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A EXTENDED DISCUSSION ON CLASS-BALANCED NORMALIZATION

In this section, we give a comprehensive overview on the difference between Class-balanced Nor-
malization and Distribution Alignment. The different learning status of classes can be reflected in
the learned marginal distribution p̂(y): weakly-learned classes have smaller values compared with
the others. During fine-tuning, if the learned marginal distribution is aligned towards uniform, it
serves to encourage a fair learning status among classes. The previous work Berthelot et al. (2019) in
semi-supervised learning proposes a formulation to conduct distribution alignment as:

q̃ = Normalize(q
p(y)

p̂(y)
), (1)

where p(y) is the marginal distribution of the class variable y and p̂(y) is its estimation. q refers
to the probability of a unlabeled sample. And Normalize(xi) =

xi∑
j xj

. In Eq. 6, the scale vector
p(y)
p̂(y) quantifies the difference between the estimation with its expected value, which is further applied
on each sample to adjust the predicted probability q. Specifically, scalars of weakly-learned classes
are larger compared with others and by multiplying with the scalars, predicted probabilities for
weakly-learned classes would be raised accordingly. The overall effect of Eq. 6 works as an alignment
to match p̂(y) and p(y).

Class-balanced normalization aims to adjust the predicted probabilities of testing data individually to
pursue class-wise balanced fine-tuning. Therefore, testing data assists in achieving a balanced learning
status among classes during fine-tuning, and the imbalance issue in predictions is correspondingly
solved to a degree. Class-balanced normalization follows the same formulation in Eq. 6. Specifically,
the expected marginal distribution p(y) is assigned as a uniform distribution. For x ∈ Dq, it is
combined with the full support set as x∪Ds; and the current learned marginal probability is estimated
using x ∪ Ds, which is further aligned with Uniform. Formally, for q = pθ(y|x):

q̃ = Normalize(q
U

Êx∪Ds
[pθ(y|x)]

) (2)

When Distribution Alignment is applied in semi-supervised learning Berthelot et al. (2019), p(y) is
estimated from the labeled data and p̂(y) is computed from predictions of the whole unlabeled set. In
other words, there is an assumption that the unlabeled data shares the same prior with the labeled
training set. However, in transductive FSL, this assumption hardly works. The marginal distribution
of a handful of labeled data is biased from the actual marginal distribution. Furthermore, giving an
assumption of prior for testing images is not a wise choice that would limit the algorithm’s actual
application situation. A thorough experimental comparison of DA with our method is provided in the
following experimental section.

A.1 TOWARDS A THEORETICAL OVERVIEW

We develop this discussion under the scope of an episode of few-shot classification, namely the
support set Ds = {(xi,yi)}Ns

i=1 and the query set Dq = {(xi)}
Nq

i=1; Ns and Nq are the total number
of samples in support set and query set, respectively. The marginal distribution of class variables can
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be estimated separately as:

ÊDs
[pθ(y|x)] =

1

Ns

∑
x∈Ds

pθ(y|x) (3)

ÊDq
[pθ(y|x)] =

1

Nq

∑
x∈Dq

pθ(y|x) (4)

And if considering all available data:

ÊDs∪Dq
[pθ(y|x)] =

Ns

Ns +Nq
ÊDs

[pθ(y|x)] +
Nq

Nq +Ns
ÊDq

[pθ(y|x)] (5)

The previous work (Berthelot et al., 2019) in semi-supervised learning proposes a formulation to
conduct distribution alignment as:

q̃ = Normalize(q
p(y)

p̂(y)
), (6)

where p(y) is the marginal distribution of the class variable y and p̂(y) is its estimation. q refers to
the probability of a unlabeled sample. And Normalize(xi) =

xi∑
j xj

.

Case 1: p̂(y) = ÊDq
[pθ(y|x)] and p(y) = ÊDs

[pθ(y|x)] refers to Est. + All Query. Case 1 refers
to the original DA in (Berthelot et al., 2019), which aligns the marginal distribution of unlabeled data
to the labeled data.

Case 2: p̂(y) = ÊDq
[pθ(y|x)] and p(y) = U refers to Uni. + All Query.

For both Case 1 and Case 2, an assumption that the testing distribution is the same with the prior
distribution p(y) is explicitly made. However this assumption limits the algorithm’s generalization
by only considering a uniform testing distribution. We discuss these two cases together as the only
difference is p(y) as Uniform or not.

For these cases, all query samples share the same scale vector: p(y)

Êx∪Ds [pθ(y|x)]
, under which the

marginal distribution of testing set is changed accordingly:

ÊDq
[pθ(y|x)] ∼

1

Nq

∑
x∈Dq

p(y)

ÊDs
[pθ(y|x)]

pθ(y|x) (7)

The Normalize is omitted to simplify the expression (∼ is used accordingly). ÊDq
[pθ(y|x)] → p(y)

and the overall estimated marginal distribution is:

ÊDs∪Dq
[pθ(y|x)] ∼

Ns

Ns +Nq
ÊDs

[pθ(y|x)] +
Nq

Nq +Ns
p(y) (8)

For Case 1 and Case 2, the estimated marginal distribution of labeled data remains unchanged
while the marginal distribution of testing data is forced to approach a prior p(y) either a Uniform
distribution or the same marginal distribution with labeled data.

Case 3: p̂(y) = Êx∪Ds
[pθ(y|x)] and p(y) = U refers to Uni. + Single Query. This case is our

proposed Class-balanced Normalization, where p̂(y) is estimated by combining each testing data
with the full support set, to avert making any assumption on the testing distribution.

Class-balanced Normalization allows a unique scale vector to adjust the predicted probability for
each testing data, under which the marginal distribution of testing set is changed as:

ÊDq [pθ(y|x)] ∼
1

Nq

∑
x∈Dq

U
Êx∪Ds

[pθ(y|x)]
pθ(y|x) (9)
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The estimated marginal probability with each one query sample xq and the full support set can be
expanded as:

Êxq∪Ds
[pθ(y|x)] =

1

1 +Ns
[pθ(y|xq) +

∑
x∈∪Ds

pθ(y|x)] =
pθ(y|xq)

1 +Ns
+

Ns

1 +Ns
ÊDs

[pθ(y|x)]

(10)

And the overall estimated marginal distribution can be approximately expressed as:

ÊDs∪Dq
[pθ(y|x)] ∼

Ns

Ns +Nq
ÊDs

[pθ(y|x)] +
Nq

Nq +Ns

1

Nq

∑
x∈Dq

U
Êx∪Ds

[pθ(y|x)]
pθ(y|x)

∼ Ns

Ns +Nq
ÊDs [pθ(y|x)]−

1 +Ns

Nq +Ns

∑
x∈Dq

ÊDs [pθ(y|x)]
pθ(y|x) + ÊDs

[pθ(y|x)]

+
1 +Ns

Nq +Ns
Êxq∪Ds [pθ(y|x)]
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Figure 1: Ablations on Class-balanced
Normalization with uniform / stochastic
setting of testing data.

By using Class-balanced Normalization, Êx∪Ds [pθ(y|x)]
is aligned to Uniform, which doesn’t imply a distribution
assumption on the testing data and ÊDs [pθ(y|x)] is implic-
itly adjusted as well. In doing so, the class-wise balance
is improved, and the distribution alignment of testing data
is achieved without introducing any prior assumption on
the overall testing set.

A.2 EXPERIMENTAL RESULTS

In Fig. 1, we verify the design of CN and its robust perfor-
mance over different settings of query set using ILSVRC-
2012 validation, namely the uniform setting with equal
number of per-class testing samples and the stochastic
setting with various numbers of per-class testing samples.
Note that the performance of stochastic setting is lower than performance on the uniform setting,
which is caused by the difficulty level of the setting itself. The stochastic setting is more challenging
that the number of per-class testing samples are randomly sampled in the range of [0, 50]. With the
challenging stochastic setting, CN could still improve the performance around 0.5%. We ablation the
design of Class-balanced Normalization: for the expected marginal distributions p(y), we experiment
on uniform distribution (Uni.) and prior distribution from estimating labeled data (Est.); for the
estimated marginal distribution p̂(y), using all query set (All Query.) and using one single query
set with the support set (Single Query.) are separately experimented. Using Est. as p(y), Single
Query. shows better performance than All Query, which indicates the effectiveness of enabling a
sample-specific scale vector by Single Query. Meanwhile, using Uni. as p(y) wins over Est as
Uni., which indicates applying a stronger regularization like Uniform is beneficial to encourage
class-balanced finetuning. Note that DA in (Berthelot et al., 2019) is Est.+ All Query. and Uni.+
Single Query. CN outperforms DA in both uniform and stochastic testing settings.

B EXTENDED DISCUSSION ON CLASS-IMBALANCED PREDICTIONS

B.1 IMPLEMENTATION DETAILS OF THE OBSERVATION

The Figure.1 showing the class-imbalanced predictions puts together methods of DCMSS (Tao et al.,
2022), Transductive-Finetuning (our implementation on feature space) (Dhillon et al., 2019), URL
(Li et al., 2021) and TSA (Li et al., 2022). Results from DCMSS(Tao et al., 2022), Transductive-
Finetuning (Dhillon et al., 2019) are out-of-domain evaluations for meta-Dataset (Table.2 in the main
paper) and the others are in-domain evaluations for meta-Dataset (table.3).

For DCMSS (Tao et al., 2022), we reproduce the results following the same setting mentioned
in the paper, which in detail ResNet-18 trained with ILSVRC-2012 training set is used as the
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Figure 3: The Maximum difference between per-class predictions
during (Transductive-)finetuning. Results for each dataset are the
average from 600 episodes. TF-MC effectively reduces the maximum
difference during finetuning.
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Figure 4: Comparing Uti-
lization of Wrong Predictions
with Uncertainty and Margin-
based Uncertainty on Meta-
Dataset. Results are averaged
over 100 episodes.

backbone for finetuning. Meanwhile, we also develop TF using the same backbone. For URL (Li
et al., 2021) and TSA (Li et al., 2022), we use the model published on their official github repo
(ResNet-18 trained with training set from 8 datasets in Meta-Dataset.) Meanwhile, the performance
of URL is done by finetuning the pa part adding before classifier following the official instruction.
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Figure 2: Imbalanced Prediction vs Per-
class accuracy in ImageNet-only Meta-
Dataset Evaluation.

B.2 ON THE ImageNet-only EVALUATION

We also compare the performance of state-of-the-art meth-
ods on ImageNet-only evaluation on Meta-Dataset, shown
in Fig. 2. "ResNet18-Proto" refers to the performance of
ResNet-18 without any fine-tuning. DCMSS (Tao et al.,
2022), TF (Dhillon et al., 2019) and TF-MC are further
built on the same backbone of ResNet-18. As shown in
Fig. 2, although DCMSS and TF could improve the per-
class accuracy, the imbalanced prediction still keeps at the
similar level with the backbone model. TF-MC could suc-
cessfully improve accuracy further while largely reduce
the class imbalance in predictions comparing with other
finetuning methods like DCMSS and TF.

B.3 THE EFFECT OF
REDUCING CLASSWISE IMBALANCE IN PREDICTIONS

We compare the change of maximum difference between per-class predictions on the query set
for each iteration, shown in Fig. 3. By using TF-MC, the maximum difference decreases during
finetuning. For datasets Fungi and MSCOCO, the initial accuracy on the query set are the lowest
compared with the other datasets which are around 50% and 60%. The low accuracy indicates that
the issue of class-imbalance in predictions could be more serve, which could explain the increase
of maximum difference at the very early iterations for these two datasets. It is worth noticing that
TF-MC actually effectively control the trend and decreases the maximum difference as the finetuning
goes.

C RE-VISITING TRANSDUCTIVE FINETUNING

In (Dhillon et al., 2019), the entropy loss is not directly applied on the feature space but on the
predicted probability of base classes (the logit space). We first benchmark the performance of entropy
loss directly on the feature space.

As we claimed in the main paper, there are two ways of constructing the entropy loss for unlabeled
data, namely using soft-labels or using pseudo-labels. Formally, Lq(x) for the unlabeled query set is:
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Method weighting ILSVRC Omni Acraft Birds DTD QDraw Fungi Flower Sign COCO
soft-labels 60.19 78.76 62.71 79.22 77.6 83.33 49.99 91.82 70.54 61.55

pseudo-labels 59.19 73.71 57.56 77.53 75.63 80.83 48.18 90.14 60.42 58.82
soft-labels ✓ 59.93 78.26 71.73 78.34 75.96 84.59 48.94 92.48 76.53 59.05

pseudo-labels ✓ 61.49 81.64 68.88 80.23 78.55 85.2 50.72 92.67 73.96 60.09

Table 1: Ablation Results of Soft-labels and Pseudo-labels w/o Margin-based Uncertainty Weighting.

Lq(x) = λH(ŷ, pθ(y|x)), (11)
where λ denotes the loss weight and ŷ is generated from the model’s own predictions on the query set.
And We denote pθ(y|x) as the softmax probability distribution output from the model on C classes:

pθ(y = c|x) = exp zc∑C
i=1 exp zi

, (12)

And pθ(y|x) = [p1, pi, ...], i ∈ [0, C].

When ŷ = argmax(pθ(y|x)), which is referred as pseudo-labels, and under this situation, Lq(x) is
the cross-entropy loss. For a sample (x, y):

L = λ(− log py) (13)

When ŷ = pθ(y|x), it is noted as soft-labels. And using soft-labels, Lq(x) is the entropy loss:

L = λ(−
C∑
i

pi log pi) = λ(−py log py −
C∑

i,i ̸=y

log pi) (14)

Compared with Eq. 13, the Entropy-loss in Eq. 14 can be viewed as a weighted cross-entropy loss on
the ground-truth predictions (py log py) with the other parts of

∑C
i,i ̸=y log pi. Specially, for py log py ,

the predicted probability py serves as "the loss weight" for log py .

As shown in Table. 1, directly using soft-labels leads to better performance of directly using pseudo-
labels. However, pseudo-labels with per-sample loss weights can indeed boost performance while
soft-labels with per-sample loss weights drop the performance. As illustrated above, using soft-
labels in entropy loss serves as utilizing the predicted probability to weight the gradient from the
ground-truth class, namely the part py log py in Eq. 14. Thus further applying the per-sample weights
actually makes the gradient from the ground-truth class even smaller while the other part of the loss∑C

i,i ̸=y log pi weakens the information to lead the optimization towards correct predictions. While
using pseudo-labels with per-sample weights, it reduces the affect of possibly wrong predictions while
the cross-entropy loss gradients from the possibly correct samples still determine the optimization.
This explains why pseudo-labels can work with per-sample loss weights while soft-labels itself
performs strongly but are weakened by adding per-sample loss weights.

D EXTENDED DETAILS ON MARGIN-BASED UNCERTAINTY WEIGHTING

Formally, for one sample we denote p = [p1, p2, ..., pc] as the simplification of pθ(y|x) and, without
losing generalization, we assume p1 ≤ p2 ≤ ... ≤ pc. We define the value difference between the
maximum of probability with the others as: ∆pi = pc − pi, i ∈ [1, ..., c]. And the difference between
the top-2 maximum probabilities is specifically defined as ∆̂p.

With a fixed pc, the range of ∆p̂ relates to pc. Specifically, the max(∆p̂) happens in the situation
that except the confidence (the maximum probability pc), the other probabilities share the same
value p1 = p2 = ... = pc−1 = 1−pc

C−1 . And min(∆p̂) is in the situation that the second maximum
probability carries the value pc−1 = 1− pc and the other probabilities are 0. This can be formally
expressed as: {

∆p̂ ∈ [2pc − 1, pc − 1−pc

C−1 ], pc ≥ 0.5

∆p̂ ∈ [0, pc − 1−pc

C−1 ], pc < 0.5
(15)

5



Under review as a conference paper at ICLR 2023

The normalized entropy we introduced in the main paper is:

e(p) = −
∑c

i (pi log pi)

log c
(16)

where
∑c

i pi = 1 and c is the number of classes.

When pc is fixed, the minimum and maximum value of ∆p̂ are: (∆p̂)min = pc−(1−pc), (∆p̂)max =
pc − 1−pc

c−1 . For (∆p̂)min , the entropy uncertainty score is:

e(∆p̂)min
= −pc log pc + (1− pc) log(1− pc)

log c
(17)

For (∆p̂)max, the entropy uncertainty score is:

e(∆p)max
= −

pc log pc +
∑c−1

i ( 1−pc

c−1 log 1−pc

c−1 )

log c
(18)

= −
pc log pc + (1− pc) log(

1−pc

c−1 )

log c

= −pc log pc + (1− pc) log(1− pc)− (1− pc) log(c− 1)

log c

= e(∆p)min
+

(1− pc) log(c− 1)

log c

Given the same confidence pc, entropy score refers to larger uncertainty of largest margin (∆p̂)max

compared with smallest margin (∆p̂)min. However, (∆p̂)max actually refers to the largest difference
between top-2 maximum probabilities that the sample is most certain to its prediction. As we
discussed in the main paper, the entropy score is contradictory to the uncertainty information given
by the margin. We give a theoretical view of the contradiction in the following.

Eq. 16 can be further formalized with ∆pi:

e(p) = −
∑c

i (pi log pi)

log c
(19)

= −
∑c

i (pc −∆pi) log(pc −∆pi)

log c

≥ −
∑c

i (pc −∆pi) log pc
log c

= −
log pc

∑c
i (pc −∆pi)

log c

The importance of margin ∆̂p is weaken by adding pc −∆pi. This is supported by the empirical
experimental results of utilizing top-k probabilities in the entropy-related weights.

E EXTENDED DETAILS ON THE OPTIMIZATION USING ENTROPY LOSS

And the loss Lq(x) for the unlabeled query set is constructed similarly:

Lq(x) = λH(pθ(y|x),pθ(y|x)) = λpθ(y|x) log(pθ(y|x)), (20)

where λ denotes the per-sample loss weight. λ = 1 in the following discussion.

We denote pθ(y|x) as the categorical probabilities on C classes which is the output from the softmax
layer in the model:

pθ(y = c|x) = exp zc∑C
i=1 exp zi

, (21)

where zi = ⟨ωi, fθ(x)⟩, i ∈ C, is the logit for class i.
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For one sample x ∈ Dq , the gradient for feature fθ(x) from the entropy loss is:

∂Lq

∂fθ(x)
=

C∑
i

∂Lq

∂zi
ωi (22)

And for each ∂Lq

∂zi
, i ∈ C:

∂Lq

∂zi
=

∂Lq

∂pi

∂pi
∂zi

(23)

And for entropy loss (not cross-entropy loss) soft-label is used with no gradients on the label part:

∂Lq

∂pi
= −pi

1

pi
(24)

∂pi
∂zi

= pi(1− pi) (25)

∂Lq

∂zi
⇒ −pi(1− pi) (26)

pi = pθ(i|x) for simple notations. By summing over all samples, the gradient on zi, i ∈ C is:

∂Lq

∂zi
⇒ − 1

Nq

Nq∑
j

pij(1− pij) (27)

F POSSIBLE QUESTIONS

Q1. Will the usage of Uniform testing set in the observation lead to the imbalanced predictions?:
Using uniform testing distribution ensures that the testing distribution will not affect the quantification
of pre-class predictions. Meanwhile, the imbalanced prediction would be more severe when the test
distribution is non-uniform. The observation in Figure 2 (before TF-MC) shows that there are some
classes obtaining much fewer predictions than others. If a testing scenario is constructed by samples
from the class of the least number of predictions (2 predictions for 10 testing samples in Figure 2
(before TF-MC)), the accuracy is upper-bounded by the number of predictions (0.2).

Q2. Will the Uniform used in Class-balanced Normalization degrades the performance if the
query set is not balanced? The uniform prior in CN is a strong regularization to align the learned
marginal probability. To avoid its effect on regularizing the marginal distribution of the whole testing
set to be uniform, we designed to compute the learned marginal probability by using each sample
from the query set with the whole support set. Meanwhile, we verify that this design effectively
makes the uniform regularization also works well when the query set is not balanced (the stochastic
setting in Appendix.A.

Q3. A more balanced prediction is not equal to a higher accuracy: As the practical testing
environment could involve different data distributions, solving class-imbalanced predictions would
make the algorithm more robust to different testing scenarios. For example: if all images from the
testing set are from those classes with least predictions (e.g. 2 predictions for 10 testing samples),
the accuracy is upper-bounded by the number of predictions (only 0.2). In this case, improving
class-imbalanced predictions is beneficial to improve accuracy. Meanwhile, TF-MC encourages a
more balanced prediction during finetuning which actively guides the model to learn classes fairly,
and improving the model training is expected to improve the accuracy. The experimental results
well support that by solving the class-imbalanced predictions through TF-MC, our method brings
a consistent accuracy boost over datasets from different domains(2.39 % on average, Table.1 main
paper) and different shots (Figure.3(c)) compared with inductive fine-tuning.
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