
Appendix

Potential Negative Societal Impacts

In this paper, we discuss the expressivity and trainability of narrow neural networks. This paper
provides a new understanding from the theoretical study, and such new insights will inspire a better
training approach for neural networks with a small number of parameters. In industrial applications,
several aspects of impact can be expected: training a huge neural network is at the expense of heavy
computational burdens and large power consumption, which is a big challenge for embedded systems
and small portable devices. In this sense, our work sheds new light on training narrow networks
with much fewer parameters, so it will save energy for AI industries and companies. On the other
hand, if everyone can afford to train powerful neural networks on their cell phone, then it will be a
potential threat to most famous companies & institutes who are boast of their exclusive computational
advantages. Additionally, there are chances that neural networks will be used for illegal usage.

Appendix Organization

The Appendix is organized as follows.

• Appendix A provides some interesting questions by reviewers and colleagues. We provide
further discussion on these questions, they may be intriguing for general readers.

• Appendix B provides more discussions on the literature.
• Appendix C provides more discussions on the related work Daniely [12].
• Appendix D introduces all the notations that will occur in the proof.
• Appendix E and F provide detailed proof for Theorem 1 and Theorem 2, respectively.
• Appendix G discusses extending the current analysis to deep neural networks.
• Appendix H introduces the following contents. (i) the formal statement of our training

regime, i.e., Algorithm 2. (ii) The Pytorch implementation for Algorithm 2. (iii) Ex-
perimental details and settings for all the experiments appear in the paper. (iv) More
experiments.

A Some More Discussions

In this section, we organize some frequently asked questions by reviewers and colleagues. Many of
these questions may also be intriguing for general readers. We are thankful for the valuable discussion
and we would like to share these questions. Here are our answers from the authors’ perspective.

Q1: The paper merely focuses on the optimization aspect, that is, minimizing the training loss, and
ignores the more important problem (from ML perspective) of generalization. It would have been
helpful if the authors include a discussion on the implications of these results on the generalization
error as well.

A1: We agree that generalization is a very important issue for deep learning (and still largely
mysterious). Much of recent effort is spent on explaining why a huge number of parameters can still
lead to a small generalization gap. Despite this interesting line of research, for narrow networks, the
risk of overfitting is much smaller (due to traditional wisdom that fewer parameters lead to a smaller
generalization gap), thus generalization of narrow networks is probably less mysterious than wide
networks. According to our experiments on various real datasets (in Section 5.2 & Appendix H),
our training regime provides competitive or even better generalization performance than the regular
training.

We think for the current stage, it may be more imperative to resolve expressiveness and optimization
issues so as to improve practical performance. That being said, we agree that the theoretical study of
the generalization gap is an interesting next step for research, and we will study it in future works.

Q2: To which extent the result can be extended to non-smooth activations, such as ReLU or powers
of ReLU?

15

A2: We think it is possible, but definitely not easy. A main reason that we analyze smooth activation
is that we need to prove the full-rankness of Jacobian J(w; v) in Theorem 1. We believe that, for
narrow nets, the full-rankness of Jacobian J(w; v) with both smooth and non-smooth activation can
be proved, but at the current stage, we lack suitable techniques for non-smooth ones (at least it is
hard to extend the current technique to ReLU). We briefly summarize the technical difference below.

1. For ReLU, every entry of the NTK matrix (J(w; v)J(w; v)T) has a closed-form solution when the
width m =∞, and the corresponding NTK matrix is full rank under mild data assumption. This nice
property allows us to utilize concentration inequalities to keep the full-rankness of J(w; v)J(w; v)T

under finite (but large enough) width. This idea is used in Du et al, [16] for neural nets with width
m = Poly(n). However, this “concentration-based” approach is sensitive to width, it may be difficult
to extend to narrow cases.

2. As for smooth activation, we utilize an important property of analytic function (shown in Lemma
E.2). Lemma E.2 is based the intrinsic property of any analytic function, instead of a “infinite-width”
argument. Therefore, it casts a higher possibility to use it for narrow nets. This property is also used
in Li et al. [35] to prove the full-rankness of J(w; v) for neural nets with width m = O(n). Further,
we successfully extend this result to width m < n (with more sophisticated analysis).

In summary, analyzing ReLU requires new techniques. It is hard to extend the current analysis to
narrow nets with general non-smooth activation.

Q3: The “trainability” results only allow the small movement of hidden weights. This, in essence, is
not desirable as it does not allow learning representations which is crucial in deep learning. Also,
this is conceptually similar to the requirements in the NTK / lazy training regime, with the difference
that those results offer precise convergence rates.

A3: We believe our analysis is different from “lazy training", based on the following reasons.

i) We would like to point out that “small movement” does not imply our method is similar to “lazy
training". Chizat et al.[11] described“lazy training" as the situation where "these two paths remain
close until the algorithm is stopped". Here, the two paths correspond to the trajectory of training the
original model and the linearized model respectively. “Training in a neighborhood of initialization"
is neither a sufficient nor a necessary condition of “lazy training”. For wide nets, “moving in a
neighborhood" and "lazy training" are also co-existent, not causal. Logically speaking, for narrow
nets, the two paths can be rather different while the training appears in a neighborhood.

ii) We then argue for narrow nets, linearized trajectory and neural net trajectory have to be quite
different. Note that the linearized model of narrow nets cannot fit arbitrary data. In fact, when width
m < n, the feature matrix does not span the whole Rn space if we fix first-layer hidden weights
w = w0. Thus our training trajectory has to be rather different from the linearized model trajectory,
so as to fit data. In contrast, for wide networks, random fixed features suffice to represent data, so
staying close to the linearized trajectory (or even coincide) can lead to zero training error.

iii) In our setting, the movement of first-layer hidden weights is necessary (no matter small or big). So
“feature learning" is critical for our algorithm to achieve small training error. For wide net analysis,
the movement of first-layer hidden weights is NOT necessary for zero training error, so there is no
need for “feature learning".

In summary, narrow networks are out of the scope of lazy training analysis and have extra difficulties,
making our analysis rather different from lazy training analysis (despite some similarities such as
using the full-rankness of Jacobian).

For completeness, we further explain the main differences between our work and the previous papers
on wide nets, most of the following opinions are also expressed in Section 3.

1. expressivity is rarely an issue for wide-net papers. A wide enough network (width m > n),
even linear, can always fit n arbitrary data samples (can be proved using simple linear algebra,
which is shown in Section 3). However, when m < n, the expressivity is questionable.
Fortunately, our Theorem 1 provides a clean positive answer.

2. When m < n, we are not clear whether the claim “GD converges to global-min in narrow
nets” is true or not. In practice, GD easily got stuck at a large-loss stationary point in
narrow-net training, but the wide nets are much easier to reach near-0 loss. So what we did

16

is NOT proving GD works in narrow nets, but designing an algorithm and showing it works
(at least under certain conditions).

3. The empirical motivation is different. Existing NTK papers tried to “explain" why wide
networks work well. We aim to “design" methods for training narrow networks, a topic of
great interest for practitioners with limited computation resources and on-device AI.

B Additional Related Work

We provide discussions on other related work (in addition to those closely related ones mentioned in
the main body).

Memorization of small-width networks. Yun et al. [73] studies how many neurons are required for
a multi-layer ReLU network to memorize n samples. In particular, they proved that if there are at
least three layers, then the number of neurons per layer needed to memorize the data can be O(

√
n).

They also show that if initialized near a global-min of the empirical loss, then SGD quickly finds a
nearby point with much smaller loss. However, they did not mention how to find such an initialization
strategy.

Convergence analysis of O(n)-width networks. Zhou et al. [78] studies the local convergence
theory of mildly over-parameterized 1-hidden-layer networks. They show that, as long as the initial
loss is low, GD converges to a zero-loss solution. They further propose an initialization strategy
that provably returns a small loss under a mild assumption on the width. However, their proposed
initialization may be costly to find since it requires solving an additional optimization problem.

Convergence analysis of narrow networks. A few recent works [10, 29, 51] showed that under a “γ-
margin neural tangent separability” condition, GD converges to global minimizers for training 2-layer
ReLU net with width 7 poly(log n, γ). For certain special data distributions where γ = poly(log n),
their width is poly(log n, log 1

ε). Nevertheless, for general data distribution, their width can be larger
than n.

Global landscape analysis. There are many works on the global landscape analysis; see, e.g.,
[15, 30, 32, 36–40, 44, 50, 52, 61, 62, 69, 76] and the surveys [64, 65]. For networks with width
less than n, the positive result on the landscape either requires special activation like quadratic
activation [62], or special data distribution like linearly separable or two-subspace data [38]. For
certain non-quadratic activations, it was shown that sub-optimal strict local minima can exist for
networks with width less than n [36]. These results are different from ours in the scope, since they
discuss global landscape of unconstrained problems, while we discuss local landscape.

C More Discussion on the Related Work: Daniely [12]

Daniely [12] studies the expressivity of 1-hidden-layer networks. They provide two results under
different scenarios: to memorize n(1 − ε) random input-binary-label pairs via SGD, the required
width is either

(i) Õ
(
n
ε2

)
([12, Theorem 5]); or

(ii) Õ(n/d) ([12, Theorem 7]), where Õ hides a factor that is dependent on n and d.

In this section, we will explain our claim in Section 2 that their required width can be much larger
than ours.

Major differences In our work, our required width is smaller than n (when d > 2). However, in
either result (i) or (ii), their required width is often much larger than n. In fact, their width is actually
at least O

(
n2
)

or larger for fixed d, if we consider the effect of ε (for their first bound) or the hidden
factor in Õ (for their second bound).

We will elaborate below.

7Their width also depends on desired accuracy ε, and we skip the dependence here.

17

For their result (i), similar to Bubeck et al. [9], their required width grows with ε. As the authors
pointed out before their Theorem 7 on page 8, the required width is O(n3) if ε ≤ 1/d. This is why
they add result (ii) in [12, Theorem 7].

For their result (ii), i.e., [12, Theorem 7] their required width is roughly O(n/d (log(d log n))
logn

).
Compared to the desired bound O(n/d), their actual bound contains an additional factor of roughly
(log(d log n))

logn. We would like to stress that the additional factor is not a constant factor or a
log-factor, but more like a “super-polynomial-factor”. As a result, the required width is actually at
least O(n2/d) or larger. The detailed explanations are provided next, and briefly summarized below.

• In Appendix C.1, we will explain why there exists an extra “(log(d log n))
logn” term in

their required width bound. In [12, Theorem 7], their statement only mentioned Õ(n/d) but
not the exact expression.

• In Appendix C.2, we will explain why their bound is at least O(n2) or larger for fixed d.
• In Appendix C.3, we will summarize some other differences.

C.1 Identifying a More Precise Width Bound

To find a more precise width bound of [12, Theorem 7], we tracked the proof of [12] as follows (note
that their width q is our m and their sample size m is our n, and we will use our notation below).

The desired result. Their goal is to memorize the n(1− ε) random input-label pairs via SGD.

Notation. They consider binary labels, i.e., yi = {+1,−1} for i = 1, · · · , n. They consider a
feature vector Ψω (xi) ∈ Rdm, where ω ∈ Rd×m. The predictor (classifier) is in the form of
fω,v(x) := vTΨω (xi), where v ∈ Rdm.

Step 1 The desired result holds if there exists v such that a certain condition holds.

More specifically, they have shown that the desired result holds if the following claim holds: there
exists certain v, such that w.h.p. over the dataset and ω ∈ Rd×m,

〈v,Ψω (xi)〉 = yi + o(1), ∀i = 1, · · · , n. (C.1)
Thus, the goal becomes to find v such that (C.1) holds. This goal is stated in the first paragraph
of Section 4.3, page 15. Though they did not define it explicitly, o(1) in (C.1) means “ a constant
smaller than 1”.

The relation between (C.1) and the desired result is independent of the calculation of the width
bound. Anyhow, for completeness, we briefly explain why (C.1) leads to the desired result (most
readers can skip the paragraph). First, (C.1) implies that f memorized the dataset for this (v,Ψω).
In fact, if (C.1) holds, then fω,v(xi) has the same sign as yi + o(1). Note that yi + o(1) shares the
same sign as yi because yi is assumed to be either +1 or −1 and o(1) is a constant smaller than 1.
Together we conclude that fω,v(xi) shares the same sign as yi for any i, which means the predictions
sign(fω,v(xi)) = yi. Second, such a v can be reached approximately by SGD (see Algorithm 2 on
page 10 of [12]). This requires an argument that we skip here.

Step 2: There exists v which satisfies a relation specified below.

More specifically, they proved the following result.
Theorem C.1 (Theorem 16, page 16, Daniely [12]). W.p. 1− δ − 2−Ω(d) over the choice of dataset
and ω, there exists a v such that the following for all i:

〈v,Ψω (xi)〉 = fω (xi) = yi +O

 (log(d/δ))
c′
2

d

+O

√dc−1 (log(d/δ))
c′+2

m

 . (C.2)

Note that in Theorem C.1, they did not explicitly write out the expression of c and c′. The definition
of these two constants can be seen in Section 3.2 and Section 4.3 of C.1 respectively. We will discuss
them in Step 3.

Step 3: Identifying a condition on m so that the obtained bound (C.2) in Step 2 implies the
desired bound (C.1) in Step 1.

We demonstrate the detailed derivation next.

18

Step 3.0: To achieve the goal of (C.1), the 3rd term of (C.2) needs to be no more than 1. This term is
the crucial part to derive the width bound on m. We provide detailed analysis as follows.

Step 3.1: Now we need to make sure the 3rd term of (C.2) is no more than 1, which is equivalent to
(ignoring constant-factors)

m ≥ dc−1(log(d/δ))(c′+2), (C.3)
where c′ ≥ 4c+ 2. This definition of c′ can be seen in the first paragraph of Section 4.3 on
page 15; c, δ are specified in the next two steps.

Step 3.2: Identify δ = 1/ log n. This is specified in the paragraph below Theorem 16, page 16.
Plugging it into (C.3), we have

m ≥ dc−1(log(d log n))(c′+2). (C.4)

Step 3.3: Identify c = log n/ log d. The definition of c first appeared in the first paragraph of Section
3.2, where they assume the number of samples is n = dc. This definition is used in the first
paragraph of Section 4.3, with a slightly different form n/d = dc−1. This definition implies
c = log n/ log d. Further, we have

c′ ≥ 4c+ 2 ≥ 4c+ 2 = 4 log n/ log d+ 2 (C.5)
Plugging (C.5) and dc−1 = n/d into (C.4), we have:

m ≥ n

d
(log(d log n))4 logn/ log d+2. (C.6)

Finally, ignoring the numerical constants, the bound becomes

m ≥ O(
n

d
(log(d log n))logn/ log d). (C.7)

C.2 Why The Bound is “Super-Polynomial”

Now we explain why their bound (C.7) is at least O(n2) or larger for fixed d. The bound (C.7) is a
bit complicated as it depends on both d and n. We are more interested in its dependence on n, thus
we fix d and analyze how it scales with n. With fixed d, the exponent log n/ log d can be simplified
to log n, thus the bound (C.7) can be simplified to

m ≥ O(
n

d
(log(d log n))logn). (C.8)

We will show that this bound (C.7) is at least O(n2) or larger for fixed d.

Define B1 = (log d)logn and B2 = [log(log n)]logn. From (C.8) we obtain

m ≥ O(
n

d
max {B1, B2}). (C.9)

The extra factor max {B1, B2} is not a constant factor or a log-factor, but more like a “super-
polynomial” factor on n, as explained below.

• For B1, consider the fixed input dimension d for two cases.

– For d satisfying log d > 2.7 (i.e. d > 15), their required width is actually O
(
n2

d

)
.

This is an order of magnitude larger than our bound O(n/d).

– For d satisfying log d > 2.72 (i.e. d > 1395), the required width is actually O
(
n3

d

)
,

two orders of magnitude larger than O(n/d).

• For B2, when n > 2.72.727 ≈ 2.2× 106, we have
(
log(log(n))logn > n . As a result, the

required width is at least O
(
n2

d

)
.

Theoretically speaking, it is not hard to prove that their required width can be larger than nk

for any fixed integer k (which is why we say their bound is “super-polynomial”). Empirically
speaking, a calculation of their bound for a real dataset can reveal how large it is. On CIFAR-10
dataset [31], n = 50000, d = 3072. Plugging these numbers into (C.7) (ignore O(·)) we obtain
m ≥ 58290499136 >> n. In comparison, our required width is only m ≥ 2n/d ≈ 33, which is
much smaller than n = 50000.

19

In summary, rigorously speaking, their required width Õ(n/d) is notO(n/d), but can be larger than
O
(
n2

d

)
or even O

(
n3

d

)
.

C.3 Other Differences

Besides the above discussion, there are some other differences between Daniely [12] and our work.

First, they analyze SGD, and we analyze a constrained optimization problem and projected SGD.
This may be the reason why we can get a stronger bound on width. In the experiments in Section 5,
we observe that SGD performs badly when the width is small (see the first left column in (b), Figure
4). Therefore, we suspect an algorithmic change is needed to train narrow nets with such width (due
to the training difficulty), and we indeed propose a new method to train narrow nets.

Second, they consider binary {+1,−1} dataset, while our results apply to arbitrary labels. In addition,
their proof seems to be highly dependent on the fact that the labels are {+1,−1}, and seems hard to
generalize to general labels.

D Definition and Notations

Before going through the proof details, we restate some of the important notations that will repeatedly
appear in the proof, the following notations are also introduced in Section 4.1.

We denote {(xi, yi)}ni=1 ⊂ Rd × R as the training samples, where xi ∈ Rd, yi ∈ R. For theoretical
analysis, we focus on 1-hidden-layer neural networks f(x; θ) =

∑m
j=1 vjσ

(
wTj x

)
∈ R, where σ(·)

is the activation function, wj ∈ Rd and vj ∈ R are the parameters to be trained. To learn such a
neural network, we search for the optimal parameter θ = (w, v) by minimizing the empirical loss:

min
θ
`(θ) =

1

2

n∑
i=1

(yi − f (xi; θ))
2
.

Sometimes we also use `(w; v) or f(w;x, v) to emphasize the role of w.

We use the following shorthanded notations:

• x := (xT1 ; . . . ;xTn) ∈ Rn×d, y := (y1, . . . , yn)T ∈ Rn;

• w := (w1, . . . , wm)mj=1 ∈ Rd×m, v := (v1, . . . , vm)mj=1 ∈ Rm;

• wa,b indicates the b-th component of wa ∈ Rd;

• θ0 = (w0, v0) indicates the initial parameters. Unless otherwise stated, it means the
parameters at the mirrored LeCun’s initialization given in Algorithm 1;

• f(w; v) := (f(x1;w, v), f(x2;w, v), . . . , f(xn;w, v))T ∈ Rn, indicating the neural net-
work output on the whole dataset x.

• Define ` ◦ f = 1
2‖y − f‖

2
2.

We denote the Jacobian matrix of f(w; v) w.r.t w as

J(w; v) :=


∇wf (w; x1, v)T

.

.

.
∇wf (w; xn, v)T

 =


v1σ
′
(
wT1 x1

)
xT1 · · · vmσ

′
(
wTmx1

)
xT1

.

.

.
v1σ
′
(
wT1 xn

)
xTn · · · vmσ

′
(
wTmxn

)
xTn

 ∈ Rn×md.

We define the feature matrix

Φ(w) :=


σ
(
wT1 x1

)
, . . . , σ

(
wTmx1

)
.
.
.

σ
(
wT1 xn

)
, . . . , σ

(
wTmxn

)
 ∈ Rn×m.

E Proof of Theorem 1

The proof of Theorem 1 consists of two parts: when the hidden weights w is in the neighborhood
of the mirrored LeCun’s initialization, we have (i) There exists a global-min with 0 loss, (ii) every

20

stationary point is a global-min. We prove these two arguments respectively. The first part (argument
(i)) can be seen in Appendix E.1, the second part (argument (ii)) can be seen in Appendix E.2.

E.1 Proof of The First Part of Theorem 1

To prove the first part of Theorem 1, we use the Inverse Function Theorem (IFT) [18] at the mirrored
LeCun’s initialization. IFT is stated below.
Theorem E.1 (Inverse function theorem (IFT)). Let ψ : U → Rn be a C1 -map where U is open
in Rn and w ∈ U. Suppose that the Jacobian J (w) is invertible. There exist open sets W and F
containing w and ψ (w) respectively, such that the restriction of ψ on W is a bijection onto F with a
C1 -inverse.

Our overall proof idea is as follows: we will use IFT to show that: then for any y ∈ Rn and any
small enough ε, there exists a w∗ ∈ Bε(w0) whose prediction output f(w∗; v0) ∝ y − f(w0; v0).
Additionally, since f(w0; v0) = 0, we have f(w∗; v0) ∝ y. Once this is shown, then we just need to
scale all the outer weight vj uniformly and the output will be exactly y since f(w∗; v) is linear in v.
More details can be seen as follows.

In our case, let ψ = f(w; v0) be the function of w, mapping from Rmd to Rn. It may appears that IFT
cannot be directly applied sincemd ≥ 2n (cf. Assumption 1), so f(w; v0) is not dimension-preserved
mapping. However, this issue can be alleviated by applying the IFT to a subvector of w, while fixing
the rest of the variables.

More specifically, we denote n = k1d + k2 with k1, k2 ∈ N, and w =
(w̃T , w̃′T)T , where w̃ = (wT1 , · · · , wTk1 , wk1+1,1, · · · , wk1+1,k2)T ∈ Rn and w̃′ =

(wk1+1,k2+1, · · · , wk1+1,d, w
T
k1+2, · · · , wTm)T ∈ Rmd−n. Here, wa,b indicates the b-th component

of wa ∈ Rd.

We now apply IFT to f(w̃; v0, w̃′0) ∈ Rn (this notation views w̃ as the variable and v0, w̃′0 are
treated as parameters). Firstly, in Lemma E.1, we prove that w.p.1, the corresponding Jacobian matrix
J(w̃0; v0, w̃′0) ∈ Rn×n is of full rank at the mirrored LeCun’s initialization, so that the condition for
IFT holds. Then, by IFT, there exist open sets W and F containing w̃0 and f(w̃; v0, w̃′0) respectively,
such that the restriction of f(w̃; v0, w̃′0) on W is a bijection onto F . Here, we denote ε and δ as the
radius of W and F , respectively.

Now, since f(w̃0; v0, w̃′0) = f(w0; v0) = 0 ∈ Rn, set F contains all possible directions pointed
from the origin. That is to say, for any label vector y ∈ Rn, we can always scale it using δ, such that
δ y
‖y‖ ∈ F , and then, by IFT , there exists a w̃∗ ∈ Bε(w̃0) ⊂W satisfying

f(w̃∗; v0, w̃′0) = δ
y

‖y‖
. (E.1)

Since w̃ is just the truncated version of w, (E.1) implies: there exists a w∗ ∈ Bε(w0), s.t.

f(w∗; v0) = δ
y

‖y‖
. (E.2)

Now, we scale the outer weight to v∗ = ‖y‖
δ v

0 and the output will be exactly y, i.e.:

f(w∗; v∗) = y.

Therefore, the proof is concluded.

Remark: “there exists an ε” or “any small ε”? Readers may mention that IFT states “there exists
a neighborhood with size ε”, however, Theorem 1 claims for “any small enough ε”. We would like
to clarify that the statement of Theorem 1 is not a typo. Here is the reason: in the statement of IFT,
“existence of a small neighborhood” will imply “IFT holds for any subset of this neighborhood”, so
actually, Theorem 1 holds for any small (enough) neighborhood with size ε.
Lemma E.1. Under Assumption 1, 2 and 3, as a function of w, v and x, J(w̃0; v0, w̃′0) ∈ Rn×n is
of full rank at the mirrored LeCun’s initialization, w.p.1..

21

Proof of Lemma E.1. Recall the Jacobian matrix of f(w̃; v0, w̃′0) w.r.t. w̃:

J(w̃0; v0, w̃′0) :=


∇w̃f

(
w̃0;x1, v

0, w̃′0
)T

...
∇w̃f

(
w̃0;xn, v

0, w̃′0
)T

 ∈ Rn×n.

We first consider a general case where k2 6= 0. Since f (w̃;x, v, w̃′) = f(w;x, v) =∑m
j=1 vjσ

(
wTj x

)
, taking derivative w.r.t. w̃ yields J(w̃0; v0, w̃′0) equals to:


v01σ
′
(
w0T

1 x1

)
xT1 · · · v0k1

σ′
(
w0T
k1
x1

)
xT1 v0k1+1σ

′
(
w0T
k1+1x1

)
x1,1 · · · v0k1+1σ

′
(
w0T
k1+1x1

)
x1,k2

.

.

.
v01σ
′
(
w0T

1 xn

)
xTn · · · v0k1

σ′
(
w0T
k1
xn

)
xTn v0k1+1σ

′
(
w0T
k1+1xn

)
xn,1 · · · v0k1+1σ

′
(
w0T
k1+1xn

)
xn,k2

 .
(E.3)

To prove the full-rankness of J(w̃0; v0, w̃′0), we need to show that w.p.1, det(J(w̃0; v0, w̃′0)) 6= 0.
Here, det(J(w̃0; v0, w̃′0)) is an analytic function since the activation function σ(·) is analytic (see
Assumption 2). Therefore, we borrow an important result of [47, Proposition 0] which states that the
zero set of an analytic function is either the whole domain or zero-measure. The result is formally
stated as the following lemma under our notation.

Lemma E.2. Suppose that: as a function of w̃, w̃′, v and x, det(J(w̃0; v0, w̃′0)) : Rmd+m+nd → R
is a real analytic function on Rmd+m+nd. If det(J(w̃0; v0, w̃′0)) is not identically zero, then its zero
set Ω =

{
w̃0, v0, w̃′0, x | det(J(w̃0; v0, w̃′0)) = 0

}
has zero measure.

Based on Lemma E.2, in order to prove det(J(w̃0; v0, w̃′0)) 6= 0 w.p.1, we only need to prove it is
not identically zero. To do so, we first transform det(J(w̃0; v0, w̃′0)) into its equivalent form:

(E.3) = det ([B1, · · · , Bk2 , Ck2+1, · · · , Cd]) , (E.4)
where

Bj =

 v0
1σ
′ (w0T

1 x1

)
x1,j · · · v0

k1+1σ
′ (w0T

k1+1x1

)
x1,j

...
v0

1σ
′ (w0T

1 xn
)
xn,j · · · v0

k1+1σ
′ (w0T

k1+1xn
)
xn,j

 ∈ Rn×(k1+1), j = 1, · · · , k2,

Cj =

 v0
1σ
′ (w0T

1 x1

)
x1,j · · · v0

k1
σ′
(
w0T
k1
x1

)
x1,j

...
v0

1σ
′ (w0T

1 xn
)
xn,j · · · v0

k1
σ′
(
w0T
k1
xn
)
xn,j

 ∈ Rn×k1 , j = k2 + 1, · · · , d.

In addition, Bj can be further rewritten as:

Bj =


B1,j

...
Bk2,j
Dj

 ∈ Rn×(k1+1),

where for i = 1, · · · k2:

Bi,j =


v01σ
′
(
w0T

1 x(k1+1)(i−1)+1

)
x(k1+1)(i−1)+1,j · · · v0k1+1σ

′
(
w0T
k1+1x(k1+1)(i−1)+1

)
x(k1+1)(i−1)+1,j

.

.

.
v01σ
′
(
w0T

1 x(k1+1)i

)
x(k1+1)i,j · · · v0k1+1σ

′
(
w0T
k1+1x(k1+1)i

)
x(k1+1)i,j


∈ R(k1+1)×(k1+1)

,

and

Dj =


v01σ
′
(
w0T

1 x(k1+1)k2+1

)
x(k1+1)k2+1,j · · · v0k1+1σ

′
(
w0T
k1+1x(k1+1)k2+1

)
x(k1+1)k2+1,j

.

.

.
v01σ
′
(
w0T

1 xn

)
xn,j · · · v0k1+1σ

′
(
w0T
k1+1xn

)
xn,j


∈ R(n−(k1+1)k2)×(k1+1)

.

22

Similarly, Cj can be further rewritten as:

Cj =


C1,j

...
Ck2,j
Ej

 ∈ Rn×(k1),

where for i = 1, · · · k2:

Ci,j =


v01σ
′
(
w0T

1 x(k1+1)(i−1)+1

)
x(k1+1)(i−1)+1,j · · · v0k1

σ′
(
w0T
k1
x(k1+1)(i−1)+1

)
x(k1+1)(i−1)+1,j

.

.

.
v01σ
′
(
w0T

1 x(k1+1)i

)
x(k1+1)i,j · · · v0k1

σ′
(
w0T
k1
x(k1+1)i

)
x(k1+1)i,j


∈ R(k1+1)×k1

and

Ej =


v01σ
′
(
w0T

1 x(k1+1)k2+1

)
x(k1+1)k2+1,j · · · v0k1

σ′
(
w0T
k1
x(k1+1)k2+1

)
x(k1+1)k2+1,j

.

.

.
v01σ
′
(
w0T

1 xn

)
xn,j · · · v0k1

σ′
(
w0T
k1
xn

)
xn,j


∈ R(n−(k1+1)k2)×k1 .

Therefore, we can rewrite det(J(w̃0; v0, w̃′0)) as the following form:

det(J(w̃0; v0, w̃′0)) =


B1,1 · · · B1,k2 C1,k2+1 · · · C1,d

...
Bk2,1 · · · Bk2,k2 Ck2,k2+1 · · · Ck2,d
D1 · · · Dk2 Ek2+1 · · · Ed

 . (E.5)

Based on Lemma E.2, in order to prove det(J(w̃0; v0, w̃′0)) 6= 0 w.p.1., we only need to prove that,
as a function of w̃, w̃′, v and x, det(J(w̃0; v0, w̃′0)) is not identically zero. To do so, we just need
to construct a dataset x such that (E.5) 6= 0. We construct such x := (x1, . . . , xn) ∈ Rn×d in the
following way:

(1) For i = 1, · · · , (k1 + 1): xi,j = { δi, j = 1
0, otherwise

, where δi 6= δi′ 6= 0, ∀i, i′.

(2) For i = (k1 + 1) + 1, · · · , 2(k1 + 1): xi,j = { δi, j = 2
0, otherwise , where δi 6= δi′ 6= 0,

∀i, i′.

(3) · · ·

(4) For i = (k2 − 1)(k1 + 1) + 1, · · · , k2(k1 + 1): xi,j = { δi, j = k2

0, otherwise , where

δi 6= δi′ 6= 0, ∀i, i′.

(5) For i = k2(k1 + 1) + 1, · · · , n: xi,j = { 1, j = i− k1k2

0, otherwise .

Under such a construction, (E.5) becomes the determinant of a block-diagonal matrix:

det(J(w̃0; v0, w̃′0)) = det


B1,1 · · · 0 0

...
0 · · · Bk2,k2 0
0 · · · 0 E

 , (E.6)

23

where E = [Ek2+1 · · ·Ed] is a square matrix in R(n−(k1+1)k2)×(n−(k1+1)k2). To prove (E.6) 6= 0,
we need to prove B1,1, · · · , Bk2,k2 and E are all full rank matrices.

As for the full-rankness of E, thanks to the construction (5), E = [Ek2+1 · · ·Ed] now becomes:

Ek2+1 =


v0

1σ
′ (w0T

1 x(k1+1)k2+1

)
· · · v0

k1
σ′
(
w0T
k1
x(k1+1)k2+1

)
0 · · · 0

...
0 · · · 0

 ∈ R(n−(k1+1)k2)×k1 ,

Ek2+2 =


0 · · · 0

v0
1σ
′ (w0T

1 x(k1+1)k2+2

)
· · · v0

k1
σ′
(
w0T
k1
x(k1+1)k2+2

)
...

0 · · · 0

 ∈ R(n−(k1+1)k2)×k1 ,

and so on so for:

Ed =


0 · · · 0

...
0 · · · 0

v0
1σ
′ (w0T

1 xn
)
· · · v0

k1
σ′
(
w0T
k1
xn
)
 ∈ R(n−(k1+1)k2)×k1 .

Sincemd ≥ 2n and J(w̃0; v0, w̃′0) ∈ Rn×n is the jacobian w.r.t. the first n components ofw ∈ Rmd,
it only involves w1, w2, · · ·wk1+1 and it will not reach beyond wm

2
∈ Rd. Recall in the mirrored

LeCun’s initialization, we only copy the 2nd half of w: (w0
m
2 +1, . . . , w

0
m)← (−w0

1, . . . ,−w0
m
2

), that
is to say, w1, w2, · · ·wk1+1 are independent Gaussian random variables, unaffected by the copying
phase, similarly for v1, · · · , vk1+1.

In short, since Gaussian random variables take value 0 on a zero probability measure, and σ(z) = 0
only happens when z = 0 (see Assumption 2), we have E = [Ek2+1 · · ·Ed] is full rank w.p.1.

As for the full-rankness of Bkk, k = 1, · · · , k2, we only need to prove B11 is invertible, the proof of
the rest of Bkk are the same.

Under construction (1), we have:

B1,1 =

 v0
1σ
′ (w0T

1 x1

)
δ1 · · · v0

k1+1σ
′ (w0T

k1+1x1

)
δ1

...
v0

1σ
′ (w0T

1 x(k1+1)

)
δk1+1 · · · v0

k1+1σ
′ (w0T

k1+1x(k1+1)

)
δk1+1

 ∈ R(k1+1)×(k1+1).

Again, since Gaussian random variables take value 0 on a zero probability measure, and δi 6= 0 for
i = 1, · · · , k1 + 1, we only need to prove the following B̃1,1 is full rank:

B̃1,1 =

 σ′
(
w0T

1 x1

)
· · · σ′

(
w0T
k1+1x1

)
...

σ′
(
w0T

1 x(k1+1)

)
· · · σ′

(
w0T
k1+1x(k1+1)

)
 ∈ R(k1+1)×(k1+1).

Next, we borrow the following lemma from [35, Proposition 1], which is the restatement under our
notation (their original statement applies for deep neural network, here, we restate it for 1-hidden-layer
case in Lemma E.3).

Lemma E.3. Under Assumption 2, given an 1-hidden-layer neural network with width m ≥ n, Let
Ω = {w | rank (Φ(w)) < min {m,n}}, where Φ(w) is the hidden feature matrix

Φ(w) :=

 σ
(
wT1 x1

)
, . . . , σ

(
wTmx1

)
...

σ
(
wT1 xn

)
, . . . , σ

(
wTmxn

)
 ∈ Rn×m.

Suppose there exists a dimension k such that xi,k 6= xi′,k,∀i 6= i′, then Ω is a zero-measure set.

24

To prove the full-rankness of B̃1,1, we regard it as the hidden feature matrix of an 1-hidden-layer
neural network equipped with width m′ = k1 + 1 and activation function σ′(z), which satisfies
Assumption 2. In addition, recall δi 6= δi′ 6= 0 for ∀i, i′, so (x1, · · · , xk1+1) satisfies the condition
of Lemma E.3 w.p.1, and the sample size equals to the width m′ = k1 + 1. Therefore, all the
assumptions are satisfied and Lemma E.3 directly shows that B̃1,1 is invertible w.p.1..

Similarly, with the same proof technique, it can be shown that the rest of Bk,k are also invertible
w.p.1.. In conclusion, we have constructed a dataset x, such that (E.6) is non-zero w.p.1., which
implies Ω =

{
w̃0, v0, w̃′0, x | det(J(w̃0; v0, w̃′0)) = 0

}
has zero measure by Lemma E.2. In other

words, under the joint distribution of w̃0, v0, w̃′0 and x, J(w̃0; v0, w̃′0) is invertible w.p.1.. Recall w̃0,
v0, and w̃′0 all follow continuous distribution, furthermore, x also follows a continuous distribution
(Assumption 3), so J(w̃0; v0, w̃′0) is still invertible w.p.1. under the distribution of x, so the whole
proof is completed.

When n = k1d, or equivalently, k2 = 0, things become easier and we just need to change the size of
Bkk to Rk1×k1 , and there is no need to consider Ci,j , Dj and Ej , the rest of the proof is the same,
we omit it for brevity.

E.2 Proof of The Second Part of Theorem 1

Suppose we have a 1-hidden-layer neural network f(x; θ) =
∑m
j=1 vjσ

(
wTj x

)
∈ R, and let f(θ) ∈

Rn be output of (x; θ) on the dataset x = (x1, · · · , xn), let J(w∗; v∗) ∈ Rn×md be its Jacobian
matrix w.r.t. w at the stationary point θ∗ = (w∗, v∗), we have:

∇w`(θ∗) = J(w∗; v∗)T (f(θ∗)− y) = 0. (E.7)

Therefore, as long as we can prove that J(w∗; v∗)T ∈ Rmd×n is full column rank, the stationary
point θ∗ will become a global minimizer with `(θ∗) = 0, so the proof is completed.

Now we prove the full-rankness of J(w∗; v∗). Recall in Lemma E.1, we have proved that, as a
function of x, det(J(w̃0; v0, w̃′0)) 6= 0 w.p.1., where J(w̃0; v0, w̃′0) equals to


v01σ
′
(
w0T

1 x1

)
xT1 · · · v0k1

σ′
(
w0T
k1
x1

)
xT1 v0k1+1σ

′
(
w0T
k1+1x1

)
x1,1 · · · v0k1+1σ

′
(
w0T
k1+1x1

)
x1,k2

.

.

.
v01σ
′
(
w0T

1 xn

)
xTn · · · v0k1

σ′
(
w0T
k1
xn

)
xTn v0k1+1σ

′
(
w0T
k1+1xn

)
xn,1 · · · v0k1+1σ

′
(
w0T
k1+1xn

)
xn,k2

 ,
(E.8)

Since ‖w∗ − w0‖F ≤ ε and the determinant is a continuous function of w, we have
det(J(w̃∗; v0, w̃′∗)) 6= 0 (w.p.1.) when ε is small. In addition, as we can see from (E.8),
(v0

1 , · · · , v0
k1+1) are just constant terms in the corresponding columns, so the full-rankness of (E.8)

still holds if we change v0
j to v∗j 6= 0. In summary, det(J(w̃∗; v∗, w̃′∗)) 6= 0 when v∗ is entry-wise

non-zero, where J(w̃∗; v∗, w̃′∗) equals to


v∗1σ
′
(
w∗T1 x1

)
xT1 · · · v∗k1

σ′
(
w∗Tk1

x1

)
xT1 v∗k1+1σ

′
(
w∗Tk1+1x1

)
x1,1 · · · v∗k1+1σ

′
(
w∗Tk1+1x1

)
x1,k2

.

.

.
v∗1σ
′
(
w∗T1 xn

)
xTn · · · v∗k1

σ′
(
w∗Tk1

xn

)
xTn v∗k1+1σ

′
(
w∗Tk1+1xn

)
xn,1 · · · v∗k1+1σ

′
(
w∗Tk1+1xn

)
xn,k2

 ,
(E.9)

Furthermore, J(w̃∗; v∗, w̃′∗) ∈ Rn×n is nothing but a n×n submatrix of J(w∗; v∗) ∈ Rn×md. Now
that md ≥ 2n > n, det(J(w̃∗; v∗, w̃′∗)) 6= 0 implies the full-row-rankness of J(w∗; v∗) (w.p.1.).
Thus the whole proof is completed.

F Proof of Theorem 2

In this section, we provide both proof sketch and the detailed proof of Theorem 2. They can be
seen in Appendix F.1 and Appendix F.2, respectively. For general readers, reading proof sketch in
Appendix F.1 will help grasp our main idea.

25

F.1 Proof Sketch of Theorem 2

Proof sketch. The proof is built on the special structure of neural network f(x; θ), including the
linear dependence of v and the mirrored pattern of parameters. Here, we describe our high level idea
and the analysis roadmap. The proof consists of proving the following claims:

(I) every KKT point θ∗ satisfies ‖∇w`(w∗; v∗)‖ = O(ε);

(II) the gradient of w always dominates the error term, i.e. ‖∇w`(w; v)‖22 = Ω (`(w∗; v∗)), so
we have `(w∗; v∗) = O(ε2).

To prove claim (I), we only need to consider the case where w∗ is on the boundary and
‖∇w`(w∗; v∗)‖2 6= 0 (otherwise Theorem 2 automatically holds based on Theorem 1). In this
case, by the optimality condition, taking η ∈ R as a small step size, we have

−η∇w`(w∗; v∗) = η
‖∇w`(w∗; v∗)‖
‖w∗ − w0‖

(w∗ − w0) = η̃(w∗ − w0), (F.1)

where η̃ = η ‖∇w`(w
∗;v∗)‖

‖w∗−w0‖ . Now, our key observation is that, after moving along (F.1) from w∗,
the change of the loss is not significant due to the special local structure of f(w; v∗), therefore,
‖∇w`(w∗; v∗)‖2 can be bounded. To be more specific, we denote f∗ as the neural network output
at the KKT point θ∗; denote f̄ as the neural network output after taking a small step η along the
negative partial gradient direction of w; and denote f ′ as an rough estimate of f̄ :

f∗ := f (w∗; v∗) = J(w0; v∗)w∗ +R∗, (F.2)
f̄ := f (w∗ − η∇w`(w∗; v∗); v∗) = (1 + η̃)f∗ − (1 + η̃)R∗ + R̄, (F.3)
f ′ := f̄lin + (1 + η̃)R∗ = (1 + η̃)f∗, (F.4)

where f̄lin is the first-order Taylor approximation of f̄ , R∗ is the second-order Taylor residue of f∗
(similarly for R̄). Additionally, (F.2), (F.3), and (F.4) are due to the the symmetric property of w0, v0

and v∗, so the bias terms in the Taylor expansion will vanish. Now, we compare the value of the loss
on each of f∗, f̄ and f ′. Define ` ◦ f = 1

2‖y − f‖
2
2, we prove the following crucial relationship:

η‖∇w`(w∗; v∗)‖22
(a)

≤ `◦f∗−`◦f̄
(b)

≤ `◦f ′−`◦f̄ =
1

2

∥∥f ′ − f̄∥∥
2

∥∥f ′ + f̄ − 2y
∥∥

2

(c)
= O(η̃ε2) (F.5)

Eq. (F.5) plays a key role in our analysis. Here, (a) can be easily shown by applying Descent lemma
in this local region, yet (b) and (c) are not that obvious. Recall in (F.2), (F.3), and (F.4), we know that:
(i) although the location of f̄ is unclear, f ′ points at the same direction as f∗. (ii) As an estimator of
f̄ , f ′ is not far away from it, i.e. ‖f̄ − f ′‖2 = ‖R̄ − (1 + η̃)R∗‖2 only involves the second-order
Taylor residue terms. With this observation, (b) is proved in Lemma F.1 (stated below) by geometric
properties, and (c) is calculated in Lemma F.2 (stated below), so the relationship (F.5) is proved.
Therefore, we have θ∗ satisfies ‖∇w`(w∗; v∗)‖ = O(ε) by plugging in η = εη̃

‖∇w`(w∗;v∗)‖2 , and
claim (I) is proved.

Lemma F.1. Under the conditions of Theorem 2, we have `◦f ′ ≥ `◦f∗, i.e., ‖f ′ − y‖22 ≥ ‖f∗ − y‖
2
2.

Lemma F.2. Under the conditions of Theorem 2, we have:
∥∥f ′ − f̄∥∥

2

∥∥f ′ + f̄ − 2y
∥∥

2
= O(ε2).

As for claim (II), it is true as long as J(w; v) is of full row rank, which has been shown in Theorem
1. A more detailed proof of Lemma F.1 and F.2, as well as the proof of the whole Theorem 2 are in
Appendix F.2.

Proof sketch of Lemma F.1. Here, we provide a proof sketch of Lemma F.1, we need to discuss the
following cases:

(1) When f∗T y ≥ 0: we prove by contradiction. Since f∗ is linear in v∗, ‖(1 + η̃)f∗ − y‖22 <
‖f∗ − y‖22 implies ‖f(w∗; (1 + η̃)v∗) − y‖22 < ‖f∗ − y‖22, which means we can further
reduce the loss by changing v∗ to (1 + η̃)v∗, which is still feasible, we have a contradiction
to the assumption that (w,∗ v∗) is a KKT point (see Figure 6, Middle).

(2) When f∗T y < 0: changing v∗ to −v∗ will further reduce the distance to y (see Figure 6,
Left), this is a contradiction to the fact that v∗ is a KKT point, so case (2) will not happen.

26

Figure 6: Geometrical illustration of three cases in Lemma F.1: comparing with f∗, f ′ = (1 + η̃)f∗

will not further reduce the distance to y.

In conclusion, we always have ` ◦ f ′ ≥ ` ◦ f∗ (see Figure 6, Right).

F.2 Detailed Proof of Theorem 2

The proof of Theorem 2 consists of proving the following claims: under the setting of Theorem 2,

(I) every KKT point θ∗ satisfies ‖∇w`(w∗; v∗)‖ = O(ε).

(II) the gradient of w always dominates the error term, i.e. ‖∇w`(w; v)‖22 = Ω (l(w∗; v∗)), so
we have `(w∗; v∗) = O(ε2).

Note that the statement of claim (I) is not precise, there are chances that the constant terms will
exponentially grow (will be discussed later). Nevertheless, it is just an intermediate result that helps
provide a clearer big picture. our final result in claim (II) will be precise.

To prove claim (I), we only need to consider the case when w∗ is on the boundary of the constraint
Bε(w

0) (Theorem 2 automatically holds when w∗ is in the interior of Bε(w0)).

Now, suppose w∗ is a non-zero-gradient KKT point on the boundary, by the optimality condition, its
negative gradient direction should be along the same direction as w∗ − w0, therefore, if we further
take a small step η along the negative gradient direction, we have:

−η∇w`(w∗; v∗) = η
‖∇w`(w∗; v∗)‖2
‖w∗ − w0‖2

(w∗ − w0) = η̃(w∗ − w0), (F.6)

where η̃ := η ‖∇w`(w
∗;v∗)‖2

‖w∗−w0‖2 = η ‖∇w`(w
∗;v∗)‖2
ε . In this case, the loss function will decrease when we

further move w along −∇w`(w∗; v∗) with a sufficiently small stepsize η. In other words, we can
apply Descent lemma (details can be seen in Bertsekas et al. [6]) in this local region, i.e.

` (w∗ − η∇w`(w∗; v∗); v∗)− `(w∗; v∗) ≤ −η‖∇w`(w∗; v∗)‖22. (F.7)

As a matter of fact, after further taking a small GD step at w∗, f (w∗ − η∇w`(w∗; v∗); v∗) will
be closer to the groundtruth y, we will come back to this fact later, it will be used to bound
‖∇w`(w∗; v∗)‖2.

Now, for any w ∈ Bε(w0), we take the Taylor expansion of f(w; v∗) at w0:
f(w; v∗) = f(w0; v∗) + J(w0; v∗)(w − w0) +R(w) (F.8)

(a) & (b)
= J(w0; v∗)w +R(w), (F.9)

flin(w; v∗) := f(w0; v∗) + J(w0; v∗)(w − w0) (F.10)
(a) & (b)

= J(w0; v∗)w, (F.11)

where R(w) ∈ Rn is the residue term of the Taylor expansion:

[R(w)]i =

∫ 1

0

(w − w0)THi(w
0 + t(w − w0))(w − w0)(1− t)dt, i = 1, · · · , n, (F.12)

27

where Hi(w) is the Hessian matrix of f(w; v∗, xi) at w (for simplicity, we drop the dependence of
v∗ and xi in the notation), and flin(w; v∗) is a linear approximation of f(w; v∗). In addition, (a) &
(b) is due to the fact that w0

j follows the mirrored LeCun’s initialization with (w0
m
2 +1, . . . , w

0
m) =

(w0
1, . . . , w

0
m
2

), recall the construction of f(w; v) in (6), the hidden output will cancel out with the
outer weight, so we have (a):

f(w0; v∗)
(6)
=

m
2∑
j=1

v∗j

(
σ(w0T

j x)− σ(w0T
j+m

2
x)
)

= 0. (F.13)

Similarly, we have (b):

J(w0; v∗)w0 = ∇wf
(
w0;x, v∗

)T
w0 =

m
2∑
j=1

v∗j

(
σ′(w0T

j x)w0T
j x− σ′(w0T

j+m
2
x)w0T

j+m
2
x
)

= 0.

(F.14)

Based on (F.9), we define the following quantities:

f̄ := f (w∗ − η∇w`(w∗; v∗); v∗)
(F.9)
= J(w0; v∗)(w∗ − η∇w`(w∗; v∗)) + R̄, (F.15)

f∗ := f (w∗; v∗)
(F.9)
= J(w0; v∗)w∗ +R∗, (F.16)

where R̄ = R (w∗ − η∇w`(w∗; v∗)), R∗ = R (w∗) as it is introduced in (F.12). Additionally, f̄ can
be re-written in the form of f∗:

f̄
(F.15)

= J(w0; v∗)(w∗ − η∇w`(w∗; v∗)) + R̄ (F.17)

= J(w0; v∗)w∗ − ηJ(w0; v∗)∇w`(w∗; v∗) + R̄ (F.18)
(F.16)

= f∗ −R∗ − ηJ(w0; v∗)∇w`(w∗; v∗) + R̄ (F.19)
(F.6)
= f∗ −R∗ + η̃J(w0; v∗)(w∗ − w0) + R̄ (F.20)

(F.14)
= f∗ −R∗ + η̃J(w0; v∗)(w∗) + R̄ (F.21)

(F.16)
= f∗ −R∗ + η̃(f∗ −R∗) + R̄ (F.22)
= (1 + η̃)f∗ − (1 + η̃)R∗ + R̄. (F.23)

Now, we construct a rough estimator of f̄ by merely adding a residue term (1 + η̃)R∗ on f̄lin, which
is f ′ defined as follows:

f ′ := f̄lin + (1 + η̃)R∗ (F.24)
= flin (w∗ − η∇w`(w∗; v∗); v∗) + (1 + η̃)R∗ (F.25)

(F.11)
= J(w0; v∗)(w∗ − η∇w`(w∗; v∗)) + (1 + η̃)R∗ (F.26)

= J(w0; v∗)w∗ − ηJ(w0; v∗)∇w`(w∗; v∗) + (1 + η̃)R∗ (F.27)
(F.16)

= f∗ −R∗ + ηJ(w0; v∗)∇w`(w∗; v∗) + (1 + η̃)R∗ (F.28)
(F.6)
= f∗ −R∗ + η̃J(w0; v∗)(w∗ − w0) + (1 + η̃)R∗ (F.29)

(F.14)
= f∗ −R∗ + η̃J(w0; v∗)(w∗) + (1 + η̃)R∗ (F.30)

(F.16)
= f(w∗; v∗)−R∗ + η̃(f∗ −R∗) + (1 + η̃)R∗ (F.31)
= (1 + η̃)f∗. (F.32)

According to the descent property in (F.7), after taking a very small GD step at w∗ , the new loss
function ` ◦ f̄ will be smaller than the old one ` ◦ f∗, where ` ◦ f = 1

2‖y − f‖
2
2. In contrast, we

28

discuss the change of the loss function from f∗ to that of the rough estimator f ′. The following
Lemma F.1 shows that ` ◦ f ′ ≥ ` ◦ f∗, different from the fact that ` ◦ f̄ ≤ ` ◦ f∗.

Lemma F.1. [Corresponding to Lemma F.1 in the proof sketch.] Under the background of Theorem 2
and the definition of f ′ & f∗ in (F.32) & (F.16), we have `◦f ′ ≥ `◦f∗, i.e., ‖f ′ − y‖22 ≥ ‖f∗ − y‖

2
2.

The proof of Lemma F.1 can be seen in Appendix F.3.

Now, we have

η ‖∇w`(w∗; v∗)‖22
(F.7)

≤ `(w∗; v∗)− ` (w∗ − η∇w`(w∗; v∗); v∗) (F.33)

=
1

2
‖f∗ − y‖22 −

1

2

∥∥f̄ − y∥∥2

2
(F.34)

LemmaF.1
≤ 1

2
‖f ′ − y‖22 −

1

2

∥∥f̄ − y∥∥2

2
(F.35)

=
1

2

∥∥f ′ − f̄∥∥
2

∥∥f ′ + f̄ − 2y
∥∥

2
. (F.36)

Next, we bound
∥∥f ′ − f̄∥∥

2

∥∥f ′ + f̄ − 2y
∥∥

2
using the following Lemma F.2.

Lemma F.2. [Corresponding to Lemma F.2 in the proof sketch.] Under the background of Theorem
2 and the definition of f ′ & f̄ in (F.32) & (F.15), we have:∥∥f ′ − f̄∥∥

2

∥∥f ′ + f̄ − 2y
∥∥

2
≤
(
η̃ε2λ[0:2]

√
20n

)(√
nCy + 3

(
n
(m

2
Lζε

)2

+ nC2
y

) 1
2

)
,

(F.37)
where ζ is the constraint for v required in B(v): v ≥ ζ1; λ[a:b] := max

i
{λi[a:b]|i = 1, · · · , n},

and each λi[a:b] is the maximum eigenvalue of the Hessian matrices Hi(w
0 + t(w∗ − w0)) :=

∇2
wf(w0 + t(w∗ − w0); v∗, xi) in the interval t ∈ [a, b].

The proof of Lemma F.2 can be seen in Appendix F.4. Now, with the help of Lemma F.2, we have:

η ‖∇w`(w∗; v∗)‖22
(F.36)

≤ 1

2

∥∥f ′ − f̄∥∥
2

∥∥f ′ + f̄ − 2y
∥∥

2
(F.38)

(F.37)

≤ 1

2

(
η̃ε2λ[0:2]

√
20n

)(√
nCy + 3

(
n
(m

2
Lζε

)2

+ nC2
y

) 1
2

)
. (F.39)

Recall η = ε
‖∇w`(w∗;v∗)‖2 η̃ and η̃ is sufficiently small, we have:

‖∇w`(w∗; v∗)‖2 ≤
1

2
ε
(
λ[0:2]

√
20n

)(√
nCy + 3

(
n
(m

2
Lζε

)2

+ nC2
y

) 1
2

)
. (F.40)

Since ζ can be chosen arbitrarily small, we can choose it to be smaller than 1
ε . That is to say,

‖∇w`(w∗; v∗)‖2 = O(ε), so the claim (I) is proved. Note that to be precise, the constant on the
right hand side of the above inequality depends on λ[0:2], which is a linear function of v, and the
latter vector may not be upper bounded. Nevertheless, claim (I) is just an intermediate result, and our
subsequent derivation will directly use the right hand side of (F.40), which is precise.

Now, we build the relationship between ‖∇w`(w∗; v∗)‖2 and the loss function. Here, we need to
eliminate the dependence of v in the final result: since there is no uniform upper bound for v, it can
potentially make λ[0:2] grow exponentially. To alleviate this issue, we utilize the fact that f(x; θ) is
linear in v, so λ[0:2] is also linear in v, and then we manage to remove the dependence of v in our
final result. Specifically, let us define

v∗min := min
j
{v∗j | j = 1, · · · ,m}, v∗max := max

j
{v∗j | j = 1, · · · ,m}.

So we have

‖∇w`(w∗; v∗)‖22 = ‖J(w∗; v∗)T (y − f∗)‖22
(c)

≥ v∗2min · ‖J̃(w∗; v∗)T (y − f∗)‖22 (F.41)

≥ v∗2min · λ̃∗2min · ‖y − f∗‖22, (F.42)

29

where λ̃∗min is the smallest singular value of J̃(w∗; v∗), and J̃(w∗; v∗) is:

J̃(w∗; v∗) :=

 σ′
(
w∗T1 x1

)
xT1 · · · σ′

(
w∗Tm x1

)
xT1

...
σ′
(
w∗T1 xn

)
xTn · · · σ′

(
w∗Tm xn

)
xTn

 ∈ Rn×md.

Here, (c) is straightforward because J̃(w∗; v∗) is just the simplified version of J(w∗; v∗) by removing
all the coefficient v∗j ; furthermore, J̃(w∗; v∗) is full row rank because (i) J(w∗; v∗) is proved to be
full rank in the second part of Theorem 1 in Appendix E.2, (ii) v∗ is entry-wise non-zero, so λ̃∗min is
strictly positive.

Now, we need to remove the dependence of v in the right hand side of (F.40). Similarly as before,
λ[a:b] can also be bounded by v∗maxλ̃[a:b], where λ̃[a:b] is equal to max

i
{λ̃i[a:b]|i = 1, · · · , n}, and

each λ̃i[a:b] is the maximum eigenvalue of the Hessian matrices H̃i(w
0 + t(w∗−w0)) := ∇2

wf̃(w0 +

t(w∗−w0); , xi) in the interval t ∈ [a, b], and f̃(w; , xi) :=
∑m
j=1 σ(xTi wj) is the simplified version

of f(w; v, xi) by removing all the coefficient vj . In conclusion, we have

v∗minλ̃
∗
min‖y − f∗‖2 ≤ ‖∇w`(w∗; v∗)‖2 (F.43)

≤ 1

2
ε
(
λ[0:2]

√
20n

)(√
nCy + 3

(
n
(m

2
Lζε

)2

+ nC2
y

) 1
2

)
(F.44)

≤ 1

2
ε
(
v∗maxλ̃[0:2]

√
20n

)(√
nCy + 3

(
n
(m

2
Lζε

)2

+ nC2
y

) 1
2

)
. (F.45)

Rearrange and take the square on both sides, we get ‖y − f∗‖22 = O
(
κ2ε2

)
, where κ is the finite

constant in the constraint B(v) of problem (7). So `(θ∗) = O(ε2), the proof of Theorem 2 is
completed.

F.3 Proof of Lemma F.1

To prove Lemma F.1, we need to discuss the following cases:

(i) When f∗T y ≥ 0, we prove Lemma F.1 by contradiction: when η̃ is sufficiently
small, suppose ‖(1 + η̃)f∗ − y‖22 < ‖f∗ − y‖22, then (w∗, v∗) is not a KKT point
(this case corresponds to the Figure 6 (Middle)). Note that in problem (7), f∗ =∑m

2
j=1 v

∗
j

(
σ(w∗Tj x)− σ(w∗Tj+m

2
x)
)

is linear in (v∗1 , · · · , v∗m
2

), so (1 + η̃)f∗ = f(w∗; (1 +

η̃)v∗). That is to say, ‖(1 + η̃)f∗ − y‖22 < ‖f∗ − y‖22 implies ‖f(w∗; (1 + η̃)v∗)− y‖22 <
‖f∗− y‖22, which means we can further reduce the loss by changing v∗ → (1 + η̃)v∗. Since
(1 + η̃)v∗ is still feasible if v∗ is feasible, we have a contradiction to the assumption that
(w,∗ v∗) is a KKT point.
Therefore, in case (i), moving from f∗ to f ′ = (1+ η̃)f∗ will not further reduce the loss (this
case corresponds to the Figure 6 (Right)). In other words, we always have f∗T (f∗− y) ≥ 0,
this property will also be used in Lemma F.2.

(ii) When f∗T y < 0, we have

‖f∗ − y‖22 = ‖Φ(w∗)v∗ − y‖22 (F.46)

= ‖Φ(w∗)v∗‖22 + ‖y‖22 − 2(Φ(w∗)v)T y (F.47)

> ‖f∗‖22 + ‖y‖22 − 2(−Φ(w∗)v)T y (F.48)

= ‖Φ(w∗)(−v∗)− y‖22 (F.49)

= ‖ − f∗ − y‖22, (F.50)
where

Φ(w) :=

 σ
(
wT1 x1

)
, . . . , σ

(
wTmx1

)
...

σ
(
wT1 xn

)
, . . . , σ

(
wTmxn

)
 ∈ Rn×m.

30

Therefore, changing v∗ to −v∗ will further reduce the loss function (see Figure 6 (Left)).
Since −v∗ is feasible if v∗ is feasible, this is a contradiction to the assumption that (w∗, v∗)
is a KKT point. That is to say, we always have case (i): f∗T y ≥ 0.

In conclusion, we always have ` ◦ f ′ ≥ ` ◦ f∗, so the proof is completed.

F.4 Proof of Lemma F.2

Similarly with the residue term (F.12), we define R ∈ Rn with each component satisfying [R]i :=∫ 1+η̃

0
(w − w0)THi(w

0 + t(w − w0))(w − w0)(1− t)dt, we have:

∥∥f ′ − f̄∥∥2

2

(F.32)&(F.15)
=

∥∥−(1 + η̃)R∗ + R̄
∥∥2

2
(F.51)

=
∥∥(1 + η̃)R∗ − R̄

∥∥2

2
(F.52)

(∗)
=

∥∥(1 + η̃)R∗ − (1 + η̃)2R
∥∥2

2
(F.53)

= ‖(1 + η̃)(R∗ −R)− (1 + η̃)η̃R‖22 (F.54)

≤ (1 + η̃)2
n∑
i=1

(∫ 1+η̃

1

(w − w0)THi(w
0 + t(w − w0))(w − w0)(1− t)dt

)2

+(1 + η̃)2η̃2
n∑
i=1

(∫ 1+η̃

0

(w − w0)THi(w
0 + t(w − w0))(w − w0)(1− t)dt

)2

≤ (1 + η̃)2
n∑
i=1

(
λi[1:1+η̃]ε

2

∫ 1+η̃

1

dt

)2

+ (1 + η̃)2η̃2
n∑
i=1

(
λi[0:1+η̃]ε

2

∫ 1+η̃

0

dt

)2

= n(1 + η̃)2η̃2λ2
[1:1+η̃]ε

4 + n(1 + η̃)4η̃2λ2
[0:1+η̃]ε

4 (F.55)

= nη̃2ε4
(
(1 + η̃)2λ2

[1:1+η̃] + (1 + η̃)4λ2
[0:1+η̃]

)
(F.56)

= nη̃2ε4
(
4λ2

[1:1+η̃] + 16λ2
[0:1+η̃]

)
(F.57)

= nη̃2ε4
(
20λ2

[0:2]

)
, (F.58)

where the last two inequalities is because of the fact that η̃ ≤ 1 is sufficiently small and λ[1:1+η̃] ≤
λ[0:1+η̃] ≤ λ[0:2]. (*) is due to: for i = 1, · · · , n:

[R̄]i =

∫ 1

0

(
w−η∇w`(w∗; v∗)−w0

)T
Hi

(
w

0
+t(w−η∇w`(w∗; v∗)−w0

)
)(
w − η∇w`(w∗; v∗)− w0

)
(1− t)dt (F.59)

(F.6)
= (1 + η̃)

2
∫ 1

0

(
w − w0

)T
Hi

(
w

0
+ (1 + η̃)t(w − w0

)
) (
w − w0

)
(1− t)dt (F.60)

= (1 + η̃)
2
∫ 1+η̃

0

(
w − w0

)T
Hi

(
w

0
+ t(w − w0

)
) (
w − w0

)
(1− t)dt (F.61)

= (1 + η̃)
2
[R]i. (F.62)

Now, we bound
∥∥f ′ + f̄ − 2y

∥∥
2
, since (w∗, v∗) is a KKT point, it is proved in Lemma F.1 in

Appendix F.3 that f∗T y ≥ 0, furthermore, at w = w∗, the loss function at (w∗, v∗) should be less or
equal to all other feasible points (w∗, v), including v = ζ1, i.e.,

‖f∗ − y‖22 = ‖f(w∗; v∗)− y‖22 (F.63)

≤ ‖f(w∗; v∗)‖2 + ‖y‖22 (F.64)

≤ ‖f(w∗; ζ1)‖2 + ‖y‖22 (F.65)
(∗∗)
≤ n

(m
2
Lζε

)2

+ ‖y‖22 (F.66)

≤ n
(m

2
Lζε

)2

+ nC2
y , (F.67)

31

where the last inequality is because of Assumption 3 (each yi ≤ Cy), and (**): is due to

‖f(w; ζ1)‖22
(6)
=

n∑
i=1

 m
2∑
j=1

ζ
(
σ(wTj xi)− σ(wTj+m

2
xi)
)2

(F.68)

= ζ2
n∑
i=1

 m
2∑
j=1

(
σ(wTj xi)− σ(wTj+m

2
xi)
)2

(F.69)

Assumption 2

≤ ζ2L2
n∑
i=1

 m
2∑
j=1

(wj − wj+m
2

)Txi

2

(F.70)

≤ ζ2L2
n∑
i=1

 m
2∑
j=1

‖wj − wj+m
2
‖2‖xi‖2

2

(F.71)

(∗∗∗)
= ζ2L2

n∑
i=1

 m
2∑
j=1

‖wj − wj+m
2
‖2

2

(F.72)

≤ n
(m

2
Lζε

)2

, (F.73)

where (∗ ∗ ∗) : we assume ‖xi‖2 ≤ 1 for i = 1, · · · , n. For general ‖xi‖2, the difference is up to a
constant.

Recall f ′ = (1 + η̃)f∗, we have
‖f ′ − y‖2 = ‖(1 + η̃)f∗ − y‖2 (F.74)

= ‖f∗ − y + η̃(f∗ − y) + η̃y‖2 (F.75)
= ‖f∗ − y‖2 + η̃‖f∗ − y‖2 + η̃‖y‖2 (F.76)

(F.67)

≤ (1 + η̃)

(
n
(m

2
Lζε

)2

+ nC2
y

) 1
2

+ η̃‖y‖2 (F.77)

≤ (1 + η̃)

(
n
(m

2
Lζε

)2

+ nC2
y

) 1
2

+ η̃
√
nCy (F.78)

≤ 2

(
n
(m

2
Lζε

)2

+ nC2
y

) 1
2

+
√
nCy, (F.79)

where the last inequality is because η̃ is sufficiently small. Now, combining with the descent property
‖f̄ − y‖2 ≤ ‖f∗ − y‖2, we have

‖f ′ + f̄ − 2y‖2 ≤ ‖f ′ − y‖2 + ‖f̄ − y‖2 (F.80)
≤ ‖f ′ − y‖2 + ‖f∗ − y‖2 (F.81)

≤ 3

(
n
(m

2
Lζε

)2

+ nC2
y

) 1
2

+
√
nCy. (F.82)

We conclude the proof of Lemma F.2 by combining (F.58) and (F.82).

G Extension To Deep Networks

In this section, we discuss how to extend our analysis to deep networks. To do so, we apply the
mirrored LeCun’s initialization and the constrained formulation (7) to the last two layers and treat
the output of the (L− 2)-th layer as the input features. In the proof of Theorem 1, the expressivity
is guaranteed if the inputs {x1, · · · , xn} follow a continuous joint distribution, which is true under
Assumption 3. Fortunately, for deep neural networks with ml ≥ 2n

ml−1
(where ml is the width of

the l-th layer), the outputs of the (L− 2)-th layer still follow a continuous joint distribution under

32

Assumption 2 and 3, so the expressivity can be shown using the similar technique as Theorem 1. This
result is formally stated and proved in the Lemma G.1 below.

Lemma G.1. Given a deep fully-connected neural network with L layers:

f(x; θ) = w(L)σ
(
w(L−1) . . . σ

(
w(2)σ

(
w(1)x

)))
,

where σ(·) : R → R is the activation function, w(l) ∈ Rml×ml−1 are the weights, l = 1, . . . , L.
Under Assumption 2 and 3, suppose ml ≥ ml+1, for l ≤ L− 3 and mL−1mL−2 ≥ 2n, then at the
initialization θ0 (for l ≤ L− 2, LeCun’s initialization is used; for the last two layers, the mirrored
LeCun’s initialization is used), for the inputs {x1, · · · , xn}, the outputs of the (L− 2)-th layer follow
a continuous joint distribution.

To prove Lemma G.1, we first prove the following lemma:

Lemma G.2. Suppose that ψ : Rk1 → Rk2 is a analytic mapping and for almost every u ∈ Rk1 , the
Jacobian matrix J(u) of ψ w.r.t. u is of full row rank. If u ∈ Rk1 follows a continuous distribution
and k1 ≥ k2, then ψ(u) also follows a continuous distribution.

Proof. Let Z0 ⊆ Rk2 be a zero measure set in Rk2 , We define S1(Z0) = {u ∈ Rk1 | ψ(u) ∈
Z0, J(u) is non-singular}. By the definition of S1(Z0), any u ∈ S1(Z0) can be written as u =
(uT1 , u

T
2)T , where u1 ∈ Rk2 and J(u1;u2) is invertible (J(u1;u2) is the l × l submatrix of J(u),

similarly as in Lemma E.1). Then by the Inverse Function Theorem, there exists some ball Bε(u)(u) ⊆
Rk1 (centered at u with radius ε(u)) such that for any u′ = ((u′)T1 , (u

′)T2)T ∈ Bε(u)(u) ∩ S1(Z0),
u′1 = τ(u′2, z

′) , where z′ = ψ(u′) ∈ Z0 and τ is a smooth mapping in a neighborhood Z̃0 of
(u2, ψ(u)). Then for any u, there exists a rational point ū ∈ Qk1 and a rational number ε̄(u) ∈ Q
such that u ∈ N(u) := Bε̄(u)(ū) ⊆ Bε(u)(u). Since the collection of all open balls with a rational
center and a rational radius is a countable set, we let N1, N2, · · · , Nn, · · · be different N(u) for
u ∈ S1(V0). Then S1(Z0) = ∪∞i=1(Ni ∩ S1(Z0)).

We then only need to prove that for any i, Ni ∩ S1(Z0) is of measure zero in Rk. We define
the mapping τ̃ : Z̃0 as τ̃(u′2, z

′) = u′ if z′ = ψ(u′). Since Z0 is of measure zero in Rk2 , Z̃0 is
measure zero in Rk1 . Then because τ̃ is smooth, the image of τ̃ of the set Ṽ0 is of zero measure in
Rk1 (The image of a zero mesure set under a smooth mapping is also measure zero). Notice that
Bε̄(u)(ū) ∩ S1(Z0) is contained in the image τ̃(Z̃0), it is also of zero measure. This finishes the
proof.

Now we prove Lemma G.1. When l ≤ L − 3, let u(l) ∈ Rml be the output vector of the l-th
layer. Then u(l+1) = ψ(w(l+1)0, u(l)), where ψ is analytic and w(l+1)0 is the initial parameter in
the l-th layer. We now prove that u(l) follows a continuous distribution by induction. When l = 0,
it is true since u(0) = (x1, · · · , xn) is just the input data, which follows a continuous distribution
under Assumption 3. Now suppose u(l) still follows a continuous distribution, we have: (i) since
w(l+1)0 follows a continuous distribution at the mirrored initialization, u(l) and w(l+1)0 follow a
continuous joint distribution; (ii) Now, viewing (w(l+1)0, u(l)) ∈ Rmlml+1+ml as the input of ψ,
when ml ≥ ml+1, J(w(l+1)0, u(l)) can be proved to be full row rank w.p.1. using the same technique
as Theorem 1. In conclusion, we have u(l+1) follows a continuous distribution by Lemma G.2. Hence,
we finish the proof of Lemma G.1.

We further comment a bit on extending the trainability analysis to deep nets. For this part, it requires
more detailed analysis because the input feature of the penultimate layer is changing along the training
(which is fixed in the shallow case), this topic will be considered as future work. Nevertheless, our
idea motivates a better training regime for deep networks, and it is numerically verified in our
experiments.

33

H Implementation Details & More Experiments

H.1 Guidance on PyTorch Implementation

In this section, we provide sample code to implement the our proposed method for narrow nets
training, which can achieve small empirical loss as proved in Theorem 2. We formally state our
training regime in Algorithm 2.

Algorithm 2 Our training regime
Set up hyperparameters:

Choose a constraint size ε, ζ, κ and a step size η.
Define Bε

(
w0
)

:=
{
w |
∥∥w − w0

∥∥
F
≤ ε
}

Define Bζ,κ(v) = {v|v ≥ ζ1, and for ∀vj , v′j , vj/v′j ≤ κ}.
Set up the pairwise structure of v:

Consider f(x; θ) =
∑m

2
i=1 vj(σ(wTj x)− σ(wTj+m

2
x)).

Initialization:
Initialize θ0 = (w0, v0) by the mirrored LeCun’s initialization, as shown in Algorithm 1

Training:
Update v via Projected Gradient Descent: vt+1 ← PB(v)(v

t − η∇v`(θt)).
Update w via Projected Gradient Descent: wt+1 ← PBε(w0)(w

t − η∇w`(θt)).
Until the final epoch t = T .

Algorithm 2 can be adopted to deep nets by viewing w as the hidden weights in the penultimate layer
(or the final block of ResNet [22] in our computer vision experiments), and view x as the feature
outputted by all the previous layers. As shown in Algorithm 2, there are several key ingredients:
the pairwise structure of v in (7); the mirrored initialization; and the PGD algorithm. We now
demonstrate their implementation in PyTorch. Each of them only involves several lines of code
changes based on the regular training regime.

The pairwise structure of v & The Mirrored LeCun’s initialization. .

1 import torch
2 import torch.optim as optim
3 import copy
4 class ShallowNet(nn.Module):
5 def __init__(self , n_input , n_hidden):
6 super(ShallowNet , self).__init__ ()
7

8 self.fc1 = nn.Linear(n_input , n_hidden1 ,bias=False)
9 self.tanh=nn.Tanh()

10 self.n_hidden1=n_hidden1
11 #Cut down half the width of the output layer
12 self.fc2 = nn.Linear(int(n_hidden /2), 1, bias=False)
13

14 #The mirrored initialization
15 hidden_half = self.fc1.weight [0: int(n_hidden /2)]
16 hidden_layer=torch.cat([hidden_half ,hidden_half],dim=0)
17 self.fc1.weight = torch.nn.Parameter(hidden_layer)
18

19

20 def forward(self , x):
21

22

23 x=self.fc1(x)
24 h=self.tanh(x)
25

26 #Keep the pairwise structure of v
27 h1=h[:,0:int(self.n_hidden1 /2)]
28 h2=h[:,int(self.n_hidden1 /2):self.n_hidden1]
29

30 x_pred1=self.fc2(h1)

34

31 x_pred2=self.fc2(h2)
32 x_pred=x_pred1 -x_pred2
33

34 return x_pred

To extend the mirrored initialization to deeper nets such as ResNet, we just need to repeat the code
line [12 - 14] for every hidden layer, including the BatchNorm layer and the CNNs in the shortcut
layers in the Residue block.

Projected Gradient Descent. We now demonstrate how to implement PGD. First, we need to copy
the parameters at the initialization, will be used for projection.

1 # Copy the parameters at the initialization , will be used for
projection

2 model_initial = copy.deepcopy(model)

Then we do the projection after each gradient update.

1 def train(model , model_initial , epoch , x,y, optimizer):
2

3 #standard code in regular training
4 clf_criterion=nn.MSELoss ()
5 model.train()
6 for i in range(epoch):
7 optimizer.zero_grad ()
8 pred=model(x=x)
9 loss = clf_criterion(pred ,y) # calculate current loss

10 loss.backward () # calculate gradient
11 optimizer.step() # update parameters
12

13 # Projection
14 for para ,para0 in zip(model.parameters (), model_initial.

parameters ()):
15 #project the hidden layer
16 if para.data.size() [0]== model.n_hidden1:
17 if torch.norm(para.data - para0.data) > eps:
18 para.data = para0.data + eps * (para.data - para0.

data) / torch.norm(para.data - para0.data)
19

20 #project the output layer
21 if para.data.size() [0]==1:
22 para.data=projectv(para.data)
23

24 def projectv(v):
25 vmax=torch.max(v)
26 argmax=torch.argmax(v)
27 vmin=torch.min(v)
28 argmin=torch.argmin(v)
29 #print(vmax/vmin)
30 #print(’vmax ’,vmax)
31 #print(’vmin ’,vmin)
32 if vmin <0.001:
33 #print(’projectv1 ’)
34 v[argmin]=0.001
35 if vmax/vmin >1:
36 v[argmax]=1* vmin
37 #print(’projectv2 ’)
38 return v

H.2 Details on Experimental Setup

Our empirical studies are based on the synthetic dataset, MNIST, CIFAR-10, CIFAR-100 and the
R-ImageNet datasets. MNIST, CIFAR-10 and CIFAR-100 are licensed under MIT. Imagenet is

35

licensed under Custom (non-commercial). All the experiments are run on NVIDIA V100 GPU. Here,
we introduce our settings on synthetic dataset and R-ImageNet.

• Synthetic datset: For i = 1 . . . , 1000, we independently generate xi ∈ R200 from standard
independent Gaussian, and normalize it to ‖xi‖2 = 1, and we set the ground truth as
yi = (1Txi)

2 for i = 1, · · · , 1000. In short, sample size n = 1000, input dimension
d = 200.

• R-ImageNet: This is a specifically constructed "restricted" version of ImageNet, with
resolution 224× 224.
The vanilla ImageNet dataset spans 1000 object classes and contains 1,281,167 training
images, 50,000 validation images and 100,000 test images. In our experiments, we use
a subset of ImageNet, namely Restricted-ImageNet (R-ImageNet). Similar with [27], we
leverage the WordNet [46] hierarchical structure of the dataset such that each class in the R-
ImageNet is a superclass category composed of multiple ImageNet classes, noted in Table 2
as “components”. For example, the “bird” class of R-ImageNet (both the train and validation
parts) is the aggregation of ImageNet-1k classes: [10: ‘brambling’, 11: ‘goldfinch’, 12:
‘house finch’, 13: ‘junco’, 14: ‘indigo bunting’], more details can be seen in Table 2. As a
result, there are 20 super classes which contain a total of 190 vanilla ImageNet classes.

Table 2: Classes used in the R-ImageNet dataset. The class ranges are inclusive.

Class name Corresponding ImageNet components
bird [10, 11, 12, 13, 14]

turtle [33, 34, 35, 36, 37]
lizard [42, 43, 44, 45, 46]
snake [60, 61, 62, 63, 64]
spider [72, 73, 74, 75, 76]
crab [118, 119, 120, 121, 122]
dog [205, 206, 207, 208, 209]
cat [281, 282, 283, 284, 285]

bigcat [289, 290, 291, 292, 293]
beetle [302, 303, 304, 305, 306]

butterfly [322, 323, 324, 325, 326]
monkey [371, 372, 373, 374, 375]

fish [393, 394, 395, 396, 397]
fungus [992, 993, 994, 995, 996]

musical-instrument [402, 420, 486, 546, 594]
sportsball [429, 430, 768, 805, 890]
car-truck [609, 656, 717, 734, 817]

train [466, 547, 565, 820, 829]
clothing [474, 617, 834, 841, 869]

boat [403, 510, 554, 625, 628]

In each dataset, the neural network architectures are chosen as follows, all of the following cases
satisfy m ≥ 2n

d or mL−1 ≥ 2n
mL−2

, where ml is the width of the l-th layer.

• Synthetic dataset: we use 1-hidden-layer neural networks with Tanh activation (except for
the last layer, where the output dimension equals 1 and no Tanh applied). We study different
widths of the hidden layer among m = 20, 40, 80, 100, 200, 400, 800, 100, 1200. All of
these cases satisfy m ≥ 2n

d .

• MNIST: we use 2-hidden-layer neural networks with ReLU activation (except for the last
layer, where the output dimension equals the number of classes and no activation applied).
The input dimension d = 784, the width of the 1st layer is fixed with m1 = 784 and we
study different widths of the 2nd hidden layer among m2 = 64, 128, 256, 512, 784, 1024.
All of these cases satisfy mL−1 ≥ 2n

mL−2
, where ml is the width of the l-th layer.

• CIFAR-10, CIFAR-100 and R-ImageNet: we use ResNet-18 and we try different number
of channels in the 4th block (the i.e., the final block) among m = 64, 128, 256, 512 (for

36

regular ResNet-18, the default number of channels in the 4st block should be 512). All of
these cases satisfy mL−1 ≥ 2n

mL−2
, where ml is the width of the l-th layer.

In each dataset, the setup for algorithms are as follows: as for training regime, we apply the mirrored
LeCun’s initialization for all the neural network structures mentioned above, and for regular training,
we use the regular LeCun’s initialization. We use square loss for the synthetic dataset, and multi-class
cross entropy loss is used for the rest of the cases. During training, CIFAR-10, CIFAR-100 images
are padded with 4 pixels of zeros on all sides, then randomly flipped (horizontally) and cropped.
R-ImageNet images are randomly cropped during training and center-cropped during testing. Global
mean and standard deviation are computed on all the training pixels and applied to normalize the
inputs on each dataset. As it is required in problem (7), in our training regime, the optimization
variable for and the output layer is cut off to half, i.e., v = (v1, · · · , vm2), the other half is always
−v; as for the hyperparameters of B(v), we set ζ = 0.001 and κ = 1. After each iteration, relevant
parameters will projected in to their feasible sets. In addition to the general setup above, more
customized hyperparameters are listed as follows:

• Synthetic dataset: For both our training regime and the regular training regime,
Bε(w) constraint is added on the weights in the hidden layer with ε =
0.1, 0.2, 0.4, 0.8, 1, 2, 4, 8, 10, 1000 (ε = 1000 is equivalent to the unconstrained updates
for w). Gradient Descent with 0.9 momentum is used, and we use different constant learning
rates lr1, lr2 for hidden weights and outer weights, in all cases with different m and ε, we
grid search learning rate lr1=[1e-4,1e-3,5e-3,1e-2,5e-2,1e-1,5e-1], lr2=[1e-4,1e-3,5e-3,1e-
2,5e-2,1e-1,5e-1] and report the best results. The neural network is trained for 200000
iterations.

• MNIST: For our training regime, Bε(w) constraint is added on the weights in the 2nd layer
with ε = 0.1, 0.2, 0.4, 0.8, 1, 2, 4, 8, 10, 1000 (ε = 1000 is equivalent to the unconstrained
updates for w). In each case, we either use Adam with 0.001 initial learning rate and 1e-4
weight decay, or Stochastic Gradient Descent (SGD) with 0.01 initial learning rate, 0.9
momentum and 5e-4 weight decay, and we report the best results. For both training regime
and the regular training regime, we use cosine annealing learning rate scheduling [43] with
Tmax=number of epochs , and the neural network is trained for 200 epochs and batch size of
64 is used.

• CIFAR-10, CIFAR-100: For our training regime , Bε(w0) constraint is added on the
4-th block with different constraint size among ε = 0.1, 0.2, 0.4, 0.8, 1, 2, 4, 8, 10, 1000
(ε = 1000 is equivalent to the unconstrained updates for w). For both our training regime
and the regular training regime, SGD with 0.1 initial learning rate, 0.9 momentum and
5e-4 weight decay is used, and we use cosine annealing learning rate scheduling with
Tmax=number of epochs, and the neural network is trained for 600 epochs and batch size of
128 is used.

• R-ImageNet: For our training regime, Bε(w0) constraint is added on the 4th block (i.e.,
the final block) with different constraint size among ε = 0.01, 0.1, 1, 1000 (ε = 1000 is
equivalent to the unconstrained updates for w), and the weights in the 4th block are projected
into the constraint after each mini-batch iteration. For both our training regime and the
regular training regime, SGD with 0.1 initial learning rate, 0.9 momentum and 5e-4 weight
decay is used, we use a stage-wise constant learning rate scheduling with a multiplicative
factor of 0.1 on epoch 30, 60 and 90. The neural network is trained for 90 epochs and batch
size of 256 is used.

H.3 Test Accuracy on MNIST

Figure 7 shows the test accuracy in our training regime vs regular training regime in MNIST. With
proper choice of ε, our training regime leads to higher test accuracy.

H.4 Test Accuracy on CIFAR-10 & CIFAR-100

In CIFAR-10 and CIFAR-100 dataset, our training regime and regular training regime have similar
performance (see Figure 8). In several cases, our training regime leads to higher test accuracy. Here,
regular training will not fail when we reduce the width of 4-th block, perhaps this is due to the

37

1024 784 512 256 128 64
Width

97.6

97.8

98.0

98.2

98.4

98.6

98.8

Te
st

 a
cc

MNIST: Our training regime vs regular training

= 0.1
= 0.2
= 0.4
= 0.8
= 1
= 2
= 4
= 8
= 1000

Regular training regime

Figure 7: MNIST: test accuracy in our training regime with different ε vs regular training regime. In
x-axis, width stands for width of 2nd layer (we use 2-hidden-layer neural nets here).

strong expressivity of ResNet-18. In comparison, on a more complicated dataset such as R-ImageNet,
narrowing ResNet-18 will jeopardize the regular training (as illustrated in Section 5 and the following
subsection).

512 256 128 64
Width

94.00

94.25

94.50

94.75

95.00

95.25

95.50

95.75

96.00

Te
st

 a
cc = 0.1

= 0.2
= 0.4
= 0.8
= 1
= 2
= 4
= 8
= 1000

Regular training regime

(a) CIFAR-10

512 256 128 64
Width

70

72

74

76

78

80

Te
st

 a
cc = 0.1

= 0.2
= 0.4
= 0.8
= 1
= 2
= 4
= 8
= 1000

Regular training regime

(b) CIFAR-100

Figure 8: CIFAR-10 & CIFAR-100: test accuracy in our training regime with different ε vs regular
training regime. In x-axis, width stands for the number of channels in the final CNN block of
ResNet-18.

H.5 Test Accuracy on R-ImageNet

In this subsection, Figure 9 is the same figure as Figure 5 in the full paper, but with 90% confidence
error bars (based on 5 seeds). Besides, Figure 10 shows a selected result of Loss & Accuracy
per epoch in our training regime with ε = 0.04 & regular training regime (here, we present the
early-stopped results). As a result, our training regime can reduce the number of parameters in the
4-th block of ResNet-18 by up to 94% while maintaining competitive test accuracy, especially when
ε is small. In comparison, regular SGD does not perform well in narrow cases.

H.6 Results on Random-Labeled CIFAR-10

Since the main claim of our work is about memorization of any labels, we further explore the
performance of our training regime even when the labels are not the correct ones. To do so, we
further carry out experiments on the random-labeled CIFAR-10, where all the labels are randomly

38

512 256 128 64
Width

83.0

83.5

84.0

84.5

85.0

85.5

86.0

86.5

87.0

87.5

Te
st

 a
cc

= 0.1
= 0.08
= 0.04
= 0.02
= 0.01

Regular training regime

Figure 9: R-ImageNet: test accuracy under our training regime with different ε vs regular training
regime. In x-axis, width stands for the number of channels in the final CNN block of ResNet-18. The
solid & dotted lines are averaged results over 5 seeds, the shaded areas indicates the 90% confidence
intervals.

(a) Loss (b) Accuracy

Figure 10: R-ImageNet (selected): loss & Accuracy per epoch in our training regime with ε = 0.04
& regular training regime.

shuffled (same as in Zhang et al. [75]). We train a 1-hidden-layer network with width =1024, 2048,
4096 (smaller than n=50000) on the random-labeled CIFAR10 dataset. The hyperparameters in our
constrained training regime (7) are ε = 10, κ = 1 and initial learning rate =0.1. We use a stage-wise
constant learning rate scheduling with a multiplicative factor of 0.1 on epoch 150, 225, 450. The
result is shown in Table 3: after 1000 epochs, we can achieve more than 99% train accuracy, almost
perfectly fit the random labels. Note that even though ReLU does not fall into our analysis framework,
it works a bit better than Tanh. Extending our results to ReLU activation would be our intriguing
future work.

Table 3: Results on the random-labeled CIFAR-10

Width Epoch Activation Train acc Test acc

1024 1000 ReLU 0.9931 0.1011
2048 1000 ReLU 0.9984 0.1022
4096 1000 ReLU 0.9998 0.0962
1024 1000 Tanh 0.9872 0.0991
2048 1000 Tanh 0.9927 0.1024
4096 1000 Tanh 0.9938 0.0962

39

	Introduction
	Background and Related Works
	Challenges For Analyzing Narrow Nets
	Main Results
	Problem Settings and Preliminaries
	Expressivity Analysis
	Trainability Analysis
	Discussion: Extension to Deep Networks

	Experiments
	Training Error on The Synthetic Dataset
	Test Accuracy on R-ImageNet

	Conclusion
	Some More Discussions
	Additional Related Work
	More Discussion on the Related Work: Daniely daniely2019neural
	Identifying a More Precise Width Bound
	Why The Bound is ``Super-Polynomial''
	Other Differences

	Definition and Notations
	Proof of Theorem 1
	Proof of The First Part of Theorem 1
	Proof of The Second Part of Theorem 1

	Proof of Theorem 2
	Proof Sketch of Theorem 2
	Detailed Proof of Theorem 2
	Proof of Lemma F.1
	Proof of Lemma F.2

	Extension To Deep Networks
	Implementation Details & More Experiments
	Guidance on PyTorch Implementation
	Details on Experimental Setup
	Test Accuracy on MNIST
	Test Accuracy on CIFAR-10 & CIFAR-100
	Test Accuracy on R-ImageNet
	Results on Random-Labeled CIFAR-10

