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Abstract1

Establishing common benchmarks has been a critical driving force behind the2

success of modern machine learning techniques. As machine learning is being3

applied in broader domains and tasks, there is a need to establish more and diverse4

benchmarks to better reflect the reality of the application scenarios. For graph5

learning, an emerging field of machine learning, the need of establishing better6

benchmarks is particularly urgent. Towards this goal, we introduce Graph Learning7

Indexer (GLI)1, a benchmark curation platform for graph learning. In comparison8

to existing graph learning benchmark libraries, GLI highlights two novel design9

objectives. First, GLI is designed to incentivize dataset contributors. In particu-10

lar, we incorporate various measures to minimize the effort of contributing and11

maintaining a dataset, increase the usability of the contributed dataset, as well as12

encourage better credits to different contributors of the dataset. Second, GLI is13

designed to curate a knowledge base, instead of a collection, of benchmark datasets.14

For this purpose, we come up with multiple sources of meta information of the15

benchmark datasets in order to better characterize the datasets.16

1 Introduction17

The practice of establishing common benchmarks in machine learning dates back to research programs18

of speech recognition in 1980s [1, 2], and has become a dominant paradigm of machine learning19

research. In the past, the community has been focusing on a handful of benchmarks in each major20

domain of machine learning applications2, usually developed by few institutes or research groups.21

However, as machine learning is becoming a general-purpose technology3, there are new demands22

from modern machine learning research that are not entirely met by the current common practice of23

benchmarking:24

1. Broad Application. Machine learning is being applied to increasingly broad domains, where25

the emerging field of graph learning is an example with a variety of machine learning tasks26

in this domain. Representative new benchmarks are needed for such new domains and tasks.27

Furthermore, the development of good benchmarks often require inter-disciplinary knowledge28

and collaborations.29

2. Trustworthiness. The collection of each individual benchmark datasets could be biased. Driving30

the development of machine learning technologies by a few fixed benchmark datasets may suffer31

from the biases in these datasets. It is therefore desirable to leverage a set of diverse benchmark32

datasets to expose the potential trustworthy concerns of the machine learning technologies.33

3. General Technology. Towards more general-purpose artificial intelligence, there is a strong34

emerging interest in developing machine learning models that can perform well on a wide range35

1The anonymized codebase for this platform is available here: https://anonymous.4open.science/r/
gli-updated-3D70.

2For example, ImageNet [3] in Computer Vision, SuperGLUE [4] in Natural Language Processing, and Open
Graph Benchmark [5] in Graph Learning.

3https://en.wikipedia.org/wiki/General-purpose_technology
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of downstream tasks [6]. In conjunction with this interest, there have been efforts constructing36

benchmarks with many tasks, such as SuperGLUE [4], GEM [7], and BIG-Bench [8], where37

BIG-Bench consists of 204 tasks by more than 400 authors across 132 institutes.38

These new demands, especially for emerging fields such as graph learning, require the development of39

a large quantity of diverse benchmark datasets, in order to better reflect the reality of machine learning40

applications. This requirement poses challenges in both creation and curation of the benchmarks.41

In this paper, we introduce Graph Learning Indexer (GLI), a graph learning benchmark curation42

platform, to mitigate the aforementioned challenges. In particular, GLI highlights two novel design43

objectives that respectively mitigate the challenges in benchmark creation and benchmark curation.44

First, GLI aims to leverage contributions from the broad graph learning community to establish a45

wide range of benchmarks. As a result, GLI is designed to be contributor-centric, where we treat46

benchmark contributors as our core users when designing the platform. Specifically, we incorporate47

various designs, such as file-based data API, automated test, and template files, to minimize the48

effort of contribution and maintenance by the benchmark contributors. We have also considered49

measures to incentivize research effort in benchmark contributions in general. For example, in order50

to encourage better credits to the benchmark contributors, GLI includes the chain of prior versions of51

each benchmark dataset in the bibliographic section of the dataset README file.52

Second, with the increasing quantity and diversity of benchmark datasets, GLI aims to build a53

knowledge base of the datasets, instead of a simple collection of datasets. GLI includes a Benchmark54

Indexing System4 with various sources of meta information about the benchmark datasets collected55

by GLI. Such meta information can be later used for better curation and retrieval of the benchmarks.56

The rest of this paper is organized as following. We introduce the contributor-centric design and the57

benchmark indexing system respectively in Section 2 and Section 3. Section 4 reviews related prior58

work on benchmark collections and graph learning libraries. We also include a sketch of future plan59

for GLI in Section 5. Finally, in Section 6, we conclude this paper with some open questions on60

benchmark design.61

2 Contributor-Centric Design62

A central goal of GLI is to incentivize the graph learning community to put more effort on contributing63

high-quality benchmark datasets. To achieve this goal, we treat dataset contributors as the core users64

of GLI and come up with three contributor-centric design objectives. First, GLI aims to provide65

smooth user experience for contributors by minimizing the effort on submission and maintenance66

of the datasets. Second, GLI aims to increase the impact of the hosted datasets by improving their67

usability. Third, GLI aims to encourage better credits to the dataset contributors through tangible68

measures.69

2.1 User Experience and Quality Assurance70

A key challenge in the design of GLI is to minimize the effort by the dataset contributors while71

assuring a high quality of the contributed datasets. Our solution to this challenge is to first design a72

standard data management API that is both stable and extensible for graph learning datasets; and then73

design a GitHub-based contribution workflow with concise instructions and rich feedback for dataset74

contributors to convert the benchmark datasets into the standard API.75

2.1.1 Data Management API76

The GLI Data Management API (Figure 1) has two key design features: the API is file-based; there is77

an explicit separation of data and task.78

File-based storage API. The data API for almost all existing graph learning libraries (such as79

DGL [9] and PyG [10]) are code-based, which means that each dataset is associated with an ad hoc80

class that is dedicated to represent this dataset. For example, DGL [9] defines a CoraGraphDataset81

class for the node classification task on the Cora dataset [11, 12]. This code-based API couples the82

datasets with the codebase and increases the difficulty of maintenance. In particular, changes to the83

4Thus “Indexer” in the name of GLI.
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Figure 1: The file-based GLI Data Management API with explicit separation of data and task. The
GLI Data Storage part contains all necessary information to construct the graph data, including
three levels: node, edge, and graph information. Each level may have multiple features or labels
as its attributes. The GLI Task Configuration part contains the necessary information to perform a
predefined task. Both parts further compress big chunks of data (such as the attributes or edge list)
into NumPy standard binary format, with indexes to these data stored in JSON files. The NumPy
data files are hosted in an external storage system, while all other files are hosted in the GitHub repo
of GLI. In addition, the GLI Auxiliary part contains a README document, a conversion script that
converts the raw data into GLI file format, a LICENSE file, and a urls.json providing the URLs to
the NumPy data in the external storage system.

graph learning library codebase may break the ad hoc dataset classes so additional maintenance effort84

is required for each dataset.85

To avoid such unnecessary maintenance burden for dataset contributors, GLI adopts a file-based86

data storage API that is more stable compared to code-based APIs. While there has been file-based87

graph storage API, such as GraphML [13], they are not dedicated to graph learning datasets and lacks88

essential features such as storing the data splits. We therefore designed a novel file-based storage API89

for graph learning datasets.90

Explicit separation of data and task. We recognize that there is a clear distinction between the91

information of the content in a dataset, i.e., the data, and the information about how to use the data to92

train and evaluate the models, i.e., the task. For example, in graph learning benchmarks, there could93

often be multiple tasks (e.g., node classification and link prediction) defined on the same dataset,94

or there could be multiple settings for the same task (e.g., random split or fixed split). From the95

persepctive of dataset contribution and curation, it is cumbersome to make a new version of dataset96

for each new task on top of the same data. Therefore, we propose to store the data information and97

the task information separately in our API. And we design a task-specific API for each type of tasks.98

This explicit separation of data and task turns out to offer a number of benefits. First, it makes the99

API more extensible, as the introduction of a new type of task will not affect the API for the data.100

Second, this separation makes automated tests more modularized (see Section 2.1.2). Third, it allows101

the implementation of general data loading schemes (see Section 2.2). Finally, it leads to a bottom-up102

approach to grow the taxonomy of graph learning tasks (see Section 3.1).103

Overview of the API. Figure 1 shows the architecture of the file-based API with explicit separation104

of data and task5.105

5A detailed document for the API is available at https://anonymous.4open.science/r/
gli-updated-3D70/FORMAT.md.

3

https://anonymous.4open.science/r/gli-updated-3D70/FORMAT.md
https://anonymous.4open.science/r/gli-updated-3D70/FORMAT.md


Graph Learning Indexer

Figure 2: GLI Contribution Workflow. A contributor will first use the conversion script to convert
the raw data into the GLI format. Then the contributor will fill in the templates of README.md and
urls.json. The JSON files, auxiliary files (blue box), and conversion script will be uploaded to
GitHub as a pull request and the NumPy data files (green box) will be uploaded to the external storage
system. GLI will perform automated tests on the submitted datasets and the GLI development team
will further review the pull request before approval.

The information of the graph data is divided into three levels: node, edge, and graph level. Each106

level can be assigned multiple attributes as features or labels and can be further divided into multiple107

sub-levels to represent heterogeneous graphs. The attributes support both dense and sparse tensors to108

allow efficient storage and fast loading. The GLI data format has a strong representative power to109

accommodate most graph-structured data.110

For the task, we have predefined a number of graph learning task types, such as NodeClassification,111

LinkPrediction, GraphClassification, etc. The information in the task configuration can be112

divided into two kinds: general configuration and task-specific configuration. General configurations113

are commonly required by all tasks, including features that are allowed to use during prediction,114

train/validation/test split, etc. On the contrary, the contents of task-specific configurations depend115

on task types. For example, both NodeClassification and GraphClassification requires to116

specify the number of possible classes (num_classes), and LinkPrediction provides an optional117

configuration on negative samples during validation and test (val_neg and test_neg).118

Overall, the file-based design improves the stability of the API while the separation of data and task119

makes the API more extensible, both in turn improves the user experience for dataset contributors.120

2.1.2 Contribution Workflow121

In companion with the data management API, we designed a GitHub-based contribution workflow122

(Figure 2) to ease the dataset contribution process.123

Template files. To begin with, GLI provides a list of well-commented template files6 for all the124

required files in our API. The contributor only needs to fill in all the blanks to convert a dataset into125

the GLI format.126

Dataset submission and review. After finishing converting the dataset, the contributor will submit127

the required files as a pull request to the GitHub repository of GLI. The large NumPy binary files128

will be uploaded to an external storage system7. The GLI development team or other researchers can129

provide detailed and interactive feedback in the pull request.130

Automated tests. In addition to the manual peer review, the pull request will also trigger automated131

tests with detailed error feedback to help the contributors debug their implementation. The tests132

6See https://anonymous.4open.science/r/gli-updated-3D70/templates/template/README.md.
7Currently we use Google Drive and Dropbox accounts owned by the GLI development team as the storage

system.
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include the standard pycodestyle, pydocstyle, and pylint for syntax and style check. We have133

also implemented a wide range of in-depth tests with pytest to check the correctness of dataset134

format and to expose potential errors during runtime by sanity check with short model training.135

Contributors can also use several well-documented utility functions to test the correctness of their136

data format locally.137

2.2 Dataset Usability138

import gli

cora_node_dataset = gli.get_gli_dataset(dataset="cora",
task="NodeClassification")

Demo 1: Example usage of the general data loading scheme. cora_node_dataset is an instance of
dgl.data.DGLDataset, thus it can be fit into DGL dataloader seamlessly.

139

To increase the impact of the datasets hosted on GLI, we implemented a general data loading scheme140

that can seamlessly integrated into major graph learning libraries for downstream experiments. At141

the time of writing this paper, we have implemented data loading for DGL [9]. We also strive to142

accommodate other major libraries in the future. Demo 1 demonstrates an example of the general143

data loading scheme. Once a contributed dataset (and the task defined on it) is merged into the GLI144

repository, the dataset can be retrieved by calling gli.get_gli_dataset with the dataset name and145

task type as arguments.146

Under the hood, as shown in Demo 2, gli.get_gli_dataset calls gli.get_gli_graph and147

gli.get_gli_task to respectively load the GLI Data Storage and GLI Task Configuration shown in148

Figure 1. Thanks to the explicit separation of data and task, we only need to maintain a general graph149

loading function and a set of task loading functions with each function dedicated to a task type, which150

is much less effort than maintaining a separate dataset class for each task and dataset combination.151

graph_cora = gli.get_gli_graph(dataset="cora")
task_node = gli.get_gli_task(dataset="cora",

task="NodeClassification")
cora_node_dataset = gli.combine_graph_and_task(graph_cora , task_node)

Demo 2: The innerworkings of gli.get_gli_dataset.

152

2.3 Credits to Contributors153

An important aspect to incentivize the dataset contributors is to ensure that they get the proper credits.154

For this purpose, we have made a couple of designs to help the community cite properly. There is155

citation information in the README file of each dataset listing the BibTex of the work relevant to156

the dataset. Specifically, the citation information is split into dataset and tasks, as there could often be157

multiple tasks defined on top of a graph dataset, and the definition of tasks could come from work158

that is different from the one contributing the dataset. Moreover, the citation information for the159

dataset is further split into three parts:160

• Original Source: The first work that created the dataset.161

• Current Version: The work that is directly responsible for the dataset stored in GLI.162

• Previous Versions: Any intermediate versions between Original Source and Current Version.163

There can be multiple citations in Previous Versions.164

The paper popularizing a benchmark dataset is often not the paper originally contributing the dataset.165

And it is not uncommon that the former gets most of the citations while the latter gets few. This166

phenomenon is possibly due to two factors. First, tracking the chain of contributions to a dataset167

through literature search is a tedious work. Second, researchers tend to get information about a168

dataset from the methodology papers that cite the dataset rather than the original paper creating the169

dataset. So the mistakes in citation accumulate.170
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By providing succinct bibliographic information relevant to the dataset in the README file, we171

hope to help the community better recognize the contributions of all contributors, with a particular172

emphasis on crediting the original source.173

3 Benchmark Indexing System174

With the growing quantity and diversity of benchmark datasets, it is important for the benchmark175

curation platform to help users navigate through the large collection of datasets. For this purpose,176

GLI is designed to serve as an “indexer” that builds a database consisting of various meta information177

of the benchmark datasets. And we name the database as Benchmark Indexing System. To some178

extent, this is in a similar vein as the idea of Datasheets for Datasets [14]. Datasheets for Datasets179

focus more on the characteristics of each individual dataset while our design of the database also180

cares about the synergy among different datasets.181

Ultimately, we hope to use this database to help users 1) retrieve the right benchmarks that match the182

context of the applications of their interest; 2) identify potential biases and trustworthy issues existed183

in the datasets; or 3) motivate the development of new methodology based on the characteristics of184

tasks and datasets.185

At the current stage, however, we focus on coming up with different sources of meta information to186

be included in the database. The current implementation consists of three types of meta information,187

which are detailed in the following subsections.188

3.1 Task Types189

The task types come as meta information naturally from the implementation of data management API190

in GLI. Graph data are ubiquitous but also diverse and so are the graph learning tasks defined on top191

of graph data. Different graph learning tasks may have distinct nature and thus require very different192

methodology. Therefore the task type is an important source of meta information for each benchmark193

dataset.194

In GLI, the definition of task types is driven by the contributed benchmarks. When a contributor195

is contributing a new benchmark, they will first check if their benchmark belongs to one of the196

existing task types in GLI. If none of the existing task types can accommodate the new benchmark,197

the contributor can initiate the definition of a new task type. The GLI development team and the198

contributors will implement the support for the new task type, including dataset class, documentation,199

and automated tests.200

This bottom-up approach of developing task types not only makes GLI highly extensible to new201

benchmark datasets, but also gradually grows a taxonomy of graph learning tasks as more benchmarks202

are being collected. A list of currently supported task types is given in Appendix A.203

3.2 Graph Data Properties204

Another type of meta information included in GLI is various graph data properties, such as average205

degree or average clustering coefficient. In classical network science literature [15, 16], the graph206

data properties have been shown to be informative about the characteristics of the graph data. In a207

recent study, Palowitch et al. [17] empirically demonstrated that there are clear patterns in the graph208

neural network performance associated with certain graph data properties of the benchmark datasets.209

GLI integrates a function that can calculate a list of graph data properties for each contributed dataset.210

The graph data properties integrated in this function can be categorized into 6 groups.211

• Basic: Is Directed, Number of Nodes, Number of Edges, Edge Density, Average Degree, Edge212

Reciprocity, Degree Assortativity;213

• Distance: Diameter, Pseudo Diameter, Average Shortest Path Length, Global Efficiency;214

• Connectivity: Relative Size of Largest Connected Component (LCC), Relative Size of Largest215

Strongly Connected Component (LSCC), Average Node Connectivity;216

• Clustering: Average Clustering Coefficient, Transitivity, Degeneracy;217

• Distribution: Power Law Exponent, Pareto Exponent, Gini Coefficient of Degree, Gini Coeffi-218

cient of Coreness;219
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• Attribute: Edge Homogeneity, Feature Homogeneity, Homophily Measure, Attribute Assortativ-220

ity.221

The formal definitions of these graph data properties can be found in Appendix C.222

3.3 Model Performance223

The third type of meta information included in GLI is the performance of various popular models on224

the datasets. It is common to use a model’s performance on different experiment settings and datasets225

to understand the model characteristics. Recently, it is shown that one can also use the performance226

of different models to characterize the datasets and obtain meaningful clusters of the datasets [18].227

In GLI, we provide a benchmark suite that can benchmark a few popular machine learning models228

on the contributed benchmarks. The benchmark suite implements a separate set of training and229

hyperparameter tuning functions for each task type. Thanks to the general data loading scheme (as230

introduced in Section 2.2), the benchmark code can be easily extended to new datasets with the same231

task type. We currently have supported NodeClassification and GraphClassification in the232

benchmark suite.233

Below, we provide an example to showcase how the model performance could provide useful infor-234

mation to characterize the datasets. Using the benchmark suite in GLI, we provide the performance235

of several popular models on a set of node classification datasets in Table 1. This experiment is a236

rough replication of Lim et al. [19], with extension to more datasets enabled by GLI. The detailed237

experiment setup (and citations to models and datasets) can be found in Appendix D.238

Readers who are familiar with the recent graph learning literature may find that, not surprisingly,239

the best and second best performing models on each dataset are a good indicator of how “ho-240

mophilous” [20] the dataset is. The early graph neural network models, GCN, GAT, and GraphSAEG,241

have better performance on more homophilous datasets, such as cora, citeseer, and pubmed. LINKX242

performs better on most of the remaining non-homophilous datasets. A few datasets, texas, cornell,243

and wisconsin, lead to notoriously unstable model performance, as shown by the large standard244

deviations for most models. It also seems that the graph structure does not help much for the task, as245

the models (MLP, CatBoost, and LightGBM) that do not utilize the graph structure perform the best246

on these datasets.247

In general, the GLI API makes it easier to implement the benchmark suite for a wide range of models248

and datasets in well-controlled experiment setups, which enables the use of model performance as a249

way to characterize the datasets.250

Table 1: Benchmark experiment results for node classification datasets. Test accuracy is reported
for most datasets, while test ROC AUC is reported for binary classification datasets (genius, twitch-
gamers, penn94, pokec). Standard deviations are over 5 runs. The best result on each dataset is
bolded, and the second best result is underlined.

GCN GAT GraphSAGE MoNet MLP CatBoost LightGBM LINKX MixHop
cora 81.03±0.82 83.0±0.62 81.46±0.74 76.44±1.85 59.1±2.3 59.38±1.25 36.40±0.00 59.36±2.41 79.64±1.55
citeseer 72.28±0.56 69.9±1.54 73.38±0.82 64.4±0.62 54.62±6.26 59.18±0.58 39.34±0.77 42.5±7.88 69.64±1.2
pubmed 79.44±0.43 79.04±0.76 78.4±0.35 76.18±0.84 73.7±0.5 69.96±1.15 54.86±0.33 56.49±7.92 76.61±1.35
texas 61.08±3.07 67.02±1.21 66.48±1.48 55.13±7.04 78.92±2.25 77.84±1.21 83.78±0.00 76.57±4.87 77.84±1.7
cornell 52.97±4.09 48.64±1.9 47.02±3.08 51.89±2.25 68.64±7.78 69.19±2.42 77.30±1.48 65.46±5.85 66.48±5.43
wisconsin 56.46±3.5 54.89±1.96 52.54±1.63 36.86±3.22 78.82±4.24 81.18±2.24 81.96±0.88 78.62±1.94 76.9±5.61
actor 29.36±0.73 30.15±0.56 29.26±0.5 26.35±1.01 37.11±0.54 34.57±1.44 32.12±0.24 33.56±1.84 34.77±0.94
squirrel 32.4±1.18 29.14±1.55 31.64±1.93 27.14±2.34 34.87±0.47 34.37±0.37 33.89±0.69 62.43±1.23 33.37±1.45
chameleon 45.92±2.61 46.18±0.93 48.72±0.47 32.54±1.24 49.16±0.66 41.89±2.54 30.92±1.24 67.08±1.69 48.72±1.39
arxiv-year 49.6±0.16 34.91±0.56 43.39±0.74 40.19±0.48 36.49±0.19 35.76±0.60 36.17±0.29 52.73±0.34 40.63±0.12
snap-patents 55.46±0.11 36.34±0.6 43.33±0.27 43.48±0.73 31.32±0.04 30.96±0.55 31.48±0.06 53.43±0.32 43.27±0.03
penn94 88.79±0.6 66.29±12.21 85.0±0.53 73.92±3.71 83.92±0.32 73.21±2.20 73.62±0.05 93.47±0.27 91.62±0.11
pokec 71.17±10.76 53.03±0.4 63.02±5.68 53.65±2.17 64.69±4.92 62.55±0.38 62.77±0.03 90.54±0.12 86.84±0.2
genius 84.15±1.71 49.86±28.68 80.31±0.23 63.23±2.39 84.42±0.2 82.48±0.00 82.48±0.00 90.88±0.1 90.04±0.12
twitch-gamers 62.4±0.22 59.57±0.88 61.68±0.3 58.02±1.26 59.66±0.09 61.57±0.05 61.62±0.02 66.21±0.3 64.22±0.08

4 Related Work251

In this section, we review prior work on graph learning benchmarks, graph learning libraries, and252

other relevant effort on machine learning benchmark infrastructures.253
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4.1 Graph Learning Benchmarks and Graph Learning Libraries254

Recently, there have been many infrastructural efforts on developing benchmark collections for graph255

learning [5, 21–24]. Among which the most widely-used ones at present are perhaps Open Graph256

Benchmark [5] and Benchmarking Graph Neural Networks [22]. GLI differs from the prior work in257

two key aspects.258

1. GLI is specifically optimized to better serve the dataset contributors. Most existing graph259

learning benchmarks are designed with the “dataset consumers”, instead of contributors, as the260

core users. To our best knowledge, dedicated designs to optimize contribution workflow of graph261

learning datasets were essentially non-exist prior to this work. For example, the contribution262

workflow for Open Graph Benchmark is to pack the dataset in a fixed format and email it to the263

maintenance team8. In comparison, our GitHub-based contribution workflow is more interactive264

and potentially more scalable.265

2. GLI maintains a bottom-up dynamic task taxonomy while most of the existing benchmark266

collections have a top-down static taxonomy of graph learning tasks. The static taxonomy267

of graph learning tasks may limit the type of dataset and tasks could be contributed to the268

benchmark collections.269

There are also a few workshops and conference tracks dedicated to research on benchmarks and270

datasets, such as the Workshop on Graph Learning Benchmarks9 and the NeurIPS Datasets and271

Benchmarks Track10. These venues are friendly to the publications of benchmark contributions and272

have successfully solicited a number of new graph learning benchmark datasets. The development273

of GLI shares the same motivation as these endeavors towards incentivizing more contributions on274

benchmarks. And GLI could be used as an infrastructural tool for these publication venues to better275

evaluate and curate the collected benchmarks.276

4.2 Graph Learning Libraries277

In addition, there are a few general-purpose graph learning libraries, such as PyG [10], DGL [9],278

and TF-GNN [25], that are relevant to this work. While the primary focus of these libraries is not279

benchmark datasets, they also provide graph data API at the dataloader level. We suggest that the280

file-based API design in GLI is more contributor-friendly because 1) it is easier to convert the data to281

files than to implement a dataset class; 2) the file-based API does not rely on any software dependency282

and is less likely to break; 3) the GLI developers will take care of the maintenance of the data loading283

code.284

4.3 Other Relevant Benchmark Infrastructures285

Outside the area of graph learning, there are various machine learning benchmark infrastructures that286

are remotely relevant to this work.287

One relevant machine learning benchmark infrastructure is Papers With Code11, which has a database288

of datasets in different domains of machine learning. Each dataset in this database is associated289

with types of machine learning tasks and a massive record of machine learning model performances,290

similarly as our design in Section 3. However, the performances are directly taken from papers or291

self-reported, and the experiment setups and data versions may not be well controlled.292

More generally, there are a number of dataset search engines, such as Google Dataset Search12,293

Microsoft Research Open Data13, and DataMed14. These search engines index a huge and growing294

amount of datasets in various domains but does not contain detailed domain-specific dataset charac-295

teristics, such as the graph metrics as described in Section 3.2. These dataset are also usually not296

machine-learning ready, i.e., there is no data loading code that transforms these datasets into machine297

learning data loaders.298

8https://ogb.stanford.edu/docs/dataset_overview/
9https://graph-learning-benchmarks.github.io/

10https://neurips.cc/Conferences/2021/CallForDatasetsBenchmarks
11https://paperswithcode.com/
12https://datasetsearch.research.google.com/
13https://msropendata.com/
14https://datamed.org/
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5 Future Plan299

In the future, there are a few directions that the GLI development team will focus on.300

User experience. There is still room to further simplify the dataset contribution workflow, which301

will be one of the major focuses in our future development plan. As examples, we have planned to302

work on the following concrete improvements.303

• Helper functions for dataset conversion. We plan to implement a few helper functions that can304

automatically convert commonly seen raw data formats into the GLI format.305

• Automatic generation of README documents. We would like to implement a function that can306

automatically generate the README document for a dataset based on dataset characteristic and307

a few structured survey questions for the contributors.308

• Simplified submission interface. While the Pull Request functionality of GitHub offers many309

advantages for dataset review (such as providing tests and reviews, and preserving review and310

commit history), the additional technical complexity brought by this process may be a concern.311

In the future, we may want to explore methods to automatically construct a Pull Request based312

on a simpler dataset submission interface.313

Automatic benchmarking popular models. We plan to implement a service that can automatically314

benchmark popular models on new contributed datasets such that the model performance can be315

directly leveraged into the meta information of the datasets.316

Citation tracking. We plan to track the citations to each dataset hosted on GLI. In this way, we can317

send an alert to the authors citing a dataset when critical issues/bugs are identified for the dataset.318

Dataset exploration. We plan to implement an interface to explore and retrieve the datasets hosted319

on GLI, based on the database of the datasets described in Section 3.320

Dataset license. A surprisingly large number of commonly used datasets lack an explicit license321

associated with them. Moreover, getting the right license for many existing datasets is a complicated322

task for a few reasons. First, many commonly used datasets, especially those created in early years,323

do not have a license. Second, while some datasets have a license, they are repurposed from an early324

version that does not have a license. It is unclear if such licenses are still valid. Finally, many datasets325

are released within a code repo. It is unclear if the license of the code repo could be viewed as the326

license to the datasets. As an important future step, we plan to take various measures to mitigate327

the license problem for datasets hosted on GLI. In particular, we will implement automated tools to328

enforce the license coverage for newly contributed datasets. We will also provide guidance on license329

choices for dataset contributors.330

6 Conclusion331

In this paper, we have introduced Graph Learning Indexer (GLI), a benchmark curation platform for332

graph learning. GLI is designed to solicit and curate massive benchmark datasets contributed by the333

community. With the contributor-centric design, we hope that GLI can better assist the community334

contribution on the development of benchmark datasets. We also hope that GLI can help improve our335

understanding on the taxonomy of graph learning tasks based on the rich meta information about the336

datasets.337
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Figure 3: Available tasks table on GLI web page. The rows are datasets and the columns are
pre-defined task types.

A List of Task Types543

Currently, GLI supports the following task types15:544

1. NodeClassification: Node classification task. This task aims to predict categorical node545

properties based on other nodes and its features in a graph.546

2. NodeRegression: Node regression task. This task aims to predict continuous node properties547

based on other nodes and its features in a graph.548

3. GraphClassification: Graph regression task. This task aims to predict categorical graph549

properties based on known graph’s features.550

4. GraphRegression: Graph classification task. This task aims to predict continuous graph551

properties based on known graph’s features.552

5. LinkPrediction: Link prediction task. This task aims to predict the existence of a link between553

two nodes in a graph.554

6. TimeDependentLinkPrediction: Link prediction task, split by time. This task is the special555

case of LinkPrediction. Its train-validation-test split depends on the creation time of links.556

7. KGEntityPrediction: Knowledge graph entity prediction task. This task aims to predict the557

tail or head node for a triplet in the graph.558

8. KGRelationPrediction: Knowledge graph relation prediction task. This task aims to predict559

the relation type for a triplet in the graph.560

We also add a table that lists all available tasks on our web page, as shown in Figure 3. This page will561

be updated periodically once new task configurations are contributed to GLI.562

15See details at https://anonymous.4open.science/r/gli-updated-3D70/FORMAT.md.
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B Reference of Datasets563

Table 2 summarizes the original source, current version and previous versions of the datasets that we564

have incorporated.565

Table 2: Reference of datasets.
Dataset Original Cur Prev Dataset Original Cur Prev

actor [26] [27] / ogbg-molpcba [28] [5] [29]
arxiv-year [30] [19] [5] ogbl-collab [30] [5] /
chameleon [31] [27] / ogbn-arxiv [30] [5] [32]

cifar [33] [22] / ogbn-mag [30] [5] /
citeseer [11] [12] / ogbn-products [34] [5] [35]

cora [11] [12] / ogbn-proteins [36] [5] [37]
cornell [38] [27] / penn94 [39] [19] /
FB13 [40] [41] [42] pokec [43] [19] /

FB15K [40] [41] [44] pubmed [11] [12] /
FB15K237 [40] [41] [44] snap-patents [43] [19] [45]

genius [46] [19] / squirrel [31] [27] /
mnist [47] [22] / texas [38] [27] /

NELL-995 [48] [49] [41] twitch-gamers [50] [19] /
ogbg-molbace [28] [5] [29] wiki [19] [19] /

ogbg-molclintox [28] [5] [29] wiscousin [38] [27] /
ogbg-molfreesolv [28] [5] [29] WN11 [51] [41] /

ogbg-molhiv [28] [5] [29] WN18 [51] [41] [52]
ogbg-molmuv [28] [5] [29] WN18RR [51] [41] [52]
ogbg-molsider [28] [5] [29] YAGO3-10 [53] [41] [54]

C Definitions of Graph Data Properties566

Here we introduce the formal definitions of the graph data properties mentioned in Section 3.2. Given567

a graph G = (V,E), where V = {1, 2, . . . , N} is the set of N nodes and E ⊆ V × V is the set of568

edges. Denote M = |E|. Assume X = RN×D is the matrix of node features, where D is the feature569

dimension. Also assume Y = {1, 2, . . . , C}N is the vector of node labels, where C is the number of570

classes.571

C.1 Basic572

Is Directed: Whether the graph is a directed graph.573

Number of Nodes: The number of nodes N .574

Number of Edges: The number of edges M .575

Edge Density: The edge density is defined as 2M
N(N−1) for undirected graph and M

N(N−1) for directed576

graph.577

Average Degree: The average degree is defined as 2M
N for undirected graph and M

N for directed578

graph.579

Edge Reciprocity: The edge reciprocity of a directed graph is defined as
↔
M
M , where

↔
M denotes the580

number of edges pointing in both directions.581

Degree Assortativity: The degree assortativity is defined as the average Pearson correlation coeffi-582

cient of degree between all pairs of linked nodes.583

C.2 Distance584

Diameter: The maximum pairwise shortest path distance in the graph.585

Pseudo Diameter: The pseudo diameter approximates diameter, which serves as a lower bound of586

the exact value of diameter.587
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Average Shortest Path Length: The average of all the pairwise shortest path distance in the graph.588

Global Efficiency: The efficiency between a pair of nodes is the multiplicative inverse of the shortest589

path distance and the global efficiency is the average efficiency of all pairs of nodes in the graph.590

C.3 Connectivity591

Relative Size of LCC: The relative size of the largest connected component is defined as the ratio592

between the size of the largest connected component and N .593

Relative Size of LSCC: The relative size of the largest strongly connected component is defined as594

the ratio between the size of the largest strongly connected component and N .595

Average Node Connectivity: The local node connectivity for two non-adjacent nodes u and v is the596

minimum number of nodes that must be removed in order to disconnect them and the average node597

connectivity is the average local node connectivity of all pairs of two non-adjacent nodes in the graph.598

C.4 Clustering599

Average Clustering Coefficient: The local clustering coefficient for node u is defined as600
2

deg(u)(deg(u)−1)T (u) for undirected graph, where T (u) is the number of triangles passing through601

node u and deg(u) is the degree of node u; and defined as 2
degtot(u)(degtot(u)−1)−2deg↔(u)T (u) for602

directed graph, where T (u) is the number of directed triangles through node u, degtot(u) is the603

sum of in degree and out degree of node u and deg↔(u) is the reciprocal degree of u and average604

clustering coefficient is the average local clustering of all the nodes in the graph.605

Transitivity: The fraction of all possible triangles present in the graph, which is defined as606

3#triangles
#triads , where a triad is a pair of two edges with a shared vertex.607

Degeneracy: The least integer k such that every induced subgraph of the graph contains a vertex608

with k or fewer neighbors.609

C.5 Distribution610

Power Law Exponent: The exponent parameter of a Power-law distribution that best fits the611

degree-sequence distribution of the graph.612

Pareto Exponent: The exponent parameter of a Pareto distribution that best fits the degree-sequence613

distribution of the graph.614

Gini Coefficient of Degree: The Gini coefficient of the the degree-sequence of the graph.615

Gini Coefficient of Coreness: The Gini coefficient of the the coreness-sequence of the graph, where616

the coreness of a node u indicates the largest integer k of a k-core containing node u.617

C.6 Attribute618

Edge Homogeneity [17]: The ratio of edges that connect nodes with the same node labels.619

Average Within-Class Feature Angular Similarity [17]: Within-class angular feature similarity620

is 1− angular_distance(Xi, Xj) for an edge with its endpoints i and j with the same node labels621

and average within-class angular feature similarity is the average of all such edges in the graph.622

Average Between-Class Feature Angular Similarity [17]: Between-class angular feature similarity623

is 1− angular_distance(Xi, Xj) for an edge with its endpoints i and j with different node labels624

and average between-class angular feature similarity is the average of all such edges in the graph.625

Feature Angular SNR [17]: The ratio between average within-class feature angular similarity and626

average between-class feature angular similarity.627

Homophily Measure [19]: The homophily measure is defined as628

ĥ =
1

C − 1

C∑
k=1

[hk − |Ck|
N

]+, (1)
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Figure 4: An interactive web page showing the graph properties for each dataset. The left sidebar
shows which datasets are selected. The entries are sorted according to the average degree of nodes in
this demonstration.

where [a]+ = max(a, 0), |Ck| is the number of nodes with node label k and hk is the class-wise629

homophily metric defined below,630

hk =

∑
u:Yu=k d

(Yu)
u∑

u:Yu=k du
, (2)

where du is the number of neighbors of node u and d
(Yu)
u is the number of neighbors of node u that631

have the same class label.632

Attribute Assortativity: The attribute assortativity is defined as the average Pearson correlation633

coefficient of the attribute (class labels) between all pairs of linked nodes.634

C.7 Visualization635

We create a web page to show the aforementioned graph data properties, as shown in Figure 4. We636

use Streamlit16 to build and host the website. Users can select multiple datasets and graph properties,637

and sort by a graph property for a quick comparison.638

D Benchmark Experiment Setup639

In this section, we describe more details of the experiment setup17.640

We set GCN [55], GAT [56], GraphSAGE [57], MoNet [58] , MLP, and MixHop [59] to have two641

layers in the benchmark setting. For LINKX [19], we set MLPA, MLPX to be a one-layer network642

and MLPf to be a two-layers network, following Lim et al. [19].643

16https://streamlit.io/cloud. Unfortunately, due to the anonymity requirement, we are not able to
attach the link to the web page.

17Please see more details about how to use the benchmark code at https://anonymous.4open.science/r/
gli-updated-3D70/benchmarks/NodeClassification/README.md.

17

https://streamlit.io/cloud
https://anonymous.4open.science/r/gli-updated-3D70/benchmarks/NodeClassification/README.md
https://anonymous.4open.science/r/gli-updated-3D70/benchmarks/NodeClassification/README.md
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In order to make a fair comparison, we adopt the same training configuration for all experiments. We644

use Adam [60] as optimizer for all models except LINKX. AdamW [61] is used with LINKX in order645

to stay the same with Lim et al. [19]. For all binary classification datasets (penn94, pokec, genius and646

twitch-gamers), we choose ROC AUC as evaluation metric. For other datasets, test accuracy is used.647

Our implementaions of GCN, GAT, GraphSAGE and MoNet are based on DGL [9]. When imple-648

menting the models, we reserve default settings in DGL implementation as much as possible. For649

MixHop and LINKX, we adopt the implementation of Lim et al. [19]. The detailed settings for650

different models are:651

• GAT: Number of heads in multi-head attention = 8. leakyReLU angle of negative slope = 0.2.652

No residual is applied. Dropout rate on attention weight is the same as overall dropout.653

• GraphSAGE: Aggregator type is GCN. No norm is applied.654

• MoNet: Number of kernels = 3. Dimension of pseudo-coordinte = 2. Aggregator type = sum.655

• MixHop: List of powers of adjacency matrix = [1, 2, 3]. No norm is applied.656

• LINKX: MLPA, MLPX are both one-layer network and MLPf is a two-layers network.657

AdamW is used as optimizer. No inner activation.658

Hyperparameter tunning. Random search on the following hyperparameter tuning range is659

performed for every model.660

• Hidden size: {32, 64}661

• Learning rate: {.001, .005, .01, .1}662

• Dropout rate: {.2, .4, .6, .8}663

• Weight decay: {.0001, .001, .01, .1}664

We generate 100 random configurations for each model, where each random configuration is run665

for 5 times on each dataset. The max training epoch number is 10000. We apply early stopping666

where training is stopped if the validation accuracy does not improve for 50 epochs. When training is667

finished, we load the weights of models with highest validation accuracy on the dataset. Test accuracy668

and standard deviation are reported in Table 1.669

Gradient Boosting Decision Tree (GBDT) models. We also include two GBDT models, Cat-670

Boost [62] and LightGBM [63], which are shown to be strong baselines [64–66]. We train both671

models for at most 1000 epoches with early stopping if validation accuracy does not improve for 100672

epochs. We apply grid search on the following hyperparameters, and we have 5 independent trials for673

each hyperparameter configuration.674

Hyperparameters for CatBoost:675

• learning rate: {.01, .1};676

• depth: {4, 6}.677

Hyperparameters for LightGBM:678

• learning rate: {.01, .1};679

• number of leaves {15, 63}.680

E Package Maintenance681

This section outlines the designs of GLI that aim to ensure long-term viability and usability as an682

open-source project.683

E.1 Open Source License684

GLI adopts the MIT License, aligning with our principle to favor broader application and trustwor-685

thiness of graph learning. By using MIT License, we only “require preservation of copyright and686

license notices. Licensed works, modifications, and larger works may be distributed under different687

terms and without source code.”18688

18https://choosealicense.com/licenses/mit/

18

https://choosealicense.com/licenses/mit/
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E.2 Package Indexing689

Currently, GLI provides a setup.py to facilitate the installation from the source. Moreover, we divide690

the package dependencies into three categories: default, test, and doc to meet different needs691

of users and potential contributors. We tested and successfully installed GLI on popular operating692

systems (Windows 11, MacOS with M1, Ubuntu, and CentOS). As a part of future work, we will use693

package indexing tools, including PyPI and Anaconda, to package the GLI project.694

E.3 Documentation695

Automatic deployment. GLI uses sphinx19 and autosummary20 to generate API references auto-696

matically from docstrings in source codes. The docstrings are written in NumPy format21 for better697

readability, in comparison to the common Sphinx format.698

Structure. Figure 5 shows the main page of GLI’s documents. The web page has three main699

sections: “Get Started”, “Modules”, and “Data” as shown on the left toctree. The “Get Started”700

section contains an instruction on installation, and a tutorial for examples of basic usages and701

contributor guidelines. The “Modules” section contains the API references to core modules in GLI.702

The “Data” section illustrates GLI’s file-based storage API.703

E.4 Contributor Guidelines704

We position contributor guidelines in two places: CONTRIBUTING.md in GitHub repository and705

“Contributor Guidelines” section in the aforementioned online document page. The contributor706

guidelines include the installation of the development environment, the steps to make contribution,707

and the development practices to follow. In particular, we distinguish three kinds of contribution: new708

dataset, new feature, and bug fix and ask contributors to follow different guidelines correspondingly.709

E.5 Tutorial710

To flatten the learning curve for new users and potential contributors, we prepared a brief tutorial711

for their reference. The tutorial starts with an explanation of GLI’s architecture, and follows with712

examples of data-loading and downstream tasks. For example, to train a GCN on Cora node713

classification task.714

E.6 Code Quality715

GLI uses pylint, pycodestyle, and pydocstyle to ensure the code quality. Specifically, we have716

followed Google Python Style Guide22 to configure the automatic linting and style checking tools.717

Moreover, they are enforced through both pre-commit hooks locally and continuous integration re-718

motely. Besides, GLI uses pytest to help developers test whether a new patch violate the correctness719

of the codes. The testing is designed to cover all the core modules of GLI, including gli.graph,720

gli.task, gli.dataset and gli.dataloading. Users can run testing locally before they open a721

pull request. We also set up the continuous integration to run testing on GitHub, and enforce that a722

pull request must pass all tests before merging.723

E.7 Others724

GLI uses Makefile to facilitate the development. Contributors can run make test to run the725

aforementioned tests locally to test the core modules on all datasets. Alternatively, one can specify a726

single dataset to test by make pytest DATASET=<dataset name>, which is a common scenario for727

dataset contribution.728

19https://www.sphinx-doc.org/en/master/
20https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html
21https://numpydoc.readthedocs.io/en/latest/format.html
22https://google.github.io/styleguide/pyguide.html

19

https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html
https://numpydoc.readthedocs.io/en/latest/format.html
https://google.github.io/styleguide/pyguide.html
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Figure 5: Preview of GLI document page.
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