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SA-1 Overview

SA-1.1. This appendix provides some omitted details and proofs.

We consider two algorithms: RMSProp and Adam, and two versions of each algorithm (with the
numerical stability € parameter inside and outside of the square root in the denominator). This means there
are four main theorems: Theorem SA-2.4, Theorem SA-3.4, Theorem SA-4.4 and Theorem SA-5.4, each
residing in the section completely devoted to one algorithm. The simple induction argument taken from
[1], essentially the same for each of these theorems, is based on an auxiliary result whose corresponding
versions are Theorem SA-2.3, Theorem SA-3.3, Theorem SA-4.3 and Theorem SA-5.3. The proof of this
result is also elementary but long, and it is done by a series of lemmas in Section SA-6 and Section SA-7,
culminating in Section SA-7.6. Out of these four, we only prove Theorem SA-2.3 since the other three
results are proven in the same way with obvious changes.

Section SA-8 contains some details about the numerical experiments.

SA-1.2 Notation. We denote the loss of the kth minibatch as a function of the network parameters
0 € R? by Ei(0), and in the full-batch setting we omit the index and write F(0). As usual, VE means

the gradient of F, and nabla with indices means partial derivatives, e.g. V;;,F is a shortcut for %.
00,00,

The letter T' > 0 will always denote a finite time horizon of the ODEs, h will always denote the
training step size, and we will replace nh with ¢, when convenient, where n € {0, 1,...} is the step number.

We will use the same notation for the iteration of the discrete algorithm {H(k)} , the piecewise ODE
kEZZO

solution A(t) and some auxiliary terms for each of the four algorithms: see Definition SA-2.1, Definition SA-



3.1, Definition SA-4.1, Definition SA-5.1. This way, we avoid cluttering the notation significantly. We are
careful to reference the relevant definition in all theorem statements.

SA-2 RMSProp with ¢ outside the square root

Definition SA-2.1. In this section, for some 0 ¢ R, 10 =0 € RP, p € (0,1), let the sequence of

p-vectors {B(k)} be defined for n > 0 by
kE€Z>o

2
Vj(-n+1) = pyj(.n) +(1-p) (VjEn (G(n))) ,

oy —g - g op, ().

l/](n+1) +e

(SA-2.1)

Let é(t) be defined as a continuous solution to the piecewise ODE

. ViEa (1))
0; (t)= _W
Vi Ea(0(1)) (2P;"> (6t)) + P (é(t))) Y Vi Ea (8(1) m (SA-2.2)
+h :

2 (Rﬁ") (é(t)> + 6) 2R§”) (é(t)) ) 2 <R§") B(1) + 5>

with the initial condition 8(0) = 8¥, where R(™(6), P(™) () and P (8) are p-dimensional functions
with components

Rg." $an F1-p)(V; Ek(f))) ,
k=0
n n—1
n . V.E/(6

P(0) =" p"*(1 — p)V,E(6 ZV”Ek Z(l)il()

k=0 = 1,7 (0) +¢
_ no _ViE,(8)
PM) =N p"F(1 = p)V,En(0) S Vi, E(6
g ,;) Z ! R '0)+ ¢

Assumption SA-2.2.
1. For some positive constants My, Ms, M3, My we have

sup sup Sup|ViEk(9)| < M,
i k6

s_u_psup Sup|VijEk(0)’ < Mo,

sup sup sup|V”sEk(9)| < M3,

%,5,8 k

sup supsup‘sz,«Ek(BM < My.
%,7,8,r k

2. For some R > 0 we have for all n € {0,1,...,[T/h]}

R”( )>R an’w— (VEk(é(tk)))QzRQ,

where 0(t) is defined in Definition SA-2.1.



Theorem SA-2.3 (RMSProp with ¢ outside: local error bound). Suppose Assumption SA-2.2 holds.
Then for all n € {0,1,...,[T/h]}

0;(tns1) — 0;(tn) + R Vit (é(t”)) :
\/ZZ_O PR (1~ p) (vjEk (é(tk)>) T

for a positive constant Cy depending on p.

< C1h3

The proof of Theorem SA-2.3 is conceptually simple but very technical, and we delay it until
Section SA-7. For now assuming it as given and combining it with a simple induction argument gives a
global error bound which follows.

Theorem SA-2.4 (RMSProp with € outside: global error bound). Suppose Assumption SA-2.2 holds, and
n 2
SR - ) (vjEk (0“))) > R?

k=0

for {B(k)} defined in Definition SA-2.1. Then there exist positive constants dyi, da, d3 such that for

kEZ>o

alln e {0,1,...,|T/n]}
leall < die®™"h? and [lens1 - eq| < dse®""h,
where e, := 0(t,) — 0™, The constants can be defined as
dy = Ch,

Mo /p M}
dy = |1 1]d
2 +R+6<R(R+s)+ L VP

d3 = C]dg.

Proof. We will show this by induction over n, the same way an analogous bound is shown in [1].
The base case is n = 0. Indeed, eg = 6(0) — 8®) = 0. Then the jth component of e; — e is

oA
e
- - hV;Eq (é(to))

\/(1 —p) (vjEO (é(to)))2 + 5.

By Theorem SA-2.3, the absolute value of the right-hand side does not exceed C;h3, which means
ller —eoll < C’lhg\/f). Since C1,/p < d3, the base case is proven.
Now suppose that for all k =0,1,...,n — 1 the claim

||ek|| < dledzkhh2 and ||ekJrl _ ek” < dgekohh?’

is proven. Then

(a)
lenl] < llen—1ll + llen — en—1]l < dyed>(n=Dhp2 4 gedz(n=Dhp3

d: (b)
:dledz(n—l)th(l_i_djh) < d]€d2(n_1)hh2<1+d2h)



(gd 6dg(n 1)hh2 dah :dledznth,

where (a) is by the triangle inequality, (b) is by d3/d; < ds, in (c) we used 1+ = < e for all z > 0.
Next, combining Theorem SA-2.3 with (SA-2.1), we have

V,E, (é(tn)) V,E, (9“”)

ent1 —enl.| <Cih3+h - SA-2.3
[ +1 ]j ‘ 1 \/Z te \/E +e ( )
where to simplify notation we put
n 2
A= 30 1- 0)(5 (Bw) )
k=0
n 2
Bi=3 "1 -p) (vjEk(e >))
k=0
Using A > R?, B > R?, we have
R S ] < HA=Bl (SA-2.4)
VA+e B+e (\/Z+e) (@+5) (\/g+ \/§> 2R(R +¢)
But since
) 2 2
<vjEk (euw)) = (vjEk (49(’“))) ‘
=¥ (800)) - 95 (69| - |9 (6000)) + 9, (6|
< oMy |V, By (é(tk)) —V, By (e““))‘ < 2M1M2\/;5H9(tk) W,
we have .
|A— Bl <2M My/pS_ p" (1 - p)Hé(tk) - 0<’€>H. (SA-2.5)
Combining (SA-2.4) and (SA-2.5), we obtain
ViEa(0(t) VBl (0)
VA+e VB +¢
1 \vjEn (660.)) - 3, (5)]
V;E,
‘ ‘ f+ e VB+el VB+e
y 2M1M2\/]52k:0p”*k 1-p He ) —e“ﬂH Mg\[HB — 6™
< .
= 2R(R + )2 R+e
_MIMLE S ol L MevBy;
nk(1 - p He (t) — 0 )H He t) — O™
 R(R+¢)? Zp ) JrR—I—zs (tn)
(@) M} MZ\f K edakhp2 | Maov/p o danny 2
< e 28R dye®"h?, SA-2.6
~ R(R+¢)? Z die R +e ( )
where in (a) we used the induction hypothesis and that the bound on ||e,]| is already proven.
Now note that since 0 < pe~92" < p, we have >oreo (pe*dﬁh)k <> ok = i p, which is rewritten

as n
anik(l _ p)edzkh S edznh.



Then we can continue (SA-2.6):

£ (8 £ (o™
VBl (0(t)  VE.(07) _Mi( 0
VA+tc VB+e | R+e\R(R+e

) + 1) dye®2p? (SA-2.7)

Again using 1 < e?2"" we conclude from (SA-2.3) and (SA-2.7) that

M. M?
HenJrl - en” < (Cl + 2\/i)< 1 ) + 1) d1> \/ﬁedznhh37

R+e\R(R+e¢

<ds

finishing the induction step. O

SA-2.5 RMSProp with ¢ outside: full-batch. In the full-batch setting E) = E, the terms in (SA-2.2)
simplify to

B (0) = [ViEO)| V1= o,

PO =Y - Y, E0) Y 5,50 Y V)

’ k=0 i=1 =k ]VZE(H)] 1—phttte
p

5" (g — nt1 ViE(8)

P (O)=(1- V,;E(0 Vi E(0 .

(0) = (1- ")V, OV VB O) o o= e

If ¢ is small and the iteration number n is large, (SA-2.2) simplifies to

03(t) = —sign V; B(O(1) +hy i1 vTéog()a S(itg)r)l’ViE(é(t))

= |v,B@@)] {—VjE(é(t)) + hlfpijVE(é(t))M.

SA-3 RMSProp with ¢ inside the square root

Definition SA-3.1. In this section, for some 0 ¢ RP, VO =0 eRP, pe (0,1), let the sequence of
p-vectors {O(k)} be defined for n > 0 by
kEZZo

2
Z/j(-n+1) = pl/j(-n) +(1-p) (VjEn (0(”))> ,

(SA-3.1)
6t = gt S — V,E, (0<”>).
U](n+1) +e
Let é(t) be defined as a continuous solution to the piecewise ODE
. V,E, (é(t))
0;(t) = YN
R} (9(15))
_ ) [ " /= ~ ViEn (6(t) (SA-3.2)
V,E, (O(t)) (213; )(O(t)) + B )(0(15)>> P ViEn (9(1&))M
+ h 3 - n) /A 1
20" (B(1)) 28" (6(1))



with the initial condition 8(0) = 8®), where R(™(8), P (0) and P("(8) are p-dimensional functions

with components

n 2
R\ () == an B - p)(V;Ex(8))” +e,

P™(6) :—an k(1 - p)V,EL(8 ZV”E;C
k=0

P (0) Z PR~ )V, Er(0 vaEk
k=0

—\ V,E,(0)
Z @)

1
lle(')

| ViFn(6)
RM©O)

Assumption SA-3.2. For some positive constants My, My, Mz, M4 we have

sup sup sup|V¢Ek(9) | < My,

Sup sup sup‘VUEk(a)’ < Mo,
] k

Sup sup s sup| Vs Ex(0)] < Ms,
i,jss

sup bupsup|VUb,«Ek(9)| < M.

i,3,8,7 k

(SA-3.3)

Theorem SA-3.3 (RMSProp with ¢ inside: local error bound). Suppose Assumption SA-3.2 holds. Then

foralln € {0,1,...,|T/n]}

Bynsr) — Byftn) 4 it (O

The argument is the same as for Theorem SA-2.3.

Theorem SA-3.4 (RMSProp with ¢ inside: global error bound).

Then there exist positive constants dy, ds, dg such that for all n € {O, 1,...

lenll < die™™ B2 and |lenst1 — en|| < dee™ B3,

\/Zk 0P R~ )(V Ek<é(tk)))2+8

for a positive constant Cs depending on p, where é(t) is defined in Definition SA-3.1.

< Cyh3

Suppose Assumption SA-3.2 holds.
T/n]}

where e, := 0(t,) — 0™ ; O(t) and {O(k)} are defined in Definition SA-3.1. The constants can be

kGZZO

defined as

dy = CY,

My M
d5:: 1+ \/7<51+1>d4 \/157

NG
dG = ngg,.

The argument is the same as for Theorem SA-2.4.

SA-3.5 RMSProp with ¢ inside: full-batch. In the full-batch setting Ej = F, the terms in (SA-3.2)

simplify to

R (0) = |V, BO)[(1 - ) + <,



n

) . P E(9)
L0 = S O LSO @

k=0

V.E(6)
VIVE@P(— )+

P (0) = (1 - p"* 1)V, E(0) fv E(6)

If the iteration number n is large, (SA-3.2) rapidly becomes

0;(t) = (V;E(6(t)) + bias), (SA-3.4)
\/|V CIO)EESS
where
. h) 2 1+p € i
bias := 2{ T 1=, Y EGO) T }v IVE@®)], . (SA-3.5)

SA-4 Adam with ¢ outside the square root

Definition SA-4.1. In this section, for some 0" ¢ RP, 10 =0 €eRP, B,pe (0,1), let the sequence of
p-vectors {B(k)} be defined for n > 0 by

kEZZO

2
uj(-nﬂ) = puj(-n) +(1-p) (VjEn (0(”))> ,
m{" Y = gm{"™ 4 (1= BV, B, (0),
(n+1) n
gD _ )y /( A
J \/ (n+1 — ) fe

or, rewriting,

T oheo B F(1 = B)V, By, (Q(k))

ej(_nﬂ) _ 9§n) _p — (SA-4.1)
\/H,lnﬂ D k=0 P E(L = p) (VjEk (O(k))> +e
Let (t) be defined as a continuous solution to the piecewise ODE
. M (é(t))
i(t) = —— 7=
R; (0(15)) +e
™ (5 ) (5 5 (5 (3 ) (5 (SA-4.2)
RI0) <2Pj (6t)) + P, (%))) 20" (6(t)) + L (6(1))
+h -

2 (Rg,n) (é(t)) + 5) 2R§,") (é(t)) 2 <R§”) (é(t)> Te

with the initial condition 8(0) = 8%, where R(™ (), P(™(6), P (8), M (6), L™ (0), L) (0) are



p-dimensional functions with components

R (6 sznkl— (V;E1(0)"/(1 = 1),

n 1 e
Mj( '(9) = 1= pnit Z_:B "(1-B)V;E(8),

n—1 )
(n) Z S Z M;"(6)
Lj (0 : Bn-{-l B 1 vz]Ek R(l)(a) _’_6’
l:k i (SA-4.3)
(n)
= (n) n—k M;™(6)
L (9) : B R =8 ViE(0 ,
J /BTL"FI Z Z J (n)(0)+5
(n) k = MY
P (9) = PR = )VE6)Y Vi E(0) Y —r—
: Lwﬂz 1> Tu0) > e O
(n)
5(n) (g . n—k M;™(0)
P (0) := PR = p)V,ER(0)Y Vi EL(8
J 1_ TL+1 Z Z J (n)(0)+5

Assumption SA-4.2.
1. For some positive constants My, Ms, M3, My we have

sup sup Sup|ViEk(9)| < M,

i k6
s_u_psup Sup|VijEk(0)’ < Mo,
sup sup sup|V”sEk(9)| < M3,

%,5,8 k

sup supsup‘V”S,«Ek(BM < My.
%,7,8,r k

2. For some R > 0 we have for all n € {0, 1,...,|T/h]}

2
R (0(tn)) = R, — T Zp" 1—p (v Ek(e(tk))> > R?,
where 0(t) is defined in Definition SA-4.1.

Theorem SA-4.3 (Adam with e outside: local error bound). Suppose Assumption SA-4.2 holds. Then
foralln €{0,1,...,|T/h]}

e S 7 H(1 = AV, B (B(t) )

\/1,)1n+1 Do VR = p) (vjEk (é(tk))>2 +e

for a positive constant Cs depending on B and p.

< Csh?

The argument is the same as for Theorem SA-2.3.

Theorem SA-4.4 (Adam with € outside: global error bound). Suppose Assumption SA-4.2 holds, and

- () e

for {O(k)}k . defined in Definition SA-4.1. Then there exist positive constants d7, ds, dg such that for
c€L>0
alln € {0,1,..., LT/hJ}

lenll < dre®™™h? and |ens1 — enl| < doe®mh?,



where e, := 0(t,) — 0™, The constants can be defined as

d7 = Cs,
Mo /p M?
dg = |1 1|d
s +R+€<R(R+E)+ 7| VP
dg = Cddg

Proof. Analogously to Theorem SA-2.4, we will prove this by induction over n.

The base case is n = 0. Indeed, ey = 6(0) — 0 = 0. Then the jth component of e; — e is

i o hVE (9<0>)
lex — ol = [ea]; = G;(t1) — 0" +

v, Eo (0(‘)))’ te

By Theorem SA-4.3, the absolute value of the right-hand side does not exceed C3h?, which means
ler — eo] < C;gh?’\/]?. Since C3,/p < dy, the base case is proven.
Now suppose that for all k =0,1,...,n — 1 the claim

lexl| < dre®Fh2  and  ||ejpis — x| < doe®™Fh 3

is proven. Then

(a)
lenll < llen—1ll + llen — en—1fl < dre® (D2 4 dgeds (D3

(b)
= dseds(n=Dhp2 (1 + Z%) < dreds(=DPR2(1 4 dgh)

7
©
< d76 g(n—l)th . edgh _ d7€d8nhh2,
where (a) is by the triangle inequality, (b) is by do/d7 < ds, in (c) we used 1+ < e® for all x > 0.

Next, combining Theorem SA-4.3 with (SA-4.1), we have

N/ N//
3
[ens1 — en]j‘ S O bl e = e, (SA-4.4)
where to simplify notation we put
1 n
N'= T g > - 8)v B (00),
k=0
1 N -~
N gy 2B (1= )V, B ((t0)).
k=0
1 n 2
D= g 2P 1 =0) (vjEk (0(‘"")> :
P =0
" 1 - n—k 0 ?
D™= T it ZP (L=p)| ViEk (O(tk)) :
k=0
Using D' > R?, D" > R?, we have
1 1 B |D/7DN| - |D/7DN| (SA45)
VD' +e VD" +e (\/D’ + s) (\/D” + s) (\/D' + \/D") T 2R(R+¢)* '



But since

(vjEk (0(’”))2 = (vjEk (é(tk))>2‘

- ‘vjEk (0<k>) — VB (9(tk)> ’ : ‘vjEk (0<k>) + VB (é(tk)) ’

< oMy |V, By (e ) o (B(tk))‘ < 2M1M2\TH9 o),
we have
D' - D"| < 2]\4_1]”3[2 R = p)||0® - B(n) . (SA-4.6)
Similarly,

N'—N"| < 1_—15%1 iﬂ"”“(l - B)‘vjEk (9““’) ~ V,Ey (é(tm) ‘

(SA-4.7)
n—k (k)
<< B"“ § B (18 MQ\[HB tk)H
Combining (SA-4.5), (SA-4.6) and (SA-4.7), we get
N/ N// 1 |N Nl/|
VD' +e¢ D" +e| \/D/—‘r& VD" + ¢ D" +
1 =k 2M1M2 - "
< - E _ E
M2\[ - k (k) _ p
E "R = B)[|0V —0(t
M1 M2 " : ©
T )0V — 6(t
T R(R+e)? "+1 Z r (t)
Mz\f S k) 7
E TR — 0" — 0(ty,
@) M3?M>.\/p - K pdskhp,2
< n— skhp,
R(R+e)2(1—pntt kzzop
My\/p - k dskhy 2
AR — 8 SA-4.8
(R+s 1,ﬂn+1§ B)dre™ " h7, ( )

where in (a) we used the induction hypothesis and that the bound on ||e, || is already proven.
. _ —duhnk
Now note that since 0 < pe=%" < p, we have Y ;_ (pe=%")" < S/ pF = (1= p"t) /(1 - p),

which is rewritten as
1 n
T an—k(l _ p)edxkh < edsnh.
k=0

By the same logic,
1 n
T 20 = et < e,
k=0

Then we can continue (SA-4.8):

N’ N” Mzvp M? dsnh 2
- < 1 |d7e*™"h SA-4.9
VD 1 VD'iel - Rte\RE®+e) ) ( :

10



Again using 1 < e%"" we conclude from (SA-4.4) and (SA-4.9) that

M2\/13 Ml2 dgnhy 3
el —en|l < | Cs + +1])d SRS,
lents = en ( ’ R+e¢ <R(R+s) T vpe

<dgy

finishing the induction step. O

SA-5 Adam with ¢ inside the square root

Definition SA-5.1. In this section, for some 0 ¢ RP, 10 =0 €eRP, B,pe (0,1), let the sequence of

p-vectors {B(k)} be defined for n > 0 by
kEZZO

2
l/j(-n+1) = pV](-n) +(1-p) (VjEn (G(n))> ,
(n+1) _ (n) , (n)
my = Bmy T+ (1= B)VEy, (9 ) (SA-5.1)
("+1) n
i) _ glm) _ /(1= ")
J J \/ (n-‘,—l)/ . n+1)

Let 0(t) be defined as a continuous solution to the piecewise ODE

. I 0)
Hj(t):_}zg.’”(é(t))
P 30) (o1 00 + 57(50)) ) + 15 o)

o 2R(" (é(t)) B 2R (é(t))

(SA-5.2)

with the initial condition 8(0) = 8, where R(™(8), P(™(6), P (6), M (6), L™ (6), L (8) are

p-dimensional functions with components

k=0

R (0 szn KL= p)(V5E0(6))* /(1= p+1) + e

M (6) = # S H - BV, E(6),
k=0

n 1 i P MY 9
LY 0) = 1= Zﬂ”*’“(l—mzvij @ —
k=0 ]

(@)

= ;(C)Rz () (SA-5.3)
TS Ry JAL(0)
)= 1-5%125 ZV”E’“ R (0)

( ) . nAJ,AJ(D(a)
P (0) = R — V Ex( Vi Ex( ¢ ’
j ( ) l_pn—H ZP k Z / k ; Rgl)(g)

P (n)
=(n n— MZ o
B0 = 3o 0 3B
k=0 i=1

Assumption SA-5.2. For some positive constants My, My, M3, M4 we have
sup sup sup|ViEk(9)‘ < M,
i k0

11



sup sup sup|V”Ek(0)| < Ma,
ik

Sup sup sup|V”sEk(9)} < Ms,
1,7, k

sup supsup|V”erk(0)| < My.
%,5,8,7 k

Theorem SA-5.3 (Adam with ¢ inside: local error bound). Suppose Assumption SA-5.2 holds. Then for
alln € {0,1,...,|T/h|}

) ) e Yo (L - B)V5 B (Bt )

\/1,31n+1 D k=0 P F(L = p) (VjEk (é(tk)>>2 +e

for a positive constant Cy depending on B and p.

< C4h3

The argument is the same as for Theorem SA-2.3.

Theorem SA-5.4 (Adam with ¢ inside: global error bound). Suppose Assumption SA-5.2 holds for
{B(k)}k , defined in Definition SA-5.1. Then there exist positive constants dig, di1, di2 such that for
€ZL>0

alln € {0,1,...,|T/h]}
”en” S dmed”nhh2 (l’ﬂd ||en+1 - en” S d12€d”nhh37

where e, := 0(t,) — 0™, The constants can be defined as

dyp = Cy,
Mz\/ﬁ M12
dip = |1 — +1]d
11 + NG < - + 10 | VP
d12 = C4d11.

The argument is the same as for Theorem SA-4.4.

SA-6 Technical bounding lemmas

We will need the following lemmas to prove Theorem SA-2.3.

Lemma SA-6.1. Suppose Assumption SA-2.2 holds. Then

sup‘Pj(n)(O)‘ <Cs, (SA-6.1)
sup‘P(n) ’ < Cs, (SA-6.2)
with constants Cs, Cg defined as follows:
2
Cs = ]\Ig—lj—\{f . 1fp’
M? M.
Co=p PR + 52

Proof of Lemma SA-6.1. The proof is done in the following simple steps.

12



SA-6.2 Proof of (SA-6.1). This bound is straightforward:

(n) " 2 V,E(6)
P}?L (0)‘ = sup 2 :pnfk( v Ek 2 :vlek z : i
! 9 k=0 1=k Rz@(a) +
M K M3 M, k
e — < 1 k=Cs.
R+ Zp (n PRye =P kzzof’

SA-6.3 Proof of (SA-6.2). This bound is straightforward:

P (6)| = sup|32 71— ) Eu(6) 3 Vs () i)
= - ik ij &k n
k=0 i=1 R} '(0) +¢
2 M. = M2 M.
1 2 n—k 1 2
— < =
R+e ( ) kZ:O R 0
This concludes the proof of Lemma SA-6.1. O

Lemma SA-6.4. Suppose Assumption SA-2.2 holds. Then the first derivative of t — éj(t) is uniformly
over j and t € [0,T] bounded in absolute value by some positive constant, say D;.

Proof. This follows immediately from h < T, (SA-6.1), (SA-6.2) and the definition of 8(t) given in (SA-2.2).

O
Lemma SA-6.5. Suppose Assumption SA-2.2 holds. Then
sup sup (VjEn(é(t))) <y, (SA-6.3)
te[0,T] J
5 len(é(t)) N
_ N | < -6.
ik tE[tS:»ltm ;V”Ek< ) 2(t)+R§")<é(t))+g et (3464
et viE(B()
up sup 1D vaEk(m DéRf’)@@)“ < (n = k)G, (SA-6.5)
(P(n) ) < Cio + Cha, (SA-6.6)
P<" (O(t) ‘ < s, (SA-6.7)
Vi (00))
V. B (0t - <Oy, SA-6.8
Z o5 (9 >R< ) (6(1)) + = b (3405
V,E,(6(t) (2P?”) 6(t)) + P (6(t) >
/2 (00) (217 2) "(0) <, (SA-6.9)
2 ( R (é(t)) + e> R (é(t))
» - ViEn<é(t))
> iz ViiEn (H(t)) (o) +=
. : < Cis, (SA-6.10)
2 (R§"> @) + g)

13



with constants 07, Cg, Cg, 010, Cll; 012, 013, 014, 015, Cl6> 017, ClS deﬁned as fOllOU}S.'

C7 = pM> Dy,

Cy = p]\;ﬁvf;

Cio == DlPQ% : %7
Oy = Dlp]]glM27

Co := Dip? Aélj_v?,

Dlp2 2 ]\4121\422
= My M. M. —_—
R+5< 1M F 2+(R+5)R ’
Ciy = M10131 L )
—p
O i Dyp*Mi M3 Dip*MEMs — Dip*Mi M3 pMEM>Ciy
YT T Rye R+e R+e (R+¢€)? "’
Cro = 2C1 Ci

RE+oP  (Riel

_ DipM, - (2C5 + Cs) | M (2(Cio + Crs) + C15) My (2C5 + C6)Chs

017 .

2(R+¢)°R 2(R+¢)°R 2 ’
Chaim 1 p2D1M1M3 p2D1M22 M M>Chy } ) pM; M, ) Chi
¥R+ R+e R+e (R+¢) 2 R+e (R+e)?

Proof of Lemma SA-6.5. We divide this argument in several steps.

SA-6.6 Proof of (SA-6.3). This bound is straightforward:

<vjEn(é(t))>" _ ivijEn(é(t))éi(t) <.

SA-6.7 Proof of (SA-6.4). By (SA-2.2) we have for t =1,

V;En (é (t))
Rg") (é(t)) +€

<h

. M, (2Cs + Cs M, M.
0;(t) + [ 1205 +Cs) | pMiMy

2(R+¢)%R 2(R+¢)? |’

giving (SA-6.4) immediately.

SA-6.8 Proof of (SA-6.5). This bound follows from the assumptions immediately.

14



SA-6.9 Proof of (SA-6.6). We will prove this by bounding the two terms in the expression

" (o)
. P N2 1l VE (é(t))
_ I; R - p);vwEk (6(1))0(1 ;v”Ek (6) ; A0+ Saon
" R P4 ~ n=1 V,E(0(t)
+ ];)p "(1=p)V,Ex (0(15)> ; dt{VijEk (0(15)) £ RO (é(( )> 25}

It is easily shown that the first term in (SA-6.11) is bounded in absolute value by Ci:

i PR = p) Xp: Vi Bk (8(1))u(t) zp: v, 5 (60) fil VB (01))
k=0 u=1 1=1

— RV (é(t)) te

M, M2
< D1P2R17+§(1 - P)Zpkk

k=0

For the proof of (SA-6.6), it is left to show that the second term in (SA-6.11) is bounded in absolute
value by C1y.
_1 viE(6)

To bound > ¥, dt{vak( (t )) Sk R(”(e(t)) } we can use

» o n=l VE(0(t)
Z{<“>Z<f>>)}

L | n—l szl(é(ﬁ)
i=1 =k RZ@ (é(t) +e

By the Cauchy-Schwarz inequality applied twice,

P4 i n1 V,E (é(t))
Z dt{vszk (0( ))} ; RV (é(t)) Y-




Next, for any n and j

—R§">(<>) -
00 o

< DypM; M,
~ R+e (R+¢e)?

We have obtained

i (;it{VmEk (é(t)) ni:l Vl(E;(ét))} < (n—k)Cis. (SA-6.13)

zn:pnk VEk<

k=0 i=1

™D
A
=
[]=
&~
——
I
<
o
BN
—
™
—
N
N—
3
|
—
I
&
/~
D
=~
S~—
—
——

<MY "R = p)(n—k)Cis < Cha,

concluding the proof of (SA-6.6).
SA-6.10 Proof of (SA-6.7). We will prove this by bounding the four terms in the expression

. iEn(0(1)

= Terml + Term2 + Term3 + Term4,

where
Term1
n i » . VB, (6(t)
=2t {vim(60) > VuE(80) po @Et)) +)
Term?2
n i P N V.E,(0(t)
_ kzzopn_k(l — PV, B (e(t)) ; jt{vwEk (G(t)) } po (afw) 28,
Term3



(o) =
Term4
n » B N (n)
= — Z pn_k(l - p)vjEk (é(t)) Z V”Ek (é(t)) sz’rL (a(t)) C;it R’L
k=0 i=1

To bound Terml, use

To bound Term?2, use

< DipMs;, giving

#{ vz (00) }

D1p? M, M?2
|Term1| < 1p ! Q‘Z”k

c(ilt{vijEk (é(t)) }

Dy p® M3 Ms z’: k(1 ) < Dyp* M3 Ms

D1p2M1M22
-~ R+e

< DipMs, giving

Term2| <
[Term2| < R+e R+e
k=0
To bound Term3, use ;t{viEn (é(t))} < Di1pMs, giving
2 2
|Term3| < Dlp M1M2 Z e k < DlpRi]fl%
€
To bound Term4, use (SA-6.12), giving
PM1 Mzcu S pM%Mzcu
|Term4| < Z <
P (R+¢)
SA-6.11 Proof of (SA-6.8). This is proven in (SA-6.13).
SA-6.12 Proof of (SA-6.9). (SA-6.12) gives
4 pn) (g
d 1 - mRﬂ(““M o
dt ] p™ (g s e a . SR
R (8(1)) R (61))
1 . ) d R(n) (é(t)) ‘ ) o
dt () (g N (R
R; (e(t)) +e (R(n) (0(t)) +E> (R+e)?’
4 pn)(g
g e .
dt . 2 (| ~ (R+¢)
<ﬁé">(e(w) +-s> <f#”>(9(o) +—€> (B+e)

Combining two bounds above, we have

jt{(R““ (6m) +s)2R§"><é<t>>-l}|
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< O + 7 < Cig
RJ (1)) <R§n) (é(t)> +e
We are ready to bound
V,E, (é(t)) 2p(™ (é(t)) + P (é(t))>
2 Ryv) (é(t)) + z—:) 2R§") (é(t))
(vJEn (é(t))) 2p(™ (é(t)) + p™ (é(t)))
B 2 (R;.") ( (t)) + €> 2R§") (é(t))
V,E, (é(t)) <2pj(”> o(t)) + p™ (O(t)))
+
2 (Rg.’” (é(t)) + 5) R™ (0(t))
V,E, (é(t)) <2Pj<"> é(t)) + P (é(t)))
+ 2
X <(R(") (é(t)) + 5) _QR(")(é(t))1> <O
SA-6.13 Proof of (SA-6.10). Since
P . ViE, (é(t)) AL
;wEn (6) (a0 4 <P
and, as we have already seen in the argument for (SA-6.7),
N Vika (é(t)) | 2Dy MMy p*DyME  pM, MyCyy
;Vz’jEn(G(t))Rgn)(é(t)) —= P Py p(R+€)2
we are ready to bound
()
AN )m
= < Cis.
2(RM(O() + <)
The proof of Lemma SA-6.5 is concluded. O

Lemma SA-6.14. Suppose Assumption SA-2.2 holds. Then the second derivative of t — éj (t) is uniformly
over j and t € [0,T] bounded in absolute value by some positive constant, say Ds.

18



Proof. This follows from the definition of () given in (SA-2.2), h < T and that the first derivatives of

all three terms in (SA-2.2) are bounded by Lemma SA-6.5.
Lemma SA-6.15. Suppose Assumption SA-2.2 holds. Then

(vng(éaq))"

S 0195

(7 (800) +) R (50) 1) | < O,

S (n - k)CQ/la

with constants Chg, Cog, Ca1, Caa, Ca3, Coy defined as follows:
Cig := p*M3D3 + pMsDs,

C 1 1
Cao i= g pMi M Dy + RpQMSD% + P MiMsDf + 55 pMi Mo Do,
o 6C 2040
T (Rt T (R4e)¥
. 20121 CQ()
Coo 1= "3 RZ’
021 40121 022
Coy 1= —2+
B R YRR+ TR
2011(D1M22p+D1M1M3p) 20121 Cy
24i=P (R1e)? TR BT T By o2

+ 2D3 My Msp?® + My (DI Msp® + Do Map) + My (DIMyp?® + Do Msp) ]
R+e¢ '

Proof of Lemma SA-6.15. We divide this argument in several steps.

SA-6.16 Proof of (SA-6.17). This bound is straightforward:

(v, (000 ))‘

SA-6.17 Proof of (SA-6.18). Note that

(1 0) = (7 o) ) Bt (00) 00

F R (60) Y- )(v B, (8¢ )) ZVwEk( 0)ér(t)

k=0

p

> D Vi Ea(00)) . (08i¢ -+§:V”E (8ct))0ut

=1 s=1

< Chy.
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(SA-6.17)

(SA-6.18)

(SA-6.19)

(SA-6.20)

(SA-6.21)

(SA-6.22)



_ n

+R§">(é(t)) lzpn*mf PV, Ek<

D
=
\_/

—
(]~
<
<.

&

—~
Y
=

\_/

N——
N———
=

—

~
=

k=0 i=1
RN . - Nz
+ R (O(t)) kz: p"E (L= p)V, By (0(75)) Z; Vi B (‘9@)) 0:(t),
=0 i=
giving by (SA-6.14)
(R§”> (é(t))) < C{ijlel Zp" F(1— ;pQMgD% kZ:Op””“(l —p)

1 2 2 n—k n—k
+ P MiMs Dy ZpL (1-p)+ EleM?D? > 1 -p)
k=0 k=0
< Cy.

SA-6.18 Proof of (SA-6.19). Note that

(o

giving by (SA-6.12) and (SA-6.18)

S
=
N~—

N——
+
)
~
&
N———
Il
|
w

< Co.

|<<R<"> (6t)) + 5) _2> )

SA-6.19 Proof of (SA-6.20). The bound follows from (SA-6.12), (SA-6.18) and

la] < <=
(R+¢)? R
4l 2C1 ‘ } Ci
~ (R+¢)¥’ - R2’

and . B
(ab)” = db+ 2ab + ab.

SA-6.21 Proof of (SA-6.22). Putting



we have
la| < Ms, |a| < pM3Ds, |d| < p*MyDF + pM3Ds,
Ib| < M, ‘b’ < pMy Dy, ’b‘ < p*MD? + pMaDs,

1 . Cii . 20% Cao
< — < —— < .
s gs d=Gror V=Gragt wmroe
(SA-6.22) follows.
The proof of Lemma SA-6.15 is concluded. O

Lemma SA-6.22. Suppose Assumption SA-2.2 holds. Then the third derivative of t — éj(t) s uniformly
over j and t € [0,T] bounded in absolute value by some positive constant, say Ds.

Proof. By (SA-6.5), (SA-6.13) and (SA-6.22)

p . n—1 ViEz<~(t)
Vz‘jE ot = <(n-k C‘Ja
; +(60)) > o el = )
p B n—1 V.E; é(t)
VijE 0 — <(n-—-k CL 3
; (00) ; RO (8(1)) + < = hcs
P 1l VE é(t))
VijE 0 — S n—=k CQ .
; k< (t)> 12_; RY (O(t)) +e (=

From the definition of ¢ — Pj(") (é(t)), it means that its derivatives up to order two are bounded.

Similarly, the same is true for ¢ — Pj(") (é(t))
It follows from (SA-6.19) and its proof that the derivatives up to order two of

L B
tis (R§") (é(t)) + 5) R\ (é(t))

are also bounded.
These considerations give the boundedness of the second derivative of the term

V,E, (é(t)) <2Pj<"> (é(t)) + P (é(t))>
=

2 ( R\ (é(t)) + g) : R\ (é(t))

in (SA-2.2). The boundedness of the second derivatives of the other two terms is shown analogously.
By (SA-2.2) and since h < T, this means

sup sup é](t)’ < Dg
J t€l0,T]

for some positive constant Dj. O

SA-7 Proof of Theorem SA-2.3

Lemma SA-7.1. Suppose Assumption SA-2.2 holds. Then for all n € {O, 1,...,|T/h] }, k €
{0,1,...,n— 1} we have

‘vjEk (é(tk)) —V,E (@(tn))‘ < Cy(n—k)h (SA-7.1)
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Proof. (SA-7.1) follows from the mean value theorem applied n — k times. O

Lemma SA-7.2. In the setting of Lemma SA-7.1, for anyl € {k,k+1,...,n— 1} we have

VB (0(t)) = VB (8(t1)) - thUEk( )J‘W

< (Ci19/24Cs + (n—1—1)Cy3)h?

Proof. By the Taylor expansion of ¢t — V;Ej, (é(t)) on the segment [t;, ;1] at t;41 on the left

VB (8()) = VB (0(ti11)) + hivijEk (6cti1)6i(ti71) | < %hz.
Combining this with (SA-6.4) gives
V. E é(t 1)
VjEk( (t )) V; Ek( (ti+1) ) - hZV”Ek( (tl+1)) 7O (;(<tl+1l)+) 26 (SA-7.2)

< (Ci9/2+ Cs)R>.

Now applying the mean-value theorem n — [ — 1 times, we have

Vi El( (1) ) ZVwEk< (tit2 ) b <é(tl+2)> < Cish,

RZ(»l) (0(tl+1)> +e o RZ(Z)(O(tH_z)) +e

ZVZJEk( (tia )

Zp 0 Z ~ i tn
i=1 Vit (e(t”—1)> R(l) (6( - ) = ViiEk (0 ) l~> S
and in particular

AT I GLC R S il U

i=1 RZ(-I) (é(tl+1)> +€ i=1 REZ) (é(tn)> +e€
<(n—1-1)Cish.

Combining this with (SA-7.2), we conclude the proof of Lemma SA-7.2. O
Lemma SA-7.3. In the setting of Lemma SA-7.1,
) i v et viE(6()
V,;E|0(ty)) — VjER(0(t,)) —h Y ViiEp(0(t,) _
( ) ( ) ; ( ) ; Rz@ (G(tn)) +e

< ((n —k)(C19/2 + Cs) + (n = k)(nQ— b 1)013) h?

Proof. Fix n € Z>g.
Note that

) ril V.E (é(tn)>

=k REZ) (é(tn)> +e

VjEk(é(tk)) VEk< ) hZV”Ek(
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=2 Vo(0) - VB (Bt - hEZ‘%#%(e R O(tn)) +2
net ) Vi (8(t))
S rr VjEk (0( )) V; Ek( tl+1 ) hzvngk( )]W
(a) 2! _ _k—
S) (Cio/24Cs + (n—1—1)Ci3)h* = <(” —k)(Cro/2+ Cs) + (n k)(z i 1)013>h27
I=k
where (a) is by Lemma SA-7.2. O

Lemma SA-7.4. Suppose Assumption SA-2.2 holds. Then for all n € {0, 1,..., [T/hj}

n

an—k(l —p) (vjEk (é(tk)))2 — R;n) (é(tn))2

k=0

< Cosh (SA-7.3)

and

n

Z (v Ey (9(tk))>2 ~ R (é( ,,))2 —21P™ (é(tn))

k=

< Cysh? (SA-7.4)

with Cy5 and Cag defined as follows:

025(p) = 2M1071 ﬁ

Cas(p) = M;|Cig +2Cs — C13] 1 f

20 — C2)? 1
+ <M1013 +|C19 +2Cs — C13]Co + (Cio +2Cs — Chs) ) f( +p)

4 1—p)?
Clg p(1—|—4p+p2) 0122 p(1+11p+11p2 -|—p3)

Proof. Note that

(ve(o)) - (v.e0(00)

S%%@%D—WM@WW\VM@<U+VM@<W

(a)
< Co(n —k)h - 2M;,

2

where (a) is by (SA-7.1). Using the triangle inequality, we can conclude

an—k<1 —p) (VjEk (é(tk)>>2 - Rg'n) <é(tn))2

< 2MCoh(1 — p) Y (n— k)" F = 2MiCrh(1 — p) S kpt = 2M, Cr L ,
k=0 k=0

h.

(SA-7.3) is proven.
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We continue by showing

(vjEk (é<tk)))2 ) (Vj o (é(tn)))
9B, (é(tn)) h i Vi Ex (é(tn)) nf M

2

1=k 0(tn)
B o (SA-7.5)
< 2M,; ((n —k)(C9/2+ Cs) + (n k)(z k—1) Cm> h?
—k)(n—k-1
#20 =00 (0= 0(Cuo/2+ )+ EREZE 6, Yo
—k)(n—k—1 2
+ <(”k)(019/2+08)+ (n )(7; )Cm> h*.
To prove this, use
’aQ—b2—2th’ <20b| - |a—b— Kh| +2|K|-h-la—b— Kh|+ (a—b— Kh)?
with
~ ~ p - n—1 VzEl (é tn))
a:=V;E(0(ty)), b:=V;E(0(t,)), K:= ZvijEk 0(tn) —
( ) ( ) P ( )l_k Rz@ O(tn)) +e

and bounding

a—b— Kn < ((n ) (Cuo/2+ 0y BRI ”cm) 2,

b < My, |K[<(n—k)Co,

where (a) is by Lemma SA-7.3. (SA-7.5) is proven.
We turn to the proof of (SA-7.4). By (SA-7.5) and the triangle inequality

Zn:pnfk(l —p) (vjEk (é(tk)>)2 — R (é(tn)>2 —2nP" (é(tn))‘
k=0

<(1-p) Z pnk (Polyl(n — k)h? + Poly,(n — k)h* + Poly;(n — k)h4)
k=0

—1-pY s (Polyl(k)h2 + Poly, (k)h® + Po1y3(k)h4),
k=0

where
k(k—1)
2
k(k—1)

Poly, (k) := 2M, <k(019/2 +Cs) + Cl:’») = M,Cy3k* + M;(Ch9 + 2Cs — C13)k,

POlyQ(k}) = QkC() <I€(Clg/2 + Cg) + 013) = 01309k3 + (Clg + 208 — 013)09]{2,

2
Poly, (k) := </€(Cw/2 +Cs) + k(k; 1)Cl3>

C2 (OF 1
= fkll + %(Cw +2Cs — C13)k* + Z(Cw +2Cs — 013)2k2~
It is left to combine this with

nkk Ookk: P
LS Lk =
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2 k 2k _ 1+P)
ka <Zk 5

k=0
(1+4p+p?)
k3pF < k3 k_p—)
SLLEDS pe
(14 11p+ 11p% + p?)
R ! k:p _
ML M

This gives

n

> (1 - p) (vjEk (é(m)))z ~ B0 2hP (8(1,))

k=0
P h2
-p

_|_
< <M1CH PL+7) + M;|Ch9 4 2Cs — Cy3] 1

(1—p)*
1+4p+
+ cmcgwﬂcwmcg—omwg p+p 2) B3
(1-p)? (1-p)
c?, p(1+11p+11p2+p3) CU p(1+4p+ p?)
+<4' (1-p)* T (G20 C”'W
1 2p(1+p)\, 4
+ 7(Cro +2Cs = Cus) A=) h

(a) p
< [M1|019 +2Cs — C13) -

(Cig +2Cs — C13)* \ p(1 + p)
4 (1—p)?

p(1+44p + p?)

+ <M1C'13 + [Chg +2C5 — C13]|Cy +
( (1-p)?

O
C13Cy + %‘CIQ +2Cs — C13|)

h2

% p(L+11p+11p° + p*)
4 (I-p)*

where in (a) we used that b < 1. (SA-7.4) is proven.

Lemma SA-7.5. Suppose Assumption SA-2.2 holds. Then

-1

szn K1 —p (V Ek( (t )))2—1—5 - (R§”)(é(tn))+a>_l

Pj(") (é(tn)) _ Ca(p)* + R?*Ca(p)
(9 ) =) o ou) | T

Proof. Note that if a > R%, b > R?, we have

+h

1 1 a—b
Vat+e Vb+e 2(\/5—1-5) Vb

_ (a—b) { 1 N 1 }
2b(Vo+e)(Vate)(Va+vo) Lbte Vatvh

<2/R
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(a —b)*
SRR+ o2

By the triangle inequality,

1 1 c (a—b)? la —b— ¢
- + < 5
Vate Vhte 2(vhre)ve| HETDT o)
(a—b)? la —b—¢|

T 2R¥(R+¢)*  2R(R+e)’
Apply this with

ai= kipnka (v (om)) |

0

= R{" (é(tn))2,

(=)

and use bounds P

I—p
by Lemma SA-7.4. O

\a—b\ S 2M107 h, |CL—b—C| S CQG(p)hQ

SA-7.6. We are finally ready to prove Theorem SA-2.3.
Proof of Theorem SA-2.3. By (SA-6.9) and (SA-6.10), the first derivative of the function

EACO) (zp;m (8t)) + ™ (é(t))) T Vst (é(t))}m
2 (Rﬁ") (6t)) + e) 2R§"> (o) 2(R (1) + <)

is bounded in absolute value by a positive constant Cao7 = Ci7 + C15. By (SA-2.2), this means

a[ VEn (é(t))

éj (t) Rl ey soue e < Cy7h.
d¢ R; )<9(t)> L
Combining this with
) j j 0, (th D
0;(tns1) — 0;(tn) — 0; ()b — J(2 )hz < ?3

(SA-7.6)

Using

)
————~——| < Cash



with Cag defined as
M;(2C5 + Cs) ~ pMi M,

2(R+¢)?R 2(R+¢)?

y (SA-2.2), and calculating the derivative, it is easy to show

Cog =

— FrDer| < Cyh (SA-7.7)

¢
R{ (é(t)) +e )|

for a positive constant Cog, where

FrDerNum

(R§_n> (é(tn)) + e) : R\ (é(tn))

FrDerNum := V, E,, (é(tn)) Pj(n) (é(tn))

FrDer :=

(7 (B0) ) o100) 3w 00, )W

M. M?M.
Ca ::{p 2 172D }028.

R+e (R+¢)3R

From (SA-7.6) and (SA-7.7), by the triangle inequality

< (%3 n 0274-029)]13’

~ ~ L h2
0; (tn+1) 93( n) - 0]‘ (t:;)h + ?FI‘DQI‘ 5

which, using (SA-2.2), is rewritten as

i i v, B, (8(t,))

- 0 (n) (g
0i(tni1) —0;(tn) +h 2 V,En, (0(tn))Pj (0(tn)>

R (é(tn)) +e ( R (g(tn)) + g> 2 R\ (é(tn))

D3  Cor+ 0\, 3
< _ .

It is left to combine this with Lemma SA-7.5, giving the assertion of the theorem with

Ci=— M, —= .
1 6 + B + My 2RI(R +2)

SA-8 Numerical experiments

SA-8.1 Models. We use small modifications of default Keras Resnet-50 and Resnet-101 architectures®
for training on CIFAR-10 and CIFAR-100 (since image sizes are not the same as Imagenet), after verifying
their correctness. The first convolution layer convl has 3 x 3 kernel, stride 1 and “same” padding. Then
comes batch normalization, and relu. Max pooling is removed, and otherwise conv2_x to convb_x are as
described in [2], see Table 1 there (downsampling is performed by the first convolution of each bottleneck
block, same as in this original paper, not the middle one as in version 1.52; all convolution layers have
learned biases). After convb there is global average pooling, 10 or 100-way fully connected layer (for
CIFAR-10 and CIFAR-100 respectively), and softmax.

Ihttps://github.com/keras-team/keras/blob/v2.13.1/keras/applications/resnet.py
thtps ://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch

27


https://github.com/keras-team/keras/blob/v2.13.1/keras/applications/resnet.py
https://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch

SA-8.2 Data augmentation. We subtract the per-pixel mean and divide by standard deviation, and
we use the data augmentation scheme from [3], following [2], section 4.2. We take inspiration and some
code snippets from [4] (though we do not use their models). During each pass over the training dataset,
each 32 x 32 initial image is padded evenly with zeros so that it becomes 36 x 36, then random crop is
applied so that the picture becomes 32 x 32 again, and finally random (probability 0.5) horizontal (left to
right) flip is used.

SA-8.3 Experiment details. In experiments whose results are reported in Figures 4 and 5 of the main
paper, we train for more than 3600 epochs and stop training when the train accuracy is near-perfect
(Figure SA-1) and the testing accuracy does not significantly improve (Figure SA-2). Therefore, the
maximal test accuracies are the final ones reached, and the maximal perturbed one-norms, after excluding
the initial fall at the beginning of training, are at peaks of the “hills” on the norm curves (Figure SA-2).

Additional evidence (for ResNet-101 on CIFAR-100 and with hyperparameters different from the
ones in Figures 4 and 5) is provided in Figures SA-3 and SA-4.
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Figure SA-1: Train loss and train accuracy curves for full-batch Adam, ResNet-50 on CIFAR-10, 8 = 0.99,
e=10"%,h=75-1075.
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Figure SA-2: Test accuracy and ||VE|1 . after each epoch. The setting is the same as in Figure SA-1.
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Figure SA-3: Resnet-101 on CIFAR-100 trained with full-batch Adam, ¢ = 1078, 8 = 0.95. As p increases,
the perturbed one-norm seems to rise and the test accuracy seems to fall (in the stable regime of training).
Both metrics are calculated as in Figures 4 and 5 of the main paper.
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Figure SA-4: Resnet-101 on CIFAR-100 trained with full-batch Adam, p = 0.99, ¢ = 10~%. The perturbed
one-norm seems to fall as 8 increases, and the test accuracy seems to rise. Both metrics are calculated as
in Figures 4 and 5 of the main paper.

SA-9 Adam with ¢ inside the square root: informal derivation

Result SA-9.1. Fo

Derivation. We take

rn€{0,1,2,...} we have

R (8(t))
W) ) (o))
R (8(t)) ’ R (8(t))
(g
By trn) = B (0) — (66) +o(r?)

for granted. Using this and the Taylor series, we can write

o (é(tn_1)>
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) =1 (g(t,,
— V5 ((0)) + DI (B(t)) W

where in the last equality we just replaced ¢, _1 with ¢,, in the h-term since it only affects higher-order
terms. Now doing this again for step n — 1 instead of step n, we will have

VY, Ex (é(tH))

=1

SR ) T ) s e 400
n—1
—V,E, (é(tn_l)) +h i Vii B (é(tn_l)) M

where in the last equality we again replaced ¢,,_1 with ¢,, since it only affects higher-order terms. Proceeding
like this and adding the resulting equations, we have for n € {0,1,...}, k € {0,...,n — 1} that

V;Ej (é(tk)>
=V, B, (é(t )) + hiV-Ek(é(t )) ni M + 0(h2)
J n g z] n — RZ@ (é(tn)) P

where we ignored the fact that n — k is not bounded (we will get away with this because of exponential
averaging). Hence, taking the square of this formal power series,

2

P (1= p) (vjEk (é(tk))>2 =p""(1-p) (VjEk (é(tn))>

. N e M0 (6(t)
+ 20 R — )V, By (0(%)) ;vijEk (H(tn)) ; RE”((é(tn))) n o(hz).
Summing up over k, we have

# épnku —9) (vjEk (é(tk)))Q +e=RM (@)(tn))2 +20P" (B(t.)) + O (n?),

_1/

. . . . 2 .
which, using the expression for the inverse square root (Z:fozo arh”") of a formal power series >~ a,h”,

gives us

-1

$ e gpn_k(l -»(vim (é(m)))Q te

H
3
B

—h (010) +o(n).

R (6t)) R (é(tn)>3
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Similarly,

177}37”1 i(l — B)B" YV, Ey, (é(tk)) = ﬁ Zi:(l — B)B" RV, By, (é(tn))
k s Mz‘(l) O(tn) )
Bn-i-lkzolf B)B"~ Zvlek( );Rg)((é(tn)))+0(h)
- M (é( )) + L <é(tn)) + O(hQ).

We conclude

e
. R§n) (g)(tn)) _hR§") (é(tn)>3 +O(h ) +O(h3)
(o)
=0;(t) —h R <~(tn))
) (7 (8 (8
» y (e(tn))f,j (Se(tn)) L (‘f(tn)) +O(h3). O
R (e(tn)) il (e(t"))

Result SA-9.2. Fort, <t < t,i1, the modified equation is (SA-5.2).

Derivation. Assume that the modified flow for ¢,, <t < t,,41 satisfies 9 = f'(é(t)) where

£(0) = £(0) + hfy(0) + o(h2).

By Taylor expansion, we have

+ %2 [Vf(é(tn))f(é(tn)) + O(h)] +0(n*) (SA-9.2)

= 0(t,) + hf(é(tn)) + B2 {fl (é(tn)) + Vf(é(tn)gf(é(tn))] + O(h3).

Using Lemma SA-9.1 and equating the terms before the corresponding powers of h in (SA-9.1)
and (SA-9.2), we obtain

M(")(e)
() = J
1 M<">(0)p<">(e) L (9) (54:9:9)
fl \J 5 Z sz] 5 . .

() g)3  p) gy
R{™(6) R{™(6)
It is left to find V, f;(0). Using

S o PR (1 = p)ViEx(0)V;Ex(0)
(1 - pm+1)R\™(8)

(n) —
ViR;7(0) =

Y
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_ ko BV F(L - BV Er(6)

VZ-M](”)(H) - 1— pntl
we have
| M6
RO
O S B BV B(0) — O S R (1 )V EL(O)Y, B (6)
- R (6)°
SR B R BV E8) | M (0) Yo" (L~ )V Ee(0)V Ex(6)
(1— B )R (0) (1—p+)RY™(9)°
Inserting this into (SA-9.3) concludes the proof. O
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