
A Broader Impact

Adversarial attacks have been investigated a lot and people are worried that the vulnerability of
machine learning models may affect their application in real world. This paper, as a potential counter-
measure against the adversarial attacks, proposes a type of model architecture that can guarantee the
model robustness under certain adversarial attacks. This could help to secure the safe deployment
of ML models in real applications, thus promoting the development of various ML systems. In
addition, better understanding of the Lipschitz property of machine learning models may help people
understand and explain how the models work, which is a key concern when applying these algorithms
in practice. On the other hand, the misuse of our technique may also lead to negative impact. For
example, if an attacker is fully familiar with this work, he/she may discover some specific attack to
fool this model (beyond ℓ2 attacks which we can certify against). Therefore, in real applications, it is
recommended that different defense techniques are applied together to secure the model safety.

B Pseudocode of LOT Layer

We show the detailed pseudocode of our LOT layer in Algorithm 1.

Algorithm 1 LOT layer.

Require: Unconstrained convolution kernel V ∈ Rcout×cin×k×k; Input tensor X ∈ Rcin×w×w.
1: Xpad = zero_pad(X, (k, k, k, k)) ∈ Rcin×(w+2k)×(w+2k).
2: V pad = zero_pad(W, (0, 0, k + w, k + w)) ∈ Rcout×cin×(w+2k)×(w+2k).
3: // Calculate the Fourier transformation:
4: for all i ∈ {1, . . . , cin} do
5: X̃i = FFT(Xpad

i ).
6: for all j ∈ {1, . . . , cout} do
7: Ṽj,i = FFT(V pad

j,i ).
8: end for
9: end for

10: // Calculate the output on frequency domain:
11: for all a, b ∈ {1, . . . , w + 2k} do
12: V̂ =

Ṽ:,:,a,b√
||Ṽ:,:,a,bṼ

⊺
:,:,a,b||F

// Rescale Ṽ .

13: Calculate W̃:,:,a,b = (V̂ V̂ ∗)−
1
2 V̂ with Newton’s iteration.

14: Ỹ:,a,b = W̃:,:,a,bX̃:,a,b.
15: end for
16: // Get the final output:
17: for all i ∈ {1, . . . , cout} do
18: Yi = FFT−1(Ỹi).
19: end for
20: return (Y:,k:w+k,k:w+k).real

C Proof of Theorem 5.1 and Theorem 5.2

C.1 Proof

To prove Theorem 5.1 and Theorem 5.2, we first define the loss on a subset, so that we can divide the
loss into different subset losses.
Definition C.1 (Subset loss). Define conditional loss:

Lcond
m (G,G∗|S) = Ex∈S [G

∗(x)(1−G(x)) + (1−G∗(x))G(x)]

to bethe loss function calculated only over the subset S ⊆ X , and define the subset loss:

Lm(G,G∗|S) = Lcond
m (G,G∗|S) · P (S).

A property of the subset loss is that, if S = S1∪S2 where S1 and S2 are disjoint, then Lm(G,G∗|S) =
Lm(G,G∗|S1) + Lm(G,G∗|S2).
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First, we provide some facts on the relationship between subset loss Lm(G,G∗|S) and Lm(G,Gpl|S)
when S ⊆ M(Gpl) or S ⊆ M(Gpl).

Fact C.1. When S ⊆ M(Gpl), then Lm(G,G∗|S) = Lm(G,Gpl|S); when S ⊆ M(Gpl), then
Lm(G,G∗|S) + Lm(G,Gpl|S) = P (S).

Proof. This is easy to see by noticing that when x ∈ M(Gpl), then Gpl(x) = G∗(x); when
x ∈ M(Gpl), then Gpl(x) ̸= G∗(x), so Gpl(x) +G∗(x) = 1.

Now, we define S1 = Sm
B(G) ∩M(Gpl) and S2 = Sm

B(G) ∩M(Gpl). Base on the fact, we will be
able to derive the relationship between Lm(G,G∗|S1) and Lm(G,G∗|S2):

Lemma C.2. We have the following relationship between the losses on the sets in which Gpl is
correct vs. Gpl is wrong:

Lm(G,G∗|S2) + P (S1) = Lm(G,G∗|S1) + Lm(G,Gpl|Sm
B(G))

And therefore,

Lm(G,G∗|S2) ≤ Lm(G,G∗|S1) + Lm(G,Gpl)− Err(Gpl) +Rm
B(G)

Proof. For the first equation, note that S2 ⊆ M(Gpl) and S1 ⊆ M(Gpl), so based on the previous
fact, we have:

Lm(G,G∗|S2) + P (S1)

=Lm(G,G∗|S2) + Lm(G,Gpl|S1) + Lm(G,G∗|S1)

=Lm(G,Gpl|S2) + Lm(G,Gpl|S1) + Lm(G,G∗|S1)

=Lm(G,Gpl|Sm
B(G)) + Lm(G,G∗|S1)

For the second inequation, notice M(Gpl)\Sm
B(G) ⊆ S1, so P (S1) ≥ P (M(Gpl))−P (Sm

B(G)) =
Err(Gpl)−Rm

B(G). So:

Lm(G,G∗|S2) =Lm(G,G∗|S1) + Lm(G,Gpl|Sm
B(G))− P (S1)

≤Lm(G,G∗|S1) + Lm(G,Gpl)− (Err(Gpl)−Rm
B(G))

=Lm(G,G∗|S1) + Lm(G,Gpl)− Err(Gpl) +RB(G)

Fact C.3. Given δ ∈ [0, 1
c ] and β ∈ (0, c−1

2 ], we can verify that:

β − 1

c(1− δ)− 2
≤ β

c− 1

Proof. This can be verified by substituting δ = 1
c into LHS, noticing that LHS is monotonically

increasing w.r.t. δ.

Lemma C.4. For any β ∈ (0, c−1
2 ], define q = β

c−1Err(Gpl) and α = (β − 1)Err(Gpl). If G fits the
pseudolabels with suffcient accuracy and consistency:

Lm(G,Gpl) + 2Rm
B(G) ≤ Err(Gpl) + α

Then G satisfies the following error bound:

Errm(G) ≤ 2(q +Rm
B(G)) + Lm(G,Gpl)− Err(Gpl)

The intuition of the proof is as follows. Lemma C.2 provides a relationship between the loss
Lm(G,G∗|S1) and Lm(G,G∗|S2). On the other hand, the expansion of S1 is also related with S2 by
(N (S1)\S1) ∩ Sm

B(G) ⊆ S2. Note that the expansion P (N (S1)) > c · P (S1), so S1 cannot be too
large or otherwise N (S1)\S1 will be too large to be within S2. We will show that Lm(G,G∗|S1) < q.
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Proof. Consider the expansion of S1, N (S1). Since S1 ⊆ M(Gpl) and P (Gpl) < 1/c, we know
that c · P (S1) < 1, so by the assumption of expansion, P (N (S1)) ≥ c · P (S1). In addition, notice
that (N (S1)\S1) ∩ Sm

B(G) ⊆ S2. Therefore, we have:

Lm(G,G∗|S2) ≥Lm(G,G∗|(N (S1)\S1) ∩ Sm
B(G))

≥Lm(G,G∗|N (S1) ∩ Sm
B(G))− Lm(G,G∗|S1)

For the first term, we notice that N (S1)∩Sm
B(G) ⊆ N (S1) and S1 ⊆ Sm

B(G), so the conditional loss
satisfies L(G,G∗|N (S1)∩Sm

B(G))/P (N (S1)∩Sm
B(G)) ≥ (1−δ)L(G,G∗|S1)/P (S1). Therefore,

Lm(G,G∗|S2) ≥Lm(G,G∗|N (S1) ∩ Sm
B(G))− Lm(G,G∗|S1)

≥(1− δ) · P (N (S1) ∩ Sm
B(G))

P (S1)
· Lm(G,G∗|S1)− Lm(G,G∗|S1)

≥(1− δ) ·
P (N (S1))− P (Sm

B(G))

P (S1)
· Lm(G,G∗|S1)− Lm(G,G∗|S1)

≥(1− δ) · P (N (S1))

P (S1)
· Lm(G,G∗|S1)−

Lm(G,G∗|S1)

P (S1)
· P (Sm

B(G))− Lm(G,G∗|S1)

≥(1− δ)c · L(G,G∗|S1)− P (Sm
B(G))− Lm(G,G∗|S1)

=(c(1− δ)− 1)Lm(G,G∗|S1)−Rm
B(G)

Now, substituting L(G,G∗|S2) on the LHS with Lemma C.2 and noticing M(Gpl)\Sm
B(G) ⊆ S1,

with simple transformation we have:

(c(1− δ)− 2)L(G,G∗|S1) ≤Lm(G,Gpl)− Err(Gpl) + 2 ∗Rm
B(G)

≤α

The last inequality comes from the condition in the lemma. Thus, with Fact C.3, we know
L(G,G∗|S1) ≤ α/((c(1− δ)− 2)) ≤ q. Now, we can bound the overall error:

Errm(G) =Lm(G,G∗|S1) + Lm(G,G∗|S2) + Lm(G,G∗|Sm
B(G))

≤q + (q + Lm(G,Gpl)− Err(Gpl) +Rm
B(G)) +Rm

B(G)

≤2(q +Rm
B(G)) + Lm(G,Gpl)− Err(Gpl)

Now, we will prove our main lemma, based on which we will be able to derive Theorem 5.1 and
Theorem 5.2.
Lemma C.5. Suppose Assumption 5.2 holds true. Then we can bound:

Errm(G) ≤ L(G) ≜
c+ 3

c− 1
Lm(G,Gpl) +

2c+ 2

c− 1
Rm

B (G; δ)− Err(Gpl).

for any δ ∈ [0, 1
c ].

Proof. First, we consider the case where Lm(G,Gpl) + 2Rm
B(G) ≤ c−1

2 · Err(Gpl). In this case, we
can find some β ∈ (0, c−1

2 ] such that.

Lm(G,Gpl) + 2Rm
B(G) = βErr(Gpl) = Err(Gpl) + (β − 1)Err(Gpl)

Thus, by lemma C.4, we have:

Errm(G) ≤ 2(
β

c− 1
Err(Gpl) +Rm

B(G)) + Lm(G,Gpl)− Err(Gpl)

=
2

c− 1
βErr(Gpl) + 2Rm

B(G) + Lm(G,Gpl)− Err(Gpl)

=
2

c− 1
(Lm(G,Gpl) + 2Rm

B(G)) + 2Rm
B(G) + Lm(G,Gpl)− Err(Gpl)

≤ c+ 3

c− 1
Lm(G,Gpl) +

2c+ 2

c− 1
Rm

B(G)− Err(Gpl)

= L(G)
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Next, we consider the case where Lm(G,Gpl) + 2Rm
B(G) > c−1

2 · Err(Gpl). By triangle inequality,
we have:

Errm(G) = Lm(G,G∗) ≤ Lm(G,Gpl) + Lm(Gpl, G
∗)

= Lm(G,Gpl) + 2Err(Gpl)− Err(Gpl)

< Lm(G,Gpl) +
4

c− 1
(Lm(G,Gpl) + 2Rm

B(G))− Err(Gpl)

=
c+ 3

c− 1
Lm(G,Gpl) +

8

c− 1
Rm

B(G)− Err(Gpl)

≤ c+ 3

c− 1
Lm(G,Gpl) +

2c+ 2

c− 1
Rm

B(G)− Err(Gpl) (using c > 3)

= L(G)

Now, we provide the proof of Theorem 5.1 and Theorem 5.2 based on Lemma C.5.

Proof of Theorem 5.1. Since Ĝ is an optimizer of L(G), we know Errm(Ĝ) ≤ L(Ĝ) ≤ L(G∗).
Substituting G∗ into L(G) gives the bound in the theorem.

Proof of Theorem 5.2. Note that CertR(G) ≥ 0.5−Err(G)
Lip(G) by its definition. Substituting Err(G) ≤

L(G) gives the inequality in the theorem.

D Error Control of Newton’s Method

Recall that given an unconstrained matrix V ∈ Rn×n, we know that W = (V V T)−
1
2V is orthogonal,

i.e., ||W ||2 = 1, which provides certified robustness for the resulting model. In practice, we use a
finite number of Newton’s iteration steps to approximate (V V T)−

1
2 . In this section, we provide the

following theorem which rigorously control the spectral norm under finite Newton’s iteration steps.
Theorem D.1. Given a matrix V ∈ Rn×n such that ||I − V V T||2 < 1, if we use Newton’s iteraton
for k⋆ steps following Equation (1) with initialization Y0 = V V T and Z0 = I , then we have

||Zk⋆V ||2 ≤ 1 +
||V ||2√

ρmin(V V T)
(1−

√
1− ||I − V V T||2k

⋆

2 ) ≤ 1 +
||V ||2√

ρmin(V V T)
||I − V V T||2

k⋆

2 ,

(2)
where ρmin is the smallest eigenvalue of the matrix.
Remark. We make sure the condition ||I − V V T||2 < 1 is satisfied by rescaling as discussed in
Section 4.1. As the theorem shows, along with the increase of Newton’s iteration step k⋆, the spectral
norm of Zk⋆V approaches 1 where the additional term ||I − V V T||2k2 decays exponentially. Hence,
we can rigorously bound the error in the orthogonalization process caused by finite steps and use
the bound to determine how many finite steps are needed. Indeed, in practice, we apply singular
value decomposition to the computed matrix Zk⋆V , and find its maximum singular value always
approaches 1 from the left side, i.e., the actual spectral norm is equal to or smaller than 1. Detail
experimental verification is in Appendix E.4.

D.1 Proof of Theorem D.1

For brevity, throughout this section, for V ∈ Rn×n, we define A = V V T. Note that A is a real
symmetric matrix. Then, we recursively define

B0 = I,

Bk+1 =
1

2

(
3Bk −B3

kA
)
.

(3)

Before proving the main theorem, we first present the following three lemmas.

Lemma D.1. For any k ∈ N, BkA = ABk and BkA
1
2 = A

1
2Bk.

17



Proof of Lemma D.1. We prove the lemma by induction. Since B0 = I , for k = 0 the lemma holds.
Suppose that the lemma holds for k, then we have

Bk+1A =
1

2
(3Bk −B3

kA)A =
1

2
(3BkA−B3

kA
2)

(∗)
=

1

2
(3ABk −AB3

kA) = A · 1
2
(3Bk −B3

kA) = ABk+1,

Bk+1A
1
2 =

1

2
(3Bk −B3

kA)A
1
2 =

1

2
(3BkA

1
2 −B3

kA
3
2 )

(∗)
=

1

2
(3A

1
2Bk −A

1
2B3

kA) = A
1
2 · 1

2
(3Bk −B3

kA) = A
1
2Bk+1.

(4)
In above equations, (∗) is due to the induction assumption that BkA = ABk or BkA

1
2 = A

1
2Bk.

Therefore, the lemma holds with k + 1 and by induction the lemma holds for any k ∈ N.

Lemma D.2. For any k ∈ N, Yk = BkA and Zk = Bk.

Proof of Lemma D.2. We prove the lemma by induction. Since Y0 = V V T = A, Z0 = I , and
B0 = I , for k = 0 the lemma holds. Suppose that the lemma holds for k, then we have

Yk+1 =
1

2
Yk(3I − ZkYk) =

1

2
BkA(3I −B2

kA)
(∗)
=

1

2
(3Bk −B3

kA) ·A = Bk+1A,

Zk+1 =
1

2
(3I − ZkYk)Zk =

1

2
(3I −B2

kA)Bk
(∗)
=

1

2
(3Bk −B3

kA) = Bk+1,

(5)

where (∗) leverages BkA = ABk from Lemma D.1. Therefore, by induction the lemma holds for
any k ∈ N.

Lemma D.3. When ||I −A||2 < 1, for any k ∈ N, the eigenvalue λ ∈ R of matrix A
1
2Bk is positive.

Proof of Lemma D.3. We define Ck = A
1
2Bk, then by leveraging the commutability between Bk

and A/A
1
2 (Lemma D.1) we have the following iteration:C0 = A

1
2 ,

Ck+1 =
1

2
(3Ck − C3

k).
(6)

Since ||I − A||2 < 1 and A is a real symmetric matrix, any eigenvalue of C0, denoted by λC0
i ,

∈ (0,
√
2). Denoting the diagonalization of C0 by C0 = P−1D0P where D0 = diag(λC0

1 , · · · , λC0
n ).

Then, from the iteration, we have Ck+1 = P−1
(
1
2 (3Dk −D3

k)
)
P and therefore λ

Ck+1

i =

λCk
i

(
3
2 − 1

2 (λ
Ck
i )2

)
. Define function f : R → R such that f(x) = x( 32 − 1

2x
2). We find

f ′(x) = 0 ⇒ x ∈ {0, 1}. Thus, when x ∈ (0,
√
2), f(x) ∈ (0, 1) ⊆ (0,

√
2). Now we apply

the induction. When k = 0, we have λCk
i ∈ (0,

√
2). Suppose λCk

i ∈ (0,
√
2), from above result

we have λ
Ck+1

i = f(λCk
i ) ∈ (0,

√
2). Thus, for any k ∈ N, all eigenvalues of Ck = A

1
2Bk are

positive.

Now we are ready to prove the main theorem.

Proof of Theorem D.1. Since Zk = Bk for any k ∈ N acccording to Lemma D.2, we focus on
Bk and its expression of iteration (Equation (3)) henceforth. According to [3, Section 6], define
Rk = I −B2

kA, we have Rk+1 = 3
4R

2
k + 1

4R
3
k. We have ||I −A||2 = ||R0||2 < 1. By induction,

||Rk+1||2 ≤ 3

4
||Rk||22 +

1

4
||Rk||32

≤ 3

4
||Rk||22 +

1

4
||Rk||22 (by induction condition ||Rk||2 ≤ 1)

= ||Rk||22.

(7)

Therefore, ||Rk⋆ ||2 ≤ ||I −A||2k
⋆

2 , i.e., the eigenvalues of the symmetric matrix I −B2
k⋆A are in the

range [−||I −A||2k
⋆

2 , ||I −A||2k
⋆

2 ].
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Given an eigenvalue λ ∈ R with eigenvector x ∈ Rn of the real symmetric matrix A
1
2Bk⋆ , we have

A
1
2Bk⋆x = λx

⇐⇒ B2
k⋆Ax = λ2x (by Lemma D.1)

⇐⇒ (I −B2
k⋆A)x =

(
1− λ2

)
x.

(8)

Thus, (1−λ2) is an eigenvalue of matrix (I−B2
k⋆A). Since (1−λ2) ∈ [−||I−A||2k

⋆

2 , ||I−A||2k
⋆

2 ],
we get

min{|λ− 1|, |λ+ 1|} ≤ 1−
√
1− ||I −A||2k

⋆

2 . (9)

Then, according to Lemma D.3, we know that λ > 0 and hence λ ∈[√
1− ||I −A||2k

⋆

2 , 2−
√

1− ||I −A||2k
⋆

2

]
. Now we apply diagonalization to A

1
2Bk⋆ :

A
1
2Bk⋆ := P TΛP. (10)

As a result,
||Bk⋆V ||2

=||A− 1
2P TΛPV ||2

=||A− 1
2P T(Λ− I)PV +A− 1

2P TIPV ||2

≤||A− 1
2 ||2 · (1−

√
1− ||I −A||2k

⋆

2 ) · ||V ||2 + ||A− 1
2V ||2

=||A− 1
2 ||2 · ||V ||2 · (1−

√
1− ||I −A||2k

⋆

2 ) + 1

(11)

where the last equality uses the fact A− 1
2V is a orthogonal matrix with spectral norm 1.

Since any eigenvector with eigenvalue λ of A− 1
2 corresponds to the eigenvector with eigenvalue

(1/λ2) of A = V V T, and V V T as a symmetric real matrix only has real eigenvalues,

||A− 1
2 ||2 =

1√
ρmin(V V T)

. (12)

Plug it into Equation (11), we get

||Zk⋆V ||2 = ||Bk⋆V ||2 = 1 +
||V ||2√

ρmin(V V T)
(1−

√
1− ||I −A||2k

⋆

2 ). (13)

Notice that 1−
√
1− x ≤ x for x = ||I −A||2k

⋆

2 ∈ [0, 1], we conclude the proof.

E Addition Exp Results

E.1 Visualization

We show the representation visualization on 16 neurons for SOC and LOT in Figure 3.

E.2 Residual Connection

We show the loss landscape for both LOT and SOC in Figure 4

E.3 Circular vs. Zero padding

As we discussed in Section 4.1, the default parametrization leads to the convolution result with
circular-padding, while we will pre-process the input to get the final result with zero-padding. In
Table 5, we show the performance comparison between circular and zero padding. We can see that
the performance significantly improves when we do the pre-processing and use the zero-padding
instead of default circular-padding.
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Figure 3: Visualizing the features in the last hidden layer of LipConvnet-20 for SOC (left) and LOT
(right). Each image corresponds to one randomly chosen neuron from the last hidden layer and is
optimized to maximize the value of the neuron.

(a) LOT, without
residual connection.

(b) LOT, with
residual connection.

(c) SOC, without
residual connection.

(d) SOC, with
residual connection.

Figure 4: The loss landscape [12] with respect to the parameters of LOT and SOC network with and
without residual connections. The figure is plotted by calculating the loss contour on two randomly
chosen directions of parameters. We can observe that the residual connection greatly smoothifies the
LOT network, while both SOCs with and without residual connection are smooth.

E.4 Error Control of Newton’s Iterations

As we discuss in Section D, we use a finite number of Newton’s iteration to approximate the inverse
square root of a matrix Zk∗ ≈ (V V ⊺)−

1
2 . Theoretically, we have shown that the error of approximated

orthogonal matrix Zk∗V will decay exponentially with number of iterations. Furthermore, we observe
in practice that during the Newton’s iteration, the maximum singular value of ZkV will always
approach 1 from the left side. As an example, we show the maximum singular value (σmax) for all
LOT layers in LipConvnet-20 at different steps (k) during the Newton’s Iteration in Figure 5. We
can see that σmax < 1 for all the layers, so we can safely assume that the Lipschitz bound is no
larger than 1. In addition, σmax > 1− 10−4 = 0.9999 after k = 8 iterations for all the layers, which
indicates that the Newton’s iteration converges well.

E.5 Supervised Learning without CReg Loss and HH Activation

We show the results of semi-supervised learning under standard setting (without CReg Loss, HH
Activation, and LLN on CIFAR-100) in Table 6 and Table 7. We can observe that we still achieve
a good performance compared with SOC, and the gap is sometimes larger than with the different
optimization techniques.

E.6 Full semi-supervised

We show the results for all architectures with semi-supervised learning in Table 8 (with CReg and
HH) and 9 (without CReg and HH). We can see observe that we still achieve a better performance
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Table 5: Performance comparison of LOT network with default circular padding and pre-processed
zero padding.

Model Conv. Padding Vanilla Certified Accuracy at ρ =
Type Accuracy 36/255 72/255 108/255

LipConvnet-20 LOT Circular-pad 76.65% 61.15% 43.83% 28.78%
Zero-pad 77.86% 63.54% 47.15% 32.12%

1 4 7 10
k

0.0

0.5

1.0
m

ax Average
Max
Min

Figure 5: The maximum singular value σmax of ZkV for each of the LOT layer in LipConvnet-20
during the Newton’s iteration. We verify that all the σmax’s are smaller than 1, and after the 8-th
iteration, all the σmax’s are larger than 0.9999.

compared with SOC. In addition, these results also have a larger certified accuracy at larger radius
compared with the supervised learning setting.

F Results on TinyImageNet

To further validate the performance of LOT, we evaluate it on the TinyImageNet dataset which
consists of 100,000 64× 64 images in 200 classes. We use the same model architecture and training
setting as before and show the comparison between LOT and SOC in Table 10. We can observe that
LOT still outperforms the existing SOC approach in most cases. Meanwhile, we observe that all
1-Lipschitz models have a performance drop on the larger dataset compared with vanilla models, and
we leave the breakthrough as future work.

G Discussion of Model Architectures

We would like to emphasize that there are two major differences in designing 1-Lipschitz networks and
standard networks. First, standard architectures focus a lot on regularizing the network so that it does
not overfit (e.g. with dropout), while in 1-Lipschitz networks we do not need strong regularization
because the 1-Lipschitz constraint is already strong enough. Second, standard architectures are
carefully designed so that the gradient will propagate in a proper manner (e.g. residual connection,
BatchNorm), while 1-Lipschitz networks have an intrinsic gradient-norm-preserving property (see
[16]). Thus, it may not be appropriate to directly utilize modern architectures in the design of
1-Lipschitz networks. In Table 11, we show the results of a 1-Lipschitz ResNet18 model, where we
(1) replace all the conv layers with 1-Lipschitz convolution, (2) replace all the residual connection
with average and (3) enforce the variance parameter of BatchNorm layers to be 1 so that the model is
1-Lipschitz. We can observe that LOT still outperforms SOC on both CIFAR-10 and TinyImageNet,
while the performance of the ResNet18 architecture is not as good as that of LipConvNet.

21



Table 6: Certified accuracy of 1-Lipschitz model without CReg loss and HH activation on CIFAR-10
in supervised setting.

Model Conv. Vanilla Certified Accuracy at ρ = Evaluation
Type Accuracy 36/255 72/255 108/255 Time (sec)

LipConvnet-5 SOC 75.78% 59.18% 42.01% 27.09% 2.117
LOT 77.20% 61.76% 44.45% 29.61% 1.406

LipConvnet-10 SOC 76.45% 60.86% 44.15% 29.15% 3.170
LOT 77.30% 62.54% 46.03% 30.64% 1.420

LipConvnet-15 SOC 76.68% 61.36% 44.28% 29.66% 3.993
LOT 77.34% 63.40% 46.54% 31.75% 1.453

LipConvnet-20 SOC 76.90% 61.87% 45.79% 31.08% 4.752
LOT 77.86% 63.54% 47.15% 32.12% 1.558

LipConvnet-25 SOC 75.24% 60.17% 43.55% 28.60% 5.613
LOT 77.76% 62.77% 46.06% 31.20% 1.834

LipConvnet-30 SOC 74.51% 59.06% 42.46% 28.05% 6.438
LOT 77.34% 62.76% 46.24% 31.07% 2.219

LipConvnet-35 SOC 73.73% 58.50% 41.75% 27.20% 7.400
LOT 77.54% 62.62% 46.28% 31.64% 2.620

LipConvnet-40 SOC 71.63% 54.39% 37.92% 24.13% 8.175
LOT 77.79% 62.69% 46.34% 31.32% 2.910

Table 7: Certified accuracy of 1-Lipschitz model without CReg loss, HH activation and LLN on
CIFAR-100 in supervised setting.

Model Conv. Vanilla Certified Accuracy at ρ =
Type Accuracy 36/255 72/255 108/255

LipConvnet-5 SOC 42.71% 27.86% 17.45% 9.99%
LOT 46.07% 31.28% 19.86% 12.17%

LipConvnet-10 SOC 43.72% 29.39% 18.56% 11.16%
LOT 44.68% 30.59% 19.69% 12.33%

LipConvnet-15 SOC 42.92% 28.81% 17.93% 10.73%
LOT 46.01% 32.08% 20.72% 12.92%

LipConvnet-20 SOC 43.06% 29.34% 18.66% 11.20%
LOT 46.05% 32.17% 20.81% 13.16%

LipConvnet-25 SOC 43.37% 28.59% 18.18% 10.85%
LOT 46.21% 31.81% 21.01% 12.83%

LipConvnet-30 SOC 42.87% 28.74% 18.47% 11.21%
LOT 45.71% 32.23% 20.87% 13.03%

LipConvnet-35 SOC 42.42% 28.34% 18.10% 10.96%
LOT 45.38% 31.03% 20.02% 12.46%

LipConvnet-40 SOC 41.84% 28.00% 17.40% 10.28%
LOT 45.30% 30.91% 19.97% 12.36%
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Table 8: Certified accuracy of 1-Lipschitz model with CReg loss and HH activation on CIFAR-10 in
semi-supervised setting.

Model Conv. Vanilla Certified Accuracy at ρ =
Type Accuracy 36/255 72/255 108/255

LipConvnet-5 + CReg + HH SOC 69.67% 59.28% 48.02% 38.30%
LOT 71.52% 61.25% 50.66% 40.31%

LipConvnet-10 + CReg + HH SOC 71.10% 60.81% 50.61% 41.03%
LOT 71.82% 62.60% 51.76% 42.31%

LipConvnet-15 + CReg + HH SOC 71.15% 61.65% 51.78% 42.53%
LOT 71.89% 62.37% 52.24% 42.71%

LipConvnet-20 + CReg + HH SOC 70.95% 61.72% 51.78% 42.01%
LOT 71.86% 62.86% 52.24% 42.39%

LipConvnet-25 + CReg + HH SOC 70.58% 61.40% 51.46% 42.05%
LOT 71.64% 62.67% 52.00% 42.34%

LipConvnet-30 + CReg + HH SOC 70.37% 60.74% 51.23% 41.81%
LOT 72.08% 62.84% 51.99% 41.94%

Table 9: Certified accuracy of 1-Lipschitz model without CReg loss and HH activation on CIFAR-10
in semi-supervised setting.

Model Conv. Vanilla Certified Accuracy at ρ =
Type Accuracy 36/255 72/255 108/255

LipConvnet-5 SOC 70.67% 59.14% 45.88% 34.21%
LOT 72.86% 61.66% 48.84% 36.67%

LipConvnet-10 SOC 71.86% 60.15% 48.01% 35.66%
LOT 73.57% 62.62% 50.26% 37.82%

LipConvnet-15 SOC 73.05% 62.11% 50.44% 38.50%
LOT 73.74% 63.01% 50.66% 38.73%

LipConvnet-20 SOC 72.77% 62.51% 50.40% 38.05%
LOT 73.64% 63.37% 51.00% 38.52%

LipConvnet-25 SOC 72.45% 62.03% 50.12% 38.28%
LOT 73.62% 63.61% 51.21% 38.77%

LipConvnet-30 SOC 71.04% 61.06% 49.30% 38.11%
LOT 71.71% 63.32% 51.27% 39.42%

Table 10: Certified accuracy of 1-Lipschitz model without CReg loss and HH activation on TinyIma-
geNet in supervised setting.

Model Conv. Vanilla Certified Accuracy at ρ =
Type Accuracy 36/255 72/255 108/255

LipConvnet-5 SOC 30.77% 19.74% 11.60% 6.89%
LOT 32.71% 21.44% 12.96% 7.92%

LipConvnet-10 SOC 31.94% 21.21% 12.80% 7.79%
LOT 32.31% 21.22% 12.96% 7.75%

LipConvnet-15 SOC 32.26% 21.36% 12.94% 7.80%
LOT 33.14% 22.21% 13.34% 8.12%

LipConvnet-20 SOC 32.44% 21.27% 12.90% 7.63%
LOT 33.19% 22.02% 13.42% 8.12%
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Table 11: Certified accuracy of 1-Lipschitz ResNet-18 model without CReg loss and HH activation on CIFAR-
10/TinyImageNet in supervised setting

Model Conv.
Type

CIFAR-10 TinyImageNet
Vanilla Certified Accuracy at ρ = Vanilla Certified Accuracy at ρ =

Accuracy 36/255 72/255 108/255 Accuracy 36/255 72/255 108/255

ResNet-18 SOC 66.43% 43.00% 23.00% 9.52% 23.26% 11.64% 5.21% 2.17%
LOT 68.85% 45.46% 25.43% 11.35% 25.09% 12.83% 5.90% 2.62%
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