
Supplemental Material for
3DP3: 3D Scene Perception via

Probabilistic Programming

Nishad Gothoskar1 Marco Cusumano-Towner1 Ben Zinberg1

Matin Ghavamizadeh1 Falk Pollok2 Austin Garrett1

Joshua B. Tenenbaum1 Dan Gutfreund2 Vikash K. Mansinghka1

1MIT 2MIT-IBM Watson AI Lab
{nishad,marcoct,bzinberg,mghavami,jbt,vkm}@mit.edu

{falk.pollok,austin.garrett}@ibm.com dgutfre@us.ibm.com

A Broader Impact

While the goal of robust scene parsing and pose estimation is challenging, and the present work
is an early step with much more work lying ahead, it is important to consider potential societal
impacts of this work, both positive and negative. Robust pose estimation will be instrumental in
improving the reliability of a wide variety of applications—including assistive technologies for
people with limited mobility, improved fault detection in manufacturing plants, and safer autopilot
for autonomous vehicles. On the other hand, these same technologies, if used toward the wrong ends,
could have negative societal impacts as well, such as unjust or inequitable surveillance, or weapon
guidance systems that fall into the wrong hands. Even applications that are largely beneficial must
be implemented thoughtfully to avoid negative side effects. For example, in the present work, the
choice of prior distribution on contact structures implies an inductive bias that, if chosen incorrectly,
could lead to technologies that are less reliable when the scene being parsed contains a person
in a wheelchair. As a scientific community, it is important that we place continued emphasis on
developing technical safeguards against both overt misuse and unintended consequences like the
above. Furthermore, we must remember that technical safeguards on their own are not sufficient: we
must communicate to broader society not just the benefits, but also the risks of this technology, so
that users can be informed participants and apply this technology towards a better world.

B Pose estimation from synthetic RGB images

In the previous two sections, 3DP3 was used with a depth-rendering-based likelihood on depth images
since an RGB-D image was given as input. In this section, we show that 3DP3 can be used to do
pose estimation without depth data i.e. from just an RGB image. Instead of a depth likelihood, we
substitute an RGB renderer and simple color likelihood. We qualitatively compare with Attend, Infer,
Repeat (AIR) [7], an amortized inference approach based on recurrent neural networks which can
be applied to infer poses of 3D objects. We generated scenes that resemble the tabletop scenes on
which AIR qualitatively assessed pose inference accuracy. Figure 1 shows pairs of input RGB images
and corresponding reconstructions from pose inferences made by 3DP3. Qualitatively, our system
produces pose inferences of better or equal accuracy to AIR. Importantly, our system does not require
training. In contrast, AIR takes approximately 3 days for training to converge. Also at these lower
resolutions, our inference can run in 0.5s per frame.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

RGB Image Input

3DP3 Reconstruction

Figure 1: A variant of our scene graph inference algorithm that uses a RGB-based likelihood applied
to synthetic RGB scenes designed to resemble those used in the evaluation of AIR [7]. Our algorithm
gives accurate reconstructions with 0.5 seconds of inference time on these scenes and no training.

C Shape Learning Accuracy Quantitative Evaluation

Object Type IoU

002_master_chef_can 0.9544
003_cracker_box 0.9716
004_sugar_box 0.9484
005_tomato_soup_can 0.9433
006_mustard_bottle 0.9671
007_tuna_fish_can 0.9696
008_pudding_box 0.9617
009_gelatin_box 0.9451
010_potted_meat_can 0.9654
011_banana 0.9599
019_pitcher_base 0.9808
021_bleach_cleanser 0.9582
024_bowl 0.9694
025_mug 0.9621
035_power_drill 0.966
036_wood_block 0.9679
037_scissors 0.9505
040_large_marker 0.9767
051_large_clamp 0.9218
052_extra_large_clamp 0.9228
061_foam_brick 0.9405

Table 1: We include a quantitative evaluation comparing the learned shape models to the ground
truth shape models. To get a shape model from the learned shape prior, we take all voxels which the
prior says are more likely to be occupied than unoccupied and compute the IoU between that volume
and the ground truth object volume.

D YCB-Challenging Dataset

YCB-Challenging is a synthetic test dataset of 2000 RGB-D images, 500 in each of the following 4
categories:

Single object: Single object in contact with table Stacked: Stack of two objects on a table

Partial view: Single object not fully in field-of-view Partially Occluded: One object occluded by another

2

E YCB-Challenging Extended Experimental Results

0.0

0.25

0.5

0.75

1.0

A
cc

u
ra

cy

005_tomato_soup_can 003_cracker_box 010_potted_meat_can 004_sugar_box 002_master_chef_can

0.0

0.25

0.5

0.75

1.0

A
cc

u
ra

cy

0.0

0.25

0.5

0.75

1.0

A
cc

u
ra

cy

0.0 0.5 1.0 1.5 2.0

ADD-S Threshold (cm)

0.0

0.25

0.5

0.75

1.0

A
cc

u
ra

cy

0.0 0.5 1.0 1.5 2.0

ADD-S Threshold (cm)
0.0 0.5 1.0 1.5 2.0

ADD-S Threshold (cm)
0.0 0.5 1.0 1.5 2.0

ADD-S Threshold (cm)
0.0 0.5 1.0 1.5 2.0

ADD-S Threshold (cm)

DenseFusion Robust6D 3DP3* (ours) 3DP3 (ours)

Scene Type

Single
Object

Stacked

Partial
View

Partially
Occluded

Figure 2: Accuracy of our method and two deep learning baselines (DenseFusion [13] and Ro-
bust6D [12]) on the task of 6DoF pose estimation in our synthetic ‘YCB-Challenging’ dataset. For
each of the 4 scene types (rows) and 5 object types (columns), we measure accuracy for a range of
ADD-S thresholds. 3DP3* denotes an ablated version of our method without inference of the scene
graph structure and thus object-object contact (i.e. we fix the scene graph to G0)

F YCB-Video Dataset

YCB-Video Test Data Set
 Scene 2

024_bowl

004_sugar_box

007_tuna_fish_can

010_potted_meat_can

 Scene 1
025_mug

002_master_chef_can

051_large_clamp

007_tuna_fish_can

052_extra_large_clamp

 ...
 Scene 12

003_cracker_box

005_tomato_soup_can

007_tuna_fish_can

010_potted_meat_can

035_power_drill

040_large_marker

 ...

 ...

2,949 total images

Figure 3: The YCB-Video [3] test data set consists of 2,949 real RGB-D images featuring the 21
YCB objects. These 2,949 images are collected from videos of 12 different scenes where the camera
pans around the scene to view it from different perspectives. The 12 scenes contain different subsets
of the 21 YCB objects, and some objects appear in multiple scenes (e.g 007_tuna_fish_can appears in
Scenes 1, 2, and 12).

3

G Ablation Qualitative Results on YCB-Video

002_master_chef_can 003_cracker_box 004_sugar_box 005_tomato_soup_can 006_mustard_bottle 007_tuna_fish_can

008_pudding_box 009_gelatin_box 010_potted_meat_can 011_banana 019_pitcher_base 021_bleach_cleanser

024_bowl 025_mug 035_power_drill 036_wood_block 037_scissors 040_large_marker

051_large_clamp 052_extra_large_clamp 061_foam_brick

3DP3 3DP3* (ablation)

Figure 4: Comparison with ablated model on YCB-V real scenes. For each of the 21 YCB objects,
we show 2 images of scenes containing that object and the poses estimated by our full method (3DP3)
and an ablated version of our method (3DP3*) that does not model contact relationships.

H Qualitative Results on YCB-Video

4

002_master_chef_can
 Scene 9 Frame 32

003_cracker_box
 Scene 7 Frame 56

004_sugar_box
 Scene 8 Frame 122

005_tomato_soup_can
 Scene 3 Frame 345

006_mustard_bottle
 Scene 3 Frame 142

007_tuna_fish_can
 Scene 2 Frame 1488

008_pudding_box
 Scene 11 Frame 21

009_gelatin_box
 Scene 11 Frame 867

010_potted_meat_can
 Scene 2 Frame 858

011_banana
 Scene 9 Frame 441

019_pitcher_base
 Scene 11 Frame 1248

021_bleach_cleanser
 Scene 7 Frame 479

024_bowl
 Scene 6 Frame 309

025_mug
 Scene 1 Frame 155

035_power_drill
 Scene 12 Frame 676

036_wood_block
 Scene 8 Frame 1824

037_scissors
 Scene 4 Frame 1474

040_large_marker
 Scene 12 Frame 1822

051_large_clamp
 Scene 1 Frame 1783

052_extra_large_clamp
 Scene 1 Frame 135

061_foam_brick
 Scene 10 Frame 1774

Figure 5: YCB frames for each object, overlayed with pose estimates of DenseFusion (cyan) and
3DP3 (green), where there is a large performance difference between the two methods.

5

002_master_chef_can
 Scene 1 Frame 1806

003_cracker_box
 Scene 12 Frame 176

004_sugar_box
 Scene 4 Frame 636

005_tomato_soup_can
 Scene 12 Frame 1027

006_mustard_bottle
 Scene 5 Frame 567

007_tuna_fish_can
 Scene 12 Frame 400

008_pudding_box
 Scene 11 Frame 849

009_gelatin_box
 Scene 11 Frame 776

010_potted_meat_can
 Scene 2 Frame 1641

011_banana
 Scene 3 Frame 1656

019_pitcher_base
 Scene 5 Frame 341

021_bleach_cleanser
 Scene 8 Frame 912

024_bowl
 Scene 2 Frame 1067

025_mug
 Scene 8 Frame 1717

035_power_drill
 Scene 9 Frame 62

036_wood_block
 Scene 8 Frame 205

037_scissors
 Scene 4 Frame 1021

040_large_marker
 Scene 10 Frame 486

051_large_clamp
 Scene 7 Frame 1668

052_extra_large_clamp
 Scene 10 Frame 1500

061_foam_brick
 Scene 10 Frame 818

Figure 6: YCB frames for each object, overlayed with pose estimates of DenseFusion (cyan) and
3DP3 (green), where there is almost no performance difference between the two methods.

6

I Distilling shape distributions via variational inference

Recall that:

p′(O|I1:T) =

K∑
k=1

wkp
′(O|M(k),x

(k)
1:T , I1:T) (1)

Consider the following variational family:

qϕ(O) :=
∏
i∈[h]

∏
j∈[w]

∏
`∈[l]

ϕ
Oij`

ij` · (1− ϕij`)
(1−Oij`) (2)

where each 0 ≤ ϕij` ≤ 1 can be interpreted as a per-voxel occupancy probability. Then

KL(p′(O|I1:T)||qϕ(O)) = EO∼p′(·|I1:T)

[
log

p′(O|I1:T)

qϕ(O)

]
Note that minimizing this KL divergence with respect to ϕ is equivalent to maximizing the following
quantity:

EO∼p′(·|I1:T) [log qϕ(O)]

=

K∑
k=1

wkEO∼p′(·|M(k),x
(k)
1:T ,I1:T)

[log qϕ(O)]

=

K∑
k=1

wkEO∼p′(·|M(k),x
(k)
1:T ,I1:T)

∑
i∈[h]

∑
j∈[w]

∑
`∈[l]

log qϕ(Oij`)

=

K∑
k=1

wkEO∼p′(·|M(k),x
(k)
1:T ,I1:T)

∑
i∈[h]

∑
j∈[w]

∑
`∈[l]

Oij` logϕij` + (1−Oij`) log(1− ϕij`)

=
∑
i∈[h]

∑
j∈[w]

∑
`∈[l]

K∑
k=1

wkp
′(Oij` = 1|M(k),x

(k)
1:T , I1:T) logϕij` + p′(Oij` = 0|M(k),x

(k)
1:T , I1:T) log(1− ϕij`)

The optimization decomposes into separate problems for each ϕij`, with global optimum:

ϕ∗ij` =

K∑
k=1

wkp
′(Oij` = 1|M(k),x

(k)
1:T , I1:T)

J Probabilistic SLAM using Sequential Monte Carlo

To infer the camera poses x1:T corresponding to the sequence of T depth images, we implemented a
probabilistic SLAM using Sequential Monte Carlo. We assume the depth images contain background,
which can be mapped and used for localization between frames. (In our data, the object is placed in
the center of a rectangular room with a floor, ceiling, and four walls.) We also assume that the camera
is the same distance away from the object in all T images. Finally, in order to ensure a reference
frame match between the learned object model and ground truth model (such that at test time, object
pose estimates of our system can be compared to the ground truth object poses), we provide the initial
pose of the object in the camera frame.

To perform SLAM, we initialize a set of K particles with the observation, camera pose, and implied
map at t = 1. Then, we enumerate over the position and viewing angle at t = 2, given the map at
t = 1, observation at t = 2, and a prior on the camera pose conditioned on the pose at t = 1, and
compute scores for each pose. We then construct a Gaussian mixture proposal where each component
is centered on a different pose and has weight corresponding to the normalized score computed by the
enumeration. We step the particles forward to t = 2 with this proposal distribution. Then, for each of
the particles, we update the map given the observations and inferred poses. We repeat this for all T
timesteps, at which point we have K particles with inferred camera poses for each of the T timesteps.

The depth image likelihood p′(It|O,M,xt) = δd(O,M,xt)(It) where d is a depth rendering function.

7

K Pose initialization for Scene Graph Inference

In the first stage of our scene graph inference algorithm, we obtain initial estimates of the 6DoF object
poses via maximum-a-posteriori (MAP) inference in a restricted variant of our model that assumes no
edges between objects in the scene graph. We maintain a set of particles with each particle assigned
to a different object, and we have at least one particle assigned to each object. Then, for each particle
we apply Metropolis-Hastings (MH) kernels to pose of the object that the particle is assigned to.
After applying these MH kernels, we resample the set of particles using their normalized weights.
We repeat this process of applying the MH kernels and resampling for a fixed number of iterations
(proportional to the number of objects). We construct the MH kernels for each object by using spatial
clustering and iterative closest point (ICP) to compute a set of “high-quality” poses for each object
type given the observed scene. We first apply DBSCAN to the set of points that are unexplained by
the current hypothesized scene. Then we create a set of initial object pose hypotheses with translation
selected from the C cluster centers output by DBSCAN and orientation selected from the set of 24
nominal orientations, for a total of 24 ·C poses. (The 24 orientations are the rotational symmetries of
a cube.). Next, we refine these initial pose estimates using ICP. The ICP does not use the full object
model, but rather renders the object at the hypothesized pose and computes the corresponding point
cloud. We score the resulting pose estimates under the generative model and use the normalized
weights to construct a mixture proposal that serves as the MH kernel.

In addition to the above MH kernel, we also experimented with kernels based on Boltzmann proposals
where the Hamiltonian is determined by performing a 3D convolution of a mask with the observed
point cloud. Such proposals can potentially be used as “compiled detectors" of the object models
O1:M , enabling us to perform online object learning and scene parsing. This class of proposals takes
the following general form:

1. Discretize the observation into a 3D grid Γ.

2. Given the object model O, create k convolutional masks to be convolved with the grid. Each
mask is meant to detect O at a certain orientation. The candidate orientations are obtained
from an appropriately fine geodesic grid on a sphere.

3. Slide each mask over Γ and calculate the convolution of the mask and Γ.

4. Fix β > 0, and propose a pose from a Boltzmann distribution with temperature β, where the
Hamiltonian of each pose is given by the convolution of its associated mask with Γ.

We tried multiple approaches for deriving convolutional masks from objects models. Maximally
informative and maximally correlated masks require us to solve ill-posed optimization problems.
Small windows sampled from the object model are not informative. These masks can give good
proposals when combined with expensive ensembling and outlier detection, but they are unsuitable
for online settings. Our best results come from globally-sparse, locally-dense [11], randomly selected
masks. These masks are computationally efficient to apply and give results that are qualitatively
comparable to the ICP-based kernel, but the sampling distribution of the masks have high-variance.
In future work, we plan to further investigate this class of proposals.

L Parsing scenes with fully occluded objects and number uncertainty

Consider the setting when the number of objects in the scene (N) is unknown a-priori. Possibilities
for prior probability distributions on N (p(N)) include (i) an a-priori known number of objects
N0 (used in the experiments in Section 6), (ii) Binomial(N0, ppresent), which is induced by a prior
belief that each of N0 objects is present with probability ppresent (used in experiments described in
Supplement L), and (iii) Poisson(λ), which places no a-priori upper bound on the number of objects.

In this section, we apply our framework to do probabilistic inference about the 6DoF pose and
presence or absence of a fully occluded object, and investigate the dynamics of these inferences as
we vary the fraction of the volume in the scene that is occluded.

Suppose a robot is tasked with assembling a piece of furniture, performing maintenance on a vehicle,
or retrieving something from the kitchen. In each of these cases, the robot has a strong prior
expectation that some object (e.g. a tool, component, or kitchen item) is present in the environment.
However, in complex cluttered real-world environments the target object is likely to be fully occluded

8

from the robot’s view. That target object may even even be absent, especially in human-robot
interactive task situations (e.g. the component or item is missing or misplaced). To perform rationally
in such situations, the robot will need to generate possible poses of the object that are concordant with
its absence from its visual field. Also, the robot must consider the possibility that the object is indeed
not present, by weighing the lack of observed presence of the object against the prior expectations.

Prior Consider a scenario where there are N0 = M unique objects that may or may not be present
in a scene (N0 denotes the total number of object instances, and M denote the number of object
types). Suppose that the prior probability that the object of type m is present with probability p(m)

pres

for m ∈ {1, . . . ,M}. Then, the prior p(N, c) is:

p(N, c) =

{
1
N !

∏M
m=1 p

(m)
pres

1[m∈c]
(1− p(m)

pres)
1[m 6∈c]

if |c| = N and
∑N
i=1 1[ci = m] ≤ 1∀m

0 otherwise
(3)

In the special case when p(m)
pres is the same for all m (this is the case in our experiments below), we

can write the marginal distribution p(N) and conditional distribution p(c|N) as:

N ∼ Binomial(M = N0, ppres) (4)

and

p(c|N) =

{
(M−N)!
M ! if |c| = N and

∑N
i=1 1[ci = m] ≤ 1 ∀m

0 otherwise
(5)

For each possible (N, c), we fix the scene graph G to be the graph G0(N) on N vertices that has
with no object-object edges:

p(G|N) =

{
1 if G = G0(N)
0 otherwise (6)

That is, each object v has an independent 6DoF pose xv. The prior distribution on the orientation
component used the uniform distribution on an Euler angle parametrization, and the prior on the
translation component (i.e. the location of the object) the uniform distribution on a cuboid volume
representing the extent of the scene.

Likelihood Instead of the likelihood on point clouds used in Section 3.3, here we use an alternative
likelihood based on (i) rendering a depth image Ĩ(O1:M , c, G,θ) and then (ii) adding noise to generate
an observed depth image I. The likelihood is a per-pixel mixture between a uniform distribution on
the range of possible depth values, and a normal distribution with fixed variance σ2:

p(I|x) =
∏
i

(
0.1 · 1

D
+ 0.9 · N (Ii; Ĩi, σ))

)
where i indexes pixels of the depth image. Pixels whose ray does not intersect an object are assigned
the maximum depth value D. A similar likelihood function on depth images was used in [10].

MCMC inference algorithm We use a Markov chain Monte Carlo (MCMC) inference algorithm
that cycles through each object type m ∈ {1, . . . ,M}, and applies several types of MCMC moves
for each type, based on the following proposals: (i) involutive MCMC kernels that switch an object
type from being absent to being present and vice versa (proposing its pose from the prior) , (ii)
Metropolis–Hastings kernels that propose the translational components of the pose xv for each object
from the prior, (iii) Metropolis–Hastings kernels that propose the rotational component of the pose
for each object from the prior, and (iv) coordinate-wise random-walk proposals to each of the 6
dimensions of the pose of each object (the 3 coordinates of its location and its Euler angles). We
initialize the Markov chain with a sample from the prior distribution.

Inferring the 6DoF pose of a fully occluded object We first investigated inference about the
6DoF pose of an object (the mug from the YCB object set [3]) that is assumed to be in a volume in
front of the camera, but that is not visible. This scenario arises when searching for a component or
tool that is expected to be in the environment. Narrowing down where the object could be, based on
observing where it is not, is important for efficiently planning and acting to obtain more information

9

(a) The scenario (left). A depth camera is viewing a scene that may or may not contain a cracker box (middle)
and a mug (right). We perform Bayesian inference on the existence and contingently, their 6DoF poses within
the scene, of both objects. Only the cracker box is visible in the observed depth images (see below).

(b) Observed depth image and posterior samples where the existence of both the box and mug are assumed.

(c) Observed depth image and posterior samples where the existences of each object have prior probability 0.90.
The posterior probabilities of existence for the mug and box are 0.37 and 1.0, respectively.

(d) Observed depth image and posterior samples where the existences of each object have prior probability 0.90.
Note that the observed image has the box angled so that it occupies less of the field of view than in (c). The
posterior probabilities of existence for the mug and box are 0.33 and 1.0, respectively.

(e) Observed depth image and posterior samples where the existences of each object have prior probability 0.90.
Note that the observed image has the box closer to the camera, so that it occupies more of the field of view than
in (c). The posterior probabilities of existence for the mug and box are 0.63 and 1.0, respectively.

Figure 7: Inferring the 6DoF pose and existence of multiple objects from depth images using MCMC
in a generative model. Several scenarios are shown, with five approximate posterior samples from
each. To estimate posterior probabilities of object existence, 20 posterior samples were used. The lack
of percept of the mug in the visual field (i) reduces the posterior probability of its presence, but also
(ii) informs the distribution on its 6DoF pose, if it is present. Note that as the fraction of volume in the
scene that is occluded by the box decreases, the posterior probability that mug is present decreases.

10

and retrieve the object. In order for inference to be coherent, the lack of the object’s visible presence
must be explained away by the occluding presence of another object. Therefore, we also assume
the presence of another object (the cracker box). The results (Figure 7(b)) show that the algorithm
successfully infer a variety of 6DoF poses of the mug in which it lies behind the cracker box.

Jointly inferring the existence and poses of multiple objects If an object is not visible, we may
conclude that it is not present in the scene. The degree of belief in the presence of an object that is
not visible depends on the degree of prior belief in its presence and the volume of possible states in
which the object is fully occluded. If there are no other objects in the scene, then intuitively, there
is nowhere the object could be hiding in the scene, so it must be absent. If there are other objects
in the scene, then the pose of these other objects interacts with the object’s existence, in our beliefs.
To investigate the interaction between the beliefs about the poses and existence of multiple objects,
we generated synthetic depth data for several scenarios (Figure 7(c-e)). In all scenarios, the prior
probabilities that the box and mug are present are both 0.9. In the first scenario (Figure 7(c)) the
box is oriented so a wide face is facing the camera. We correctly infer the existence of the box with
high confidence (1.0 posterior probability) and we assign 0.37 posterior probability to the existence
of the mug. In the second scenario (Figure 7(d)) the box is rotated so that it occupies less of the
camera’s field of view. As expected, this causes the posterior probability of the mug’s existence to
decrease to 0.31. In the third scenario (Figure 7(e)), we move the box closer to the camera so that it
occupies more of the field of view. The posterior probability of the mug’s presence then increases to
0.63. These experiments illustrate the dependence between one object’s pose and another object’s
existence, which is a consequence of occlusion.

M Experiment Details

The deep learning baseline experiments were run on a 3.70GHz Intel i7 processor with 64GB RAM
and a Nvidia GeForce GTX 1080Ti GPU. All other experiments were run a 2.40GHz Intel i9 processor
with 32GB RAM and a Nvidia GeForce GTX 1650 Mobile GPU. Our model is implemented using
Julia in Gen, a probabilistic programming system [6].

N Pseudomarginal shape inference

We use MH and involutive MCMC kernels that are stationary with respect to a target distribution
on an extended state space that includes auxiliary variables O(i) for i = 1, . . . , R (R copies of all
object shape models) by replacing the likelihood p(Y|N, c, G′,θ′) for each proposed state in the
acceptance probability with the following unbiased estimate obtained by sampling object models
from the prior:

1

R

R∑
i=1

p(Y|O(i)
1 , . . . ,O

(i)
M , N, c, G,θ) where O(i)

c
i.i.d.∼ p(·) (7)

and replacing the likelihood in the denominator of the acceptance ratios with the unbiased estimate
computed by the last accepted proposal. This is an instance of the pseudomarginal MCMC [1]
framework. For example, for the scene graph involutive MCMC kernel described in Section O, each
factor of the form:

p(Y|N, c, G′,θ′)
p(Y|N, c, G,θ)

(8)

is replaced with a factor:

1
R

∑R
i=1 p(Y|O

(i)
1

′
, . . . ,O

(i)
M

′
, N, c,G)

1
R

∑R
i=1 p(Y|O

(i)
1 , . . . ,O

(i)
M , N, c,G)

(9)

where the O
(i)
j are the shape models that were sampled when proposing the last state that was

accepted, and where the O
(i)
j

′
are the shape models that are sampled during the current proposal.

Note that the old sampled shape models O(i)
j themselves do not need to be persisted across steps of

the Markov chain—only the denominator in the expression above needs to be stored. The resulting

11

moves can be interpreted as MH (or involutive MCMC) moves on an extended state space that
includes additional auxiliary random variables O

(1)
1:M , . . . ,O

(R)
1:M . The moves are stationary with

respect to the following target distribution on the extended state space:

p(G,θ|N, c,Y)
1

R

R∑
i=1

p(O
(i)
1:M |N, c, G,θ,Y)

∏
j 6=i

p(O
(j)
1:M) (10)

of which the marginal on (G,θ) is the original target distribution p(G,θ|N, c,Y).

O Involutive MCMC kernel on scene graph structure and parameters

This section gives details of the involutive MCMC kernel on scene graphs introduced in Section 5.

O.1 Notation for coordinate projections

In several places below, we define sets of tuples using set-builder notation such as

X := {(x, y, z) | some condition on x, y, z}.

In such a case, we may also define coordinate projections that get their names from the formal
variables (“x,” “y,” “z”) used in the set-builder expression. Our convention is to denote these
coordinate projections by the name proj•, where • is either a variable name, e.g.,

projx(x, y, z) := x

or a comma-separated list of variable names, e.g.,

projy,z(x, y, z) := (y, z).

This definition depends not just on the set X , but on the notation used to define it; thus, in the
exposition below, we explicitly declare each time we define a function proj• using the above
convention. Note that the name projx is to be taken as a single unit, i.e., x does not have independent
meaning; in particular, if there is also a variable x in the scope of discourse, the name projx does not
have anything to do with that variable’s value.

O.2 The number of scene graph structures on a fixed set of objects

Proposition O.2.1. For a given set of N objects, the number of possible scene graph structures is
(N + 1)N−1. (Here the root node r is not considered an object.)

Proof. Let V ′ be a set of N objects, and let V := V ′ ∪{r}. For a given undirected tree G̃ on vertices
V , there is a unique way to assign edge directions to G̃ to turn it into a directed tree rooted at r. This
gives a one-to-one correspondence

directed trees on V rooted at r ←→ undirected trees on V .

By Cayley [4], the number of undirected trees on V is (N + 1)N−1.

O.3 An involutive MCMC kernel on scene graph structure only

For some set V of vertices and a root vertex r ∈ V , let G(V) denote the set of directed trees over
vertices V rooted at r. For each G = (V,E) ∈ G(V) and each v ∈ V \ {r}, let S(G, v) ⊂ V denote
the vertices of the subtree rooted at v, i.e., the set containing v and its descendants. Let

T (G) := {(v, u) ⊂ V × V : v 6= r, u /∈ S(G, v)} . (11)

That is, T (G) contains a every pair of vertices (v, u) such that v is not the root note, and u is not a
descendant of v. (Intuitively, we can think of T (G) as the set of pairs of vertices (v, u) such that it is
possible to sever the subtree rooted at v and re-attach that subtree as a child of u.) Next, let

U(V) := {(G, v, u) : G ∈ G(V), (v, u) ∈ T (G)} (12)

12

and equip U(V) with coordinate projections projG, projv, etc. as in Section O.1. (Intuitively, we
can think of the triples (G, v, u) ∈ U(V) as denoting a graph G, a choice of vertex v at which to
sever, and a choice of vertex u at which to graft.) Finally, define the function

g : U(V)→ U(V)

by g(G, v, u) = (G′, v, u′), where (i) u′ is the parent of v in G, and (ii) G′ is the graph obtained
from G by removing the edge (u′, v) and adding the edge (u, v). (By Lemma O.7.1, G′ is a tree, so
(G′, v, u′) ∈ U(V).)
Proposition O.3.1. The function g : U(V)→ U(V) is an involution.

Proof. Let (G′, v′, u′) := g(G, v, u); let (G′′, v′′, u′′) := g(G′, v′, u′); and let E, E′ and E′′ be the
edge sets of G, G′ and G′′ respectively. Then, by the definition of g, we have v′′ = v′ = v. Also,
because G′ is a tree that contains the edge (u, v), it follows that u is the parent of v in G′. Thus
u′′ = u, since u′′ is also (by definition) the parent of v in G′. Next, by the definition of g, we have
E′ = (E \ {(u′, v)}) ∪ {(u, v)} and

E′′ = (E′ \ {(u, v)}) ∪ {(u, v)} = (E \ {(u′, v)}) ∪ {(u′, v)} = E

(here we are using the fact that (u′, v) ∈ E, which holds by the definition of g). Thus G′′ = G, so
g(g(G, v, u)) = (G, v, u).

Proposition O.3.2. Let G,G′ ∈ G(V). Then there exists a sequence of triples

(G0, v0, u0), . . . , (Gk, vk, uk)

satisfying all of the following:

(i) (Gi, vi, ui) ∈ U(V) for all1 i = 0, . . . , k − 1
(ii) G0 = G

(iii) Gk = G′

(iv) for each i < k we have Gi+1 = projG(g(Gi, vi, ui)).

Proof. Let G◦ denote the scene structure that has no relations between objects; that is,

G◦ := (V, {(r, v) : v ∈ V \ {r}}).

We first prove the result in the case where G = G◦; then we extend to the general case.

For the case where G = G◦, the intuition is to work backwards from G′ to G◦ by grafting subtrees
onto r until there are no non-singleton subtrees left. Let G′ = (V,E′), and let Ẽ := {(u, v) ∈
E : v 6= r}. We then take2 k := |Ẽ| − 1. We define vi (from the proposition statement) and u′i (a
variable we’re now introducing) by arbitrarily choosing an ordered enumeration of Ẽ and defining
the sequence of pairs (u′0, v0), . . . , (u′k, vk) to equal that enumeration. Thus,

Ẽ = {(u′0, v0), . . . , (u′k, vk)}.

Next, we define Gi and ui simultaneously by backward recursion: we take Gk := G′ (and choose uk
arbitrarily; the proposition doesn’t actually say anything about uk); and for 0 ≤ i < k, we define Gi
and ui by the equation

g(Gi+1, vi, r) = (Gi, vi, ui). (13)
(To justify the left-hand side being well-defined, we must show (Gi+1, vi, r) ∈ U(V) for all i. By
construction, vi 6= r for all i, so r /∈ S(Gi+1, v); hence (Gi+1, vi, r) ∈ U(V).) By applying g to
both sides of (13), we get (iv). Finally, note that by induction, Gi has exactly i edges whose source
node is not r. Thus G0 = G◦. This completes the proof of the case where G = G◦.

We now move to the general case, where G ∈ G(V) is arbitrary. Using the above special case,
let (G0 = G◦, v0, u0), (G1, v1, u1), . . . , (Gk, vk, uk) be a sequence satisfying (i)–(iv) and (13) with
G0 = G◦. Let (G0, v0, u0), (G1, v1, u1), . . . , (Gk, vk, uk) be a sequence satisfying (i)–(iv) and (13)

1This proposition doesn’t say anything about uk and vk; we leave them in just to simplify the exposition and
notation.

2Except in the degenerate case where Ẽ is empty. In that case we have G′ = G◦, so we simply take k := 0,
G0 := G◦, and u0 and v0 to be any vertices.

13

but with G0 = G◦ and Gk = G. Let Gj := Gk−j for 0 ≤ j < k and Gk := G◦. Substituting
j := k − (i+ 1) into (13) gives

g
(
Gj , vk−j−1, r

)
=
(
Gj+1, vk−j−1, uk−j−1

)
for each j = 0, . . . , k − 1. Thus, letting k := k and vj := vk−j−1 and uj := r, the sequence

(G0, v0, u0), . . . , (Gk, uk, vk)

satisfies (i)–(iv) but with G0 = G and Gk = G◦. Then, the sequence

(G0, v0, u0), . . . , (Gk−1, uk−1, vk−1), (Gk = G0 = G◦, v0, u0), (G1, v1, u1), . . . , (Gk, vk, uk)

satisfies (i)–(iv): the only piece of this claim that wasn’t already proved above is (iv) at the concatena-
tion boundary where G◦ appears; i.e., it remains only to check that

G◦ = projG(g(Gk−1, vk−1, uk−1)).

Unpacking the definitions, this condition is

G◦ = projG(g(G1, v0, r)),

and indeed the condition is satisfied, by (13).

For some fixed V with r ∈ V and N := |V | − 1, suppose we have in hand (i) a prior probability
distribution p(G) on G ∈ G(V); (ii) some data D; and (iii) a likelihood function p(D|G). From
these, we can construct an involutive MCMC [5] kernel on the space of graphs (G(V)) by combining
the involution g defined above with a family of auxiliary probability distributions q(v, u;G) on
V × V such that q(v, u;G) > 0 if and only if (v, u) ∈ T (G). The kernel takes as input a graph G,
samples (v, u) ∼ q(·;G), computes (G′, v′, u′) := g(G, v, u), and then returns the new graph G′
with probability

min

{
1,
p(G′)p(D|G′)q(v′, u′;G′)
p(G)p(D|G)q(v, u;G)

}
(14)

and otherwise returns the previous graphG (i.e. rejects). Because this kernel satisfies the requirements
of involutive MCMC, it is stationary with respect to the following target distribution on G(V):

p(G|D) =
p(G)p(D|G)∑

G′∈G(V) p(G
′)p(D|G′)

(15)

Furthermore, if p(G) > 0 and p(D|G) > 0 for all G ∈ G(V), then the Markov chain generated by
repeated application of this kernel converges to the target distribution as the number of steps goes
to infinity (the chain is irreducible by Prop. O.3.2 and aperiodic since the proposal has a positive
probability of choosing u to be the parent of v, and in that case G′ = G).

O.4 Transforming between two alternative 6DoF pose parametrizations

Before defining our full involutive MCMC kernel on scene graphs, we define a transformation
between continuous parameter spaces that will be used as a building block of the full kernel.

Objects v that are children of the root vertex have their 6DoF pose relative to the world coordinate
frame parametrized directly via θv ∈ SE(3). Recall that the pose of an object v that is child of
another object u′ is parametrized via the relative pose between a face of u′ and a face of v. We choose
a parametrization for the pose of one face relative to another that makes it natural to express a prior
distribution in which: (i) the two faces are nearly in flush contact with high probability, and (ii) we
know little about the relative in-plane offset of the two faces and their relative in-plane orientation. A
natural parametrization for this prior uses:

• Two dimensions for the in-plane offset (a ∈ R and b ∈ R) with relatively broad priors
• One dimension for the perpendicular offset (z ∈ R) with a concentrated prior
• An (outward) face normal vector (ν ∈ S2) with a prior that concentrates on anti-parallel

face normals

14

• One dimension of in-plane angular rotation (ϕ ∈ S1) with a uniform prior.

We now define a bijection

ξ : R3 × SO(3) ⊇ R3 × {ω ∈ SO(3) : ω(0, 0, 1)> 6= (0, 0,−1)}
→ R× R× R× (S2 \ {(0, 0,−1)>})× S1 ⊆ R× R× R× S2 × S1. (16)

Note that ξ is a.e. bijective on the supersets as well, in the sense that in (16), ξ is a bijection between
the subsets, and each of the subsets has a complement of measure zero in its superset. In ξ, the first
three coordinates are copied directly and the orientations are transformed as follows.

In the first parameter space, SO(3), orientations are represented “directly,” as the linear transformation
that carries the parent coordinate frame to the child coordinate frame (translated to have the same
origin). The base measure on SO(3) is the Haar measure.

In the second parameter space, S2 × S1, orientations are represented in Hopf coordinates [14]:
intuitively, these coordinates characterize a rotation by where it carries the north pole (0, 0, 1)> (we
call this η ∈ S2) and how much planar rotation it does after carrying the north pole to η (we call
this ϕ ∈ S1). However, there is no globally consistent (i.e., jointly continuous in η and ϕ) way to
choose where the rotation corresponding to ϕ “starts” (i.e. which orientations have ϕ = 0)—formally,
the fiber bundle induced by the Hopf fibration is not a trivial bundle. But, it is possible to make
these choices consistently on an open subset of S2 × S1 whose complement has measure zero, as
we do in Section O.6.2. In particular, provided that η is not the south pole (0, 0,−1), there is a
unique unit quaternion (w, x, y, z) ∈ S3 that satisfies spin(w, x, y, z)(0, 0, 1)> = η and has minimal
geodesic distance to the identity (where spin : S3 → SO(3) is the usual covering map, described
in Section O.6.1). Then, spin(w, x, y, z) ∈ SO(3) is the rotation we take to correspond to η = η,
ϕ = 0. The resulting map (S2 \ {(0, 0,−1)>}) × S1 → SO(3) is smooth; in Section O.6.2 we
compute the mapping explicitly in terms of coordinates.

O.5 Full involutive MCMC kernel on scene graphs

Our full involutive MCMC kernel on scene graphs (including their parameters θ) is based on an
extension of the involution g defined above. We first define the latent space of pairs (G,θ), as:

X :=
⊔

G∈G(V)

 ×
v∈V \{r}
(r,v)∈E

SE(3)

×
 ×
v∈V \{r}
(r,v) 6∈E

(F × F × R× R× R× S2 × S1)

 (17)

(t denotes disjoint union), and we endow this set with a reference measure µP formed by sums (over
the disjoint union) of product measures that are composed from: the Lebesgue measure on R, the
Haar measure on SO(3), the uniform (spherical) measures on S2 and S1, and the counting measure
on F × F . Then, we define the space of auxiliary variables as:

Y := {(v, r) : v ∈ V \ {r}} t {(v, u, f, f ′) : v, u ∈ V \ {r} and f, f ′ ∈ F} (18)

with the reference measure µQ being the counting measure. We define an auxiliary probability
distribution q(y;G,θ) such that

q(v, r;G,θ) > 0 for all v ∈ V \ {r}
q(v, u, f, f ′;G,θ) > 0 for all (v, u) ∈ T (G) and all f, f ′ ∈ F
q(y;G,θ) = 0 otherwise.

(19)

The extended state space of the involutive MCMC kernel is then

Z := {(x, y) ∈ X × Y : p(x)q(y;x) > 0}. (20)

We construct an involution h on the space Z using the graph involution g defined above as a building
block. In particular, Z consists of tuples of four forms, and we define the involution h piecewise
depending on which of these four forms the input has: we take

Z = Z1 t Z2 t Z3 t Z4

15

Figure 8: A subset of the possible transition types for our involutive MCMC kernel on scene
graphs. Left: ‘contact to floating‘ (forwards) and ‘floating to contact’ (backwards). Right: ‘contact
to contact‘ (forwards) and ‘contact to contact’ (backwards). The vertex v is the chosen ‘sever’
vertex, and its subtree S(G, v) is shaded. Parameters θv ∈ SE(3), which are the independent
6DoF pose of an object relative to the world coordinate frame, are shown in blue; and parameters
θv ∈ F × F × R× R× R× S2 × S1, which parametrize the pose of an object relative to another
object (specifically the relative pose between two faces of the two objects) are shown in red.

where the definitions of Z1, Z2, Z3, Z4, and the parametric form that θv takes on each component,
are as follows:

Z1 := {(G, v, r,θ) : (r, v) ∈ E} θv ∈ SE(3)

Z2 := {(G, v, r,θ) : (r, v) /∈ E} θv ∈ F × F × R× R× R× S2 × S1

Z3 := {(G, v, u,θ, f, f ′) : u 6= r, (r, v) ∈ E} θv ∈ SE(3)

Z4 := {(G, v, u,θ, f, f ′) : u 6= r, (r, v) /∈ E} θv ∈ F × F × R× R× R× S2 × S1.

We define coordinate projections proj• on Z1 and Z2 (for the free parameters G, v,θ), and on Z3

and Z4 (for the free parameters G, u,θ, f, f ′), as in Section O.1. Also, for notational convenience
below, we extend proju to Z1 and Z2 by defining proju(G, v, r,θ) := r; i.e., proju is constant on
Z1 t Z2 with value r.

Then, h is defined piecewise as follows:

h(z) =

hf→f(z) if z ∈ Z1 (floating to floating)
hc→f(z) if z ∈ Z2 (contact to floating)
hf→c(z) if z ∈ Z3 (floating to contact)
hc→c(z) if z ∈ Z4 (contact to contact).

(21)

We next define the function h•→• corresponding to each of these four components, and give the
acceptance probability in each case (the acceptance probabilities will be derived later in this section).

Floating to floating This transition makes no change to the structure G or the parameters θ:

hf→f(G, v, r,θ) := (G, v, r,θ) (no change) (22)

Contact to floating This transition severs the edge from the parent of v in G (another object) and
replaces it with a new edge from the root r to v in G′. The parameters of all vertices other than v are
unchanged. The parameters θv are set to the absolute pose (relative to r) of v in (G,θ):

hc→f(G, v, r,θ) := (G′, v, u′,θ′, f, f ′),

where

(G′, v, u′) = g(G, v, r)

(f, f ′) = projf,f ′(θv)

θ′w = θw for w 6= v

θ′v = xv(G,θ) (pose of v with respect to r in (G,θ))

Floating to contact This transition severs the edge from the parent of v in G (which is r) and
replaces it with a new edge from another (object) vertex u to v in G′. The parameters of all vertices
other than v are unchanged. The parameters θv are computed by (i) computing the relative pose

16

∆x(u,f ′)→(v,f)(G,θ) ∈ SE(3) between the face f of object v (oriented according to its outward
normal) and face f ′ of object u in (G,θ), and then (ii) transforming this pose into an element of
R× R× R× S2 × S1 via the function ξ defined in Section O.4:

hf→c(G, v, u,θ, f, f
′) := (G′, v, r,θ′),

where

(G′, v, r) = g(G, v, u)

θ′w = θw for w 6= v

θ′v = (f, f ′, a, b, z, η, ϕ)

(a, b, z, η, ϕ) = ξ(∆x(u,f ′)→(v,f)(G,θ))

Contact to contact This transition severs the edge from the parent of v in G (which is some object
u′) and replaces it with a new edge from another object u to v in G′. The parameters of all vertices
other than v are unchanged. The parameters θv are again computed by first computing the relative
pose computing the relative pose ∆x(u,f ′)→(v,f)(G,θ) ∈ SE(3), then applying ξ:

hc→c(G, v, u,θ, f, f
′) := (G′, v, u′,θ′, f2, f

′
2)

where

(G′, v, u′) = g(G, v, u)

θ′w = θw for w 6= v

θ′v = (f, f ′, a, b, z, η, ϕ)

(f2, f
′
2) = projf,f ′(θv)

(a, b, z, η, ϕ) = ξ(∆x(u,f ′)→(v,f)(G,θ))

Proposition O.5.1. The function h is an involution.

Proof. First note that in each of the four cases (z ∈ Zi for i = 1, 2, 3, 4), we have

projG,v,u(h(z)) = g(projG,v,u(z)).

Therefore, since g is an involution, we have

projG,v,u(h(h(z))) = g(projG,v,u(h(z))) = g(g(projG,v,u(z))) = projG,v,u(z).

Next, note that if z ∈ Z2 t Z4, then projf,f ′(h(h(z))) = projf,f ′(z) simply by unraveling the
definitions.

It remains to show that projθ(h(h(z))) = projθ(z). This clearly holds when z ∈ Z1, as hf→f is the
identity.

For the case z ∈ Z2, let z = (G, v, r,θ), and let f, f ′ := projf,f ′(θv), and let G and u be such that
g(G, v, r) = (G′, v, u′). Then, unraveling the definitions, we have

projθ(h(z)) =

{
w 7→ θw for w 6= v

v 7→ xv(G, θ)

}
.

Unraveling the definitions one step further, we have

projθ(h(h(z))) =

w 7→ θw for w 6= v

v 7→ (f, f ′, ξ

(
∆x(u′,f ′)→(v,f)

(
G′,

{
w 7→ θw for w 6= v

v 7→ xv(G,θ)

}))
︸ ︷︷ ︸

:= θ′′v := (a′,b′,z′,η′,ϕ′)

)

 .

So we need to show θ′′v = θv. By construction, θ′′v is the contact-parametrized relative pose for v
(face f) relative to u′ (the parent of v in G, face f ′) that, when converted to an absolute (relative to r)
pose in the scene graph (G,θ), gives xv(G, θ). In other words, indeed θ′′v = θv .

17

For the case z ∈ Z3, let z = (G, v, u,θ, f, f ′) and G′ := projG(g(G, v, u)). Unraveling two layers
of definitions similarly to above, we have

projθ(h(h(z))) =

w 7→ θw for w 6= v

v 7→ xv

(
G′,

{
w 7→ θw for w 6= v

v 7→ ∆x(u,f)→(v,f ′)(G,θ)

})
︸ ︷︷ ︸

:= θ′′v

 .

It again suffices to show θ′′v = θv. By construction, θ′′v is the pose in world frame (relative to r) of
object v in G′; and the contact-parametrized relative pose of v (face f) relative to u (face f ′) in G′
by construction has the property that, when converted to an absolute pose in (G,θ), the result is θv.
Thus θ′′v = θv .

For the case z ∈ Z4, let z = (G, v, u,θ, f, f ′), and let (f2, f
′
2) := projf,f ′(θv), and let G′ and u′ be

such that (G′, v, u′) = g(G, v, u). Unraveling two layers of definitions again, we have

projθ(h(h(z))) =

w 7→ θw for w 6= v

v 7→ (f, f ′, ξ

(
∆x(u′,f ′2)→(v,f2)

(
G′,

{
w 7→ θw for w 6= v

v 7→ (f, f ′, ξ
(
∆x(u,f ′)→(v,f)(G,θ)

)
, f, f ′)

}))
)︸ ︷︷ ︸

:= θ′′v := (a′,b′,z′,η′,ϕ′)

 .

It again suffices to show θ′′v = θv . Similarly to the above, θ′′v is a contact-parametrized relative pose
for v (face f) relative to u′ (the parent of v in G, face f ′) defined by the property that it produces the
same absolute pose for v as a second contact-parametrized relative pose. This second relative pose is
for v (face f2) relative to u′ (face f ′2) that by construction produces the same absolute pose as v has
in (G,θ). It again follows that θ′′v = θv , and this completes the proof.

The automated involutive MCMC implementation in Gen [6] includes an optional dynamic check
that applies the involution twice to check that it is indeed an involution. We applied this check during
testing of the algorithm to gain confidence in our implementation.

O.6 The Radon–Nikodym derivative

The acceptance ratio for involutive MCMC [5] includes a “generalized Jacobian correction” term,
equal to the Radon–Nikodym derivative of a pushforward measure µ∗ with respect to a base measure
µ defined on the state space Z (µ is constructed the product measure of µP and µQ [5]). Next,
µ∗ := µ ◦ h−1 is the pushforward of µ by the involution h : Z → Z described above. To justify the
validity of this involutive MCMC kernel, we must show that µ∗ is absolutely continuous with respect
to µ, i.e., that the Radon–Nikodym derivative dµ∗

dµ exists. Because all the discrete choices in the model
(graph structure, contact faces, etc.) are assigned positive probability mass in both the model and the
proposal, it suffices to show absolute continuity for the continuous part of the involution: the mapping
(call it `◦) that, for given contact faces f, f ′ ∈ F , converts between a 6DoF pose θ1 ∈ SE(3) and a
contact-parameterized relative pose θ2 = (a, b, z, η, ϕ) ∈ R× R× R× S2 × S1 (note that in this
section we use θ2 to denote only the continuous part of the contact-parameterized relative pose).

Note that `◦ depends on not just θ1, but also on the scene graph, objects and faces (G,θ, v, u′, f, f ′).
Specifically, the absolute pose θ1 is gotten by pre- and post-composing ∆x(u′,f ′)→(v,f)(G,θ) with
rigid motions that depend on the absolute poses of face f ′ of u and face f of v in scene graph (G,θ),
but these rigid motions do not depend on θ1 or θ2 themselves. Thus, in the sections below, rather
than `◦ itself, we analyze `, the variant of `◦ which operates on 6DoF relative poses ∆x where `◦
operates on 6DoF absolute poses x. Because rigid transformations are diffeomorphisms and their
Radon–Nikodym derivatives (Jacobian determinants) are identically 1, the results in the sections
below, which show that ` has a Radon–Nikodym derivative that is piecewise constant on A t B
(defined below), apply equally well to the map `◦ which parameterizes θ1 relative to the world
coordinate frame in some particular scene graph.

We can denote a rigid motion by the pair (t, ω), where t ∈ R3 is the translation component and
ω ∈ SO(3) is the rotation component. (In algebraic terms, we are identifying SE3 with the semidirect

18

product R3 o SO(3).) Accordingly, define projection functions projt and projω on SE(3) as in
Section O.1.

Let Z := A t B where A := R3 × SO(3) and B := R × R × R × S2 × S1, and let ν denote
the base measure on Z.3 In the sections below, we discuss the pushforward ν∗ := ν ◦ `−1 and its
Radon–Nikodym derivative dν∗

dν .

O.6.1 Existence of the Radon–Nikodym derivative

In this section, we prove ν∗ � ν. Because ν∗ = ν ◦ `−1, the proof proceeds by analyzing the
involution `. First we show that ` is defined almost everywhere, so that ν∗ is well-defined. Then we
show that there exists a subset Z ′′ ⊆ Z whose complement has measure zero, such that the restriction
of ` to Z ′′ is a diffeomorphism. It follows that ν∗ � ν by [9, Prop 6.5], since `−1 is a smooth map.

First, to show that ν∗ is well-defined, we show that ` is defined almost everywhere on Z. Indeed, the
domain of ` is A′tB′, where A′ := R3×domain(ξ) and B′ := R×R×R×domain(ξ−1) (where
ξ is as defined in Section O.4). Now, domain(ξ) = {ω ∈ SO(3) : ω(0, 0, 1)> 6= (0, 0,−1)>} has
a complement of measure zero in SO(3), and domain(ξ−1) = (S2 \ {(0, 0,−1)>}) × S1 has a
complement of measure zero in S2 × S1, so indeed domain(`) = A′ t B′ has a complement of
measure zero in Z.

Next, we show that there exist subsets A′′ ⊆ A′, B′′ ⊆ B′, whose complements also have measure
zero, such that ` fixes A tB setwise and the restriction of ` to A′′ tB′′ is a diffeomorphism. First,
note that the coordinates t in A and the coordinates a, b, z in B represent the same translation in a
different coordinate frame. Thus, for any fixed ω ∈ SO(3), the function t 7→ proja,b,z(`(t, ω)) is a
rigid motion, hence a diffeomorphism. Furthermore, the rotation component of `(θ) (regardless of
whether θ ∈ A or θ ∈ B) depends only on the rotation component of θ, not at all on the translation
component. Thus, ` is a diffeomorphism from A′′ to B′′ if and only if `? is a diffeomorphism
from projω(A′′) to projη,ϕ(B′′), where `?(ω) := projη,ϕ(`(0, ω)). Taking A′′ := R3 × A? and
B′′ := R × R × R × B?, we see that it suffices to find subsets A? ⊆ SO(3) and B? ⊆ S2 × S1

whose complements have measure zero, such that the restriction of `? to A? is a diffeomorphism onto
B?.

Denote elements of SO(3) as ω = spin(w, x, y, z), where spin : S3 → SO(3) is the 2-to-1 smooth
covering map that carries a unit quaternion w+ xi + yj + zk to its corresponding rotation. Then, we
take

A? =
{

spin(w, x, y, z)
∣∣ (w, x, y, z) ∈ S3; z 6= 0

}
B? =

{
((a, b, c), ϕ) ∈ S2 × S1

∣∣ c 6= ±1
}

To show that ` is a diffeomorphism from A? to B?, we give an explicit formula for `? in terms of
coordinates below (Section O.6.2).

O.6.2 Formula for the mapping in coordinates

In this section we give an explicit formula for the map `? defined in SectionO.6.1 in terms of
coordinates. For elements ω = spin(w, x, y, z) ∈ A?, the S2 component of `?(ω) is the image of
(0, 0, 1)> under the rotation, and is given by [8, §8.2]:

η = spin(w, x, y, z)

(
0
0
1

)
=

 2(xz + wy)
2(yz − wx)

1− 2(x2 + y2)

 .

Even though (w, x, y, z) is not uniquely determined by spin(w, x, y, z), the above expression is
well-defined because both possible choices of quaternion—(w, x, y, z) and (−w,−x,−y,−z)—give
the same value for the right-hand side.

To compute the S1 component ϕ, note that the set of all rotations that carry (0, 0, 1)> to η is

{spin(w, x, y, z) ◦R(0,0,1)(−ϕ′) : 0 ≤ ϕ′ < 2π},
3That is, the sum of (i) the product of Lebesgue measure on R3 and Haar measure on SO(3), and (ii) the

product of Lebesgue measure on R× R× R, spherical uniform measure on S2, and uniform spherical measure
on S1.

19

where R(0,0,1)(ϕ
′) is a rotation about the axis (0, 0, 1)> by angle ϕ′. Because the action of S3 on

itself by quaternion multiplication is a geometric rotation of S3 (in particular, an isometry) [8, §8.3],
minimizing geodesic distance among the above family of rotations is equivalent to minimizing (over
ϕ′) geodesic distance from R(0,0,1)(ϕ

′) to (w, x, y, z). Explicitly, R(0,0,1)(ϕ
′) corresponds to the

unit quaternions
± (cos(ϕ′/2), 0, 0, sin(ϕ′/2)) .

Note that minimizing geodesic distance on the sphere S3 is equivalent to minimizing the cosine
between the corresponding vectors in S3 ⊆ R4. By the cosine double angle formula, the cosine
between R(0,0,1)(ϕ

′) and (w, x, y, z) in this sense is

2
(
± (cos(ϕ′/2), 0, 0, sin(ϕ′/2)) · (w, x, y, z)

)2
− 1,

where · denotes the dot product in R4. This quantity is maximized precisely when the doct product is
either maximized or minimized, so we can drop the ±. We can then compute the minima and maxima
of the dot product by setting the derivative equal to zero: we have

(cos(ϕ′/2), 0, 0, sin(ϕ′/2)) · (w, x, y, z) = w cos(ϕ′/2) + z sin(ϕ′/2)

and the above expression is minimized or maximized when

ϕ′/2 = arctan(z/w) + πn for some n ∈ Z

or equivalently, ϕ′ = 2 arctan(z/w) + 2πn. Thus, the S1 component of `?(spin(w, x, y, z)) that we
set out to compute is

ϕ = 2 arctan(z/w),

where the branch cut in arctan is chosen so that the output lies in the interval [0, π), and we allow
z/w to lie on the extended real line, with arctan(±∞) = π/2.

Since z 6= 0 in A?, ϕ never lands on the branch cut. Thus, `?(spin(w, x, y, z)) is a smooth function
of the quaternion (w, x, y, z). Because spin is a smooth covering map [9, ch. 4], it follows4 that spin
is also a smooth function of the element ω = spin(w, x, y, z) ∈ SO(3).

The above definition expresses in coordinates the geometry of Hopf fibration and choice of branch
cut described in Section O.4. We now need only show that `? has a smooth inverse. For elements
(η, ϕ) ∈ B?, we take [2, §7]

(`?)−1 ((a, b, c), ϕ) =

spin

(
1√

2(1+c)
((1 + c) cos(ϕ), a sin(ϕ)− b cos(ϕ), a cos(ϕ) + b sin(ϕ), (1 + c) sin(ϕ))

)
.

This function is clearly smooth on B?, and direct computation shows that (`?)−1 ◦ `? is the identity.

O.6.3 Value of the Radon–Nikodym derivative

In the preceding sections we showed that ν∗ := ν ◦ `−1 has a density with respect to ν, the Radon–
Nikodym derivative ρ := dν∗

dν . In this section we argue that ρ is (a.e.) constant on each of the
connected components A and B. Because h acts as isometries on the translation components, and
acts on rotation components in a way that doesn’t depend on the translation components, we need
only look at orientation components. That is, the Radon–Nikodym derivative ρ is equal to the
Radon–Nikodym derivative of the pushforward ν?∗ of the base measure5 ν? on A? tB? by `?:

dν∗
dν (t, ω) =

dν?
∗

dν? (ω) and dν∗
dν (a, b, z, η, ϕ) =

dν?
∗

dν? (η, ϕ).

Note the following chain of equivalences: dν
?
∗

dν? is a.e. constant on A? ⇐⇒ ν?∗ is a scalar multiple of
the Haar measure on A? ⇐⇒ ν?∗ is invariant under the action of SO(3) on itself by multiplication.

4This can be seen by pre-composing h′′ with a lifting to one of the sheets in an evenly covered neighborhood
of ω.

5In this case, sum of the Haar measure on A? ⊆ SO(3) and the product of uniform measures on B? ⊆
S2 × S1.

20

We can see that the latter statement holds by noting three things: First, the Haar measure on SO(3)
equals the pushforward by spin of the Haar measure on unit quaternions. Next, the action of S3 on
itself by group multiplication is an action by isometries [8, §8.3]. Finally, by [14], the volume element
on S3 equals the product of the volume elements on S2 and S1 (here we are using the fact that the
Haar measure on S3 coincides with the Borel measure when it is viewed as a Riemannian manifold).
Thus the action of SO(3) on itself by multiplication, when pushed through (`?)−1, becomes an action
by local isometries on S2 × S1, and is thus invariant under the base measure ν? (which on B? is the
product of uniform measures). Therefore indeed dν?

∗
dν? is a.e. constant on A?. Since `? is an involution

and `?(A?) = B?, it follows that dν
?
∗

dν? is a.e. constant on B?, and the values of the Radon–Nikodym
derivative on A? and B? are reciprocals of each other.

O.6.4 Acceptance probability

For our choice of scaling constants, if we assign total measures SO(3) 7→ π2, S2 7→ 4π, and
S1 7→ 2π, then the Radon–Nikodym derivative corrections in the involutive MCMC acceptance
probability [5] are: 1 (for ‘floating to floating’ and ‘contact to contact’ moves), (4π · 2π)/π2 = 8 (for
a ‘floating to contact’ move), and π2/(4π · 2π) = 1/8 (for a ‘contact to floating’ move). This gives
the following acceptance probabilities for each of the four possible proposed moves from (G,θ) to
(G′,θ′) that can be proposed within our kernel:

Floating to floating When u = r and u′ = r, the state is unchanged, and the move always accepts:

α = min

{
1,
p(Y|N, c, G,θ)

p(Y|N, c, G,θ)

}
= 1 (23)

Floating to contact When u 6= r and u′ = r (we are severing v from the root and grafting v onto
another object), the acceptance probability is:

α = min

{
1,
p(Y|N, c, G′,θ′)
p(Y|N, c, G,θ)

p(θ′|N, c, G′)
p(θ|N, c, G)

q(v′, u′;G′)

q(v, u, f1, f ′1;G)
· 8
}

(24)

where (f1, f
′
1) = projf,f ′(θ

′
v).

Contact to floating When u = r and u′ 6= r (we are severing v from an object and grafting v onto
the root), the acceptance probability is:

α = min

{
1,
p(Y|N, c, G′,θ′)
p(Y|N, c, G,θ)

p(θ′|N, c, G′)
p(θ|N, c, G)

q(v′, u′, f2, f
′
2;G′)

q(v, u;G)
· 1

8

}
(25)

where (f2, f
′
2) = projf,f ′(θv).

Contact to contact When u 6= r and u′ 6= r (we are severing v from an object and grafting v onto
another object), the acceptance probability is:

α = min

{
1,
p(Y|N, c, G′,θ′)
p(Y|N, c, G,θ)

p(θ′|N, c, G′)
p(θ|N, c, G)

q(v′, u′, f2, f
′
2;G′)

q(v, u, f1, f ′1;G)

}
(26)

where (f1, f
′
1) = projf,f ′(θ

′
v) and (f2, f

′
2) = projf,f ′(θv).

O.7 Lemmas

Lemma O.7.1. Let G = (V,E) be a directed tree rooted at r ∈ V , and suppose u, u′, v ∈ V are
such that the following conditions hold:

(i) u 6= v
(ii) u is not a descendant of v

(iii) (u′, v) ∈ E.

Let G′ be the directed graph obtained from G by deleting the edge (u′, v) and adding the edge (u, v),
that is, G′ = (V, (E \ {(u′, v)}) ∪ {(u, v)}). Then G′ is a directed tree rooted at r.

21

Proof. We show that for any vertex w, there is a unique path in G′ from r to w.

First, suppose w is not a descendant of v in G′. Then w is not a descendant of v in G, since the set of
descendants of v is the same in G and G′. Thus no path from r to w in either G or G′ passes through
v; consequently, no path from r to w in either G or G′ contains either of the edges (u′v) or (u, v).
Thus, a sequence of vertices r = x0, x1, . . . , xn = w is a path in G′ if and only if it is a path in G.
Since there is a unique path from r to w in G, it follows that there is a unique path from r to w in G′.

Next, suppose w is a descendant of v in G′ (and hence also in G). Because u′ is the only in-neighbor
of v in G, it follows that u is the only in-neighbor of v in G′. Thus, every path from r to w in G′ is
the concatenation of a path from r to u with a path from v to w. But since u is not a descendant of v
in G (hence neither in G′), there is a unique path from r to u in G′, by the above paragraph. And of
course, there is a unique path from v to w in G, hence also in G′ since the subtrees rooted at v are the
same. Therefore there is a unique path from v to w in G′.

22

References
[1] Christophe Andrieu, Gareth O Roberts, et al. The pseudo-marginal approach for efficient monte

carlo computations. The Annals of Statistics, 37(2):697–725, 2009.

[2] Jonathan Baldwin. Hopf fibration. Available at https://vrs.amsi.org.au/wp-content/
uploads/sites/78/2017/05/baldwin_jonathan_vrs-report.pdf (2021/06/04).

[3] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M.
Dollar. Benchmarking in manipulation research: Using the yale-cmu-berkeley object and model
set. IEEE Robotics Automation Magazine, 22(3):36–52, 2015.

[4] Arthur Cayley. A theorem on trees, volume 13 of Cambridge Library Collection - Mathematics,
page 26–28. Cambridge University Press, 2009.

[5] Marco Cusumano-Towner, Alexander K Lew, and Vikash K Mansinghka. Automating involutive
mcmc using probabilistic and differentiable programming. arXiv preprint arXiv:2007.09871,
2020.

[6] Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and Vikash K Mansinghka.
Gen: a general-purpose probabilistic programming system with programmable inference. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 221–236, 2019.

[7] SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E
Hinton, et al. Attend, infer, repeat: Fast scene understanding with generative models. Advances
in Neural Information Processing Systems, 29:3225–3233, 2016.

[8] Jean Gallier. The Quaternions and the Spaces S3, SU(2), SO(3), and RP3, pages 248–266.
Springer New York, New York, NY, 2001.

[9] J.M. Lee. Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer, 2003.

[10] Pol Moreno, Christopher KI Williams, Charlie Nash, and Pushmeet Kohli. Overcoming
occlusion with inverse graphics. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 170–185. Springer, 2016.

[11] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Efficient ransac for point-cloud shape
detection. In Computer graphics forum, volume 26, pages 214–226. Wiley Online Library,
2007.

[12] Meng Tian, Liang Pan, Marcelo H Ang Jr, and Gim Hee Lee. Robust 6d object pose estimation
by learning rgb-d features. In International Conference on Robotics and Automation (ICRA),
2020.

[13] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martín-Martín, Cewu Lu, Li Fei-Fei, and Silvio
Savarese. Densefusion: 6d object pose estimation by iterative dense fusion. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3343–3352,
2019.

[14] Anna Yershova, Swati Jain, Steven M. LaValle, and Julie C. Mitchell. Generating uniform
incremental grids on so(3) using the hopf fibration. The International Journal of Robotics
Research, 29(7):801–812, 2010.

23

https://vrs.amsi.org.au/wp-content/uploads/sites/78/2017/05/baldwin_jonathan_vrs-report.pdf
https://vrs.amsi.org.au/wp-content/uploads/sites/78/2017/05/baldwin_jonathan_vrs-report.pdf

	Broader Impact
	Pose estimation from synthetic RGB images
	Shape Learning Accuracy Quantitative Evaluation
	YCB-Challenging Dataset
	YCB-Challenging Extended Experimental Results
	YCB-Video Dataset
	Ablation Qualitative Results on YCB-Video
	Qualitative Results on YCB-Video
	Distilling shape distributions via variational inference
	Probabilistic SLAM using Sequential Monte Carlo
	Pose initialization for Scene Graph Inference
	Parsing scenes with fully occluded objects and number uncertainty
	Experiment Details
	Pseudomarginal shape inference
	Involutive MCMC kernel on scene graph structure and parameters
	Notation for coordinate projections
	The number of scene graph structures on a fixed set of objects
	An involutive MCMC kernel on scene graph structure only
	Transforming between two alternative 6DoF pose parametrizations
	Full involutive MCMC kernel on scene graphs
	The Radon–Nikodym derivative
	Existence of the Radon–Nikodym derivative
	Formula for the mapping in coordinates
	Value of the Radon–Nikodym derivative
	Acceptance probability

	Lemmas

