol{\theta}^{(n)} \right)}{\sqrt{B} + \varepsilon} \right|, \tag{SA-2.3}$$

where to simplify notation we put

$$A := \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \left(\nabla_j E_k \left(\tilde{\boldsymbol{\theta}}(t_k) \right) \right)^2,$$
$$B := \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \left(\nabla_j E_k \left(\boldsymbol{\theta}^{(k)} \right) \right)^2.$$

Using $A \geq R^2$, $B \geq R^2$, we have

$$\left| \frac{1}{\sqrt{A} + \varepsilon} - \frac{1}{\sqrt{B} + \varepsilon} \right| = \frac{|A - B|}{\left(\sqrt{A} + \varepsilon\right)\left(\sqrt{B} + \varepsilon\right)\left(\sqrt{A} + \sqrt{B}\right)} \le \frac{|A - B|}{2R(R + \varepsilon)^2}.$$
 (SA-2.4)

But since

$$\left| \left(\nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) \right)^{2} - \left(\nabla_{j} E_{k} \left(\boldsymbol{\theta}^{(k)} \right) \right)^{2} \right| \\
= \left| \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) - \nabla_{j} E_{k} \left(\boldsymbol{\theta}^{(k)} \right) \right| \cdot \left| \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) + \nabla_{j} E_{k} \left(\boldsymbol{\theta}^{(k)} \right) \right| \\
\leq 2 M_{1} \left| \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) - \nabla_{j} E_{k} \left(\boldsymbol{\theta}^{(k)} \right) \right| \leq 2 M_{1} M_{2} \sqrt{p} \left\| \tilde{\boldsymbol{\theta}}(t_{k}) - \boldsymbol{\theta}^{(k)} \right\|$$

we have

as

$$|A - B| \le 2M_1 M_2 \sqrt{p} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \|\tilde{\boldsymbol{\theta}}(t_k) - \boldsymbol{\theta}^{(k)}\|.$$
 (SA-2.5)

Combining (SA-2.4) and (SA-2.5), we obtain

$$\left| \frac{\nabla_{j} E_{n} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)}{\sqrt{A} + \varepsilon} - \frac{\nabla_{j} E_{n} \left(\boldsymbol{\theta}^{(n)} \right)}{\sqrt{B} + \varepsilon} \right| \\
\leq \left| \nabla_{j} E_{n} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) \right| \cdot \left| \frac{1}{\sqrt{A} + \varepsilon} - \frac{1}{\sqrt{B} + \varepsilon} \right| + \frac{\left| \nabla_{j} E_{n} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) - \nabla_{j} E_{n} \left(\boldsymbol{\theta}^{(n)} \right) \right|}{\sqrt{B} + \varepsilon} \\
\leq M_{1} \cdot \frac{2M_{1} M_{2} \sqrt{p} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \left\| \tilde{\boldsymbol{\theta}}(t_{k}) - \boldsymbol{\theta}^{(k)} \right\|}{2R(R + \varepsilon)^{2}} + \frac{M_{2} \sqrt{p} \left\| \tilde{\boldsymbol{\theta}}(t_{n}) - \boldsymbol{\theta}^{(n)} \right\|}{R + \varepsilon} \\
= \frac{M_{1}^{2} M_{2} \sqrt{p}}{R(R + \varepsilon)^{2}} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \left\| \tilde{\boldsymbol{\theta}}(t_{k}) - \boldsymbol{\theta}^{(k)} \right\| + \frac{M_{2} \sqrt{p}}{R + \varepsilon} \left\| \tilde{\boldsymbol{\theta}}(t_{n}) - \boldsymbol{\theta}^{(n)} \right\| \\
\leq \frac{M_{1}^{2} M_{2} \sqrt{p}}{R(R + \varepsilon)^{2}} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) d_{1} e^{d_{2}kh} h^{2} + \frac{M_{2} \sqrt{p}}{R + \varepsilon} d_{1} e^{d_{2}nh} h^{2}, \tag{SA-2.6}$$

where in (a) we used the induction hypothesis and that the bound on $\|\mathbf{e}_n\|$ is already proven. Now note that since $0 < \rho e^{-d_2 h} \le \rho$, we have $\sum_{k=0}^{n} \left(\rho e^{-d_2 h}\right)^k \le \sum_{k=0}^{\infty} \rho^k = \frac{1}{1-\rho}$, which is rewritten

$$\sum_{k=0}^{n} \rho^{n-k} (1-\rho) e^{d_2 k h} \le e^{d_2 n h}.$$

Then we can continue (SA-2.6):

$$\left| \frac{\nabla_{j} E_{n} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)}{\sqrt{A} + \varepsilon} - \frac{\nabla_{j} E_{n} \left(\boldsymbol{\theta}^{(n)} \right)}{\sqrt{B} + \varepsilon} \right| \leq \frac{M_{2} \sqrt{p}}{R + \varepsilon} \left(\frac{M_{1}^{2}}{R(R + \varepsilon)} + 1 \right) d_{1} e^{d_{2}nh} h^{2}$$
 (SA-2.7)

Again using $1 \le e^{d_2nh}$, we conclude from (SA-2.3) and (SA-2.7) that

$$\|\mathbf{e}_{n+1} - \mathbf{e}_n\| \le \underbrace{\left(C_1 + \frac{M_2\sqrt{p}}{R+\varepsilon} \left(\frac{M_1^2}{R(R+\varepsilon)} + 1\right) d_1\right) \sqrt{p} e^{d_2nh} h^3,}_{\le d_3}$$

finishing the induction step.

SA-2.5 RMSProp with ε **outside: full-batch.** In the full-batch setting $E_k \equiv E$, the terms in (SA-2.2) simplify to

$$R_{j}^{(n)}(\boldsymbol{\theta}) = \left|\nabla_{j}E(\boldsymbol{\theta})\right|\sqrt{1-\rho^{n+1}},$$

$$P_{j}^{(n)}(\boldsymbol{\theta}) = \sum_{k=0}^{n} \rho^{n-k}(1-\rho)\nabla_{j}E(\boldsymbol{\theta})\sum_{i=1}^{p} \nabla_{ij}E(\boldsymbol{\theta})\sum_{l=k}^{n-1} \frac{\nabla_{i}E(\boldsymbol{\theta})}{\left|\nabla_{i}E(\boldsymbol{\theta})\right|\sqrt{1-\rho^{l+1}}+\varepsilon},$$

$$\bar{P}_{j}^{(n)}(\boldsymbol{\theta}) = \left(1-\rho^{n+1}\right)\nabla_{j}E(\boldsymbol{\theta})\sum_{i=1}^{p} \nabla_{ij}E(\boldsymbol{\theta})\frac{\nabla_{i}E(\boldsymbol{\theta})}{\left|\nabla_{i}E(\boldsymbol{\theta})\right|\sqrt{1-\rho^{n+1}}+\varepsilon}.$$

If ε is small and the iteration number n is large, (SA-2.2) simplifies to

$$\begin{split} \dot{\tilde{\theta}}_{j}(t) &= -\operatorname{sign} \nabla_{j} E(\tilde{\boldsymbol{\theta}}(t)) + h \frac{\rho}{1-\rho} \cdot \frac{\sum_{i=1}^{p} \nabla_{ij} E(\tilde{\boldsymbol{\theta}}(t)) \operatorname{sign} \nabla_{i} E(\tilde{\boldsymbol{\theta}}(t))}{\left|\nabla_{j} E(\tilde{\boldsymbol{\theta}}(t))\right|} \\ &= \left|\nabla_{j} E(\tilde{\boldsymbol{\theta}}(t))\right|^{-1} \left[-\nabla_{j} E(\tilde{\boldsymbol{\theta}}(t)) + h \frac{\rho}{1-\rho} \nabla_{j} \left\|\nabla E(\tilde{\boldsymbol{\theta}}(t))\right\|_{1} \right]. \end{split}$$

SA-3 RMSProp with ε inside the square root

Definition SA-3.1. In this section, for some $\boldsymbol{\theta}^{(0)} \in \mathbb{R}^p$, $\nu^{(0)} = \mathbf{0} \in \mathbb{R}^p$, $\rho \in (0,1)$, let the sequence of p-vectors $\left\{\boldsymbol{\theta}^{(k)}\right\}_{k \in \mathbb{Z}_{\geq 0}}$ be defined for $n \geq 0$ by

$$\nu_j^{(n+1)} = \rho \nu_j^{(n)} + (1 - \rho) \left(\nabla_j E_n \left(\boldsymbol{\theta}^{(n)} \right) \right)^2,$$

$$\theta_j^{(n+1)} = \theta_j^{(n)} - \frac{h}{\sqrt{\nu_j^{(n+1)} + \varepsilon}} \nabla_j E_n \left(\boldsymbol{\theta}^{(n)} \right).$$
(SA-3.1)

Let $\tilde{\boldsymbol{\theta}}(t)$ be defined as a continuous solution to the piecewise ODE

$$\dot{\tilde{\theta}}_{j}(t) = -\frac{\nabla_{j} E_{n}\left(\tilde{\boldsymbol{\theta}}(t)\right)}{R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)} + h \left(\frac{\nabla_{j} E_{n}\left(\tilde{\boldsymbol{\theta}}(t)\right)\left(2P_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right) + \bar{P}_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)\right)}{2R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)^{3}} - \frac{\sum_{i=1}^{p} \nabla_{ij} E_{n}\left(\tilde{\boldsymbol{\theta}}(t)\right) \frac{\nabla_{i} E_{n}\left(\tilde{\boldsymbol{\theta}}(t)\right)}{R_{i}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)}}{2R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)^{3}}\right). \tag{SA-3.2}$$

with the initial condition $\tilde{\boldsymbol{\theta}}(0) = \boldsymbol{\theta}^{(0)}$, where $\mathbf{R}^{(n)}(\boldsymbol{\theta})$, $\mathbf{P}^{(n)}(\boldsymbol{\theta})$ and $\bar{\mathbf{P}}^{(n)}(\boldsymbol{\theta})$ are p-dimensional functions with components

$$R_{j}^{(n)}(\boldsymbol{\theta}) := \sqrt{\sum_{k=0}^{n} \rho^{n-k} (1-\rho) \left(\nabla_{j} E_{k}(\boldsymbol{\theta})\right)^{2} + \varepsilon},$$

$$P_{j}^{(n)}(\boldsymbol{\theta}) := \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \nabla_{j} E_{k}(\boldsymbol{\theta}) \sum_{i=1}^{p} \nabla_{ij} E_{k}(\boldsymbol{\theta}) \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l}(\boldsymbol{\theta})}{R_{i}^{(l)}(\boldsymbol{\theta})},$$

$$\bar{P}_{j}^{(n)}(\boldsymbol{\theta}) := \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \nabla_{j} E_{k}(\boldsymbol{\theta}) \sum_{i=1}^{p} \nabla_{ij} E_{k}(\boldsymbol{\theta}) \frac{\nabla_{i} E_{n}(\boldsymbol{\theta})}{R_{i}^{(n)}(\boldsymbol{\theta})}.$$
(SA-3.3)

Assumption SA-3.2. For some positive constants M_1 , M_2 , M_3 , M_4 we have

$$\sup_{i} \sup_{k} \sup_{\boldsymbol{\theta}} |\nabla_{i} E_{k}(\boldsymbol{\theta})| \leq M_{1},$$

$$\sup_{i,j} \sup_{k} \sup_{\boldsymbol{\theta}} |\nabla_{ij} E_{k}(\boldsymbol{\theta})| \leq M_{2},$$

$$\sup_{i,j,s} \sup_{k} \sup_{\boldsymbol{\theta}} |\nabla_{ijs} E_{k}(\boldsymbol{\theta})| \leq M_{3},$$

$$\sup_{i,j,s,r} \sup_{k} \sup_{\boldsymbol{\theta}} |\nabla_{ijsr} E_{k}(\boldsymbol{\theta})| \leq M_{4}.$$

Theorem SA-3.3 (RMSProp with ε inside: local error bound). Suppose Assumption SA-3.2 holds. Then for all $n \in \{0, 1, ..., \lfloor T/h \rfloor\}$

$$\left| \tilde{\theta}_j(t_{n+1}) - \tilde{\theta}_j(t_n) + h \frac{\nabla_j E_n(\tilde{\boldsymbol{\theta}}(t_n))}{\sqrt{\sum_{k=0}^n \rho^{n-k} (1 - \rho) \left(\nabla_j E_k(\tilde{\boldsymbol{\theta}}(t_k))\right)^2 + \varepsilon}} \right| \le C_2 h^3$$

for a positive constant C_2 depending on ρ , where $\tilde{\boldsymbol{\theta}}(t)$ is defined in Definition SA-3.1.

The argument is the same as for Theorem SA-2.3.

Theorem SA-3.4 (RMSProp with ε inside: global error bound). Suppose Assumption SA-3.2 holds. Then there exist positive constants d_4 , d_5 , d_6 such that for all $n \in \{0, 1, ..., \lfloor T/h \rfloor\}$

$$\|\mathbf{e}_n\| \le d_4 e^{d_5 nh} h^2$$
 and $\|\mathbf{e}_{n+1} - \mathbf{e}_n\| \le d_6 e^{d_5 nh} h^3$,

where $\mathbf{e}_n := \tilde{\boldsymbol{\theta}}(t_n) - \boldsymbol{\theta}^{(n)}$; $\tilde{\boldsymbol{\theta}}(t)$ and $\left\{\boldsymbol{\theta}^{(k)}\right\}_{k \in \mathbb{Z}_{\geq 0}}$ are defined in Definition SA-3.1. The constants can be defined as

$$\begin{aligned} d_4 &:= C_2, \\ d_5 &:= \left[1 + \frac{M_2 \sqrt{p}}{\sqrt{\varepsilon}} \left(\frac{M_1^2}{\varepsilon} + 1 \right) d_4 \right] \sqrt{p}, \\ d_6 &:= C_2 d_5. \end{aligned}$$

The argument is the same as for Theorem SA-2.4.

SA-3.5 RMSProp with ε **inside: full-batch.** In the full-batch setting $E_k \equiv E$, the terms in (SA-3.2) simplify to

$$R_j^{(n)}(\boldsymbol{\theta}) = \sqrt{\left|\nabla_j E(\boldsymbol{\theta})\right|^2 (1 - \rho^{n+1}) + \varepsilon},$$

$$P_j^{(n)}(\boldsymbol{\theta}) = \sum_{k=0}^n \rho^{n-k} (1-\rho) \nabla_j E(\boldsymbol{\theta}) \sum_{i=1}^p \nabla_{ij} E(\boldsymbol{\theta}) \sum_{l=k}^{n-1} \frac{\nabla_i E(\boldsymbol{\theta})}{\sqrt{|\nabla_i E(\boldsymbol{\theta})|^2 (1-\rho^{l+1}) + \varepsilon}},$$

$$\bar{P}_j^{(n)}(\boldsymbol{\theta}) = (1-\rho^{n+1}) \nabla_j E(\boldsymbol{\theta}) \sum_{i=1}^p \nabla_{ij} E(\boldsymbol{\theta}) \frac{\nabla_i E(\boldsymbol{\theta})}{\sqrt{|\nabla_i E(\boldsymbol{\theta})|^2 (1-\rho^{n+1}) + \varepsilon}}.$$

If the iteration number n is large, (SA-3.2) rapidly becomes

$$\dot{\tilde{\theta}}_{j}(t) = -\frac{1}{\sqrt{|\nabla_{j} E(\tilde{\boldsymbol{\theta}}(t))|^{2} + \varepsilon}} (\nabla_{j} E(\tilde{\boldsymbol{\theta}}(t)) + \text{bias}), \tag{SA-3.4}$$

where

bias :=
$$\frac{h}{2} \left\{ -\frac{2\rho}{1-\rho} + \frac{1+\rho}{1-\rho} \cdot \frac{\varepsilon}{|\nabla_j E(\tilde{\boldsymbol{\theta}}(t))|^2 + \varepsilon} \right\} \nabla_j \|\nabla E(\tilde{\boldsymbol{\theta}}(t))\|_{1,\varepsilon}.$$
 (SA-3.5)

SA-4 Adam with ε outside the square root

Definition SA-4.1. In this section, for some $\boldsymbol{\theta}^{(0)} \in \mathbb{R}^p$, $\nu^{(0)} = \mathbf{0} \in \mathbb{R}^p$, $\beta, \rho \in (0, 1)$, let the sequence of p-vectors $\left\{\boldsymbol{\theta}^{(k)}\right\}_{k \in \mathbb{Z}_{>0}}$ be defined for $n \geq 0$ by

$$\begin{split} \nu_{j}^{(n+1)} &= \rho \nu_{j}^{(n)} + (1 - \rho) \bigg(\nabla_{j} E_{n} \bigg(\boldsymbol{\theta}^{(n)} \bigg) \bigg)^{2}, \\ m_{j}^{(n+1)} &= \beta m_{j}^{(n)} + (1 - \beta) \nabla_{j} E_{n} \bigg(\boldsymbol{\theta}^{(n)} \bigg), \\ \theta_{j}^{(n+1)} &= \theta_{j}^{(n)} - h \frac{m_{j}^{(n+1)} / (1 - \beta^{n+1})}{\sqrt{\nu_{j}^{(n+1)} / (1 - \rho^{n+1})} + \varepsilon} \end{split}$$

or, rewriting,

$$\theta_{j}^{(n+1)} = \theta_{j}^{(n)} - h \frac{\frac{1}{1-\beta^{n+1}} \sum_{k=0}^{n} \beta^{n-k} (1-\beta) \nabla_{j} E_{k} \left(\boldsymbol{\theta}^{(k)}\right)}{\sqrt{\frac{1}{1-\rho^{n+1}} \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \left(\nabla_{j} E_{k} \left(\boldsymbol{\theta}^{(k)}\right)\right)^{2} + \varepsilon}}.$$
 (SA-4.1)

Let $\tilde{\boldsymbol{\theta}}(t)$ be defined as a continuous solution to the piecewise ODE

$$\dot{\tilde{\theta}}_{j}(t) = -\frac{M_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)}{R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right) + \varepsilon} + h\left(\frac{M_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)\left(2P_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right) + \bar{P}_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)\right)}{2\left(R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right) + \varepsilon\right)^{2}R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)} - \frac{2L_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right) + \bar{L}_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)}{2\left(R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right) + \varepsilon\right)}\right). \tag{SA-4.2}$$

with the initial condition $\tilde{\boldsymbol{\theta}}(0) = \boldsymbol{\theta}^{(0)}$, where $\mathbf{R}^{(n)}(\boldsymbol{\theta})$, $\mathbf{P}^{(n)}(\boldsymbol{\theta})$, $\bar{\mathbf{P}}^{(n)}(\boldsymbol{\theta})$, $\mathbf{M}^{(n)}(\boldsymbol{\theta})$, $\bar{\mathbf{L}}^{(n)}(\boldsymbol{\theta})$, are

p-dimensional functions with components

$$R_{j}^{(n)}(\boldsymbol{\theta}) := \sqrt{\sum_{k=0}^{n} \rho^{n-k} (1 - \rho) (\nabla_{j} E_{k}(\boldsymbol{\theta}))^{2} / (1 - \rho^{n+1})},$$

$$M_{j}^{(n)}(\boldsymbol{\theta}) := \frac{1}{1 - \beta^{n+1}} \sum_{k=0}^{n} \beta^{n-k} (1 - \beta) \nabla_{j} E_{k}(\boldsymbol{\theta}),$$

$$L_{j}^{(n)}(\boldsymbol{\theta}) := \frac{1}{1 - \beta^{n+1}} \sum_{k=0}^{n} \beta^{n-k} (1 - \beta) \sum_{i=1}^{p} \nabla_{ij} E_{k}(\boldsymbol{\theta}) \sum_{l=k}^{n-1} \frac{M_{i}^{(l)}(\boldsymbol{\theta})}{R_{i}^{(l)}(\boldsymbol{\theta}) + \varepsilon},$$

$$\bar{L}_{j}^{(n)}(\boldsymbol{\theta}) := \frac{1}{1 - \beta^{n+1}} \sum_{k=0}^{n} \beta^{n-k} (1 - \beta) \sum_{i=1}^{p} \nabla_{ij} E_{k}(\boldsymbol{\theta}) \frac{M_{i}^{(n)}(\boldsymbol{\theta})}{R_{i}^{(n)}(\boldsymbol{\theta}) + \varepsilon},$$

$$P_{j}^{(n)}(\boldsymbol{\theta}) := \frac{1}{1 - \rho^{n+1}} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \nabla_{j} E_{k}(\boldsymbol{\theta}) \sum_{i=1}^{p} \nabla_{ij} E_{k}(\boldsymbol{\theta}) \sum_{l=k}^{n-1} \frac{M_{i}^{(l)}(\boldsymbol{\theta})}{R_{i}^{(l)}(\boldsymbol{\theta}) + \varepsilon},$$

$$\bar{P}_{j}^{(n)}(\boldsymbol{\theta}) := \frac{1}{1 - \rho^{n+1}} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \nabla_{j} E_{k}(\boldsymbol{\theta}) \sum_{i=1}^{p} \nabla_{ij} E_{k}(\boldsymbol{\theta}) \frac{M_{i}^{(n)}(\boldsymbol{\theta})}{R_{i}^{(n)}(\boldsymbol{\theta}) + \varepsilon}.$$

Assumption SA-4.2.

1. For some positive constants M_1 , M_2 , M_3 , M_4 we have

$$\sup_{i} \sup_{k} \sup_{\boldsymbol{\theta}} \left| \nabla_{i} E_{k}(\boldsymbol{\theta}) \right| \leq M_{1},$$

$$\sup_{i,j} \sup_{k} \sup_{\boldsymbol{\theta}} \left| \nabla_{ij} E_{k}(\boldsymbol{\theta}) \right| \leq M_{2},$$

$$\sup_{i,j,s} \sup_{k} \sup_{\boldsymbol{\theta}} \left| \nabla_{ijs} E_{k}(\boldsymbol{\theta}) \right| \leq M_{3},$$

$$\sup_{i,j,s} \sup_{k} \sup_{\boldsymbol{\theta}} \left| \nabla_{ijsr} E_{k}(\boldsymbol{\theta}) \right| \leq M_{4}.$$

2. For some R > 0 we have for all $n \in \{0, 1, \dots, \lfloor T/h \rfloor\}$

$$R_j^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_n)\right) \ge R, \quad \frac{1}{1-\rho^{n+1}} \sum_{k=0}^n \rho^{n-k} (1-\rho) \left(\nabla_j E_k\left(\tilde{\boldsymbol{\theta}}(t_k)\right)\right)^2 \ge R^2,$$

where $\tilde{\boldsymbol{\theta}}(t)$ is defined in Definition SA-4.1.

Theorem SA-4.3 (Adam with ε outside: local error bound). Suppose Assumption SA-4.2 holds. Then for all $n \in \{0, 1, ..., \lfloor T/h \rfloor\}$

$$\left| \tilde{\theta}_j(t_{n+1}) - \tilde{\theta}_j(t_n) + h \frac{\frac{1}{1-\beta^{n+1}} \sum_{k=0}^n \beta^{n-k} (1-\beta) \nabla_j E_k \left(\tilde{\boldsymbol{\theta}}(t_k) \right)}{\sqrt{\frac{1}{1-\rho^{n+1}} \sum_{k=0}^n \rho^{n-k} (1-\rho) \left(\nabla_j E_k \left(\tilde{\boldsymbol{\theta}}(t_k) \right) \right)^2 + \varepsilon}} \right| \le C_3 h^3$$

for a positive constant C_3 depending on β and ρ .

The argument is the same as for Theorem SA-2.3.

Theorem SA-4.4 (Adam with ε outside: global error bound). Suppose Assumption SA-4.2 holds, and

$$\frac{1}{1-\rho^{n+1}} \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \left(\nabla_j E_k \left(\boldsymbol{\theta}^{(k)} \right) \right)^2 \ge R^2$$

for $\left\{\boldsymbol{\theta}^{(k)}\right\}_{k\in\mathbb{Z}_{\geq 0}}$ defined in Definition SA-4.1. Then there exist positive constants d_7 , d_8 , d_9 such that for all $n\in\left\{0,1,\ldots,\lfloor T/h\rfloor\right\}$

$$\|\mathbf{e}_n\| \le d_7 e^{d_8 nh} h^2$$
 and $\|\mathbf{e}_{n+1} - \mathbf{e}_n\| \le d_9 e^{d_8 nh} h^3$,

where $\mathbf{e}_n := \tilde{\boldsymbol{\theta}}(t_n) - \boldsymbol{\theta}^{(n)}$. The constants can be defined as

$$d_7 := C_3,$$

$$d_8 := \left[1 + \frac{M_2 \sqrt{p}}{R + \varepsilon} \left(\frac{M_1^2}{R(R + \varepsilon)} + 1 \right) d_7 \right] \sqrt{p},$$

$$d_9 := C_3 d_8.$$

Proof. Analogously to Theorem SA-2.4, we will prove this by induction over n.

The base case is n = 0. Indeed, $\mathbf{e}_0 = \tilde{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^{(0)} = \mathbf{0}$. Then the jth component of $\mathbf{e}_1 - \mathbf{e}_0$ is

$$\begin{aligned} \left[\mathbf{e}_{1} - \mathbf{e}_{0}\right]_{j} &= \left[\mathbf{e}_{1}\right]_{j} = \tilde{\theta}_{j}(t_{1}) - \theta_{j}^{(0)} + \frac{h\nabla_{j}E_{0}\left(\boldsymbol{\theta}^{(0)}\right)}{\left|\nabla_{j}E_{0}\left(\boldsymbol{\theta}^{(0)}\right)\right| + \varepsilon} \\ &= \tilde{\theta}_{j}(t_{1}) - \tilde{\theta}_{j}(t_{0}) + \frac{h\nabla_{j}E_{0}\left(\tilde{\boldsymbol{\theta}}(t_{0})\right)}{\sqrt{\left(\nabla_{j}E_{0}\left(\tilde{\boldsymbol{\theta}}(t_{0})\right)\right)^{2} + \varepsilon}}. \end{aligned}$$

By Theorem SA-4.3, the absolute value of the right-hand side does not exceed C_3h^3 , which means $\|\mathbf{e}_1 - \mathbf{e}_0\| \le C_3h^3\sqrt{p}$. Since $C_3\sqrt{p} \le d_9$, the base case is proven.

Now suppose that for all k = 0, 1, ..., n - 1 the claim

$$\|\mathbf{e}_k\| \le d_7 e^{d_8 kh} h^2$$
 and $\|\mathbf{e}_{k+1} - \mathbf{e}_k\| \le d_9 e^{d_8 kh} h^3$

is proven. Then

$$\begin{aligned} \|\mathbf{e}_{n}\| &\overset{\text{(a)}}{\leq} \|\mathbf{e}_{n-1}\| + \|\mathbf{e}_{n} - \mathbf{e}_{n-1}\| \leq d_{7}e^{d_{8}(n-1)h}h^{2} + d_{9}e^{d_{8}(n-1)h}h^{3} \\ &= d_{7}e^{d_{8}(n-1)h}h^{2}\left(1 + \frac{d_{9}}{d_{7}}h\right) \overset{\text{(b)}}{\leq} d_{7}e^{d_{8}(n-1)h}h^{2}(1 + d_{8}h) \\ \overset{\text{(c)}}{\leq} d_{7}e^{d_{8}(n-1)h}h^{2} \cdot e^{d_{8}h} = d_{7}e^{d_{8}nh}h^{2}, \end{aligned}$$

where (a) is by the triangle inequality, (b) is by $d_9/d_7 \le d_8$, in (c) we used $1 + x \le e^x$ for all $x \ge 0$. Next, combining Theorem SA-4.3 with (SA-4.1), we have

$$\left| \left[\mathbf{e}_{n+1} - \mathbf{e}_n \right]_j \right| \le C_3 h^3 + h \left| \frac{N'}{\sqrt{D'} + \varepsilon} - \frac{N''}{\sqrt{D''} + \varepsilon} \right|, \tag{SA-4.4}$$

where to simplify notation we put

$$N' := \frac{1}{1 - \beta^{n+1}} \sum_{k=0}^{n} \beta^{n-k} (1 - \beta) \nabla_{j} E_{k} (\boldsymbol{\theta}^{(k)}),$$

$$N'' := \frac{1}{1 - \beta^{n+1}} \sum_{k=0}^{n} \beta^{n-k} (1 - \beta) \nabla_{j} E_{k} (\tilde{\boldsymbol{\theta}}(t_{k})),$$

$$D' := \frac{1}{1 - \rho^{n+1}} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) (\nabla_{j} E_{k} (\boldsymbol{\theta}^{(k)}))^{2},$$

$$D'' := \frac{1}{1 - \rho^{n+1}} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) (\nabla_{j} E_{k} (\tilde{\boldsymbol{\theta}}(t_{k})))^{2}.$$

Using $D' \ge R^2$, $D'' \ge R^2$, we have

$$\left| \frac{1}{\sqrt{D'} + \varepsilon} - \frac{1}{\sqrt{D''} + \varepsilon} \right| = \frac{\left| D' - D'' \right|}{\left(\sqrt{D'} + \varepsilon \right) \left(\sqrt{D''} + \varepsilon \right) \left(\sqrt{D'} + \sqrt{D''} \right)} \le \frac{\left| D' - D'' \right|}{2R(R + \varepsilon)^2}. \tag{SA-4.5}$$

But since

$$\left| \left(\nabla_{j} E_{k} \left(\boldsymbol{\theta}^{(k)} \right) \right)^{2} - \left(\nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) \right)^{2} \right| \\
= \left| \nabla_{j} E_{k} \left(\boldsymbol{\theta}^{(k)} \right) - \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) \right| \cdot \left| \nabla_{j} E_{k} \left(\boldsymbol{\theta}^{(k)} \right) + \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) \right| \\
\leq 2 M_{1} \left| \nabla_{j} E_{k} \left(\boldsymbol{\theta}^{(k)} \right) - \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) \right| \leq 2 M_{1} M_{2} \sqrt{p} \left\| \boldsymbol{\theta}^{(k)} - \tilde{\boldsymbol{\theta}}(t_{k}) \right\|_{2},$$

we have

$$|D' - D''| \le \frac{2M_1 M_2 \sqrt{p}}{1 - \rho^{n+1}} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \| \boldsymbol{\theta}^{(k)} - \tilde{\boldsymbol{\theta}}(t_k) \|.$$
 (SA-4.6)

Similarly,

$$\left| N' - N'' \right| \leq \frac{1}{1 - \beta^{n+1}} \sum_{k=0}^{n} \beta^{n-k} (1 - \beta) \left| \nabla_{j} E_{k} \left(\boldsymbol{\theta}^{(k)} \right) - \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) \right|$$

$$\leq \frac{1}{1 - \beta^{n+1}} \sum_{k=0}^{n} \beta^{n-k} (1 - \beta) M_{2} \sqrt{p} \left\| \boldsymbol{\theta}^{(k)} - \tilde{\boldsymbol{\theta}}(t_{k}) \right\|.$$
(SA-4.7)

Combining (SA-4.5), (SA-4.6) and (SA-4.7), we get

$$\left| \frac{N'}{\sqrt{D'} + \varepsilon} - \frac{N''}{\sqrt{D''} + \varepsilon} \right| \leq |N'| \cdot \left| \frac{1}{\sqrt{D'} + \varepsilon} - \frac{1}{\sqrt{D''} + \varepsilon} \right| + \frac{|N' - N''|}{\sqrt{D''} + \varepsilon} \\
\leq \frac{1}{1 - \beta^{n+1}} \sum_{k=0}^{n} \beta^{n-k} (1 - \beta) M_1 \cdot \frac{2M_1 M_2 \sqrt{p}}{2R(R + \varepsilon)^2 (1 - \rho^{n+1})} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \left\| \boldsymbol{\theta}^{(k)} - \tilde{\boldsymbol{\theta}}(t_k) \right\| \\
+ \frac{M_2 \sqrt{p}}{(R + \varepsilon)(1 - \beta^{n+1})} \sum_{k=0}^{n} \beta^{n-k} (1 - \beta) \left\| \boldsymbol{\theta}^{(k)} - \tilde{\boldsymbol{\theta}}(t_k) \right\| \\
= \frac{M_1^2 M_2 \sqrt{p}}{R(R + \varepsilon)^2 (1 - \rho^{n+1})} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \left\| \boldsymbol{\theta}^{(k)} - \tilde{\boldsymbol{\theta}}(t_k) \right\| \\
+ \frac{M_2 \sqrt{p}}{(R + \varepsilon)(1 - \beta^{n+1})} \sum_{k=0}^{n} \beta^{n-k} (1 - \beta) \left\| \boldsymbol{\theta}^{(k)} - \tilde{\boldsymbol{\theta}}(t_k) \right\| \\
\stackrel{\text{(a)}}{\leq} \frac{M_1^2 M_2 \sqrt{p}}{R(R + \varepsilon)^2 (1 - \rho^{n+1})} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) d_7 e^{d_8 k h} h^2 \\
+ \frac{M_2 \sqrt{p}}{(R + \varepsilon)(1 - \beta^{n+1})} \sum_{k=0}^{n} \beta^{n-k} (1 - \beta) d_7 e^{d_8 k h} h^2, \tag{SA-4.8}$$

where in (a) we used the induction hypothesis and that the bound on $\|\mathbf{e}_n\|$ is already proven. Now note that since $0 < \rho e^{-d_8 h} < \rho$, we have $\sum_{k=0}^n \left(\rho e^{-d_8 h}\right)^k \le \sum_{k=0}^n \rho^k = \left(1 - \rho^{n+1}\right)/(1 - \rho)$, which is rewritten as

$$\frac{1}{1 - \rho^{n+1}} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) e^{d_8 kh} \le e^{d_8 nh}.$$

By the same logic,

$$\frac{1}{1-\beta^{n+1}} \sum_{k=0}^{n} \beta^{n-k} (1-\beta) e^{d_8kh} \le e^{d_8nh}.$$

Then we can continue (SA-4.8):

$$\left| \frac{N'}{\sqrt{D'} + \varepsilon} - \frac{N''}{\sqrt{D''} + \varepsilon} \right| \le \frac{M_2 \sqrt{p}}{R + \varepsilon} \left(\frac{M_1^2}{R(R + \varepsilon)} + 1 \right) d_7 e^{d_8 n h} h^2 \tag{SA-4.9}$$

Again using $1 \le e^{d_8nh}$, we conclude from (SA-4.4) and (SA-4.9) that

$$\|\mathbf{e}_{n+1} - \mathbf{e}_n\| \le \underbrace{\left(C_3 + \frac{M_2\sqrt{p}}{R+\varepsilon} \left(\frac{M_1^2}{R(R+\varepsilon)} + 1\right) d_7\right) \sqrt{p}}_{\le d_9} e^{d_8nh} h^3,$$

finishing the induction step.

SA-5 Adam with ε inside the square root

Definition SA-5.1. In this section, for some $\boldsymbol{\theta}^{(0)} \in \mathbb{R}^p$, $\nu^{(0)} = \mathbf{0} \in \mathbb{R}^p$, $\beta, \rho \in (0, 1)$, let the sequence of p-vectors $\left\{\boldsymbol{\theta}^{(k)}\right\}_{k \in \mathbb{Z}_{>0}}$ be defined for $n \geq 0$ by

$$\nu_{j}^{(n+1)} = \rho \nu_{j}^{(n)} + (1 - \rho) \left(\nabla_{j} E_{n} \left(\boldsymbol{\theta}^{(n)} \right) \right)^{2},
m_{j}^{(n+1)} = \beta m_{j}^{(n)} + (1 - \beta) \nabla_{j} E_{n} \left(\boldsymbol{\theta}^{(n)} \right),
\theta_{j}^{(n+1)} = \theta_{j}^{(n)} - h \frac{m_{j}^{(n+1)} / (1 - \beta^{n+1})}{\sqrt{\nu_{j}^{(n+1)} / (1 - \rho^{n+1}) + \varepsilon}}.$$
(SA-5.1)

Let $\tilde{\boldsymbol{\theta}}(t)$ be defined as a continuous solution to the piecewise ODE

$$\dot{\tilde{\theta}}_{j}(t) = -\frac{M_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)}{R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)} + h\left(\frac{M_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)\left(2P_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right) + \bar{P}_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)\right)}{2R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)^{3}} - \frac{2L_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right) + \bar{L}_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)}{2R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)}\right). \tag{SA-5.2}$$

with the initial condition $\tilde{\boldsymbol{\theta}}(0) = \boldsymbol{\theta}^{(0)}$, where $\mathbf{R}^{(n)}(\boldsymbol{\theta})$, $\mathbf{P}^{(n)}(\boldsymbol{\theta})$, $\bar{\mathbf{P}}^{(n)}(\boldsymbol{\theta})$, $\mathbf{M}^{(n)}(\boldsymbol{\theta})$, $\bar{\mathbf{L}}^{(n)}(\boldsymbol{\theta})$, $\bar{\mathbf{L}}^{(n)}(\boldsymbol{\theta})$ are p-dimensional functions with components

$$R_{j}^{(n)}(\boldsymbol{\theta}) := \sqrt{\sum_{k=0}^{n} \rho^{n-k} (1-\rho) \left(\nabla_{j} E_{k}(\boldsymbol{\theta})\right)^{2} / (1-\rho^{n+1}) + \varepsilon},$$

$$M_{j}^{(n)}(\boldsymbol{\theta}) := \frac{1}{1-\beta^{n+1}} \sum_{k=0}^{n} \beta^{n-k} (1-\beta) \nabla_{j} E_{k}(\boldsymbol{\theta}),$$

$$L_{j}^{(n)}(\boldsymbol{\theta}) := \frac{1}{1-\beta^{n+1}} \sum_{k=0}^{n} \beta^{n-k} (1-\beta) \sum_{i=1}^{p} \nabla_{ij} E_{k}(\boldsymbol{\theta}) \sum_{l=k}^{n-1} \frac{M_{i}^{(l)}(\boldsymbol{\theta})}{R_{i}^{(l)}(\boldsymbol{\theta})},$$

$$\bar{L}_{j}^{(n)}(\boldsymbol{\theta}) := \frac{1}{1-\beta^{n+1}} \sum_{k=0}^{n} \beta^{n-k} (1-\beta) \sum_{i=1}^{p} \nabla_{ij} E_{k}(\boldsymbol{\theta}) \frac{M_{i}^{(n)}(\boldsymbol{\theta})}{R_{i}^{(n)}(\boldsymbol{\theta})},$$

$$P_{j}^{(n)}(\boldsymbol{\theta}) := \frac{1}{1-\rho^{n+1}} \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \nabla_{j} E_{k}(\boldsymbol{\theta}) \sum_{i=1}^{p} \nabla_{ij} E_{k}(\boldsymbol{\theta}) \sum_{l=k}^{n-1} \frac{M_{i}^{(l)}(\boldsymbol{\theta})}{R_{i}^{(l)}(\boldsymbol{\theta})},$$

$$\bar{P}_{j}^{(n)}(\boldsymbol{\theta}) := \frac{1}{1-\rho^{n+1}} \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \nabla_{j} E_{k}(\boldsymbol{\theta}) \sum_{i=1}^{p} \nabla_{ij} E_{k}(\boldsymbol{\theta}) \frac{M_{i}^{(n)}(\boldsymbol{\theta})}{R_{i}^{(n)}(\boldsymbol{\theta})}.$$

Assumption SA-5.2. For some positive constants M_1 , M_2 , M_3 , M_4 we have

$$\sup_{i} \sup_{k} \sup_{\boldsymbol{\theta}} |\nabla_{i} E_{k}(\boldsymbol{\theta})| \leq M_{1},$$

$$\sup_{i,j} \sup_{k} \sup_{\boldsymbol{\theta}} \left| \nabla_{ij} E_k(\boldsymbol{\theta}) \right| \leq M_2,$$

$$\sup_{i,j,s} \sup_{k} \sup_{\boldsymbol{\theta}} \left| \nabla_{ijs} E_k(\boldsymbol{\theta}) \right| \leq M_3,$$

$$\sup_{i,j,s,r} \sup_{k} \sup_{\boldsymbol{\theta}} \left| \nabla_{ijsr} E_k(\boldsymbol{\theta}) \right| \leq M_4.$$

Theorem SA-5.3 (Adam with ε inside: local error bound). Suppose Assumption SA-5.2 holds. Then for all $n \in \{0, 1, ..., \lfloor T/h \rfloor\}$

$$\left| \tilde{\theta}_j(t_{n+1}) - \tilde{\theta}_j(t_n) + h \frac{\frac{1}{1-\beta^{n+1}} \sum_{k=0}^n \beta^{n-k} (1-\beta) \nabla_j E_k \left(\tilde{\boldsymbol{\theta}}(t_k) \right)}{\sqrt{\frac{1}{1-\rho^{n+1}} \sum_{k=0}^n \rho^{n-k} (1-\rho) \left(\nabla_j E_k \left(\tilde{\boldsymbol{\theta}}(t_k) \right) \right)^2 + \varepsilon}} \right| \le C_4 h^3$$

for a positive constant C_4 depending on β and ρ .

The argument is the same as for Theorem SA-2.3.

Theorem SA-5.4 (Adam with ε inside: global error bound). Suppose Assumption SA-5.2 holds for $\left\{\boldsymbol{\theta}^{(k)}\right\}_{k\in\mathbb{Z}_{\geq 0}}$ defined in Definition SA-5.1. Then there exist positive constants d_{10} , d_{11} , d_{12} such that for all $n\in\{0,1,\ldots,\lfloor T/h\rfloor\}$

$$\|\mathbf{e}_n\| \le d_{10}e^{d_{11}nh}h^2$$
 and $\|\mathbf{e}_{n+1} - \mathbf{e}_n\| \le d_{12}e^{d_{11}nh}h^3$,

where $\mathbf{e}_n := \tilde{\boldsymbol{\theta}}(t_n) - \boldsymbol{\theta}^{(n)}$. The constants can be defined as

$$d_{10} := C_4,$$

$$d_{11} := \left[1 + \frac{M_2 \sqrt{p}}{\sqrt{\varepsilon}} \left(\frac{M_1^2}{\varepsilon} + 1 \right) d_{10} \right] \sqrt{p},$$

$$d_{12} := C_4 d_{11}.$$

The argument is the same as for Theorem SA-4.4.

SA-6 Technical bounding lemmas

We will need the following lemmas to prove Theorem SA-2.3.

Lemma SA-6.1. Suppose Assumption SA-2.2 holds. Then

$$\sup_{\boldsymbol{\theta}} \left| P_j^{(n)}(\boldsymbol{\theta}) \right| \le C_5, \tag{SA-6.1}$$

$$\sup_{\boldsymbol{\theta}} \left| \bar{P}_j^{(n)}(\boldsymbol{\theta}) \right| \le C_6, \tag{SA-6.2}$$

with constants C_5 , C_6 defined as follows:

$$C_5 := p \frac{M_1^2 M_2}{R + \varepsilon} \cdot \frac{\rho}{1 - \rho},$$

$$C_6 := p \frac{M_1^2 M_2}{R + \varepsilon}.$$

Proof of Lemma SA-6.1. The proof is done in the following simple steps.

SA-6.2 Proof of (SA-6.1). This bound is straightforward:

$$\sup_{\boldsymbol{\theta}} \left| P_j^{(n)}(\boldsymbol{\theta}) \right| = \sup_{\boldsymbol{\theta}} \left| \sum_{k=0}^n \rho^{n-k} (1-\rho) \nabla_j E_k(\boldsymbol{\theta}) \sum_{i=1}^p \nabla_{ij} E_k(\boldsymbol{\theta}) \sum_{l=k}^{n-1} \frac{\nabla_i E_l(\boldsymbol{\theta})}{R_i^{(l)}(\boldsymbol{\theta}) + \varepsilon} \right|$$

$$\leq p \frac{M_1^2 M_2}{R + \varepsilon} (1-\rho) \sum_{k=0}^n \rho^{n-k} (n-k) \leq p \frac{M_1^2 M_2}{R + \varepsilon} (1-\rho) \sum_{k=0}^\infty \rho^k k = C_5.$$

SA-6.3 Proof of (SA-6.2). This bound is straightforward:

$$\sup_{\boldsymbol{\theta}} \left| \bar{P}_j^{(n)}(\boldsymbol{\theta}) \right| = \sup_{\boldsymbol{\theta}} \left| \sum_{k=0}^n \rho^{n-k} (1-\rho) \nabla_j E_k(\boldsymbol{\theta}) \sum_{i=1}^p \nabla_{ij} E_k(\boldsymbol{\theta}) \frac{\nabla_i E_n(\boldsymbol{\theta})}{R_i^{(n)}(\boldsymbol{\theta}) + \varepsilon} \right|$$

$$\leq p \frac{M_1^2 M_2}{R + \varepsilon} (1-\rho) \sum_{k=0}^n \rho^{n-k} \leq p \frac{M_1^2 M_2}{R + \varepsilon} = C_6.$$

This concludes the proof of Lemma SA-6.1.

Lemma SA-6.4. Suppose Assumption SA-2.2 holds. Then the first derivative of $t \mapsto \tilde{\theta}_j(t)$ is uniformly over j and $t \in [0,T]$ bounded in absolute value by some positive constant, say D_1 .

Proof. This follows immediately from $h \leq T$, (SA-6.1), (SA-6.2) and the definition of $\tilde{\boldsymbol{\theta}}(t)$ given in (SA-2.2).

Lemma SA-6.5. Suppose Assumption SA-2.2 holds. Then

$$\sup_{t \in [0,T]} \sup_{j} \left| \left(\nabla_{j} E_{n} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right) \right| \leq C_{7}, \tag{SA-6.3}$$

$$\sup_{n,k} \sup_{t \in [t_n, t_{n+1}]} \left| \sum_{i=1}^p \nabla_{ij} E_k \left(\tilde{\boldsymbol{\theta}}(t) \right) \left[\dot{\tilde{\boldsymbol{\theta}}}_i(t) + \frac{\nabla_i E_n \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_i^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right] \right| \le C_8 h, \tag{SA-6.4}$$

$$\sup_{k \le n} \sup_{t \in [0,T]} \left| \sum_{i=1}^{p} \nabla_{ij} E_k \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{l=k}^{n-1} \frac{\nabla_i E_l \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_i^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right| \le (n-k) C_9, \tag{SA-6.5}$$

$$\left| \left(P_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right) \right| \le C_{10} + C_{14}, \tag{SA-6.6}$$

$$\left| \left(\bar{P}_j^{(n)}(\tilde{\boldsymbol{\theta}}(t)) \right) \right| \le C_{15}, \tag{SA-6.7}$$

$$\left| \left(\sum_{i=1}^{p} \nabla_{ij} E_k \left(\tilde{\boldsymbol{\theta}}(t) \right) \frac{\nabla_i E_n \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_i^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right) \right| \le C_{13}, \tag{SA-6.8}$$

$$\left| \frac{\nabla_{j} E_{n} \left(\tilde{\boldsymbol{\theta}}(t) \right) \left(2 P_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \bar{P}_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right)}{2 \left(R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^{2} R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right)} \right) \right| \leq C_{17}, \tag{SA-6.9}$$

$$\left| \left(\frac{\sum_{i=1}^{p} \nabla_{ij} E_n(\tilde{\boldsymbol{\theta}}(t)) \frac{\nabla_i E_n(\tilde{\boldsymbol{\theta}}(t))}{R_i^{(n)}(\tilde{\boldsymbol{\theta}}(t)) + \varepsilon}}{2(R_j^{(n)}(\tilde{\boldsymbol{\theta}}(t)) + \varepsilon)} \right) \right| \le C_{18}, \tag{SA-6.10}$$

with constants C_7 , C_8 , C_9 , C_{10} , C_{11} , C_{12} , C_{13} , C_{14} , C_{15} , C_{16} , C_{17} , C_{18} defined as follows:

$$\begin{split} C_7 &:= p M_2 D_1, \\ C_8 &:= p M_2 \bigg[\frac{M_1 (2C_5 + C_6)}{2(R + \varepsilon)^2 R} + \frac{p M_1 M_2}{2(R + \varepsilon)^2} \bigg], \\ C_9 &:= p \frac{M_1 M_2}{R + \varepsilon}, \\ C_{10} &:= D_1 p^2 \frac{M_1 M_2^2}{R + \varepsilon} \cdot \frac{\rho}{1 - \rho}, \\ C_{11} &:= \frac{D_1 p M_1 M_2}{R}, \\ C_{12} &:= D_1 p^2 \frac{M_1 M_3}{R + \varepsilon}, \\ C_{13} &:= C_{12} + p M_2 \bigg(\frac{D_1 p M_2}{R + \varepsilon} + \frac{M_1}{(R + \varepsilon)^2} C_{11} \bigg) \\ &= \frac{D_1 p^2}{R + \varepsilon} \bigg(M_1 M_3 + M_2^2 + \frac{M_1^2 M_2^2}{(R + \varepsilon) R} \bigg), \\ C_{14} &:= M_1 C_{13} \frac{\rho}{1 - \rho}, \\ C_{15} &:= \frac{D_1 p^2 M_1 M_2^2}{R + \varepsilon} + \frac{D_1 p^2 M_1^2 M_3}{R + \varepsilon} + \frac{D_1 p^2 M_1 M_2^2}{R + \varepsilon} + \frac{p M_1^2 M_2 C_{11}}{(R + \varepsilon)^2}, \\ C_{16} &:= \frac{2C_{11}}{R(R + \varepsilon)^3} + \frac{C_{11}}{(R + \varepsilon)^4}, \\ C_{17} &:= \frac{D_1 p M_2 \cdot (2C_5 + C_6)}{2(R + \varepsilon)^2 R} + \frac{M_1 \left(2(C_{10} + C_{14}) + C_{15}\right)}{2(R + \varepsilon)^2 R} + \frac{M_1 (2C_5 + C_6) C_{16}}{2}, \\ C_{18} &:= \frac{1}{2(R + \varepsilon)} \bigg(\frac{p^2 D_1 M_1 M_3}{R + \varepsilon} + \frac{p^2 D_1 M_2^2}{R + \varepsilon} + \frac{p M_1 M_2 C_{11}}{(R + \varepsilon)^2} \bigg) + \frac{1}{2} \cdot \frac{p M_1 M_2}{R + \varepsilon} \cdot \frac{C_{11}}{(R + \varepsilon)^2}. \end{split}$$

Proof of Lemma SA-6.5. We divide this argument in several steps.

SA-6.6 Proof of (SA-6.3). This bound is straightforward:

$$\left| \left(\nabla_j E_n \left(\tilde{\boldsymbol{\theta}}(t) \right) \right) \cdot \right| = \left| \sum_{i=1}^p \nabla_{ij} E_n \left(\tilde{\boldsymbol{\theta}}(t) \right) \dot{\tilde{\boldsymbol{\theta}}}_i(t) \right| \le C_7.$$

SA-6.7 Proof of (SA-6.4). By (SA-2.2) we have for $t = t_{n+1}^-$

$$\left| \dot{\tilde{\theta}}_j(t) + \frac{\nabla_j E_n(\tilde{\boldsymbol{\theta}}(t))}{R_j^{(n)}(\tilde{\boldsymbol{\theta}}(t)) + \varepsilon} \right| \le h \left[\frac{M_1(2C_5 + C_6)}{2(R+\varepsilon)^2 R} + \frac{pM_1M_2}{2(R+\varepsilon)^2} \right],$$

giving (SA-6.4) immediately.

SA-6.8 Proof of (SA-6.5). This bound follows from the assumptions immediately.

SA-6.9 Proof of (SA-6.6). We will prove this by bounding the two terms in the expression

$$\frac{\mathrm{d}}{\mathrm{d}t} P_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) \\
= \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \sum_{u=1}^{p} \nabla_{ju} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \dot{\tilde{\boldsymbol{\theta}}}_{u}(t) \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \\
+ \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{i=1}^{p} \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right\}. \tag{SA-6.11}$$

It is easily shown that the first term in (SA-6.11) is bounded in absolute value by C_{10} :

$$\left| \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \sum_{u=1}^{p} \nabla_{ju} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \dot{\tilde{\boldsymbol{\theta}}}_{u}(t) \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right|$$

$$\leq D_{1} p^{2} \frac{M_{1} M_{2}^{2}}{R + \varepsilon} (1-\rho) \sum_{k=0}^{n} \rho^{k} k$$

$$\leq D_{1} p^{2} \frac{M_{1} M_{2}^{2}}{R + \varepsilon} (1-\rho) \sum_{k=0}^{\infty} \rho^{k} k$$

$$= C_{10}.$$

For the proof of (SA-6.6), it is left to show that the second term in (SA-6.11) is bounded in absolute value by C_{14} .

To bound
$$\sum_{i=1}^{p} \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right\}$$
, we can use
$$\begin{vmatrix} \sum_{i=1}^{p} \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right\} \end{vmatrix}$$
$$\leq \begin{vmatrix} \sum_{i=1}^{p} \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right\} \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \end{vmatrix}$$
$$+ \begin{vmatrix} \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{l=k}^{n-1} \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right\} \end{vmatrix}$$

By the Cauchy-Schwarz inequality applied twice,

$$\left| \sum_{i=1}^{p} \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right\} \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right|$$

$$\leq \sqrt{\sum_{i=1}^{p} \sum_{s=1}^{p} \left(\nabla_{ijs} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right)^{2}} \sqrt{\sum_{u=1}^{p} \dot{\tilde{\boldsymbol{\theta}}}_{u}(t)^{2}} \sqrt{\sum_{i=1}^{p} \left| \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right|^{2}}$$

$$\leq M_{3} p \cdot D_{1} \sqrt{p} \cdot \sqrt{\sum_{i=1}^{p} \left| \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right|^{2}} \leq (n-k) C_{12}.$$

Next, for any n and j

$$\left| \frac{\mathrm{d}}{\mathrm{d}t} R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right| = \frac{1}{R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right)} \left| \sum_{k=0}^n \rho^{n-k} (1-\rho) \nabla_j E_k \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{i=1}^p \nabla_{ij} E_k \left(\tilde{\boldsymbol{\theta}}(t) \right) \dot{\tilde{\boldsymbol{\theta}}}_i(t) \right|$$

$$\leq \frac{1}{R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right)} D_1 p M_1 M_2 \sum_{k=0}^n \rho^{n-k} (1-\rho) \leq C_{11}.$$
(SA-6.12)

This gives

$$\left| \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right\} \right| \leq \frac{\left| \sum_{s=1}^{p} \nabla_{is} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right) \dot{\tilde{\boldsymbol{\theta}}}_{s}(t) \right|}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} + \frac{\left| \nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right| \cdot \left| \frac{\mathrm{d}}{\mathrm{d}t} R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right|}{\left(R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^{2}} \\
\leq \frac{D_{1} p M_{2}}{R + \varepsilon} + \frac{M_{1}}{(R + \varepsilon)^{2}} C_{11}.$$

We have obtained

$$\left| \sum_{i=1}^{p} \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \nabla_{ij} E_k \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{l=k}^{n-1} \frac{\nabla_i E_l \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_i^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right\} \right| \le (n-k) C_{13}. \tag{SA-6.13}$$

This gives a bound on the second term in (SA-6.11):

$$\left| \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{i=1}^{p} \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right\} \right|$$

$$\leq M_{1} \sum_{k=0}^{n} \rho^{n-k} (1-\rho) (n-k) C_{13} \leq C_{14},$$

concluding the proof of (SA-6.6).

SA-6.10 Proof of (SA-6.7). We will prove this by bounding the four terms in the expression

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\{ \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \frac{\nabla_{i} E_{n} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right\}$$

$$= \text{Term} 1 + \text{Term} 2 + \text{Term} 3 + \text{Term} 4,$$

where

Term1

$$:= \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right\} \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \frac{\nabla_{i} E_{n} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon},$$

Term2

$$:= \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{i=1}^{p} \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right\} \frac{\nabla_{i} E_{n} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon},$$

Term3

$$:= \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \nabla_{j} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t) \Big) \sum_{i=1}^{p} \nabla_{ij} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t) \Big) \frac{\frac{\mathrm{d}}{\mathrm{d}t} \Big\{ \nabla_{i} E_{n} \Big(\tilde{\boldsymbol{\theta}}(t) \Big) \Big\}}{R_{i}^{(n)} \Big(\tilde{\boldsymbol{\theta}}(t) \Big) + \varepsilon},$$

Term4

$$:= -\sum_{k=0}^{n} \rho^{n-k} (1-\rho) \nabla_{j} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t) \Big) \sum_{i=1}^{p} \nabla_{ij} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t) \Big) \frac{\nabla_{i} E_{n} \Big(\tilde{\boldsymbol{\theta}}(t) \Big) \frac{\mathrm{d}}{\mathrm{d}t} R_{i}^{(n)} \Big(\tilde{\boldsymbol{\theta}}(t) \Big)}{\Big(R_{i}^{(n)} \Big(\tilde{\boldsymbol{\theta}}(t) \Big) + \varepsilon \Big)^{2}}.$$

To bound Term1, use $\left| \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \nabla_j E_k \left(\tilde{\boldsymbol{\theta}}(t) \right) \right\} \right| \leq D_1 p M_2$, giving

$$|\text{Term1}| \le \frac{D_1 p^2 M_1 M_2^2}{R + \varepsilon} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \le \frac{D_1 p^2 M_1 M_2^2}{R + \varepsilon}.$$

To bound Term2, use $\left| \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \nabla_{ij} E_k \left(\tilde{\boldsymbol{\theta}}(t) \right) \right\} \right| \leq D_1 p M_3$, giving

$$|\text{Term2}| \le \frac{D_1 p^2 M_1^2 M_3}{R + \varepsilon} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \le \frac{D_1 p^2 M_1^2 M_3}{R + \varepsilon}.$$

To bound Term3, use $\left|\frac{\mathrm{d}}{\mathrm{d}t}\Big\{\nabla_i E_n\Big(\tilde{\boldsymbol{\theta}}(t)\Big)\Big\}\right| \leq D_1 p M_2$, giving

$$|\text{Term3}| \le \frac{D_1 p^2 M_1 M_2^2}{R + \varepsilon} \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \le \frac{D_1 p^2 M_1 M_2^2}{R + \varepsilon}.$$

To bound Term4, use (SA-6.12), giving

$$|\text{Term4}| \le \frac{pM_1^2M_2C_{11}}{(R+\varepsilon)^2} \sum_{k=0}^n \rho^{n-k} (1-\rho) \le \frac{pM_1^2M_2C_{11}}{(R+\varepsilon)^2}$$

SA-6.11 Proof of (SA-6.8). This is proven in (SA-6.13).

SA-6.12 Proof of (SA-6.9). (SA-6.12) gives

$$\left| \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \frac{1}{R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right)} \right\} \right| = \frac{\left| \frac{\mathrm{d}}{\mathrm{d}t} R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right|}{R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right)^2} \le \frac{C_{11}}{R^2}, \tag{SA-6.14}$$

$$\left| \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \frac{1}{R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right\} \right| = \frac{\left| \frac{\mathrm{d}}{\mathrm{d}t} R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right|}{\left(R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^2} \le \frac{C_{11}}{(R + \varepsilon)^2}, \tag{SA-6.15}$$

$$\left| \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \frac{1}{\left(R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^2} \right\} \right| = \frac{2 \left| \frac{\mathrm{d}}{\mathrm{d}t} R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right|}{\left(R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^3} \le \frac{2C_{11}}{(R + \varepsilon)^3}. \tag{SA-6.16}$$

Combining two bounds above, we have

$$\left| \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \left(R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^{-2} R_j^{(n)} (\tilde{\boldsymbol{\theta}}(t))^{-1} \right\} \right|$$

$$\leq \frac{\left|\frac{\mathrm{d}}{\mathrm{d}t} \left\{ \left(R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^{-2} \right\} \right|}{R_j^{(n)} (\tilde{\boldsymbol{\theta}}(t))} + \frac{\left|\frac{\mathrm{d}}{\mathrm{d}t} \left\{ R_j^{(n)} (\tilde{\boldsymbol{\theta}}(t))^{-1} \right\} \right|}{\left(R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^2} \leq C_{16}.$$

We are ready to bound

$$\left| \left(\frac{\nabla_{j} E_{n} \left(\tilde{\boldsymbol{\theta}}(t) \right) \left(2P_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \bar{P}_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right)}{2 \left(R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^{2} R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right)} \right) \right|$$

$$\leq \left| \frac{\left(\nabla_{j} E_{n} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right) \cdot \left(2P_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \bar{P}_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right)}{2 \left(R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^{2} R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right)} \right| + \left| \frac{\nabla_{j} E_{n} \left(\tilde{\boldsymbol{\theta}}(t) \right) \left(2P_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \bar{P}_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right)}{2 \left(R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^{2} R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right)} \right| + \left| \frac{\nabla_{j} E_{n} \left(\tilde{\boldsymbol{\theta}}(t) \right) \left(2P_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \bar{P}_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right)}{2} \right|$$

$$\times \left(\left(R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^{-2} R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right)^{-1} \right) \cdot \right| \leq C_{17}.$$

SA-6.13 Proof of (SA-6.10). Since

$$\left| \sum_{i=1}^p \nabla_{ij} E_n \Big(\tilde{\boldsymbol{\theta}}(t) \Big) \frac{\nabla_i E_n \Big(\tilde{\boldsymbol{\theta}}(t) \Big)}{R_i^{(n)} \Big(\tilde{\boldsymbol{\theta}}(t) \Big) + \varepsilon} \right| \leq \frac{p M_1 M_2}{R + \varepsilon}$$

and, as we have already seen in the argument for (SA-6.7),

$$\left| \left(\sum_{i=1}^{p} \nabla_{ij} E_n \left(\tilde{\boldsymbol{\theta}}(t) \right) \frac{\nabla_i E_n \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_i^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right) \cdot \right| \leq \frac{p^2 D_1 M_1 M_3}{R + \varepsilon} + \frac{p^2 D_1 M_2^2}{R + \varepsilon} + \frac{p M_1 M_2 C_{11}}{(R + \varepsilon)^2},$$

we are ready to bound

$$\left| \left(\frac{\sum_{i=1}^{p} \nabla_{ij} E_n(\tilde{\boldsymbol{\theta}}(t)) \frac{\nabla_i E_n(\tilde{\boldsymbol{\theta}}(t))}{R_i^{(n)}(\tilde{\boldsymbol{\theta}}(t)) + \varepsilon}}{2(R_j^{(n)}(\tilde{\boldsymbol{\theta}}(t)) + \varepsilon)} \right) \right| \le C_{18}.$$

The proof of Lemma SA-6.5 is concluded.

Lemma SA-6.14. Suppose Assumption SA-2.2 holds. Then the second derivative of $t \mapsto \tilde{\theta}_j(t)$ is uniformly over j and $t \in [0,T]$ bounded in absolute value by some positive constant, say D_2 .

Proof. This follows from the definition of $\tilde{\boldsymbol{\theta}}(t)$ given in (SA-2.2), $h \leq T$ and that the first derivatives of all three terms in (SA-2.2) are bounded by Lemma SA-6.5.

Lemma SA-6.15. Suppose Assumption SA-2.2 holds. Then

$$\left| \left(\nabla_j E_n \left(\tilde{\boldsymbol{\theta}}(t) \right) \right)^{\dots} \right| \le C_{19}, \tag{SA-6.17}$$

$$\left| \left(R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right)^{\dots} \right| \le C_{20}, \tag{SA-6.18}$$

$$\left| \left(\left(R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^{-2} \right)^{\dots} \right| \le C_{21}, \tag{SA-6.19}$$

$$\left| \left(R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right)^{-1} \right)^{\dots} \right| \le C_{22}, \tag{SA-6.20}$$

$$\left| \left(\left(R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^{-2} R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right)^{-1} \right)^{\dots} \right| \le C_{23}, \tag{SA-6.21}$$

$$\left| \left(\sum_{i=1}^{p} \nabla_{ij} E_k \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{l=k}^{n-1} \frac{\nabla_i E_l \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_i^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right) \right| \le (n-k) C_{24}, \tag{SA-6.22}$$

with constants C_{19} , C_{20} , C_{21} , C_{22} , C_{23} , C_{24} defined as follows:

$$\begin{split} C_{19} &:= p^2 M_3 D_1^2 + p M_2 D_2, \\ C_{20} &:= \frac{C_{11}}{R^2} p M_1 M_2 D_1 + \frac{1}{R} p^2 M_2^2 D_1^2 + \frac{1}{R} p^2 M_1 M_3 D_1^2 + \frac{1}{R} p M_1 M_2 D_2, \\ C_{21} &:= \frac{6C_{11}^2}{(R+\varepsilon)^4} + \frac{2C_{20}}{(R+\varepsilon)^3}, \\ C_{22} &:= \frac{2C_{11}^2}{R^3} + \frac{C_{20}}{R^2}, \\ C_{23} &:= \frac{C_{21}}{R} + \frac{4C_{11}^2}{R^2 (R+\varepsilon)^3} + \frac{C_{22}}{(R+\varepsilon)^2}, \\ C_{24} &:= p \left[\frac{2C_{11} \left(D_1 M_2^2 p + D_1 M_1 M_3 p \right)}{(R+\varepsilon)^2} + M_1 M_2 \left(\frac{2C_{11}^2}{(R+\varepsilon)^3} + \frac{C_{20}}{(R+\varepsilon)^2} \right) \right. \\ &\left. + \frac{2D_1^2 M_2 M_3 p^2 + M_2 \left(D_1^2 M_3 p^2 + D_2 M_2 p \right) + M_1 \left(D_1^2 M_4 p^2 + D_2 M_3 p \right)}{R+\varepsilon} \right]. \end{split}$$

Proof of Lemma SA-6.15. We divide this argument in several steps.

SA-6.16 Proof of (SA-6.17). This bound is straightforward:

$$\left| \left(\nabla_j E_n \left(\tilde{\boldsymbol{\theta}}(t) \right) \right)^{\cdot \cdot} \right| = \left| \sum_{i=1}^p \sum_{s=1}^p \nabla_{ijs} E_n \left(\tilde{\boldsymbol{\theta}}(t) \right) \dot{\tilde{\boldsymbol{\theta}}}_s(t) \dot{\tilde{\boldsymbol{\theta}}}_i(t) + \sum_{i=1}^p \nabla_{ij} E_n \left(\tilde{\boldsymbol{\theta}}(t) \right) \ddot{\tilde{\boldsymbol{\theta}}}_t(t) \right| \le C_{19}.$$

SA-6.17 Proof of (SA-6.18). Note that

$$\left(R_j^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)\right)^{\cdot \cdot} = \left(R_j^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)^{-1}\right)^{\cdot \cdot} \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \nabla_j E_k\left(\tilde{\boldsymbol{\theta}}(t)\right) \sum_{i=1}^{p} \nabla_{ij} E_k\left(\tilde{\boldsymbol{\theta}}(t)\right) \dot{\tilde{\boldsymbol{\theta}}}_i(t)
+ R_j^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)^{-1} \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \left(\nabla_j E_k\left(\tilde{\boldsymbol{\theta}}(t)\right)\right)^{\cdot \cdot} \sum_{i=1}^{p} \nabla_{ij} E_k\left(\tilde{\boldsymbol{\theta}}(t)\right) \dot{\tilde{\boldsymbol{\theta}}}_i(t)$$

$$+ R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t)\right)^{-1} \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t)\right) \sum_{i=1}^{p} \left(\nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t)\right)\right) \dot{\tilde{\boldsymbol{\theta}}}_{i}(t)$$

$$+ R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t)\right)^{-1} \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t)\right) \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t)\right) \ddot{\tilde{\boldsymbol{\theta}}}_{i}(t),$$

giving by (SA-6.14)

$$\left| \left(R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) \right)^{\cdot \cdot} \right| \leq \frac{C_{11}}{R^2} p M_1 M_2 D_1 \sum_{k=0}^n \rho^{n-k} (1-\rho) + \frac{1}{R} p^2 M_2^2 D_1^2 \sum_{k=0}^n \rho^{n-k} (1-\rho) + \frac{1}{R} p^2 M_1 M_3 D_1^2 \sum_{k=0}^n \rho^{n-k} (1-\rho) + \frac{1}{R} p M_1 M_2 D_2 \sum_{k=0} \rho^{n-k} (1-\rho)$$

$$\leq C_{20}.$$

SA-6.18 Proof of (SA-6.19). Note that

$$\left(\left(R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right) + \varepsilon\right)^{-2}\right)^{\dots} = \frac{6\left(\left(R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)\right)^{\cdot}\right)^{2}}{\left(R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right) + \varepsilon\right)^{4}} - \frac{2\left(R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)\right)^{\dots}}{\left(R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right) + \varepsilon\right)^{3}},$$

giving by (SA-6.12) and (SA-6.18)

$$\left| \left(\left(R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^{-2} \right) \right| \leq C_{21}.$$

SA-6.19 Proof of (SA-6.20). The bound follows from (SA-6.12), (SA-6.18) and

$$\left(R_j^{(n)}\Big(\tilde{\boldsymbol{\theta}}(t)\Big)^{-1}\right)^{\dots} = \frac{2\bigg(\bigg(R_j^{(n)}\Big(\tilde{\boldsymbol{\theta}}(t)\Big)\bigg)^{\cdot}\bigg)^2}{R_j^{(n)}\Big(\tilde{\boldsymbol{\theta}}(t)\Big)^3} - \frac{\bigg(R_j^{(n)}\Big(\tilde{\boldsymbol{\theta}}(t)\Big)\bigg)^{\dots}}{R_j^{(n)}\Big(\tilde{\boldsymbol{\theta}}(t)\Big)^2}.$$

SA-6.20 Proof of (SA-6.21). Putting
$$a := \left(R_j^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right) + \varepsilon\right)^{-2}, \ b := R_j^{(n)}\left(\tilde{\boldsymbol{\theta}}(t)\right)^{-1}$$
, use
$$|a| \le \frac{1}{(R+\varepsilon)^2}, \quad |b| \le \frac{1}{R},$$
$$|\dot{a}| \le \frac{2C_{11}}{(R+\varepsilon)^3}, \quad |\dot{b}| \le \frac{C_{11}}{R^2},$$
$$|\ddot{a}| \le C_{21}, \quad |\ddot{b}| \le C_{22},$$

and

$$(ab)^{\cdot \cdot} = \ddot{a}b + 2\dot{a}\dot{b} + a\ddot{b}.$$

SA-6.21 Proof of (SA-6.22). Putting

$$a := \nabla_{ij} E_k \left(\tilde{\boldsymbol{\theta}}(t) \right),$$

$$b := \nabla_i E_l \left(\tilde{\boldsymbol{\theta}}(t) \right),$$

$$c := \left(R_i^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon \right)^{-1},$$

we have

$$|a| \le M_2, \quad |\dot{a}| \le pM_3D_1, \quad |\ddot{a}| \le p^2M_4D_1^2 + pM_3D_2,$$

$$|b| \le M_1, \quad |\dot{b}| \le pM_2D_1, \quad |\ddot{b}| \le p^2M_3D_1^2 + pM_2D_2,$$

$$|c| \le \frac{1}{R+\varepsilon}, \quad |\dot{c}| \le \frac{C_{11}}{(R+\varepsilon)^2}, \quad |\ddot{c}| \le \frac{2C_{11}^2}{(R+\varepsilon)^3} + \frac{C_{20}}{(R+\varepsilon)^2}.$$

(SA-6.22) follows.

The proof of Lemma SA-6.15 is concluded.

Lemma SA-6.22. Suppose Assumption SA-2.2 holds. Then the third derivative of $t \mapsto \tilde{\theta}_j(t)$ is uniformly over j and $t \in [0,T]$ bounded in absolute value by some positive constant, say D_3 .

Proof. By (SA-6.5), (SA-6.13) and (SA-6.22)

$$\left| \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right| \leq (n-k) C_{9},$$

$$\left| \left(\sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right) \right| \leq (n-k) C_{13},$$

$$\left| \left(\sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t) \right) \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right) \right| \leq (n-k) C_{24}.$$

From the definition of $t \mapsto P_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right)$, it means that its derivatives up to order two are bounded. Similarly, the same is true for $t \mapsto \bar{P}_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right)$.

It follows from (SA-6.19) and its proof that the derivatives up to order two of

$$t \mapsto \left(R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t)\right) + \varepsilon\right)^{-2} R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t)\right)^{-1}$$

are also bounded.

These considerations give the boundedness of the second derivative of the term

$$t \mapsto \frac{\nabla_j E_n(\tilde{\boldsymbol{\theta}}(t)) \left(2P_j^{(n)}(\tilde{\boldsymbol{\theta}}(t)) + \bar{P}_j^{(n)}(\tilde{\boldsymbol{\theta}}(t)) \right)}{2 \left(R_j^{(n)}(\tilde{\boldsymbol{\theta}}(t)) + \varepsilon \right)^2 R_j^{(n)}(\tilde{\boldsymbol{\theta}}(t))}$$

in (SA-2.2). The boundedness of the second derivatives of the other two terms is shown analogously. By (SA-2.2) and since $h \leq T$, this means

$$\sup_{j} \sup_{t \in [0,T]} \left| \ddot{\tilde{\theta}}_{j}(t) \right| \le D_{3}$$

for some positive constant D_3 .

SA-7 Proof of Theorem SA-2.3

Lemma SA-7.1. Suppose Assumption SA-2.2 holds. Then for all $n \in \{0, 1, ..., \lfloor T/h \rfloor\}$, $k \in \{0, 1, ..., n-1\}$ we have

$$\left| \nabla_j E_k \left(\tilde{\boldsymbol{\theta}}(t_k) \right) - \nabla_j E_k \left(\tilde{\boldsymbol{\theta}}(t_n) \right) \right| \le C_7 (n - k) h \tag{SA-7.1}$$

Proof. (SA-7.1) follows from the mean value theorem applied n-k times.

Lemma SA-7.2. In the setting of Lemma SA-7.1, for any $l \in \{k, k+1, ..., n-1\}$ we have

$$\left| \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{l}) \right) - \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{l+1}) \right) - h \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) + \varepsilon} \right|$$

$$\leq \left(C_{19}/2 + C_{8} + (n - l - 1)C_{13} \right) h^{2}.$$

Proof. By the Taylor expansion of $t \mapsto \nabla_j E_k(\tilde{\boldsymbol{\theta}}(t))$ on the segment $[t_l, t_{l+1}]$ at t_{l+1} on the left

$$\left| \nabla_j E_k \Big(\tilde{\boldsymbol{\theta}}(t_l) \Big) - \nabla_j E_k \Big(\tilde{\boldsymbol{\theta}}(t_{l+1}) \Big) + h \sum_{i=1}^p \nabla_{ij} E_k \Big(\tilde{\boldsymbol{\theta}}(t_{l+1}) \Big) \dot{\tilde{\boldsymbol{\theta}}}_i \Big(t_{l+1}^- \Big) \right| \leq \frac{C_{19}}{2} h^2.$$

Combining this with (SA-6.4) gives

$$\left| \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{l}) \right) - \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{l+1}) \right) - h \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{l+1}) \right) \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t_{l+1}) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t_{l+1}) \right) + \varepsilon} \right|$$

$$\leq (C_{19}/2 + C_{8}) h^{2}.$$
(SA-7.2)

Now applying the mean-value theorem n-l-1 times, we have

$$\left| \sum_{i=1}^{p} \nabla_{ij} E_k \left(\tilde{\boldsymbol{\theta}}(t_{l+1}) \right) \frac{\nabla_i E_l \left(\tilde{\boldsymbol{\theta}}(t_{l+1}) \right)}{R_i^{(l)} \left(\tilde{\boldsymbol{\theta}}(t_{l+1}) \right) + \varepsilon} - \sum_{i=1}^{p} \nabla_{ij} E_k \left(\tilde{\boldsymbol{\theta}}(t_{l+2}) \right) \frac{\nabla_i E_l \left(\tilde{\boldsymbol{\theta}}(t_{l+2}) \right)}{R_i^{(l)} \left(\tilde{\boldsymbol{\theta}}(t_{l+2}) \right) + \varepsilon} \right| \le C_{13} h,$$

. .

$$\left| \sum_{i=1}^{p} \nabla_{ij} E_{l} \left(\tilde{\boldsymbol{\theta}}(t_{n-1}) \right) \frac{\nabla_{i} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n-1}) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t_{n-1}) \right) + \varepsilon} - \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) + \varepsilon} \right| \leq C_{13} h,$$

and in particular

$$\left| \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{l+1}) \right) \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t_{l+1}) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t_{l+1}) \right) + \varepsilon} - \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) + \varepsilon} \right| \leq (n - l - 1) C_{13} h.$$

Combining this with (SA-7.2), we conclude the proof of Lemma SA-7.2.

Lemma SA-7.3. In the setting of Lemma SA-7.1,

$$\left| \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) - \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) - h \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) + \varepsilon} \right|$$

$$\leq \left((n-k)(C_{19}/2 + C_{8}) + \frac{(n-k)(n-k-1)}{2} C_{13} \right) h^{2}.$$

Proof. Fix $n \in \mathbb{Z}_{\geq 0}$. Note that

$$\left| \nabla_{j} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t_{k}) \Big) - \nabla_{j} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big) - h \sum_{i=1}^{p} \nabla_{ij} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big) \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big)}{R_{i}^{(l)} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big) + \varepsilon} \right|$$

$$= \left| \sum_{l=k}^{n-1} \left\{ \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{l}) \right) - \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{l+1}) \right) - h \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) + \varepsilon} \right\} \right|$$

$$\leq \sum_{l=k}^{n-1} \left| \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{l}) \right) - \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{l+1}) \right) - h \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) + \varepsilon} \right|$$

$$\leq \sum_{l=k}^{(a)} \left| C_{19}/2 + C_{8} + (n-l-1)C_{13} \right| h^{2} = \left((n-k)(C_{19}/2 + C_{8}) + \frac{(n-k)(n-k-1)}{2}C_{13} \right) h^{2},$$

where (a) is by Lemma SA-7.2.

Lemma SA-7.4. Suppose Assumption SA-2.2 holds. Then for all $n \in \{0, 1, ..., \lfloor T/h \rfloor\}$

$$\left| \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \left(\nabla_j E_k \left(\tilde{\boldsymbol{\theta}}(t_k) \right) \right)^2 - R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_n) \right)^2 \right| \le C_{25} h \tag{SA-7.3}$$

and

$$\left| \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \left(\nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) \right)^{2} - R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)^{2} - 2h P_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) \right| \le C_{26} h^{2}$$
 (SA-7.4)

with C_{25} and C_{26} defined as follows:

$$\begin{split} C_{25}(\rho) &:= 2M_1C_7 \frac{\rho}{1-\rho}, \\ C_{26}(\rho) &:= M_1|C_{19} + 2C_8 - C_{13}| \frac{\rho}{1-\rho} \\ &+ \left(M_1C_{13} + |C_{19} + 2C_8 - C_{13}|C_9 + \frac{(C_{19} + 2C_8 - C_{13})^2}{4} \right) \frac{\rho(1+\rho)}{(1-\rho)^2} \\ &+ \left(C_{13}C_9 + \frac{C_{13}}{2}|C_{19} + 2C_8 - C_{13}| \right) \frac{\rho(1+4\rho+\rho^2)}{(1-\rho)^3} + \frac{C_{13}^2}{4} \cdot \frac{\rho(1+11\rho+11\rho^2+\rho^3)}{(1-\rho)^4}. \end{split}$$

Proof. Note that

$$\begin{split} & \left| \left(\nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) \right)^{2} - \left(\nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) \right)^{2} \right| \\ & \leq \left| \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) - \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) \right| \cdot \left| \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) + \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) \right| \\ & \stackrel{\text{(a)}}{\leq} C_{7}(n-k)h \cdot 2M_{1}, \end{split}$$

where (a) is by (SA-7.1). Using the triangle inequality, we can conclude

$$\left| \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \left(\nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) \right)^{2} - R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)^{2} \right|$$

$$\leq 2M_{1} C_{7} h (1-\rho) \sum_{k=0}^{n} (n-k) \rho^{n-k} = 2M_{1} C_{7} h (1-\rho) \sum_{k=0}^{n} k \rho^{k} = 2M_{1} C_{7} \frac{\rho}{1-\rho} h.$$

(SA-7.3) is proven.

We continue by showing

$$\left| \left(\nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) \right)^{2} - \left(\nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) \right)^{2} \right. \\
\left. - 2 \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) h \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) \sum_{l=k}^{n-1} \frac{\nabla_{i} E_{l} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) + \varepsilon} \right| \\
\leq 2 M_{1} \left((n-k) (C_{19}/2 + C_{8}) + \frac{(n-k)(n-k-1)}{2} C_{13} \right) h^{2} \\
+ 2(n-k) C_{9} \left((n-k) (C_{19}/2 + C_{8}) + \frac{(n-k)(n-k-1)}{2} C_{13} \right) h^{3} \\
+ \left((n-k) (C_{19}/2 + C_{8}) + \frac{(n-k)(n-k-1)}{2} C_{13} \right)^{2} h^{4}.$$
(SA-7.5)

To prove this, use

$$\left| a^2 - b^2 - 2bKh \right| \le 2|b| \cdot |a - b - Kh| + 2|K| \cdot h \cdot |a - b - Kh| + (a - b - Kh)^2$$

with

$$a := \nabla_j E_k \Big(\tilde{\boldsymbol{\theta}}(t_k) \Big), \quad b := \nabla_j E_k \Big(\tilde{\boldsymbol{\theta}}(t_n) \Big), \quad K := \sum_{i=1}^p \nabla_{ij} E_k \Big(\tilde{\boldsymbol{\theta}}(t_n) \Big) \sum_{l=k}^{n-1} \frac{\nabla_i E_l \Big(\tilde{\boldsymbol{\theta}}(t_n) \Big)}{R_i^{(l)} \Big(\tilde{\boldsymbol{\theta}}(t_n) \Big) + \varepsilon},$$

and bounding

$$|a-b-Kh| \stackrel{\text{(a)}}{\leq} \left((n-k)(C_{19}/2 + C_8) + \frac{(n-k)(n-k-1)}{2}C_{13} \right) h^2,$$

 $|b| \leq M_1, \quad |K| \leq (n-k)C_9,$

where (a) is by Lemma SA-7.3. (SA-7.5) is proven.

We turn to the proof of (SA-7.4). By (SA-7.5) and the triangle inequality

$$\left| \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \left(\nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) \right)^{2} - R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)^{2} - 2h P_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) \right|$$

$$\leq (1-\rho) \sum_{k=0}^{n} \rho^{n-k} \left(\operatorname{Poly}_{1}(n-k)h^{2} + \operatorname{Poly}_{2}(n-k)h^{3} + \operatorname{Poly}_{3}(n-k)h^{4} \right)$$

$$= (1-\rho) \sum_{k=0}^{n} \rho^{k} \left(\operatorname{Poly}_{1}(k)h^{2} + \operatorname{Poly}_{2}(k)h^{3} + \operatorname{Poly}_{3}(k)h^{4} \right),$$

where

$$\begin{aligned} \operatorname{Poly}_{1}(k) &:= 2M_{1} \left(k(C_{19}/2 + C_{8}) + \frac{k(k-1)}{2} C_{13} \right) = M_{1} C_{13} k^{2} + M_{1} (C_{19} + 2C_{8} - C_{13}) k, \\ \operatorname{Poly}_{2}(k) &:= 2k C_{9} \left(k(C_{19}/2 + C_{8}) + \frac{k(k-1)}{2} C_{13} \right) = C_{13} C_{9} k^{3} + (C_{19} + 2C_{8} - C_{13}) C_{9} k^{2}, \\ \operatorname{Poly}_{3}(k) &:= \left(k(C_{19}/2 + C_{8}) + \frac{k(k-1)}{2} C_{13} \right)^{2} \\ &= \frac{C_{13}^{2}}{4} k^{4} + \frac{C_{13}}{2} (C_{19} + 2C_{8} - C_{13}) k^{3} + \frac{1}{4} (C_{19} + 2C_{8} - C_{13})^{2} k^{2}. \end{aligned}$$

It is left to combine this with

$$\sum_{k=0}^{n} k \rho^{k} \le \sum_{k=0}^{\infty} k \rho^{k} = \frac{\rho}{(1-\rho)^{2}},$$

$$\begin{split} &\sum_{k=0}^{n} k^{2} \rho^{k} \leq \sum_{k=0}^{\infty} k^{2} \rho^{k} = \frac{\rho (1+\rho)}{(1-\rho)^{3}}, \\ &\sum_{k=0}^{n} k^{3} \rho^{k} \leq \sum_{k=0}^{\infty} k^{3} \rho^{k} = \frac{\rho (1+4\rho+\rho^{2})}{(1-\rho)^{4}}, \\ &\sum_{k=0}^{n} k^{4} \rho^{k} \leq \sum_{k=0}^{\infty} k^{4} \rho^{k} = \frac{\rho (1+11\rho+11\rho^{2}+\rho^{3})}{(1-\rho)^{5}}. \end{split}$$

This gives

$$\begin{split} &\left|\sum_{k=0}^{n} \rho^{n-k} (1-\rho) \left(\nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k})\right)\right)^{2} - R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n})\right)^{2} - 2h P_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n})\right)\right| \\ &\leq \left(M_{1} C_{13} \frac{\rho(1+\rho)}{(1-\rho)^{2}} + M_{1} | C_{19} + 2C_{8} - C_{13} | \frac{\rho}{1-\rho}\right) h^{2} \\ &+ \left(C_{13} C_{9} \frac{\rho(1+4\rho+\rho^{2})}{(1-\rho)^{3}} + | C_{19} + 2C_{8} - C_{13} | C_{9} \frac{\rho(1+\rho)}{(1-\rho)^{2}}\right) h^{3} \\ &+ \left(\frac{C_{13}^{2}}{4} \cdot \frac{\rho(1+11\rho+11\rho^{2}+\rho^{3})}{(1-\rho)^{4}} + \frac{C_{13}}{2} | C_{19} + 2C_{8} - C_{13} | \frac{\rho(1+4\rho+\rho^{2})}{(1-\rho)^{3}} \right) \\ &+ \frac{1}{4} (C_{19} + 2C_{8} - C_{13})^{2} \frac{\rho(1+\rho)}{(1-\rho)^{2}} \right) h^{4} \\ \stackrel{\text{(a)}}{\leq} \left[M_{1} | C_{19} + 2C_{8} - C_{13} | \frac{\rho}{1-\rho} \right. \\ &+ \left(M_{1} C_{13} + | C_{19} + 2C_{8} - C_{13} | C_{9} + \frac{(C_{19} + 2C_{8} - C_{13})^{2}}{4} \right) \frac{\rho(1+\rho)}{(1-\rho)^{2}} \\ &+ \left(C_{13} C_{9} + \frac{C_{13}}{2} | C_{19} + 2C_{8} - C_{13} | \right) \frac{\rho(1+4\rho+\rho^{2})}{(1-\rho)^{3}} \\ &+ \frac{C_{13}^{2}}{4} \cdot \frac{\rho(1+11\rho+11\rho^{2}+\rho^{3})}{(1-\rho)^{4}} \right] h^{2}, \end{split}$$

where in (a) we used that h < 1. (SA-7.4) is proven.

Lemma SA-7.5. Suppose Assumption SA-2.2 holds. Then

$$\left| \left(\sqrt{\sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \left(\nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right) \right)^{2}} + \varepsilon \right)^{-1} - \left(R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) + \varepsilon \right)^{-1} + h \frac{P_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)}{\left(R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) + \varepsilon \right)^{2} R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)} \right| \leq \frac{C_{25}(\rho)^{2} + R^{2} C_{26}(\rho)}{2R^{3} (R + \varepsilon)^{2}} h^{2}.$$

Proof. Note that if $a \ge R^2$, $b \ge R^2$, we have

$$\begin{vmatrix} \frac{1}{\sqrt{a} + \varepsilon} - \frac{1}{\sqrt{b} + \varepsilon} + \frac{a - b}{2\left(\sqrt{b} + \varepsilon\right)^2 \sqrt{b}} \\ = \frac{(a - b)^2}{2\sqrt{b}\left(\sqrt{b} + \varepsilon\right)\left(\sqrt{a} + \varepsilon\right)\left(\sqrt{a} + \sqrt{b}\right)} \underbrace{\left\{\frac{1}{\sqrt{b} + \varepsilon} + \frac{1}{\sqrt{a} + \sqrt{b}}\right\}}_{\leq 2/R}$$

$$\leq \frac{(a-b)^2}{2R^3(R+\varepsilon)^2}.$$

By the triangle inequality,

$$\left| \frac{1}{\sqrt{a} + \varepsilon} - \frac{1}{\sqrt{b} + \varepsilon} + \frac{c}{2\left(\sqrt{b} + \varepsilon\right)^2 \sqrt{b}} \right| \le \frac{(a - b)^2}{2R^3 (R + \varepsilon)^2} + \frac{|a - b - c|}{2\left(\sqrt{b} + \varepsilon\right)^2 \sqrt{b}}$$

$$\le \frac{(a - b)^2}{2R^3 (R + \varepsilon)^2} + \frac{|a - b - c|}{2R (R + \varepsilon)^2}$$

Apply this with

$$a := \sum_{k=0}^{n} \rho^{n-k} (1 - \rho) \left(\nabla_j E_k \left(\tilde{\boldsymbol{\theta}}(t_k) \right) \right)^2,$$

$$b := R_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_n) \right)^2,$$

$$c := 2h P_j^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_n) \right)$$

and use bounds

$$|a-b| \le 2M_1C_7\frac{\rho}{1-\rho}h, \quad |a-b-c| \le C_{26}(\rho)h^2$$

by Lemma SA-7.4.

SA-7.6. We are finally ready to prove Theorem SA-2.3.

Proof of Theorem SA-2.3. By (SA-6.9) and (SA-6.10), the first derivative of the function

$$t \mapsto \left(\frac{\nabla_{j} E_{n} (\tilde{\boldsymbol{\theta}}(t)) \left(2P_{j}^{(n)} (\tilde{\boldsymbol{\theta}}(t)) + \bar{P}_{j}^{(n)} (\tilde{\boldsymbol{\theta}}(t)) \right)}{2 \left(R_{j}^{(n)} (\tilde{\boldsymbol{\theta}}(t)) + \varepsilon \right)^{2} R_{j}^{(n)} (\tilde{\boldsymbol{\theta}}(t))} - \frac{\sum_{i=1}^{p} \nabla_{ij} E_{n} (\tilde{\boldsymbol{\theta}}(t)) \frac{\nabla_{i} E_{n} (\tilde{\boldsymbol{\theta}}(t))}{R_{i}^{(n)} (\tilde{\boldsymbol{\theta}}(t)) + \varepsilon}}{2 \left(R_{j}^{(n)} (\tilde{\boldsymbol{\theta}}(t)) + \varepsilon \right)} \right)$$

is bounded in absolute value by a positive constant $C_{27} = C_{17} + C_{18}$. By (SA-2.2), this means

$$\left| \ddot{\tilde{\theta}}_{j}(t) + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\nabla_{j} E_{n} \left(\tilde{\boldsymbol{\theta}}(t) \right)}{R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t) \right) + \varepsilon} \right) \right| \leq C_{27} h.$$

Combining this with

$$\left| \tilde{\theta}_j(t_{n+1}) - \tilde{\theta}_j(t_n) - \dot{\tilde{\theta}}_j(t_n^+)h - \frac{\ddot{\tilde{\theta}}_j(t_n^+)}{2}h^2 \right| \le \frac{D_3}{6}$$

by Taylor expansion, we get

$$\left| \tilde{\theta}_{j}(t_{n+1}) - \tilde{\theta}_{j}(t_{n}) - \dot{\tilde{\theta}}_{j}(t_{n}^{+})h + \frac{h^{2}}{2} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\nabla_{j} E_{n}(\tilde{\boldsymbol{\theta}}(t))}{R_{j}^{(n)}(\tilde{\boldsymbol{\theta}}(t)) + \varepsilon} \right) \right|_{t=t_{n}^{+}}$$

$$\leq \left(\frac{D_{3}}{6} + \frac{C_{27}}{2} \right) h^{3}.$$
(SA-7.6)

Using

$$\left| \dot{\tilde{\theta}}_{j}(t_{n}) + \frac{\nabla_{j} E_{n}(\tilde{\boldsymbol{\theta}}(t_{n}))}{R_{j}^{(n)}(\tilde{\boldsymbol{\theta}}(t_{n})) + \varepsilon} \right| \leq C_{28}h$$

with C_{28} defined as

$$C_{28} := \frac{M_1(2C_5 + C_6)}{2(R+\varepsilon)^2 R} + \frac{pM_1M_2}{2(R+\varepsilon)^2}$$

by (SA-2.2), and calculating the derivative, it is easy to show

$$\left| \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\nabla_j E_n(\tilde{\boldsymbol{\theta}}(t))}{R_j^{(n)}(\tilde{\boldsymbol{\theta}}(t)) + \varepsilon} \right) \right|_{t=t_n^+} - \text{FrDer} \right| \le C_{29}h$$
 (SA-7.7)

for a positive constant C_{29} , where

$$\begin{split} & \text{FrDer} := \frac{\text{FrDerNum}}{\left(R_j^{(n)} \Big(\tilde{\boldsymbol{\theta}}(t_n)\Big) + \varepsilon\right)^2 R_j^{(n)} \Big(\tilde{\boldsymbol{\theta}}(t_n)\Big)} \\ & \text{FrDerNum} := \nabla_j E_n \Big(\tilde{\boldsymbol{\theta}}(t_n)\Big) \bar{P}_j^{(n)} \Big(\tilde{\boldsymbol{\theta}}(t_n)\Big) \\ & - \left(R_j^{(n)} \Big(\tilde{\boldsymbol{\theta}}(t_n)\Big) + \varepsilon\right) R_j^{(n)} \Big(\tilde{\boldsymbol{\theta}}(t_n)\Big) \sum_{i=1}^p \nabla_{ij} E_n \Big(\tilde{\boldsymbol{\theta}}(t_n)\Big) \frac{\nabla_i E_n \Big(\tilde{\boldsymbol{\theta}}(t_n)\Big)}{R_i^{(n)} \Big(\tilde{\boldsymbol{\theta}}(t_n)\Big) + \varepsilon}, \\ & C_{29} := \left\{\frac{pM_2}{R + \varepsilon} + \frac{M_1^2 M_2 p}{(R + \varepsilon)^2 R}\right\} C_{28}. \end{split}$$

From (SA-7.6) and (SA-7.7), by the triangle inequality

$$\left| \tilde{\theta}_j(t_{n+1}) - \tilde{\theta}_j(t_n) - \dot{\tilde{\theta}}_j(t_n^+)h + \frac{h^2}{2} \text{FrDer} \right| \le \left(\frac{D_3}{6} + \frac{C_{27} + C_{29}}{2} \right) h^3,$$

which, using (SA-2.2), is rewritten as

$$\left| \tilde{\theta}_{j}(t_{n+1}) - \tilde{\theta}_{j}(t_{n}) + h \frac{\nabla_{j} E_{n} \left(\tilde{\boldsymbol{\theta}}(t_{n})\right)}{R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n})\right) + \varepsilon} - h^{2} \frac{\nabla_{j} E_{n} \left(\tilde{\boldsymbol{\theta}}(t_{n})\right) P_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n})\right)}{\left(R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n})\right) + \varepsilon\right)^{2} R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n})\right)} \right|$$

$$\leq \left(\frac{D_{3}}{6} + \frac{C_{27} + C_{29}}{2}\right) h^{3}.$$

It is left to combine this with Lemma SA-7.5, giving the assertion of the theorem with

$$C_1 = \frac{D_3}{6} + \frac{C_{27} + C_{29}}{2} + M_1 \frac{C_{25}^2 + R^2 C_{26}}{2R^3 (R + \varepsilon)^2}.$$

SA-8 Numerical experiments

SA-8.1 Models. We use small modifications of default Keras Resnet-50 and Resnet-101 architectures for training on CIFAR-10 and CIFAR-100 (since image sizes are not the same as Imagenet), after verifying their correctness. The first convolution layer conv1 has 3×3 kernel, stride 1 and "same" padding. Then comes batch normalization, and relu. Max pooling is removed, and otherwise conv2_x to conv5_x are as described in [2], see Table 1 there (downsampling is performed by the first convolution of each bottleneck block, same as in this original paper, not the middle one as in version 1.5^2 ; all convolution layers have learned biases). After conv5 there is global average pooling, 10 or 100-way fully connected layer (for CIFAR-10 and CIFAR-100 respectively), and softmax.

¹ https://github.com/keras-team/keras/blob/v2.13.1/keras/applications/resnet.py

²https://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch

SA-8.2 Data augmentation. We subtract the per-pixel mean and divide by standard deviation, and we use the data augmentation scheme from [3], following [2], section 4.2. We take inspiration and some code snippets from [4] (though we do not use their models). During each pass over the training dataset, each 32×32 initial image is padded evenly with zeros so that it becomes 36×36 , then random crop is applied so that the picture becomes 32×32 again, and finally random (probability 0.5) horizontal (left to right) flip is used.

SA-8.3 Experiment details. In experiments whose results are reported in Figures 4 and 5 of the main paper, we train for more than 3600 epochs and stop training when the train accuracy is near-perfect (Figure SA-1) and the testing accuracy does not significantly improve (Figure SA-2). Therefore, the maximal test accuracies are the final ones reached, and the maximal perturbed one-norms, after excluding the initial fall at the beginning of training, are at peaks of the "hills" on the norm curves (Figure SA-2).

Additional evidence (for ResNet-101 on CIFAR-100 and with hyperparameters different from the ones in Figures 4 and 5) is provided in Figures SA-3 and SA-4.

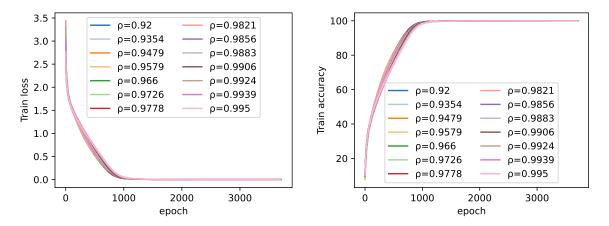


Figure SA-1: Train loss and train accuracy curves for full-batch Adam, ResNet-50 on CIFAR-10, $\beta=0.99$, $\varepsilon=10^{-8},\,h=7.5\cdot10^{-5}$.

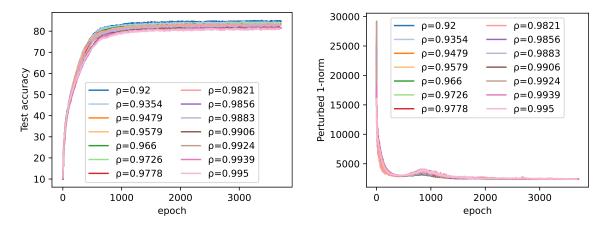


Figure SA-2: Test accuracy and $\|\nabla E\|_{1,\varepsilon}$ after each epoch. The setting is the same as in Figure SA-1.

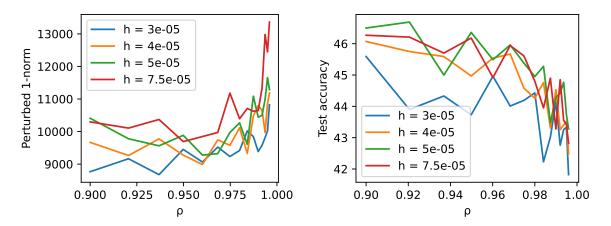


Figure SA-3: Resnet-101 on CIFAR-100 trained with full-batch Adam, $\varepsilon = 10^{-8}$, $\beta = 0.95$. As ρ increases, the perturbed one-norm seems to rise and the test accuracy seems to fall (in the stable regime of training). Both metrics are calculated as in Figures 4 and 5 of the main paper.

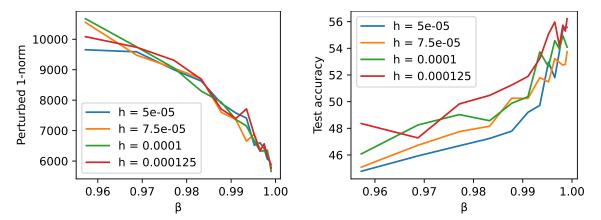


Figure SA-4: Resnet-101 on CIFAR-100 trained with full-batch Adam, $\rho = 0.99$, $\varepsilon = 10^{-8}$. The perturbed one-norm seems to fall as β increases, and the test accuracy seems to rise. Both metrics are calculated as in Figures 4 and 5 of the main paper.

SA-9 Adam with ε inside the square root: informal derivation

Result SA-9.1. *For* $n \in \{0, 1, 2, ...\}$ *we have*

$$\tilde{\theta}_{j}(t_{n+1}) = \tilde{\theta}_{j}(t_{n}) - h \frac{M_{j}^{(n)}(\tilde{\boldsymbol{\theta}}(t_{n}))}{R_{j}^{(n)}(\tilde{\boldsymbol{\theta}}(t_{n}))}$$

$$+ h^{2} \left(\frac{M_{j}^{(n)}(\tilde{\boldsymbol{\theta}}(t_{n}))P_{j}^{(n)}(\tilde{\boldsymbol{\theta}}(t_{n}))}{R_{j}^{(n)}(\tilde{\boldsymbol{\theta}}(t_{n}))^{3}} - \frac{L_{j}^{(n)}(\tilde{\boldsymbol{\theta}}(t_{n}))}{R_{j}^{(n)}(\tilde{\boldsymbol{\theta}}(t_{n}))} \right) + O(h^{3}).$$
(SA-9.1)

Derivation. We take

$$\tilde{\theta}_{j}(t_{n+1}) = \tilde{\theta}_{j}(t_{n}) - h \frac{M_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n})\right)}{R_{j}^{(n)} \left(\tilde{\boldsymbol{\theta}}(t_{n})\right)} + O\left(h^{2}\right)$$

for granted. Using this and the Taylor series, we can write

$$\nabla_j E_k \Big(\tilde{\boldsymbol{\theta}}(t_{n-1}) \Big)$$

$$\begin{split} &= \nabla_{j} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big) + \sum_{i=1}^{p} \nabla_{ij} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big) \Big\{ \tilde{\boldsymbol{\theta}}_{i}(t_{n-1}) - \tilde{\boldsymbol{\theta}}_{i}(t_{n}) \Big\} + O\Big(h^{2}\Big) \\ &= \nabla_{j} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big) + h \sum_{i=1}^{p} \nabla_{ij} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big) \frac{M_{j}^{(n-1)} \Big(\tilde{\boldsymbol{\theta}}(t_{n-1}) \Big)}{R_{j}^{(n-1)} \Big(\tilde{\boldsymbol{\theta}}(t_{n-1}) \Big)} + O\Big(h^{2}\Big) \\ &= \nabla_{j} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big) + h \sum_{i=1}^{p} \nabla_{ij} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big) \frac{M_{j}^{(n-1)} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big)}{R_{j}^{(n-1)} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big)} + O\Big(h^{2}\Big), \end{split}$$

where in the last equality we just replaced t_{n-1} with t_n in the h-term since it only affects higher-order terms. Now doing this again for step n-1 instead of step n, we will have

$$\begin{split} &\nabla_{j}E_{k}\Big(\tilde{\pmb{\theta}}(t_{n-2})\Big) \\ &= \nabla_{j}E_{k}\Big(\tilde{\pmb{\theta}}(t_{n-1})\Big) + h\sum_{i=1}^{p}\nabla_{ij}E_{k}\Big(\tilde{\pmb{\theta}}(t_{n-1})\Big) \frac{M_{j}^{(n-2)}\Big(\tilde{\pmb{\theta}}(t_{n-1})\Big)}{R_{j}^{(n-2)}\Big(\tilde{\pmb{\theta}}(t_{n-1})\Big)} + O\Big(h^{2}\Big) \\ &= \nabla_{j}E_{k}\Big(\tilde{\pmb{\theta}}(t_{n-1})\Big) + h\sum_{i=1}^{p}\nabla_{ij}E_{k}\Big(\tilde{\pmb{\theta}}(t_{n-1})\Big) \frac{M_{j}^{(n-2)}\Big(\tilde{\pmb{\theta}}(t_{n})\Big)}{R_{j}^{(n-2)}\Big(\tilde{\pmb{\theta}}(t_{n})\Big)} + O\Big(h^{2}\Big), \end{split}$$

where in the last equality we again replaced t_{n-1} with t_n since it only affects higher-order terms. Proceeding like this and adding the resulting equations, we have for $n \in \{0, 1, ...\}$, $k \in \{0, ..., n-1\}$ that

$$\nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{k}) \right)$$

$$= \nabla_{j} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) + h \sum_{i=1}^{p} \nabla_{ij} E_{k} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right) \sum_{l=k}^{n-1} \frac{M_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)}{R_{i}^{(l)} \left(\tilde{\boldsymbol{\theta}}(t_{n}) \right)} + O\left(h^{2}\right),$$

where we ignored the fact that n - k is not bounded (we will get away with this because of exponential averaging). Hence, taking the square of this formal power series,

$$\rho^{n-k}(1-\rho)\left(\nabla_{j}E_{k}\left(\tilde{\boldsymbol{\theta}}(t_{k})\right)\right)^{2} = \rho^{n-k}(1-\rho)\left(\nabla_{j}E_{k}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)\right)^{2}$$
$$+h\cdot2\rho^{n-k}(1-\rho)\nabla_{j}E_{k}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)\sum_{i=1}^{p}\nabla_{ij}E_{k}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)\sum_{l=k}^{n-1}\frac{M_{i}^{(l)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)}{R_{i}^{(l)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)} + O\left(h^{2}\right).$$

Summing up over k, we have

$$\frac{1}{1-\rho^{n+1}}\sum_{k=0}^{n}\rho^{n-k}(1-\rho)\bigg(\nabla_{j}E_{k}\Big(\tilde{\boldsymbol{\theta}}(t_{k})\Big)\bigg)^{2}+\varepsilon=R_{j}^{(n)}\Big(\tilde{\boldsymbol{\theta}}(t_{n})\Big)^{2}+2hP_{j}^{(n)}\Big(\tilde{\boldsymbol{\theta}}(t_{n})\Big)+O\Big(h^{2}\Big),$$

which, using the expression for the inverse square root $\left(\sum_{r=0}^{\infty} a_r h^r\right)^{-1/2}$ of a formal power series $\sum_{r=0}^{\infty} a_r h^r$, gives us

$$\left(\sqrt{\frac{1}{1-\rho^{n+1}}}\sum_{k=0}^{n}\rho^{n-k}(1-\rho)\left(\nabla_{j}E_{k}\left(\tilde{\boldsymbol{\theta}}(t_{k})\right)\right)^{2}+\varepsilon\right)^{-1}$$

$$=\frac{1}{R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)}-h\frac{P_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)}{R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)^{3}}+O\left(h^{2}\right).$$

Similarly,

$$\frac{1}{1-\beta^{n+1}} \sum_{k=0}^{n} (1-\beta)\beta^{n-k} \nabla_{j} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t_{k}) \Big) = \frac{1}{1-\beta^{n+1}} \sum_{k=0}^{n} (1-\beta)\beta^{n-k} \nabla_{j} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big)
+ \frac{h}{1-\beta^{n+1}} \sum_{k=0}^{n} (1-\beta)\beta^{n-k} \sum_{i=1}^{p} \nabla_{ij} E_{k} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big) \sum_{l=k}^{n-1} \frac{M_{i}^{(l)} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big)}{R_{i}^{(l)} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big)} + O\Big(h^{2} \Big)
= M_{j}^{(n)} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big) + h L_{j}^{(n)} \Big(\tilde{\boldsymbol{\theta}}(t_{n}) \Big) + O\Big(h^{2} \Big).$$

We conclude

$$\tilde{\theta}_{j}(t_{n+1}) = \tilde{\theta}_{j}(t_{n}) - h\left(M_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right) + hL_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right) + O\left(h^{2}\right)\right)$$

$$\times \left(\frac{1}{R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)} - h\frac{P_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)}{R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)^{3}} + O\left(h^{2}\right)\right) + O\left(h^{3}\right)$$

$$= \tilde{\theta}_{j}(t_{n}) - h\frac{M_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)}{R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)}$$

$$+ h^{2}\left(\frac{M_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)P_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)}{R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)^{3}} - \frac{L_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)}{R_{j}^{(n)}\left(\tilde{\boldsymbol{\theta}}(t_{n})\right)}\right) + O\left(h^{3}\right).$$

Result SA-9.2. For $t_n \le t < t_{n+1}$, the modified equation is (SA-5.2).

Derivation. Assume that the modified flow for $t_n \leq t < t_{n+1}$ satisfies $\dot{\tilde{\boldsymbol{\theta}}} = \tilde{\mathbf{f}} \left(\tilde{\boldsymbol{\theta}}(t) \right)$ where

$$\tilde{\mathbf{f}}(\boldsymbol{\theta}) = \mathbf{f}(\boldsymbol{\theta}) + h\mathbf{f}_1(\boldsymbol{\theta}) + O(h^2).$$

By Taylor expansion, we have

$$\tilde{\boldsymbol{\theta}}(t_{n+1}) = \tilde{\boldsymbol{\theta}}(t_n) + h\dot{\tilde{\boldsymbol{\theta}}}(t_n^+) + \frac{h^2}{2}\ddot{\tilde{\boldsymbol{\theta}}}(t_n^+) + O(h^3)$$

$$= \tilde{\boldsymbol{\theta}}(t_n) + h\left[\mathbf{f}(\tilde{\boldsymbol{\theta}}(t_n)) + h\mathbf{f}_1(\tilde{\boldsymbol{\theta}}(t_n)) + O(h^2)\right]$$

$$+ \frac{h^2}{2}\left[\nabla\mathbf{f}(\tilde{\boldsymbol{\theta}}(t_n))\mathbf{f}(\tilde{\boldsymbol{\theta}}(t_n)) + O(h)\right] + O(h^3)$$

$$= \tilde{\boldsymbol{\theta}}(t_n) + h\mathbf{f}(\tilde{\boldsymbol{\theta}}(t_n)) + h^2\left[\mathbf{f}_1(\tilde{\boldsymbol{\theta}}(t_n)) + \frac{\nabla\mathbf{f}(\tilde{\boldsymbol{\theta}}(t_n))\mathbf{f}(\tilde{\boldsymbol{\theta}}(t_n))}{2}\right] + O(h^3).$$
(SA-9.2)

Using Lemma SA-9.1 and equating the terms before the corresponding powers of h in (SA-9.1) and (SA-9.2), we obtain

$$f_{j}(\theta) = -\frac{M_{j}^{(n)}(\theta)}{R_{j}^{(n)}(\theta)},$$

$$f_{1,j}(\theta) = -\frac{1}{2} \sum_{i=1}^{p} \nabla_{i} f_{j}(\theta) f_{i}(\theta) + \frac{M_{j}^{(n)}(\theta) P_{j}^{(n)}(\theta)}{R_{j}^{(n)}(\theta)^{3}} - \frac{L_{j}^{(n)}(\theta)}{R_{j}^{(n)}(\theta)}.$$
(SA-9.3)

It is left to find $\nabla_i f_j(\boldsymbol{\theta})$. Using

$$\nabla_i R_j^{(n)}(\boldsymbol{\theta}) = \frac{\sum_{k=0}^n \rho^{n-k} (1-\rho) \nabla_{ij} E_k(\boldsymbol{\theta}) \nabla_j E_k(\boldsymbol{\theta})}{(1-\rho^{n+1}) R_j^{(n)}(\boldsymbol{\theta})},$$

$$\nabla_i M_j^{(n)}(\boldsymbol{\theta}) = \frac{\sum_{k=0}^n \beta^{n-k} (1-\beta) \nabla_{ij} E_k(\boldsymbol{\theta})}{1-\beta^{n+1}}$$

we have

$$\begin{split} & \nabla_{i} \left(-\frac{M_{j}^{(n)}(\boldsymbol{\theta})}{R_{j}^{(n)}(\boldsymbol{\theta})} \right) \\ & = -\frac{\frac{R_{j}^{(n)}(\boldsymbol{\theta})^{2}}{1-\beta^{n+1}} \sum_{k=0}^{n} \beta^{n-k} (1-\beta) \nabla_{ij} E_{k}(\boldsymbol{\theta}) - \frac{M_{j}^{(n)}(\boldsymbol{\theta})}{1-\rho^{n+1}} \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \nabla_{ij} E_{k}(\boldsymbol{\theta}) \nabla_{j} E_{k}(\boldsymbol{\theta})}{R_{j}^{(n)}(\boldsymbol{\theta})^{3}} \\ & = -\frac{\sum_{k=0}^{n} \beta^{n-k} (1-\beta) \nabla_{ij} E_{k}(\boldsymbol{\theta})}{(1-\beta^{n+1}) R_{j}^{(n)}(\boldsymbol{\theta})} + \frac{M_{j}^{(n)}(\boldsymbol{\theta}) \sum_{k=0}^{n} \rho^{n-k} (1-\rho) \nabla_{ij} E_{k}(\boldsymbol{\theta}) \nabla_{j} E_{k}(\boldsymbol{\theta})}{(1-\rho^{n+1}) R_{j}^{(n)}(\boldsymbol{\theta})^{3}} \end{split}$$

Inserting this into (SA-9.3) concludes the proof.

References

[1] Avrajit Ghosh, He Lyu, Xitong Zhang, and Rongrong Wang. "Implicit regularization in Heavy-ball momentum accelerated stochastic gradient descent". In: *The Eleventh International Conference on Learning Representations*. 2023. URL: https://openreview.net/forum?id=ZzdBhtEH9yB.

- [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition". In: *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016, pp. 770–778.
- [3] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. "Deeply-supervised nets". In: *Artificial intelligence and statistics*. Pmlr. 2015, pp. 562–570.
- [4] Chia-Hung Yuan. Training CIFAR-10 with TensorFlow2(TF2). https://github.com/lionelmessi6410/tensorflow2-cifar. 2021.