
DROID-SLAM: Supplementary Material1

A Additional Results2

MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 Avg
D3VO + DSO [6] - - 0.08 - 0.09 - - 0.11 - 0.05 - -
ORB-SLAM2 [4] 0.035 0.018 0.028 0.119 0.060 0.035 0.020 0.048 0.037 0.035 - -
VINS-Fusion [5] 0.540 0.460 0.330 0.780 0.500 0.550 0.230 - 0.230 0.200 - -
SVO [3] 0.040 0.070 0.270 0.170 0.120 0.040 0.040 0.070 0.050 0.090 0.790 0.159
ORB-SLAM3 [2] 0.029 0.019 0.024 0.085 0.052 0.035 0.025 0.061 0.041 0.028 0.521 0.084

Ours 0.015 0.013 0.035 0.048 0.040 0.037 0.011 0.020 0.018 0.015 0.017 0.024

Table 1: Stereo SLAM on the EuRoC datasets, ATE[m].

We provide stereo results on the EuRoC dataset[1] in Tab. 1 using our network trained on synthetic,3

monocular video. In the stereo setting, it is possible to recover the trajectory of the camera up to4

scale. Compared to ORB-SLAM3[2] we reduce the average ATE by 71%.5

B Ablations6
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Figure 1: Visualizations of keyframe image, depth, flow and confidence estimates.
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Figure 2: (Left) we show the performance of the system with different inputs (monocular vs. stereo)
and whether global optimization is performed in addition to local BA (local vs. full). (Right) Tracking
accuracy as a function of the number of keyframes. We use 5 keyframes (bold) in our experiments.

Ablations We ablate various design choices regarding our SLAM system and network architecture.7

Ablations are performed on our validation split of the TartanAir dataset. In Fig. 1 we show visu-8

alizations on the validation set of keyframe depth estimates alongside optical flow and associated9

confidence weights.10

In Fig.2 (left) we show how the system benefits from both stereo video and global optimization.11

Although our network is only trained on monocular video, it can readily leverage stereo frames if12

available. In Fig. 2 (right) we show how the number of keyframe affects odometery performance.13

In Fig. 3 we ablate components of the network architecture. Fig. 3 (left) shows the impact of using14

global context in the GRU through spatial pooling while 3 (right) demonstrates the importance of15
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Figure 3: (Left) Impact of global context in the update operator. (Right) Impact of using the bundle
adjustment layer during training vs training directly on optical flow, then applying BA at test time.

training with DBA as opposed to training on flow and applying BA at inference. We find that the16

SLAM system is unstable and prone to failure if the DBA is not used during training.17

C Camera Model and Jacobians18

We represent 3D points using homogeneous coordinates X = (X,Y, Z,W )T . An image point p19

with inverse depth d is re-projected from frame i into frame j according to the warping function20

p′ = Πc(Gij · Π−1(p,d)) Gij = Gj ◦G−1i (1)

where Πc is the pinhole projection function, and Π−1c is the inverse projection21
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X
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 . (2)

given camera intrinsic parameters c = (fx, fy, cx, cy).22

For optimization, we need the Jacobians with respect to Gi, Gj , and d. We use the local parameteri-23

zation eξiGi and eξjGj and treat d as a vector in R1. The Jacobians of the projection and inverse24

projection functions are given as25
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 . (3)

Using the local parameterization, we compute the Jacobian of the 3D point transformation26

X′ = Exp(ξj) ·Gj · (Exp(ξi) ·Gi)
−1 ·X = Exp(ξj) ·Gj ·G−1i · Exp(−ξi) ·X (4)

using the adjoint operator to move the ξi term to the front of the expression27

X′ = Exp(ξj) · Exp(−AdjGjG
−1
i
ξi) ·Gj ·G−1i ·X (5)

allowing us to compute the Jacobians using the generators28

∂X′

∂ξj
=

 W ′ 0 0 0 Z ′ −Y ′
0 W ′ 0 −Z ′ 0 X ′

0 0 W ′ Y ′ −X ′ 0
0 0 0 0 0 0

 (6)

29
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Using the chain rule, we can compute the full Jacobians with respect to the variables30

∂p′
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,
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(8)

31
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where (tx, ty, tz) is the translation vector of Gj ◦G−1i .32

D Network Architecture33
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Figure 4: Architecture of the feature and context encoders. Both extract features at 1/8 the input
image resolution using a set of 6 basic residual blocks. Instance normalization is used in the feature
encoder; no normalization is used in the context encoder. The feature encoder outputs features with
dimension D=128 which the context encoder outputs features with dimension D=256.
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Figure 5: Architecture of the update operator. During each iteration, context, correlation, and flow
features get injected into the GRU. The revision (r) and confidence weights (w) are predicted from
the updated hidden state.
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