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A  SUPPLEMENTARY MATERIAL

In addition to the subsequent appendix sections, we provide the following as supplementary material
for this work:

* Demo Videos: We provide several demonstration videos showcasing visual interaction
results generated using InterMask. These include an animation gallery with generated in-
teractions for everyday actions, dance and combat; nuanced description demonstration to
highlight the capability of Intermask to follow specific details in text; diversity demon-
stration with multiple generated interactions for each text prompt; comparison videos to
compare the generated results of InterMask and InterGen (Liang et al.l 2024)); comparison
videos for the ablation study on Inter-M Transformer; an animation gallery to show reaction
generation results; some results on more complex prompts; some results showing longer
10 second interactions; and finally some failure cases and some results addressing the con-
cerns on fluidity of the generated motions. The videos are shown in form of a webpage,
provided as an html file.

¢ Code Implementation: We provide the open-source code implementation of our method
to ensure reproducibility.

() lgithub.com/gohar-malik/intermask

B MorTioN VQ-VAE

Our VQ-VAE framework, illustrated in Figure [/} constructs a 2D motion token map to represent
individual motion sequences in a discrete manner, while retaning both spatial and temporal dimen-
sions. The encoder processes motion sequences represented as m, € RV*7*4 where N is the
number of poses, J is the number of joints, and d is the joint feature dimension. By employing
2D convolutional layers, the encoder effectively captures spatial and temporal dependencies within
the motion data while progressively downsampling both dimensions. The downsampling process is
achieved through strided 2D convolutions and ResNet blocks, which also use 2D convolutions along
with dropout layers. This results in a latent representation of size fp € R"*i*d" where n and j are
the downsampled temporal and spatial dimensions, and d’ is the latent feature dimension.

The latent representation ‘Ep is quantized using a learned codebook C with |C| entries. Each feature

vector £; in ‘Ep is replaced by the index of its nearest codebook entry, using the vector quantization
process:

q(t;) = arg min ||£; — cx]|?, 9)
creC

where ¢, represents the codebook entries.

The resulting quantized representation is a 2D motion token map ¢,, where each token encodes
local spatio-temporal context. This design enables the preservation of both spatial and temporal
dimensions in the motion data, enhancing the model’s ability to generate realistic and contextually
accurate interactions.

C VQ-VAE GEOMETRIC LOSSES

Equation (I0) shows the geometric losses used to train our Motion VQ-VAE to impose physical
and geometric constraints on the reconstructed motion, in a data-driven way. The velocity loss L,;
encourages the reconstructed motion sequences to obey the velocity of joints in the ground truth
sequences and the bone length loss £;; the distance between adjacent joints. The foot contact loss
L rc encourages the feet to have zero velocity whenever they are in contact with the ground.
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Figure 7: Detailed illustration of the 2d discrete motion token map construction. The 2d encoder,
consisting of 2d convolutional layers, downsamples the input motion from (N, J,d) to (n,j,d’).

The downsampled representation is then quantized by replacing each vector with the index of its
closest vector in the learned codebook.

Interaction Generation Reaction Generation
pr FID| RPrec(Topl)t FID| R Prec(Topl)t
0.7 5214 0.447 2.850 0.476
0.8 5.154 0.449 2.991 0.462
09 5.152 0.450 3.368 0.416

Table 4: Interaction Generation and Reaction Generation results of different values of p,.. Bold face
indicates the best result, while underscore refers to the second best.
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Here, m;, represents the ground pose, 7v;, represents the reconstructed pose at time step %,, [N
represents the total time steps in the sequence, f; € {0, 1} represents the binary foot contact label

for the heel and toe joints for each pose m;,, and B(-) denotes the bone lengths joining adjacent
joints.

D TwoO-STAGE TOKEN MASKING

Here we provide more details on the masking strategy (section [3.2.1) used in training the Inter-
M Transformer. As illustrated in Figure [8] the two-stage masking technique begins with random

15



Published as a conference paper at ICLR 2025

- - == - - = Stagel — — — — — — > - - == - - = Stage2 — — — — — — >
Bz, B, B, B,
______ Random = = Step Unroll = - d
tall] ¢ - . - .
: with prob p, | tb O tb C tb m tb
B i prob 1 = o O Ol
Wi rol — 07 = 2 = o~ (S Y
H P Pr e o Hta g
______ Interaction = . = Step Unroll = ) (o)

@ Person a tokens @ Person b tokens [J [MASK] token

Figure 8: Illustration of the two-stage masking technique used during training of the Inter-M Trans-
former. For stage 1, we either apply Random Masking with a probability of p,. or Interaction Mask-
ing with probability 1 — p,.. In stage 2, we apply the Step Unroll Masking on the predicted tokens
from stage 1.

masking or interaction masking in the first stage. Random masking teaches the model to predict
random tokens from both individuals. Whereas Interaction masking, where only one individual’s
tokens are masked, promotes learning inter-person dependencies critical for coherent interactions
and to improve performance in the reaction generation task. The masking strategy alternates between
these two methods based on a probability parameter p,., with random masking applied p,. of the time
and interaction masking (1 — p,.). To evaluate the effect of p,., we test different values 0.7, 0.8,0.9
and find that p, = 0.8 offers the best balance between interaction and reaction generation, as shown
in Table 4] In the second stage, step unroll masking is applied which retains some of the predicted
tokens from stage 1, remasks the remaining tokens and predicts them again. This is employed to
incorporate the inference-time progressive refinement of tokens in the training process.

E IMPLEMENTATION DETAILS

Our models are implemented using PyTorch, with details of the model architecture, training, and
inference provided below. Key hyperparameters are summarized in the accompanying tables.

E.1 MODEL ARCHITECTURE

The Motion VQ-VAE employs 2D convolutional residual blocks for both the encoder and decoder.
The temporal downsampling factor is n/N = 1/4 for both datasets, while the spatial downsampling
is dataset-specific: j/J = 5/22 for InterHuman and j/J = 5/56 for InterX. Strided convolutions
are used for downsampling in the encoder, while the decoder restores dimensions via upsampling
and convolutional layers. The latent representation in VQ-VAE has a dimension d’ = 512, and the
codebook size |C| = 1024.

For the Inter-M transformer, we use L = 6 transformer blocks, each with 6 attention heads. The
transformer embedding dimension is d = 384.

E.2 TRAINING DETAILS
The Motion VQ-VAE is trained for 50 epochs with a batch size of 512. The learning rate is initialized

at 0.0002 and decays via a multistep learning rate schedule, reducing by a factor of 0.1 after 70%
and 85% of the iterations. A linear warm-up is applied for the first quarter of the iterations. The
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Parameter Value Description

d’ 512 Latent space dimension of VQ-VAE

IC| 1024 Codebook size (number of entries)

n/N 1/4 Temporal downsampling factor for both datasets
j/J (InterHuman) 5/22 Spatial downsampling for InterHuman dataset
j/J (InterX) 5/56 Spatial downsampling for InterX dataset

L 6 Number of transformer blocks
Attention heads 6 Number of attention heads per block

d 384 Transformer embedding dimension

CLIP version ViT-L/14@336px Version of CLIP used for text in transformer

Table 5: Motion VQ-VAE and Inter-M Transformer Model Parameters

commitment loss factor (3 is 0.02, and the geometric losses for velocity, foot contact, and bone length
are weighted differently across the datasets.

The Inter-M transformer is trained for 500 epochs with a batch size of 52, following a similar multi-
step learning rate decay but with a decay factor of 1/3 after 50%, 70%, and 85% of the iterations. The
condition drop probability is 0.1 to allow for flexibility in training with or without text conditioning.

Parameter Value Description

VQ-VAE batch size 512 Number of samples per batch for VQ-VAE
Transformer batch size 52 Number of samples per batch for transformer

Initial learning rate 0.0002 Starting learning rate for both models

Learning rate decay 0.1/1/3 Decay factor for VQ-VAE / Transformer learning rate

153 0.02 Commitment loss factor for VQ-VAE

Avel, Afe, Ap (InterHuman) 100, 500, 5 Geometric loss weights for InterHuman

Avels Afes Ap (InterX) 100, 100, 5 Geometric loss weights for InterX dataset

Condition drop prob. 0.1 Drop probability for text conditioning during transformer training
Pr 0.8 Random Masking probability for stage 1 masking during training

Table 6: Training Hyperparameters for the Motion VQ-VAE and Inter-M Transformer

E.3 INFERENCE DETAILS

During inference, the number of iterations [ is set to 20 for interaction generation and 12 for reaction
generation. A classifier-free guidance (CFG) scale of 2 is applied, and the temperature is set to 1 to
balance diversity and coherence in the generated results.

Parameter Interaction Generation Reaction Generation
Number of iterations I1=20 Lreact = 12
CFG scale 2

Temperature 1

Table 7: Inference Hyperparameters for Interaction and Reaction Generation

F DIVERSITY DEMONSTRATION

Our quantitative comparison (section shows that InterMask prioritizes adherence to text over
extreme diversity, while still being able to generate different distinct interactions for the same text
prompt. Here, in Figure[9] we show 2 visual examples to demonstrate this. In both cases, the model
remains consistent in generating interactions described in the text prompt while exhibiting distinct
features in different samples. For the dancing case, first sample shows waving hands in the beginning
followed by a synchronized forward step, while individuals face the same direction throughout. The
second sample shows individuals facing each other in the beginning, followed by waving hands and
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Two people are waving their hands and performing a dance step together

In an intense boxing match, one is continuously punching while the other is defending and counterattacking

Figure 9: Diversity Demonstration of our method, where it generates two distinct interaction se-
quences for the same text prompt.

a synchronized spin. For the boxing case, first sample shows one individual punching three times
and continuously moving forward, while the second sample shows them punching two times and
retreating at the end.

G ALTERNATIVE MODELING

In our ablation study (section[4.2), we explore a one-at-a-time modeling framework for interaction
generation, referred to as Alternative Modeling, which contrasts with the collaborative modeling
framework of InterMask. While collaborative modeling predicts the tokens of both individuals si-
multaneously, alternative modeling follows a sequential process, generating tokens for one individ-
ual at a time, conditioned on the thus far predicted tokens of the other.

During training, as shown in Figure a), we randomly mask both individuals’ tokens {Z,,} and
obtain their embeddings {e,, e, } through the input process. Then, only the tokens of one individual
are predicted (f,) by passing their embeddings through the transformer blocks, conditioned on the
embeddings of the other individual using a cross-attention module. During inference (Figure[I0[b)),
both individuals’ tokens are initially fully masked {¢,(0),¢,(0)}. In the first iteration, the tokens
of one individual are predicted, and these are remasked based on their confidence scores to obtain
to(1). The second individual’s tokens are then predicted in the next iteration, conditioned on the
retained tokens from the first, to obtain ¢;,(1). This alternation continues iteratively, progressively
refining the tokens of both individuals. As shown in Table[3] the FID score for alternative modeling
is 7.637 (compared to 5.154 for collaborative modeling), and the R-precision is 0.340 (compared
to 0.449). These results indicate that while alternative modeling increases diversity, collaborative
modeling produces high-quality and more realistic interactions, offering a better balance between
diversity and interaction fidelity.
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Figure 10: Overview of the Alternative Modeling approach, where we predict the tokens of one
person at a time. (a) During training, only the embeddings of one individual e, are updated in the
transformer blocks, conditioned on the other individual’s embeddings e;. (b) During inference, the
process alternates between predicting and remasking the tokens of each individual, starting with
both fully masked {¢,,(0), ¢,(0)}. This process continues for I, iterations for each individual.
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Figure 11: Qualitative results for the ablation study on Motion VQ-VAE to verify the proposed 2D
token map.

H ABLATION STUDY QUALITATIVE RESULTS

In this section, we present qualitative results for our ablation studies to complement the quantitative
findings discussed in section[4.2] Figure[TT|shows two ground truth interaction sequences with their
reconstructed samples from the 2D token map VQ-VAE and the baseline 1D token map VQ-VAE.
As shown, the 1D VQ-VAE struggles to accurately reconstruct the spatial positions and orientations
of the joints for both individuals, leading to incorrect positioning and orientation relative to each
other. This results in not only unrealistic interactions but also bizarre individual poses. In contrast,
the proposed 2D VQ-VAE provides highly accurate reconstructions at both the individual pose and
the collective interaction level.
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Figure 12: Qualitative results for the ablation study on Inter-M Transformer to verify contributions
of the proposed Attention modules.

Figure [[2]illustrates the impact of different attention modules in our Inter-M transformer by compar-
ing outputs by removing the spatio-temporal attention, cross-attention, and self-attention modules
independently. We provide results for three distinct interaction scenarios: boxing, sneaking, and
synchronized dancing. The spatio-temporal attention module emerges as a critical component for
generating complex poses and ensuring spatial awareness in interactions. Without this module, the
boxing scenario exhibits overly simplistic poses, such as timid punching and blocking, alongwith
the individuals failing to face each other properly. In the sneaking scenario, the absence of spatio-
temporal attention eliminates the essential spatial progression, as the sneaking individual does not
gradually approach the other. Similarly, in the dancing scenario, the generated motions are reduced
to basic hand raises, and one individual adopts an unnatural crouching pose. By contrast, the inclu-
sion of spatio-temporal attention enables accurate spatial positioning and expressive, synchronized
interactions. The cross-attention module seems vital for modeling inter-person dependencies, par-
ticularly in achieving accurate reaction timing. Without it, the response motions of the interacting
individual appear either delayed or prematurely executed across all examples. For instance, in the
boxing scenario, the reactive movements fail to synchronize with the initiating individual’s punches.
In the dancing scenario, the lack of cross-attention results in poor synchronization, disrupting the
fluidity of the interaction. Lastly, the self-attention module serves as a refinement mechanism, en-
hancing the overall quality and coherence of individual motions. Its removal introduces subtle in-
consistencies, such as jerky transitions or less fluid movements, which slightly degrade the interac-
tion’s realism.These observations collectively underscore the importance of each attention module
in generating realistic, contextually accurate, and expressive interactions.

I REACTION GENERATION INFERENCE

InterMask does not require task-specific fine-tuning or architectural re-design for reaction gener-
ation, needing only minor adjustments to the inference process, as illustrated in Figure [I3] The
process begins by encoding the reference individual’s motion my into tokens ¢; using the VQ-VAE
encoder. For the other individual, whose reaction is to be generated, we initialize with a fully masked
token sequence, t,(0). Over the course of Iy, iterations, the transformer progressively predicts and
fills in the masked tokens, while the reference tokens remain unmasked throughout. At each iteration

Treact

ireact, the least confident v (u) - nj tokens are remasked and predicted again, following a cosine

scheduling function 7(-). Once all tokens are generated, the final token sequence ¢, is decoded back
into motion m, using the VQ-VAE decoder. Since we drop the conditioning signal during some
training passes, reaction generation functions effectively both with and without a text description,
enabling the model to generate motions based solely on the reference motion or guided by additional
textual instructions.
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Figure 13: Inference process for the Reaction Generation task. The motion tokens of the reference
individual ¢, are obtained from the encoder and kept unmasked throughout. The second individual’s
tokens are initially fully masked ¢, (0), and are predicted progressively over Iy, iterations to obtain
tq, which is then decoded using the decoder.

First person is sitting in a chair, the second

The first takes a

Figure 14: Examples of Limitations of our method. The first row shows body penetration when con-
verted from output skeleton to SMPL mesh. The second row shows implicit bias towards dancing.

J FAILURE CASES

In Figure[I4] we show visual examples of failure cases emerging from the limitations of our method,
as decribed in section [5] In the first row, we show that when converting our output skeletons to
SMPL (Loper et al.||2015)) meshes for visualizations, the results can exhibit body penetration among
the interacting individuals. One possible future solution to this problem is to include the mesh
conversion in the training process and incorporate anti-penetration in the training loss. In the second
row, we show that the model suffers from some implicit biases present in the dataset, where it
assumes that the individuals are dancing without explicit mention in the text prompt.
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K USER STUDY

We conducted the user study on the Amazon Mechanical Turk platform, where the interface pre-
sented to the users is shown in Figure[I3] For each sample, users were provided with clear instruc-
tions to rate two animations—one generated by InterMask and the other by InterGen (Liang et al.,
2024)—from the same text description, with the order of the animations randomized for each sam-
ple to avoid bias. Participants were asked to rate both animations on a scale of 1 to 5 for interaction
quality and text adherence. Following the individual ratings, they were asked to select the better
animation based on their overall impression. A total of 16 users evaluated a total 30 samples, with
each sample being rated by three users. To ensure high-quality feedback, we filtered users to include
only those with Amazon Mechanical Turk master status, with a task approval rating of over 97%
and more than 1000 previously approved tasks.

For each text description (provided below), we provide 2 Human Interaction animation results. Each Animation video is shown from two
different point of views for better visibility.

You need to rate both interactions (1 and 2) on their Quality and Adherence to Text.

« 1) Interaction Quality - How natural and realistic are the poses of both people in the interaction? Does the action and its reaction makes sense? - (5: max
quality, 1: min quality)

Animation 1:
—e

Animation 2:
- e

« 2) Adherence to Text Description - How closely does the interaction follow the provided text description? Do both characters follow the details in the text
description? - (5: max adherence, 1: min adherence)

Animation 1:
—e

Animation 2:
—e

« 3) Preference - Overall which animation is better in your preference based on the above factors

O Animation 1
mation 2

Text Description:
In an intense boxing match, one is continuously punching while the other is defending and counterattacking

Figure 15: Interface of the User Study on Amazon Mechanical Turk.
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