
Appendix to:

Joint Entropy Search for Multi-Objective Bayesian Optimization

A Basics

A.1 Bayesian optimization pseudocode

Bayesian optimization consists of two steps that are iterated until the budget of function evaluations
N is exhausted. The first step is modelling, this is where posterior of the probabilistic model p(f |Dn)
is computed. The second step is acquisition, this is where a utility function is optimized in order to
determine the next location to query. The pseudo-code for this procedure is presented in Algorithm 2.
For a more thorough overview on Bayesian optimization consult the references [13, 29, 75].

Algorithm 2: Multi-objective Bayesian Optimization.
Input :A black-box function f .

1 Initialize the probabilistic model p(f).
2 for n = 0, . . . , N − 1 do
3 Optimize for the next point xn+1 = arg maxx∈X α(x|Dn).
4 Evaluate the function yn+1 = f(xn+1) + ε.
5 Augment the data set Dn+1 = Dn ∪ {(xn+1,yn+1)}.
6 Compute the posterior p(f |Dn).
7 end
8 return DN and p(f |DN ).

A.2 Posterior Gaussian process

Under the independent Gaussian observation model described in Section 2, the posterior p(f(X)|Dn)
evaluated at a vector X ⊂ X, is a collection of Gaussian processes [71] with mean

µ(m)
n (X)

= µ
(m)
0 (X) + Σ

(m)
0 (X,Xn)

(
Σ

(m)
0 (Xn, Xn) + diag(σ(m)(Xn))

)−1

(Y (m)
n − µ(m)

0 (Xn))
(17)

and covariance

Σ(m)
n (X,X)

= Σ
(m)
0 (X,X)− Σ

(m)
0 (X,Xn)

(
Σ

(m)
0 (Xn, Xn) + diag(σ(m)(Xn))

)−1

Σ
(m)
0 (Xn, X),

(18)

where we denote the collection of sampled locations by (Xn)t = xt and observations (Y
(m)
n )t =

y
(m)
t for objectives m = 1, . . . ,M and data points t = 1, . . . , n.

A.3 Sampling from a Gaussian process

Exact sampling of a one-dimensional Gaussian process over a finite set, X ⊂ X, scales cubically
with the number of points |X|. This cubic cost arises form the inversion of the covariance matrix.
As we want to sample global maximizers and maximums (X∗,Y∗), exact sampling over the whole
space X is not computational feasible. We could restrict the sampling to a discrete subset of X, but
this would require designing a principled strategy to select a reasonable subset, for example we
could try triangulating between existing points [36]. To avoid this difficulty, we follow the example
of previous work [40, 86], which considers generating approximate samples via random Fourier
features [70, 89, 90]. The strategy centres around approximating the covariance kernel using a feature
representation Σ

(m)
0 (x,x′) ≈ ϕ(x)Tϕ(x′). For a stationary covariance kernel Σ

(m)
0 , the Fourier

transform of the kernel is a non-negative measure that can be normalized to obtain a probability
distribution p(θ)—this result follows from Bochner’s Theorem [11] . For the exponential and Matern
kernels, this probability distribution is known in closed-form [12, 70]. Assuming Σ

(m)
0 is stationary,
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an approximate sample of the Gaussian process prior GP(µ
(m)
0 ,Σ

(m)
0 ) can be written as a Bayesian

linear model

f
(m)
0 (·) = µ

(m)
0 (·) +

L∑
i=1

ωiϕi(·) (19)

where ϕi(x) =
√

2/L cos(θTi x + τi) are the Fourier features depending on the random variables
τi ∼ U(0, 2π) and θi ∼ p(θ), whilst ωi ∼ N (0, 1) are the random weights for i = 1, . . . , L. The
posterior samples of GP(µ

(m)
n ,Σ

(m)
n ) can be obtained by adding an additional pathwise update via

Matherons’ rule [89, 90]:

f (m)
n (·) = f

(m)
0 (·) +

n∑
t=1

κtΣ
(m)
0 (·,xt), (20)

where κt = (Σ
(m)
0 (Xn, Xn) + diag(σ(m)(Xn)))−1(Yn − f (m)

0 (Xn)). For a more comprehensive
overview of sampling from a Gaussian process refer to [90].

B Related work

B.1 Conditional entropy estimates

In this work we devised a number of conditional entropy estimates for the JES acquisition function.
These estimates can also be used by the MES acquisition function. In this brief section, we elabo-
rate on the similarities of our estimates with the existing work relating to the MES acquisition function.

Firstly, the noiseless entropy estimate (31) was derived recently in [80] to extend the noise-
less MES acquisition function to the multi-objective setting. This extension was called
the Pareto frontier entropy search (PFES) and it is equivalent to the acquisition function
we call MES-0. An earlier attempt to extend the MES to noiseless setting resulted in the
MESMO [4] acquisition function. The MESMO acquisition function is equivalent to the
PFES acquisition function if we crudely approximates the dominated space with a single box
D�(Y∗) ≈ B = (−∞,maxy∈Y∗ y

(1)]× · · · × (−∞,maxy∈Y∗ y
(M)]. Empirically, this approxima-

tion leads to a deterioration in performance [80].

The closest work to the lower bound entropy estimate is the GIBBON [59] acquisition
function. The GIBBON acquisition function was derived as a lower bound to the multi-fidelity MES
acquisition function for a single-objective problem. The MES-LB and MES-LB2 can be interpreted
as the multi-objective extensions of GIBBON for the single fidelity setting.

The Monte Carlo entropy estimate has been used before for the multi-fidelity MES acquisi-
tion in the single-objective setting [60, 81]. The MES-MC estimate can be interpreted as the
multi-objective extension of these approaches for the single fidelity setting.

B.2 BAX

The JES acquisition function bares some similarity with a special case of the Bayesian Algorithm
Execution (BAX) algorithm proposed in [61]. Specifically, if we set OA(f) = (X∗,Y∗) in [61], then
the corresponding BAX acquisition function would reduce to

αBAX(x|Dn) = H[p(y|x, Dn)]− Ep((X∗,Y∗)|Dn)[H[p(y|x, Dn ∪ (X∗,Y∗))]]. (21)

In the JES acquisition function, we condition on the augmented data set Dn∗ = Dn ∪ (X∗,Y∗) and
the optimality condition f(X) � Y∗ for the density arising in the conditional entropy term. Whereas
in BAX, we only condition on the augmented data set. The BAX acquisition function is a lower
bound to JES because conditioning never increases the entropy (Theorem 2.6.5 of [17]).

C Single-objective setting

In this section, we discuss the main differences between the single-objective and multi-objective
information-theoretic acquisition functions. At a high level, the only difference between the two
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settings is whether we use the total ordering over real numbers or the Pareto partial ordering over
vectors. Note that in the single-objective setting,M = 1, the Pareto partial ordering coincides with the
standard total ordering order real numbers, that is to say the definition of the binary relations� and≺
coincides with the standard inequality signs≤ and <, respectively. As a result, it is generally possible
for multi-objective acquisition functions to be used in the single-objective setting, which is definitely
the case for the estimates of our JES acquisition function. We will now comment individually on
each information-theoretic acquisition functions on the more subtle differences between the single
and multi-objective algorithms.

PES. There are two main difference between the single-objective and multi-objective PES algorithm.
Firstly, in the single-objective setting, we sample a single maximizer, x∗ ∼ p(x∗|Dn), based on the
standard total ordering, whereas in the multi-objective setting we sample a discrete set of maximizers,
X∗ ∼ p(X∗|Dn), based on the Pareto partial ordering. Secondly, the equations governing the
expectation propagation updates can be different depending on how the target density is factorised
and the modelling assumptions that are made. Therefore, setting M = 1 for the multi-objective PES
algorithm (also known as PESMO) described in [31] might not exactly recover the same result for a
different single-objective implementation of the PES algorithm. In our code we follow the equations
proposed in [31], which accounts for single, multi-objective, batch and/or constrained setting.

MES. There are two main difference between the single-objective and multi-objective MES algo-
rithm. Firstly, in the single-objective setting, we sample a single maximum, y∗ ∼ p(y∗|Dn), based
on the standard total ordering, whereas in the multi-objective setting we sample a discrete set of maxi-
mums, Y∗ ∼ p(Y∗|Dn), based on the Pareto partial ordering. Secondly, in the single-objective setting
the box decomposition is readily available without any effort, D�({y∗}) = (−∞, y∗], whereas in the
multi-objective setting we have to compute it. The MESMO algorithm [4] and the PFES algorithm
[80] both reduce to the single-objective MES algorithm [86] when we set M = 1. As mentioned
before in Appendix B, the MESMO algorithm is a special case of the PFES algorithm when using a
crude approximation to the box decomposition of D�(Y∗), which turns out to be exact when there is
only one objective.

JES. There are two main difference between the single-objective and multi-objective JES algorithm.
Firstly, in the single-objective setting, we sample a single optimal point, (x∗, y∗) ∼ p((x∗, y∗)|Dn),
based on the standard total ordering, whereas in the multi-objective setting we sample a discrete set
of optimal points, (X∗,Y∗) ∼ p((X∗,Y∗)|Dn), based on the Pareto partial ordering. Secondly, in the
single-objective setting the box decomposition is readily available without any effort, D�({y∗}) =
(−∞, y∗], whereas in the multi-objective setting we have to compute it. As mentioned before in
Section 3, if we do not perform the conditioning step in Algorithm 1, we obtain the MES algorithm.

D Proof of results

Before we begin the proofs, we will restate some important notation. Let p(y|x, Dn∗) =
N (y;µn∗(x),Σn∗(x,x)) denote the probability density at a point x ∈ X conditional on the data set
Dn∗ = Dn ∪ (X∗,Y∗). Then we denote the m-th standardized function by

γm(z) =
z − µ(m)

n∗ (x)√
Σ

(m)
n∗ (x,x)

(22)

for m = 1, . . . ,M . For the discrete set of points Y∗ ⊂ RM , we decompose the dominated region
into J boxes:

D�(Y∗) =

J⋃
j=1

Bj =

J⋃
j=1

M∏
m=1

(l
(m)
j , u

(m)
j ], (23)

where lj = (l
(1)
j , . . . , l

(M)
j ) are lower bounds and uj = (u

(1)
1 , . . . , u

(M)
J ) are the upper bounds for

boxes j = 1, . . . , J . Using the box decomposition, we define

Wj,m = Φ(γm(u
(m)
j ))− Φ(γm(l

(m)
j )) (24)
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for boxes j = 1, . . . , J and objectivesm = 1, . . . ,M , where Φ is the cumulative distribution function
of a standard normal distribution. The first derivative of Wj,m (with respect to γm) is denoted by

Gj,m = φ(γm(u
(m)
j ))− φ(γm(l

(m)
j )) (25)

and the negative of the second derivative by

Vj,m = γm(u
(m)
j )φ(γm(u

(m)
j ))− γm(l

(m)
j )φ(γm(l

(m)
j )), (26)

for boxes j = 1, . . . , J and objectives m = 1, . . . ,M , where φ is the probability density function of
a standard normal distribution.

D.1 Proof of Proposition 1

Proposition 1. The JES is an upper bound to any convex combination of the PES and MES acquisition
functions: αJES(x|Dn) ≥ βαPES(x|Dn) + (1− β)αMES(x|Dn), for any β ∈ [0, 1].

Proof. The upper bound property follows from the standard result that conditioning on
more variables will never increase the entropy (Theorem 2.6.5 of [17]): H(A|B) ≤
H(A) for random variables A and B. Using this result, H[p(y|x, Dn, (X∗,Y∗))] ≤
max(H[p(y|x, Dn,X∗)], H[p(y|x, Dn,Y∗)]). Plugging this inequality into (3), we obtain the
αJES(x|Dn) ≥ max(αPES(x|Dn), αMES(x|Dn)), which implies the result.

�

D.2 Proof of Lemma 1

Lemma 1. Let Y∗ ⊂ RM be a finite set and z ∼ N(a, diag(b)) be an M -dimensional mul-
tivariate normal with mean a ∈ RM and variances b ∈ RM≥0. Let D�(Y∗) =

⋃J
j=1Bj =⋃J

j=1

∏M
m=1(l

(m)
j , u

(m)
j ] be the box decomposition of the dominated space, then

p(z � Y∗) =

J∑
j=1

M∏
m=1

[
Φ

(
u

(m)
j − a(m)

√
b(m)

)
− Φ

(
l
(m)
j − a(m)

√
b(m)

)]
. (27)

Proof. Under the assumptions of Lemma 1, the following series of equations holds:

p(z � Y∗) =

∫
D�(Y∗)

p(z)dz =

J∑
j=1

∫
Bj

(
M∏
m=1

p(z(m))

)
dz

(1)
=

J∑
j=1

M∏
m=1

∫ u
(m)
j

l
(m)
j

p(z(m))dz(m)

(2)
=

J∑
j=1

M∏
m=1

[
Φ

(
u

(m)
j − a(m)

√
b(m)

)
− Φ

(
l
(m)
j − a(m)

√
b(m)

)]
.

(1) This step follows from the box decomposition of D�(Y∗) and the independence between the
components of z. (2) This step follows from the definition of the CDF.

�

D.3 Proof of Proposition 2

Proposition 2. Under the modelling set-up outlined in Section 2, for an input x ∈ X the first and
second central moment of p(y|x, Dn∗, f(x) � Y∗) are

E[y(m)|x, Dn∗, f(x) � Y∗] = µ
(m)
n∗ (x)−

√
Σ

(m)
n∗ (x,x)

W

J∑
j=1

Wj
Gj,m
Wj,m

and

Cov
(
y(m), y(m′)

∣∣∣x, Dn∗, f(x) � Y∗
)

=


√

Σ
(m)
n∗ (x,x)

√
Σ

(m′)
n∗ (x,x)

W

∑J
j=1Wj

Gj,m

Wj,m

(
Gj,m′

Wj,m′
− 1

W

∑J
j′=1Wj′

Gj′,m′

Wj′,m′

)
, m 6= m′;

Σ
(m)
n∗ (x,x) + σ(m)(x)− Σ(m)

n∗ (x,x)
W

(∑J
j=1Wj

Vj,m

Wj,m
+ 1

W

(∑J
j=1Wj

Gj,m

Wj,m

)2
)
, m = m′.
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Proof. In the noisy setting, the density of interest is

p(y|x, Dn∗, f(x) � Y∗) =
p(f(x) � Y∗|x, Dn+)

p(f(x) � Y∗|x, Dn∗)
p(y|x, Dn∗).

From Lemma 1,

p(f(x) � Y∗|x, Dn∗) =

J∑
j=1

M∏
m=1

Wj,m =

J∑
j=1

Wj = W. (28)

To obtain a tractable expression for the cumulative distribution p(f(x) � Y∗|x, Dn+), we first com-
pute the conditional distribution p(y|x, Dn+). By standard Gaussian conditioning p(y|x, Dn+) =

N (y;µn+(x),Σ
(m)
n+ (x,x)) where

µ
(m)
n+ (x) = µ

(m)
n∗ (x) + Σ

(m)
n∗ (x,x)(Σ

(m)
n∗ (x,x) + σ(m)(x))−1(y(m) − µ(m)

n∗ (x))

= µ
(m)
n∗ (x) + ρm(x)

√
Σ

(m)
n∗ (x,x)√

Σ
(m)
n∗ (x,x) + σ(m)(x)

(y(m) − µ(m)
n∗ (x))

and

Σ
(m)
n+ (x,x) = Σ

(m)
n∗ (x,x)− Σ

(m)
n∗ (x,x)

(
Σ

(m)
n∗ (x,x) + σ(m)(x)

)−1

Σ
(m)
n∗ (x,x)(x,x)

= Σ
(m)
n∗ (x,x)(1− ρ2

m(x))

with ρm := ρm(x) =

√
Σ

(m)
n∗ (x,x)/

√
Σ

(m)
n∗ (x,x) + σ(m)(x) denoting correlation between the

observation y(m) and the objective value f (m)(x), for objectives m = 1, . . . ,M . Using the box
decomposition, the posterior CDF is equal to

p(f(x) � Y∗|x, Dn+) =

J∑
j=1

M∏
m=1

Φ

u(m)
j − µ(m)

n+ (x)√
Σ

(m)
n+ (x,x)

− Φ

 l(m)
j − µ(m)

n+ (x)√
Σ

(m)
n+ (x,x)

 . (29)

To simplify the notation we perform a change of variable:

γ+
m(z) :=

z − µ(m)
n+ (x)√

Σ
(m)
n+ (x,x)

=
z(m) − µ(m)

n∗ (x)− ρm
√

Σ
(m)
n∗ (x,x)√

Σ
(m)
n∗ (x,x)+σ(m)(x)

(y(m) − µ(m)
n∗ (x))√

Σ
(m)
n∗ (x,x)(1− ρ2

m)

=

z(m)−µ(m)
n∗ (x)√

Σ
(m)
n∗ (x,x)

− ρm (y(m)−µ(m)
n∗ (x))√

Σ
(m)
n∗ (x,x)+σ(m)(x)√

1− ρ2
m

=
γm(z)− ρmȳ(m)√

1− ρ2
m

where ȳ(m) = (y(m) − µ(m)
n∗ (x))/

√
Σ

(m)
n∗ (x,x) + σ(m)(x) is the standardized observation, which

is distributed according to a standard normal random variable for objectives m = 1, . . . ,M . To
derive the moments of p(y|x, Dn∗, f(x) � Y∗), we first obtain the moment generating function of
the standardized observation ȳ.

Mȳ(t) =
1

W

∫
RM

et
T ȳp(f(x) � Y∗|x, Dn+)p(ȳ|x, Dn∗)dȳ

=
1

W

J∑
j=1

M∏
m=1

∫
R
et

(m)ȳ(m)
[
Φ(γ+

m(u
(m)
j ))− Φ(γ+

m(l
(m)
j ))

]
φ(ȳ(m))dȳ(m)

=
1

W

J∑
j=1

M∏
m=1

e
(t(m))2

2

∫
R

[
Φ(γ+

m(u
(m)
j ))− Φ(γ+

m(l
(m)
j ))

]
φ(ȳ(m) − t(m))dȳ(m).

By Lemma 2 in [2], the expectation of the normal CDF is given by
∫
R Φ(az + b)φ(z)dz =

Φ(b/
√

1 + a2) for any constants a, b ∈ R. Using this result,∫
R

[
Φ(γ+

m(u
(m)
j ))− Φ(γ+

m(l
(m)
j ))

]
φ(ȳ(m) − t(m))dȳ(m)
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=

∫
R

[
Φ

(
γm(u

(m)
j )− ρmȳ(m)√

1− ρ2
m

)
− Φ

(
γm(l

(m)
j )− ρmȳ(m)√

1− ρ2
m

)]
φ(ȳ(m) − t(m))dȳ(m)

=

∫
R

[
Φ

(
γm(u

(m)
j )− ρm(ȳ(m) + t(m))√

1− ρ2
m

)
− Φ

(
γm(l

(m)
j )− ρm(ȳ(m) + t(m))√

1− ρ2
m

)]
φ(ȳ(m))dȳ(m)

= Φ(γm(u
(m)
j )− ρmt(m))− Φ(γm(l

(m)
j )− ρmt(m)).

The first moment p(ȳ(m)|x, Dn∗, f(x) � Y∗) can be obtained by evaluating the first derivative of
Mȳ(t) with respect to t(m) at t = 0M .

E[ȳ(m)|x, Dn∗, f(x) � Y∗] =
∂

∂t(m)
Mȳ(t)

∣∣∣
t=0M

=
1

W

J∑
j=1

∏
m′ 6=m

[
Φ(γm′(u

(m′)
j ))− Φ(γm′(l

(m′)
j ))

] (
−ρm

(
φ(γm(u

(m)
j ))− φ(γm(l

(m)
j ))

))

= −ρm
W

J∑
j=1

Wj

Wj,m
Gj,m.

Differentiating a second time, we can obtain the second moments. For m 6= m′,

E[ȳ(m)ȳ(m′)|x, Dn∗, f(x) � Y∗] =
∂

∂t(m)∂t(m′)
Mȳ(t)

∣∣∣
t=0M

=
ρmρm′

W

J∑
j=1

Wj

Wj,mWj,m′
Gj,mGj,m′

and for m = m′,

E[(ȳ(m))2|x, Dn∗, f(x) � Y∗] =
∂2

(∂t(m))2
Mȳ(t)

∣∣∣
t=0M

= 1 +
1

W

J∑
j=1

∏
m′ 6=m

[
Φ(γm′(u

(m′)
j ))− Φ(γm′(l

(m′)
j ))

]
×
(
−ρ2

m

(
γm(u

(m)
j )φ(γm(u

(m)
j ))− γm(l

(m)
j )φ(γm(l

(m)
j ))

))
= 1− ρ2

m

W

J∑
j=1

Wj

Wj,m
Vj,m.

The moments of y(m) can be now derived by reversing the initial linear transformation: y(m) =

ȳ(m)

√
Σ

(m)
n∗ (x,x) + σ(m)(x) + µ

(m)
n∗ (x). The first moment is

E[y(m)|x, Dn∗, f(x) � Y∗] = µ
(m)
n∗ (x)−

√
Σ

(m)
n∗ (x,x)

W

J∑
j=1

Wj
Wj,m

Gj,m
.

The second moment:

E[ȳ(m)ȳ(m′)|x, Dn∗, f(x) � Y∗]

= E

 y(m) − µ(m)
n∗ (x)√

Σ
(m)
n∗ (x,x) + σ(m)(x)

y(m′) − µ(m′)
n∗ (x)√

Σ
(m′)
n∗ (x,x) + σ(m′)(x)

∣∣∣x, Dn∗, f(x) � Y∗


= E

y(m)y(m′) − y(m)µ
(m′)
n∗ (x)− y(m′)µ

(m)
n∗ (x) + µ

(m)
n∗ (x)µ

(m′)
n∗ (x)√

Σ
(m)
n∗ (x,x) + σ(m)(x)

√
Σ

(m′)
n∗ (x,x) + σ(m′)(x)

∣∣∣x, Dn∗, f(x) � Y∗
 .
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This implies

E
[
y(m)y(m′)

∣∣∣x, Dn∗, f(x) � Y∗
]

=

√
Σ

(m)
n∗ (x,x) + σ(m)(x)

√
Σ

(m′)
n∗ (x,x) + σ(m′)(x)E[ȳ(m)ȳ(m′)|x, Dn∗, f(x) � Y∗]

+ E[ȳ(m)|x, Dn∗, f(x) � Y∗]µ(m′)
n∗ (x) + E[ȳ(m′)|x, Dn∗, f(x) � Y∗]µ(m)

n∗ (x)

− µ(m)
n∗ (x)µ

(m′)
n∗ (x).

Substituting in the expressions before, we have that for m 6= m′,

E
[
y(m)y(m′)

∣∣∣x, Dn∗, f(x) � Y∗
]

= µ
(m)
n∗ (x)µ

(m′)
n∗ (x) +

√
Σ

(m)
n∗ (x,x)

√
Σ

(m′)
n∗ (x,x)

W

×
J∑
j=1

Wj

Gj,m
Wj,m

Gj,m′

Wj,m′
− µ

(m′)
n∗ (x)√

Σ
(m′)
n∗ (x,x)

Gj,m
Wj,m

− µ
(m)
n∗ (x)√

Σ
(m)
n∗ (x,x)

Gj,m′

Wj,m′


and for m = m′

E
[
(y(m))2

∣∣∣x, Dn∗, f(x) � Y∗
]

= µ
(m)
n∗ (x)2 + Σ

(m)
n∗ (x,x) + σ(m)(x)

− Σ
(m)
n∗ (x,x)

W

J∑
j=1

Wj

 Vj,m
Wj,m

+ 2
µ

(m)
n∗ (x)√

Σ
(m)
n∗ (x,x)

Gj,m
Wj,m

 .

By some additional algebraic manipulation, the covariance for m 6= m′ is given

Cov
(
y(m), y(m′)

∣∣∣x, Dn∗, f(x) � Y∗
)

=

√
Σ

(m)
n∗ (x,x)

√
Σ

(m′)
n∗ (x,x)

W

×

 J∑
j=1

Wj
Gj,m
Wj,m

Gj,m′

Wj,m′
− 1

W

 J∑
j=1

Wj
Gj,m
Wj,m

 J∑
j′=1

Wj′
Gj′,m′

Wj′,m′


and the variance is

Var
(
y(m)

∣∣∣x, Dn∗, f(x) � Y∗
)

= Σ
(m)
n∗ (x,x) + σ(m)(x)− Σ

(m)
n∗ (x,x)

W

 J∑
j=1

Wj
Vj,m
Wj,m

+
1

W

 J∑
j=1

Wj
Gj,m
Wj,m

2
 .

�

D.4 Proof of Proposition 3

Proposition 3. The information-theoretic acquisition functions αPES, αMES and αJES are invariant to
reparameterization of the objective space that are consistent with the Pareto ordering relations. For
example, αJES(x|Dn) = MI(y; (X∗,Y∗)|Dn) = MI(g(y); (X∗, g(Y∗))|Dn), where the gm : R →
R is a strictly monotonically increasing function acting only on the m-th objective.

Proof. We will prove the general statement that the mutual information is invariant under smooth
bijective transformations. Consider two random variables X and Y then following equations hold:

I(X;Y ) = Ep(X,Y )

[
log

p(X,Y )

p(X)p(Y )

]
= Ep(X′,Y ′)

[
log

p(X ′, Y ′)|Jx||Jy|
p(X ′)|Jx|p(Y ′)|Jy|

]
= I(X ′;Y ′),

where X ′ = gx(X) and Y ′ = gy(Y ) represents the transformed variables under some suitably
defined smooth invertible functions gx and gy . The expressions Jx and Jy correspond to the Jacobian
of the transformation, which are non-zero because the transformation are assumed to be invertible.
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The result follows by restricting the class of bijective functions to ones where the Pareto set remains
unchanged. For example, the class of monotonic increasing functions in each objective ensures
this property holds: g : RM → RM such that g(y) = (g1(y(1)), . . . gM (y(M))) with gm being
monotonically increasing.

�

E Noiseless entropy estimate

In this section, we present the conditional entropy estimate for the zero observation variance setting
and an ad hoc extension for noisy setting. Firstly, if we assume the observation variance is zero, the
conditional distribution of interest is a truncated multivariate normal:

p(y|x, Dn∗, f(x) � Y∗) =
p(y|x, Dn∗)

p(f(x) � Y∗|x, Dn∗)
I[y � Y∗], (30)

which is known to have the following analytical equation for the entropy:
Proposition 4. (Theorem 3.1. in [80]) Under the modelling set-up outlined in Section 2, if x ∈ X is
an input with zero observation variance, σ(x) = 0M , then the entropy of the truncated multivariate
normal distribution p(y|x, Dn∗, f(x) � Y∗) is given by

H[p(y|x, Dn∗, f(x) � Y∗)]

=
M

2
log(2πe) +

1

2

M∑
m=1

log(Σ
(m)
n∗ (x,x)) + logW − 1

2W

J∑
j=1

Wj

M∑
m=1

Vj,m
Wj,m

.

Proof. See [80] for the proof of this result.
�

Assuming σ(x) = 0M , we have

αJES-0(x|Dn) = H[p(y|x, Dn)]− Ep((X∗,Y∗)|Dn)[H[p(y|x, Dn∗, f(x) � Y∗)]]
= −Ep((X∗,Y∗)|Dn)[log(W )]

+
1

2

M∑
m=1

(log(Σ(m)
n (x,x))− Ep((X∗,Y∗)|Dn)[log(Σ

(m)
n∗ (x,x))])

+ Ep((X∗,Y∗)|Dn)

 1

2W

J∑
j=1

Wj

M∑
m=1

Vj,m
Wj,m

 .
The first term is equal to expectation of the negative log-probability of the noiseless observation lying
below Pareto front:

−Ep((X∗,Y∗)|Dn)[log(W )] = −Ep((X∗,Y∗)|Dn)[log(p(y � Y∗|x, Dn∗))].

This term accounts for the exploitation because it puts more emphasis on the points that are likely to
lie above the Pareto front. The remaining terms account for the exploration by placing more emphasis
on reducing the uncertainty at input location. To still take advantage of the result in Proposition 4 for
the noisy observation setting, we propose an ad hoc extension that adjusts the exploration term to
include the effects of the observation noise. Specifically, we propose a modification which replaces
the difference in log variances in the exploration term,

log(Σ(m)
n (x,x))− Ep((X∗,Y∗)|Dn)[log(Σ

(m)
n∗ (x,x))]

with the differences in log variances plus observation noise,

log(Σ(m)
n (x,x) + σ(m)(x))− Ep((X∗,Y∗)|Dn)[log(Σ

(m)
n∗ (x,x) + σ(m)(x)))],

where σ(m)(x))(x) is the observation variance for objectives m = 1, . . . ,M at x ∈ X. Using this
adjustment, we define the resulting conditional entropy estimate by

hJES-0((X∗,Y∗); x, Dn)

=
M

2
log(2πe) +

1

2

M∑
m=1

log(Σ
(m)
n∗ (x,x) + σ(m)(x)) + logW − 1

2W

J∑
j=1

Wj

M∑
m=1

Vj,m
Wj,m

.
(31)
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Empirically, we observe that the performance of this conditional entropy estimate is in-line with the
other conditional entropy approximations.

F Monte Carlo entropy estimate

In this section, we consider estimating the entropy of p(y|x, Dn∗, f(x) � Y∗) via Monte Carlo. As
a reminder, the entropy of interest can be written as an expectation over p(y|x, Dn∗):
H[p(y|x, Dn∗, f(x) � Y∗)]

= −
∫
RM

p(y|x, Dn∗, f(x) � Y∗) log (p(y|x, Dn∗, f(x) � Y∗)) dy

= −
∫
RM

p(f(x) � Y∗|x, Dn+)

p(f(x) � Y∗|x, Dn∗)
p(y|x, Dn∗) log

(
p(f(x) � Y∗|x, Dn+)

p(f(x) � Y∗|x, Dn∗)
p(y|x, Dn∗)

)
dy

= −Ep(y|x,Dn∗)

[
p(f(x) � Y∗|x, Dn+)

p(f(x) � Y∗|x, Dn∗)
log

(
p(f(x) � Y∗|x, Dn+)

p(f(x) � Y∗|x, Dn∗)
p(y|x, Dn∗)

)]
.

The CDF in the denominator is p(f(x) � Y∗|x, Dn∗) = W from (28), whilst the CDF in the
numerator is

p(f(x) � Y∗|x, Dn+) =

J∑
j=1

M∏
m=1

[
Φ
(
γ+
m(u

(m)
j )

)
− Φ

(
γ+
m(l

(m)
j )

)]

=

J∑
j=1

M∏
m=1

W+
j,m(y) =

J∑
j=1

W+
j (y) = W+(y)

from (29). By sampling yi ∼ p(y|x, Dn∗) for i = 1, . . . , I , we can approximate the entropy with
the following Monte Carlo average:

H[p(y|x, Dn∗, f(x) � Y∗)] = − 1

W
Ep(y|x,Dn∗)

[
W+(y) log(W+(y)p(y|x, Dn∗))

]
+ log(W )

≈ hJES-MC((X∗,Y∗); x, Dn),

where the Monte Carlo entropy estimate is given by

hJES-MC((X∗,Y∗); x, Dn) = − 1

WI

I∑
i=1

W+(yi) log(W+(yi)p(yi|x, Dn∗)) + log(W ). (32)

Instead of generating new samples for each call of the acquisition function, we follow the general
wisdom in BO [88] and apply the reparameterization trick on the sampling distribution: yi =
µn∗(x) + Cn∗(x)zi, where Cn∗(x) ∈ RM×M is the Cholesky factor of Σn∗(x,x) and zi ∼
N (0, IM ) are the base samples that only need to be initialized once. The variance of this estimate
could potentially be reduced by including control variates. For example,

hJES-MC-CV((X∗,Y∗); x, Dn) = hJES-MC((X∗,Y∗); x, Dn)

+ β1

(
1

I

I∑
i=1

W+(yi)− Ep(y|x,Dn∗)[W
+(y)]

)

+ β2

(
−1

I

I∑
i=1

log(p(yi|x, Dn∗)) + Ep(y|x,Dn∗)[log(p(y|x, Dn∗)]

)
,

where the expectations are known,
Ep(y|x,Dn∗)[W

+(y)] = W, (33)

−Ep(y|x,Dn∗)[log(p(y|x, Dn∗)] =
M

2
log(2πe) +

1

2

M∑
m=1

log(Σ
(m)
n∗ (x,x) + σ(m)(x)) (34)

and β1, β2 ∈ R are the regression coefficients. We did not assess the effect adding control variates to
our Monte Carlo estimate because the standard quasi-Monte Carlo scheme with the reparameterization
trick worked reasonably well out of the box. One word of caution [43]: combining both control
variates and quasi-Monte Carlo could lead to an increase in variance if the coefficients are naively
estimated.
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G Submodularity

A set function g : 2V → R is submodular if for everyA,B ⊂ V , g(A∩B)+g(A∪B) ≤ g(A)+g(B),
where V is the set of interest—for further details on submodularity refer to [53]. The following
proposition states that the lower bound batch acquisition function and its approximation for the JES
and MES are submodular functions defined over subsets of the input space.
Proposition 5. The lower bound batch acquisition function αqLB-JES(X|Dn) and its approximations
α̂qLB-JES(X|Dn) are submodular functions defined over subsets of X.

Proof. Let X = {xi}i=1,...,q ⊂ X denote a set of inputs. If KX ∈ Rq×q is a positive semi-definite
matrix such that Ki,j depends only on the inputs xi ∈ X and xj ∈ X, then the log-determinant
function log detKX defined over sets X is submodular [54]. Similar to [59], we will show that this
lower bound batch acquisition function can be written as a sum of these log-determinants.
αqLB-JES(x[1:q]|Dn)

=
1

2

M∑
m=1

log det(Σ(m)
n (x[1:q],x[1:q]) + diag(σ(m)(x[1:q])))

+
M

2
log(2πe)−

q∑
i=1

Ep((X∗,Y∗)|Dn)

[
H[p(y[i]|x[i], Dn∗, f(X∗) � Y∗)]

]
=

1

2

M∑
m=1

log det(Σ(m)
n (x[1:q],x[1:q]) + diag(σ(m)(x[1:q]))) +

q∑
i=1

log
(
eζ(x

[i])
)

=
1

2

M∑
m=1

(
log det(Σ(m)

n (x[1:q],x[1:q]) + diag(σ(m)(x[1:q]))) +

q∑
i=1

log
(
e2ζ(x[i])/M

))

=
1

2

M∑
m=1

(
log det(Σ(m)

n (x[1:q],x[1:q]) + diag(σ(m)(x[1:q]))) + log det
(

diag
(
e2ζ(x[1:q])/M

)))
where

ζ(x[i]) =
M

2q
log(2πe)− Ep((X∗,Y∗)|Dn)

[
H[p(y[i]|x[i], Dn∗, f(X∗) � Y∗)]

]
. (35)

For notational convenience, let A(m) = Σ
(m)
n (x[1:q],x[1:q]) + diag(σ(m)(x[1:q])) for m = 1, . . . ,M

and B = diag
(
eζ(x

[1:q])/M
)

. Combining the terms, we obtain

αqLB-JES(x[1:q]|Dn) =
1

2

M∑
m=1

(
log det(A(m)) + log det(B2)

)
=

1

2

M∑
m=1

log detK(m),

where K(m) = BA(m)B with K(m)
i,j = eζ(x

[i])/Meζ(x
[j])/MA

(m)
i,j for i, j = 1, . . . , q and m =

1, . . . ,M . Each summand, log detK(m), is a submodular function [54]. As a sum of submodular
functions is submodular, we conclude using that the lower bound batch acquisition function is
submodular. For the approximate batch acquisition function, the expectation in (35) is replaced by
the corresponding Monte Carlo estimate. The submodularity derivation above continues to hold when
using the conditional entropy approximations.

�

H Cost analysis

In this section we consider the costs involved in evaluating the JES acquisition function according to
Algorithm 1. We also include some discussion of the cost of the other information-theoretic criterion,
namely MES and PES.

Sampling cost. The cost of approximate sampling from a single Gaussian processes p(f (m)|Dn)
using the random Fourier features (described briefly in Appendix A.3) is O(min(n,L)3), where L is
the number of Fourier features—for more details refer to [89]. An evaluation of a sample at a set of
inputs X ⊂ X has a linear cost depending on |X| [89].
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Multi-objective optimization cost. Given a sample fs, we optimize for p Pareto optimal points
(X∗s,Y∗s) using the popular genetic algorithm known as NSGA2 [22]. The cost of this algorithm is
O(MN2

popNgenNoff), where Npop is the size of the population, Ngen is the number of generations and
Noff is the number of offspring [22]. At a high level, NSGA2 works by evaluating the function at
Npop locations at time t = 1 and then moves on to evaluate Noff candidates for the rest of the time
t = 2, . . . , Ngen. The location of the offspring evaluations are determined by a random heuristic
motivated by the mechanisms involved in the theory of evolution: crossover, mutation, elitism and
diversity.

Box decomposition. The cost of performing a single the box decomposition based on the incre-
mental algorithm in [55] is O(pbM/2c+1), where p is the number of Pareto optimal points.

Conditioning cost. Conditioning on an additional p data-points requires updating the Cholesky
decomposition of the input covariance matrix. The cost of a single update of this kind relies on a
triangular solve, which has a quadratic complexity O(M(n+ p)2).

Initial entropy evaluation cost. The initial entropy (4) can be computed directly from the poste-
rior covariance. The cost of instantiating the caches of the Gaussian process covariance, namely
(Σ

(m)
0 (Xn, Xn) + diag(σ(m)(Xn))−1 is O(n3). The cost of evaluating the posterior covariance

(18) at point x ∈ X is O(n2). In the batch case, we also have to compute a log-determinant of the
q × q covariance matrix, which has a cost of O(q3). We use the implementation in the GPyTorch
[30], which computes the approximate log-determinant, which only uses a linear cost of O(q)—this
approximation approach is outlined in [25].

Conditional entropy evaluation cost. Assuming the posterior model and conditioned model are
instantiated, we will consider the operations involved when evaluating the conditional entropy
estimates. The cost of evaluating the probability density function and CDF of a univariate normal
distribution at a point x ∈ X are both assumed to beO(1). As a result, the dominant cost of evaluating
the hJES-0 (31) and hJES-LB2 (14) comes from the evaluation of the variance. For hJES-LB (13), we
additionally have to populate an M × M matrix and compute its log-determinant. For hJES-MC

(32), we need to initialize a set of I base samples for the reparameterization trick [88] described in
Appendix F—this has a linear one time cost of O(MI). Assuming the Monte Carlo samples are
generated, the rest of the operations depend linear on I .

Expectation propagation. To approximate the density p(y|x, Dn,X∗) in the PES acquisition
function (1), the authors of [31] consider using expectation propagation [58]. The dominant cost of
this is from matrix inversions of the covariance matrix, which scales cubically with the number of data
points in consideration. In the initialization phase, we prepare the expectation propagation caches,
which require inverting an (n+p)× (n+p) matrix, whilst during testing we invert a (q+p)× (q+p)
matrix, where q is the batch size.

Total cost. The total cost is the sum of the initialization cost and the query cost. Using the variables
defined in Table 1 and Table 2, we can write down the initialization and query cost of JES, MES and
PES. For the calculations, we assume that we have already queried n points and we want to compute
the acquisition function at a batch of q points using S Monte Carlo samples of the Pareto set and/or
front comprised of p points.

• JES. The initialization cost isCinit+SCsample(L)+SCmoo(Npop, Ngen, Noff)+SCbd(p)+SCcond(p).
There is an additional initial cost of SCbase-sample(I) for the Monte Carlo conditional entropy
estimate. The query cost is Cinit-h(q) + SqCh(p), where Ch ∈ {Ch-0, Ch-lb, Ch-lb2, Ch-mc} is the
conditional entropy estimation strategy. Keeping the other parameters fixed, the dominant query
cost is Mq2 when using the approximate log-determinant and Mq3 when using the standard
log-determinant for large q.

• MES. We consider the MES algorithm obtained by excluding the conditioning step de-
scribed in Algorithm 1. The initialization cost of this approach is Cinit(q) + SCsample(L) +
SCmoo(Npop, Ngen, Noff) + SCbd(p). The query cost is Cinit-h(q) + SqCh(0), where Ch ∈
{Ch-0, Ch-lb, Ch-lb2, Ch-mc} is the conditional entropy estimation strategy. Keeping the other param-
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eters fixed, the dominant query cost is Mq2 when using the approximate log-determinant and Mq3

when using the standard log-determinant for large q.
• PES. We consider the expectation propagation approach described in [31] to approximate the PES

acquisition. The batch extension is derived in a follow-up work [33]. The initialization cost of
this approach is Cinit(q) + SCsample(L) + SCmoo(Npop, Ngen, Noff) + SCep0(p). The query cost is
Cinit-h(q) + SCep(q, p). Keeping the other parameters fixed, the dominant query cost is SMq3 for
large q.

Naturally, the initialization phase can be executed in parallel because we are running S independent
operations. For our experiments, we did not take advantage of this advantageous property when
performing the sampling, multi-objective optimization and box decomposition.

Operation Reference Cost

Initializing the posterior p(f |Dn) Cinit Mn3

Log-determinant of a K ×K matrix Clogdet(K) K3

Approximate log-determinant of a K ×K matrix Calogdet(K) K
Generating I base samples from N (0, diag(1M )) Cbase-sample(I) MI
Approximate sampling of p(f |Dn) Csample(L) M min(n,L)3

Multi-objective optimization of fs Cmoo(Npop, Ngen, Noff) MN2
popNgenNoff

Box decomposition of Y∗s with p points Cbd(p) pbM/2c+1

Conditioning on the Pareto optimal point p(f |Dn∗) Ccond(p) M(n+ p)2

Initialization of expectation propagation caches Cep0(p) M(n+ p)3

Table 1: The initialization and operation costs. The cost only includes the highest order terms and we
have ignored the constant factors.

Operation Reference Cost

Posterior covariance Σn(X,X) Ccov(|X|, n) M(|X|n2 + |X|2)
Initial entropy H[p(y[1:q]|x[1:q], Dn)] Cinit-h(q) Ccov(q, n) +MClogdet(q)
Conditional entropy estimate hJES-0 Ch-0(p) Ccov(1, n+ p)
Conditional entropy estimate hJES-LB Ch-lb(p) Ccov(1, n+ p) +M2 + Clogdet(M)
Conditional entropy estimate hJES-LB2 Ch-lb2(p) Ccov(1, n+ p)
Conditional entropy estimate hJES-MC Ch-mc(p) Ccov(1, n+ p) +MI
Expectation propagation Cep(q, p) M(q + p)3

Table 2: The cost of involved with querying after the initialization. The cost only includes the highest
order terms and we have ignored the constant factors. In our experiments, we use the approximate
log-determinant, which cost Calogdet instead of the more expensive cost of Clogdet.

I Estimation error

Overall, there are five sources of estimation error when approximating the batch JES acquisition
function. In this section, we briefly enumerate and discuss these errors below.

1. The first source of error arises from replacing the global optimality condition with the local
optimality condition. This turns out to be a lower bound approximation:

αJES(x|Dn) = H[p(y|x, Dn)]− Ep((X∗,Y∗)|Dn)[H[p(y|x, Dn, (X∗,Y∗))]]
= H[p(y|x, Dn)]− Ep((X∗,Y∗)|Dn)[H[p(y|x, Dn ∪ (X∗,Y∗), f(X) � Y∗)]]
≥ H[p(y|x, Dn)]− Ep((X∗,Y∗)|Dn)[H[p(y|x, Dn ∪ (X∗,Y∗), f(x) � Y∗)]],

because conditioning on more variables will never increase the entropy. The error from this
lower bound approximation appears also in the majority of the work on entropy based acquisition
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functions. Empirically, we observed that this approximation leads to a very minor change
to the selected point for the sequential acquisition function. The effects of this error on the
batch acquisition function is unclear because computing an unbiased estimate of the exact batch
acquisition function over the whole input space is too expensive to do in practice.

2. The second and third source of error arises from the Monte Carlo approximation of the intractable
expectation and the discrete approximation of the Pareto optimal points, respectively. The error of
this step could be reduced by increasing the number of samples or optimal points at the expense of
more computation. In the experiments we conducted, we set the number of Monte Carlo samples
as S = 10 and the number of optimal points as p = 10. This combination seemed to work
well under our collection of problems and the sensitivity analysis we conducted in Appendix L.3
seems to indicate that there is a diminishing gain in performance when we increase the number of
samples or optimal points further.

3. The fourth source of error comes from estimating the conditional entropy. This can be computed
exactly in the noiseless setting, but has to be estimated in the other settings. The Monte Carlo
estimate gives an unbiased estimate of this term, which can be made more accurate by increasing
the number of samples. In the experiments presented in Appendix L, we observed very little
difference in the points that are selected when using the different conditional entropy estimates.
As a result, we recommend using the cheapest estimates which in most cases is the one based on
the moment-matching approach.

4. The fifth source of error comes from estimating the batch acquisition function using the
lower bound. This error is only present when the batch size is greater than one: q > 1.
Quantifying this error is hard to do empirically because the exact batch acquisition function is
too expensive to estimate unbiasedly. Nevertheless, the lower bound batch acquisition function
and its approximation are still principled acquisition functions because they can be written as
determinantal point processes (DPPs) [54]. This property was derived and used in the proof of
submodularity in Appendix G.

As discussed in the BO literature [15, 49, 87], batch acquisition functions based on
DPPs are powerful because they can promote diverse batches in high-quality regions. The
trade-off between diversity and quality (Section 3.1 in [54]) is evident in the form of the DPP
kernel, K(m)

i,j = qiqjA
(m)
i,j , where qi = exp(ζi/M) can be interpreted as the quality of item i,

whilst A(m)
i,j corresponds to a notion of similarity. In the approximation, we use a Monte Carlo

estimate for the term ζi, which only arises when computing the quality term. As a result, the
batch that is selected with this approximation might differ slightly from the optimal batch but the
diversity of the batch will still be high because of the matrix A(m).

J Contour plots

In this section we present some contour plots to illustrate visually the differences that emerges
between the different approximation strategies for the information-theoretic acquisition functions
on a single-objective problem. The approximation for PES, MES and JES are presented in Figure 8,
Figure 9 and Figure 10, respectively. To obtain the ground truth for the acquisition function we run
the rejection sampling scheme discussed in [40]. As a comparison we also include the contours
of some popular single-objective acquisition functions. Visually the estimates all appear to be
reasonably effective for this set-up. Interestingly, the PES and MES prefer querying around the lower
mode, whilst JES prefers the upper mode which perhaps offers a better trade-off between the gain in
information about both the optimal input and output.
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Figure 7: The contours for the Gaussian process posterior mean and entropy after making 8 noisy
observations of the (normalized) Rastrigin objective function (d = 2,M = 1).
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Figure 8: The contours for the predictive entropy search acquisition and its approximation obtained
via expectation propagation. For reference we also include a random Thompson sample. The location
of the maximizer is highlighted using a pair of dotted black lines.
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Figure 9: The contours for the maximum value entropy search acquisition function and its approxi-
mation obtained via the zero noise approximation, moment matching and Monte Carlo. The location
of the maximizer is highlighted using a pair of dotted black lines.
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Figure 10: The contours for the joint entropy search acquisition function and its approximation
obtained via the zero noise approximation, moment matching and Monte Carlo. The location of the
maximizer is highlighted using a pair of dotted black lines.
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Figure 11: The contours for the expected improvement, probability of improvement, upper confidence
bound (β = 3) and knowledge gradient acquisition function. The location of the maximizer is
highlighted using a pair of dotted black lines.

K Hypervolume indicator

The hypervolume indicator is defined as the area of the dominated region between a reference point
r ∈ RM and the set of interest A ⊂ RM :

UHV(A) =

∫
RM

I[r � z � A]dz.

As discussed in the main text (Section 4), the HV indicator is sensitive to the parameterizations of the
objective space. In order to build a more complete picture about the performance of a multi-objective
optimization algorithm, we consider tracking the HV under a number of different parameterizations.
Instead of deriving a family of transformation function, we consider a more general approach based
on a different formulation of the HV indicator described in [23, 94]. In particular, the HV indicator
can be written as an expectation over a probability distribution by performing a change of variables
into spherical polar coordinates:

UHV(A) =
πM/2

2MΓ(M/2 + 1)
Ep(λ)

[
max
a∈A

sλ(a)

]
(36)

where Γ(·) is the Gamma function and the scalarization function sλ : RM → R is defined as

sλ(a) = min
m=1,...,M

(
max

(
0, (a(m) − r(m))/λ(m)

))M
. (37)

For the standard HV, the inverse weight distribution p(λ) is a uniform distribution over the surface of
the M -dimensional unit sphere in the non-negative orthant SM−1

+ = {λ ∈ RM≥0 :
∑M
m=1(λ(m))2 =

1}. The inverse weight distribution p(λ) controls the radial contribution for each point of A towards
the HV. Existing work mainly considers a uniform distribution over the weights in order to compute
the standard HV. We make the novel observation that we can assess the quality of the Pareto front in
different regions of the objective space by varying this weight distribution. We call the resulting
utility function the generalized hypervolume (GHV) indicator, denoted by UGHV.

This GHV satisfies a weaker version of the Pareto complete property: A � B =⇒ UGHV(A) ≥
UGHV(B). This property can be proved from the fact that the scalarization function sλ(a) is a

y(1)

g 1
(y

(1
) )

Transformation g1

y(2)

g 2
(y

(2
) )

Transformation g2

Figure 12: The transformation functions g1 and g2 used in Figure 4b.
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Figure 13: The contribution of each radial segment according to the distribution p(w).

monotonic increasing function in a ∈ A, which implies that the Pareto order is maintained. This
performance criteria satisfies the strict Pareto complete property when all of the weights have non-zero
density p(λ) > 0. Intuitively, if a set of weights had zero density, then an improvement along these
direction will not always result in a larger GHV. This means that we will not always be able to distin-
guish between a set which strictly dominates another, which is essential for strict Pareto completeness.

To generate different distributions p(λ), we exploit the fact that the set SM−1
+ is isomor-

phic to the (M − 1)-dimensional unit hypercube [0, 1]M−1. In particular, any point w ∈ [0, 1]M−1

can be mapped onto the sphere to a point λ(w) ∈ SM−1
+ with

λ(1) = cos
(π

2
w1

)
λ(2) = sin

(π
2
w1

)
cos
(π

2
w2

)
...

λ(M−1) = sin
(π

2
w1

)
· · · sin

(π
2
wM−2

)
cos
(π

2
wM−1

)
λ(M) = sin

(π
2
w1

)
· · · sin

(π
2
wM−2

)
sin
(π

2
wM−1

)
.

Consequently, we can use any distribution with a finite support to generate samples on SM−1
+ . For

example, we use M − 1 independent Beta distribution Beta(a(m), b(m)) to generate samples from
w ∈ [0, 1]M−1. In Figure 13, we present the radial contributions to the GHV for different weight
distributions p(w).

To isolate performance in one particular radial region, we propose the use of a uniform dis-
tribution over some subset of [0, 1]M−1. For example in Figure 6, we chose three different subsets of
[0, 1] to isolate three different regions of the two-dimensional objective space.

Remark. We are not the first to observe the importance of weighting the HV towards regions
of interest. For example, an early paper [99] proposed another a weighted hypervolume indicator
(WHV), UWHV(A) =

∫
RM w(z)I[r � z � A]dz, which introduces a weight function w : RM → R

directly into the integral. This approach is not as flexible as the one presented here because it relied
on designing hand-crafted weight functions and an involved symbolic integration procedure.

L Experiments

L.1 Implementation details

All of the numerical results was implemented on Python 3.8 using open-source libraries: BoTorch
(0.5.1) [3], GPyTorch (1.6.0) [30], NumPy (1.21.2), Pymoo (0.5.0) [10] [37], PyTorch (1.9.0) [66]
and SciPy (1.7.3) [85]. All computations were performed on a computing cluster, where we restricted
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the computation to a single CPU core of an AMD EPYC 7742 64-Core Processor @ 2.25GHz. The
code is available at https://github.com/benmltu/JES.

Gaussian process model. For all the problems, we normalized the inputs and standardized the
observations before performing Gaussian process regression. We assume an independent model
for each objective with a constant mean and Matérn 5/2 ARD kernel. Additionally, we assume
a zero-mean Gaussian observation noise with a homogeneous variance σ(x) = σ ∈ RM . For
convenience, we rely on the default model in BoTorch, which additionally places Gamma priors for
the kernel hyperparameters and observation variance. At each iteration of BO, we update the point
estimates for the model hyperparameters and observation variance by maximizing the exact marginal
log-likelihood using SciPy’s default gradient optimizer.

Optimizing the acquisition function. To determine the next point, we optimize the acquisition
function using multi-start L-BFGS-B [85]. We use the exact gradient inferred using automatic
differentiation [66] for all algorithms except for the PES. The automatic gradients inferred for the
PES acquisition function occasionally failed due to the differentiability issues arising from the
damping procedure within the expectation propagation update [31]. As a result, we used the default
2-point finite difference method in SciPy to approximate the gradients of the PES acquisition function.
To initialize the multi-start gradient optimizer, we evaluated the acquisition function on a space-filling
design of 1000D random points. The starting points were then chosen as the best performing points
from the initial check. The number of starting points that we used differed for each algorithm based
on the overall expenses. For the sequential experiments, we used 20 starting points for PES, 5D
starting points for the MES and JES, and 10D starting points for the rest. For the batch experiments,
we used 20 starting points for PES and 5D starting points for the rest. For the information-theoretic
acquisition functions, we could have initialized the starts near the sampled Pareto optimal points in
order to promote faster convergence. We abstained from doing this because we wanted to give a fair
comparison between the existing approaches. Specifically, we wanted to see how well information-
based acquisition function worked out of the box without any optimization compared to the existing
optimized approaches.

Sampling the Pareto points. To sample the Pareto optimal inputs and outputs, we first sample
Gaussian process paths. We achieved this by using an approximate sampling strategy based on
random Fourier feaures (Appendix A.3). We used the implementation in BoTorch and set the number
of features to L = 500. To solve for the Pareto set and front, we used the multi-objective solver
NSGA2 [22], which was implemented in Pymoo. We set the population size to be Npop = 100, the
number of generations to be Ngen = 500 and the number of offspring to be Noff = 10. In general,
the multi-objective solver outputs an approximate set of Pareto optimal points with a size less than
or equal to Npop. To truncate this set into a size p, we used a HV truncation strategy. In particular,
we greedily selected points based on their contribution to the sample HV generated by the sample
fs(Xn)—the reference point is set to the current estimate of the nadir minus some error r̂n− 0.1|r̂n|,
where r̂(m)

n = mint=1,...,n y
(m)
t . This refinement strategy can be implemented quickly using the

expected HV improvement strategy discussed in [18]. We implemented this sampling and optimizing
procedure in sequence, but naturally this can be executed in parallel because we are performing S
independent computations. As motivated by the wall times in Appendix L.9, implementing this step
in parallel could be very beneficial computationally.

Box decompositions. We used the BoTorch implementation of the box decomposition strategy
discussed in Algorithm 1 of [55]. The box decompositions were performed in sequence instead of
being executed in parallel. From the wall times presented in Appendix L.9, the time required to
compute the box decompositions becomes more demanding as the number of objectives increases.

Conditioning. We used the fantasizing feature in BoTorch to condition the current posterior on
a collection of S independent Pareto samples of size p. We treated the Pareto samples as noisy
pseudo-observations in the conditioning.

Acquisition functions. The benchmark comparison considers a range of popular acquisition func-
tions that have all been implemented in BoTorch. We implemented our own version of the multi-
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objective PES, MES and JES. We now elaborate on the implementation details for each acquisition
functions in the benchmark experiments.

• TSEMO. The Thomson sampling algorithm (TSEMO) [12] is a random acquisition function,
which selects the point that maximizes the HV improvement according to a single sample of the
Pareto front. Unlike the original paper [12], we select the point that improves the HV of the sample
frontier fs(Xn) as opposed to the observation frontier generated by Yn. We find this adjustment to
be sensible when there is observation noise. We use the same modification for the batch extension.

• ParEGO/ NParEGO. The random scalarization strategy (ParEGO) [51] and its noisy counterpart
(NParEGO) [19] are one of the most popular strategies for multi-objective BO. At each iteration, a
random scalarization of the objectives is obtained by randomly drawing a weight w ∈ RM from
the (M − 1)-simplex. To target all the Pareto optimal points, we use the augmented Chebyshev
scalarization: minm=1,...,M w(m)f̃ (m) + 0.01

∑
m=1 w

(m)f̃ (m). Here we have denoted f̃ ∝ f as
the objective function, which has been approximately normalized to [0, 1]M using the observations
Yn. For the single-objective problem, a Monte Carlo estimate of the expected improvement and
the noisy expected improvement for the ParEGO and NParEGO algorithm are used respectively.
The number of base samples for the Monte Carlo estimates is set to 128. For the batch setting, we
sampled q different weights and optimized the acquisition function sequentially.

• EHVI/ NEHVI. The expected hypervolume improvement (EHVI) [18] and its noisy counterpart
(NEHVI) [19] are an improvement-based acquisition function for the HV indicator. The number
of base samples for the Monte Carlo estimates is set to 128. We set the reference point of the
HV indicator to be equal to the observed nadir minus some error, r̂n − 0.1|r̂n|, where r̂(m)

n =

mint=1,...,n y
(m)
t . This dynamic reference point strategy was recommended in the supplementary

material of [18]. For the batch setting, we considered a sequentially greedy optimization strategy.

• PES. The predictive entropy search (PES) [31, 33, 39, 40] acquisition function is approximated
using expectation propagation. We implemented this algorithm from scratch in BoTorch under
the guidance of the supplementary material in [31]. We used S = 10 Monte Carlo samples and
p = 10 number of Pareto optimal inputs. We set the jitter for the matrix inversion to be 0.001 and
the convergence threshold for the initialization stage to be 5% relative change in the mean and
covariance. If the expectation propagation failed to converge, we outputted a random vector from
the already sampled Pareto sets as the official recommendation. For the batch setting, we extended
the approach outlined in [31]. This extension appears to be equivalent to the approach described in
[33]. We optimized the resulting acquisition function using a joint optimization approach.

• MES. The maximum value entropy search (MES) [80, 86] can be approximated using all the
conditional entropy estimates we devised in this paper. We used S = 10 Monte Carlo samples
and p = 10 number of Pareto optimal outputs. For the Monte Carlo estimate MES-MC we set the
number of base samples to 128. For the batch setting, we considered a greedy optimization strategy
[18, 19]. For the batch setting, we consider the lower bound described by (15). We optimized the
resulting acquisition function using a greedy optimization approach.

• JES. The joint entropy search (JES) [80, 86] can be approximated using all the conditional entropy
estimates we devised in this paper. We used S = 10 Monte Carlo samples and p = 10 number of
Pareto optimal points. For the Monte Carlo estimate JES-MC we set the number of base samples
to 128. For the batch setting, we consider the lower bound described by (15). We optimized the
resulting acquisition function using a greedy optimization approach.

Optimizing for the recommendation. To obtain the recommendation set, X̂∗n, we used the NSGA2
multi-objective solver to optimize the posterior mean µn. Using the Pymoo implementation, we set
the population size to be Npop = 500, the number of generations to be Ngen = 500 and the number
of offspring to be Noff = 10. We select the p = 50 points that greedily maximizes the HV generated
by the mean objectives. The reference point for the HV truncation was set to the current estimate
of the nadir minus some error: r̂n − 0.1|r̂n|, where r̂(m)

n = mint=1,...,n y
(m)
t . Before applying the

truncation, we first augmented the Pareto set found at this iteration with the previous recommendation
set X̂∗n−1 in order to guarantee that some promising solutions weren’t missed due to randomness of
the solver.
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Optimizing for the Pareto set. To obtain the baseline Pareto set, X∗, we used the Pymoo’s NSGA2
with a population size to be Npop = 1000, the number of generations to be Ngen = 5000 and the
number of offspring to be Noff = 10.

L.2 Benchmark problems

We initialized each test problem with with 2(D + 1) training points using a random space filling
design. The details of the individual benchmark problems is presented below.

ZDT2 (D=2, M=2, Noise=10%). The ZDT2 benchmark [97] is a bi-objective minimization prob-
lem minx∈X f(x), over the D-dimensional hypercube X = [0, 1]D, where

f (1)(x) = x(1)

f (2)(x) = g(x)

(
1−

(
f (1)(x)

g(x)

)2
)

with g(x) = 1− 9
D−1

∑D
i=2 x

(i). For the experiments, we considered the maximization problem by
negating the objective: maxx∈X(−f(x)). The standard deviation of the Gaussian observation noise
is set to σ1/2 = (0.1, 0.8), which is estimated to be around 10% the range of the objectives from
1000 function evaluations. For the HV indicators we use the reference point of r = (−11,−11).

SnAr (D=4, M=2, Noise=3%). The SnAr benchmark [27] is a bi-objective minimization problem
minx∈X f(x), which is defined over a four-dimensional space, X = [0.5, 2.0]×[1.0, 5.0]×[0.1, 0.5]×
[30, 120], where

f (1)(x) = − log(STY(x))

f (2)(x) = log(E-Factor(x))

with STY and E-Factor denoting the space-time yield and environmental factor, respectively. The
functions STY and E-Factor depend on the solution of an ordinary differential equation governed
by a kinetic model, where the rate constants have been estimated by empirical tests [45]. Unlike the
original paper [27], we have taken the logarithm of the output to accommodate for the additive noise
in the objective space. For the experiments, we considered the maximization problem by negating
the objective: maxx∈X(−f(x)). The standard deviation of the Gaussian observation noise is set
to σ1/2 = (0.12, 0.08), which is estimated to be around 3% the range of the objectives from 1000
function evaluations. For the HV indicators we use the reference point of r = (5.5,−5).

Penicillin (D=7, M=3, Noise=1%). The Penicillin benchmark [56] is a three objective minimiza-
tion problem minx∈X f(x), which is defined over a seven-dimensional space, X = [60, 120] ×
[0.05, 18]× [293, 303]× [0.05, 18]× [0.01, 0.5]× [500, 700]× [5, 6.5], where

f (1)(x) = −PenicillinConcentration(x)

f (2)(x) = CO2Concentration(x))

f (3)(x) = TimeToFerment(x)

with PenicillinConcentration, CO2Concentration and TimeToFerment denoting the con-
centration of the desirable product, the concentration of the subproduct and the time to ferment,
respectively. The equations describing the pharmaceutical simulation are given in the original refer-
ence [56]. We used the open-source implementation available in BoTorch [3, 20]. For the experiments,
we considered the maximization problem by negating the objective: maxx∈X(−f(x)). The standard
deviation of the Gaussian observation noise is set to σ1/2 = (0.14, 0.8, 3.8), which is estimated to
be around 1% the range of the objectives from 1000 function evaluations. For the HV indicators we
use the reference point of r = (−1.85,−86.93,−514.70).

Marine Design (D=6, M=4, Noise=0.5%). This marine design benchmark [65, 73, 83] is a four
objective minimization problem minx∈X f(x), which is defined over a six-dimensional space, X =
[150, 274.32]× [20, 32.31]× [13, 25]× [10, 11.71]× [14, 18]× [0.63, 0.75], where

f (1)(x) = TransportationCost(x)
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f (2)(x) = Weight(x)

f (3)(x) = −AnnualCargo(x)

f (3)(x) = SumOfConstraints(x)

with TransportationCost, Weight, AnnualCargo and SumOfConstraints denoting the trans-
portation cost, the ship weight, the annual cargo transport capacity and the sum of the constraint
violations, respectively. The formal equations describing the functions are presented in the orig-
inal references [65, 73, 83]. For the experiments, we considered the maximization problem by
negating the objective: maxx∈X(−f(x)). The standard deviation of the Gaussian observation
noise is set to σ1/2 = (10, 77, 132, 0.07), which is estimated to be around 0.5% the range of the
objectives from 1000 function evaluations. For the HV indicators we use the reference point of
r = (250,−20000,−25000,−15.0).

L.3 Sensitivity analysis

In the section we empirically analyse how sensitive the approximations to the information-theoretic
acquisition functions are with different choices of Monte Carlo samples S and number of Pareto
optimal points p. For the experiments in the main section, we set S = 10 and p = 10 for all
information-theoretic acquisition functions. This selection is comparable to the existing literature
[4, 31, 80, 86]. For the sake of brevity we present results only for one benchmark problem: ZDT2
(D=2, M=2, Noise=10%, q=1).

To test the sensitivity with regards to the number of Monte Carlo samples S, we fix p = 10 and ran
the benchmark problem 100 times with S ∈ {1, 5, 10, 25, 50}. To test the sensitivity with regards to
the number of Pareto optimal points p, we fix S = 10 and ran the benchmark problem 100 times with
p ∈ {1, 5, 10, 25, 50}. We report the mean log HV discrepancy with two standard errors over the
runs in Figure 14 and Figure 15. We report the wall times in Figure 16.

Performance-wise there does not appear to be much variation for acquisition function when
S > 1 and p > 1. Naturally the wall times increase with the number of Monte Carlo samples S
because the sampling and optimization of the Gaussian process paths are done in sequence (this step
could be parallelized in practice). Overall, for this example problem, there does not appear to be
much benefit in using a larger number of Monte Carlo samples S or Pareto optimal points p.
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Figure 14: A comparison of the mean logarithm HV discrepancy with two standard errors over
different number of Monte Carlo samples S.
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Figure 15: A comparison of the mean logarithm HV discrepancy with two standard errors over
different number of Pareto optimal samples p.
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Figure 16: A box-plot comparison of the wall times for the acquisition stage over different number of
Monte Carlo samples (left) and the number of Pareto optimal samples (right). The box-plots include
the median, interquartile range and the extreme values after excluding the outliers. The acquisition
stage includes any initialization computations such as the box decompositions and sampling the
Pareto optimal points—it does not include initializing the posterior model. All of the runs of each
algorithm was performed on a computing cluster, where we restricted the computation to a single
CPU core of an AMD EPYC 7742 64-Core Processor @ 2.25GHz.

L.4 Noise levels

In the section we empirically analyse how sensitive the approximations to the information-theoretic
acquisition functions are when we increase noise levels. In Figure 17 and Figure 18, we plot the mean
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logarithm HV discrepancy for the JES and MES estimates on the ZDT2 (D=2, M=2, q=1) benchmark
when the recommended points are obtained by maximizing the posterior mean. In both examples, we
observe that the performance decreases as the noise levels increases. On the whole the JES estimates
perform very similarly across the board. For the MES results, we see that the MES-0 estimate is
noticeable weaker than the rest even after the ad hoc correction described in Appendix E.
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Figure 17: A comparison of the mean logarithm HV discrepancy with two standard errors for different
noise levels. The recommended set of points were obtained by maximizing the posterior mean.
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Figure 18: A comparison of the mean logarithm HV discrepancy with two standard errors for different
noise levels. The recommended set of points were obtained by maximizing the posterior mean.

L.5 In-sample results

In this section we present the results of the standard hypervolume when we restrict the recommended
Pareto set X̂∗ to be a subset of the sampled locations: X̂∗ = arg maxx∈XN

µN (x). The complete
results are presented in Figure 19. Our main finding is that information-theoretic strategies have a
tendency to not directly query the best performing points but instead opt for more informative points
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that will reduce the overall model uncertainty over the optimal points. As a result of this behaviour,
information-theoretic algorithms tend to perform well when we assess the Pareto set over the whole
input space X and less so when we only assess the performance over the sampled locations XN . If
directly querying high-performing points is important, it might be advantageous to use an epsilon
greedy strategy, where points are occasionally picked greedily according to the posterior mean.
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Figure 19: A comparison of the mean logarithm HV discrepancy with two standard errors over one
hundred runs for the four benchmark problems on a subset of the algorithms when we restrict the
approximate Pareto set to the sampled points. On the top, we present the results for the sequential
experiment, whilst on the bottom we present the final results on the batch experiments with different
batch sizes.

L.6 Comparing the entropy estimates

In this section we compare the results using the different conditional entropy estimates for the different
experiments. In Figure 20 and Figure 21 we present the results for the JES and MES estimates
respectively. We observed that the different conditional entropy estimates seem to perform similarly
across the board. As a result, we advocate the use of the cheapest estimate, which are typically the
lower bound estimates. On the Marine experiment, we observed that the zero-variance estimate was
noticeably weaker even after we applied the ad hoc correction described in Appendix E. Therefore,
we generally recommend against using the zero-variance estimate if possible.
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Figure 20: A comparison of the mean logarithm HV discrepancy with two standard errors over one
hundred runs for the four benchmark problems for the JES algorithms. On the top, we present the
results for the sequential experiment, whilst on the bottom we present the final results on the batch
experiments with different batch sizes.
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Figure 21: A comparison of the mean logarithm HV discrepancy with two standard errors over one
hundred runs for the four benchmark problems for the MES algorithms. On the top, we present the
results for the sequential experiment, whilst on the bottom we present the final results on the batch
experiments with different batch sizes.

L.7 Comparing the improvement-based algorithms

In this section we present the results for the improvement-based algorithms: NParEGO, ParEGO,
EHVI and NEHVI. On the whole, we observe that the greedier strategy which ignores the noise
seems to perform reasonably well compared to the strategy which accounts for the noise.
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Figure 22: A comparison of the mean logarithm HV discrepancy with two standard errors over one
hundred runs for the four benchmark problems for the improvement-based algorithms. On the top,
we present the results for the sequential experiment, whilst on the bottom we present the final results
on the batch experiments with different batch sizes.

L.8 Generalized hypervolume

In this section we produce profile plots of the generalized hypervolume at the final time instance. We
only consider the median performance from the multiple runs when setting the approximation set to
be the maximum of the final posterior mean: X̂∗ = arg maxx∈X µN (x)
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Figure 23: The Beta distributions used to generate the weights for the logarithm GHV discrepancy.
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Figure 24: The Beta distributions used to generate the weights for the logarithm GHV discrepancy.
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Figure 25: The Beta distributions used to generate the weights for the logarithm GHV discrepancy.

L.8.2 ZDT2(D=2, M=2, Noise=10%, q=1)
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Figure 26: A heat map comparison of the final median logarithm GHV discrepancy. The weight
distributions are described in Figure 23.

L.8.3 SnAr (D=4, M=2, Noise=3%, q=1)
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Figure 27: A heat map comparison of the final median logarithm GHV discrepancy. The weight
distributions are described in Figure 23.

L.8.4 Penicillin (D=7, M=3, Noise=1%, q=1)
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Figure 28: A heat map comparison of the final median logarithm GHV discrepancy. The weight
distributions are described in Figure 24.

L.8.5 Marine (D=6, M=4, Noise=0.5%, q=1)
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Figure 29: A heat map comparison of the final median logarithm GHV discrepancy. The weight
distributions are described in Figure 25.

L.9 Wall times
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Figure 29: A box-plot comparison of the wall times for the acquisition stage, which includes the
median, interquartile range and the extreme values after excluding the outliers. The acquisition stage
includes any initialization computations such as the box decompositions and sampling the Pareto
optimal points—it does not include initializing the posterior model. All of the runs of each algorithm
was performed on a computing cluster, where we restricted the computation to a single CPU core of
an AMD EPYC 7742 64-Core Processor @ 2.25GHz.
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Figure 29: A bar chart comparison of the mean wall times proportions for the information-theoretic
acquisition stage. The initialization step includes generation of base samples for the Monte Carlo
estimates, the conditioning for JES and the initial expectation propagation steps for PES. The Pareto
sampling and box decompositions steps are executed in sequence, hence the proportion of these parts
could be reduced if these steps were executed in parallel. As the number of objectives increases, the
one time box decomposition is the dominant contributor to the wall time for the MES and JES. The
dominant cost of the PES is always the gradient optimization step because we estimate the gradients
using finite differences, which is both expensive and inefficient.
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M Extensions

The discussion so far focussed on the problem of unconstrained multi-objective optimization where
evaluations of the vector-valued function are executed individually or in batch. Not all multi-objective
optimization fall into this category, so we propose some additional extensions to handle more general
problems.

Constrained optimization. In the literature there are several examples of how to generalize
information-theoretic acquisition functions to constrained optimization problems [6, 28, 31, 33, 41,
42, 67, 82]. We propose a simple extension for the JES acquisition function, similar to [82], to handle
inequality constraints. In particular, suppose we are interested in maximizing an M -dimensional
black-box function f (1:M)(x) subject to K black-box inequality constraints f (M+k)(x) ≤ 0 for
k = 1, . . . ,K. We can model the constraints f (M+k:M+K)(x) as additional independent objectives
using the same observation model described in Section 2. The only difference between the constrained
setting and the unconstrained setting is the region of integration for the CDF. In the constrained
setting, the sampled Pareto front dominates only the vectors satisfying the constraint. Hence the
constrained CDF is now of the form p(z ∈ DK� (Y∗)) where

DK� (Y∗) = {z ∈ RM+K : (z(1:M) � Y∗ and z(M+1:M+K) � 0K) or (z(M+1:M+K) � 0K)}

= {z ∈ RM+K : z(1:M+K) � (Y∗,0K)} ∪ {z ∈ RM+K : z(1:M+K) � (−∞M ,0K)}
= D�((Y∗,0K)) ∪ D�((−∞M ,0K)).

This region can be decomposed into boxes in the almost same way as before. The only difference
is that we now have an additional box arising from region where the constraint is not satisfied. In
general, the JES (and MES) acquisition function estimates described here can handle any type of
black-box constraint as long as we are able decompose the feasible objective region into boxes. For
example, interval constraints of the form f (M+k)(x) ∈ [a, b], can also be readily handled in this
framework.

Decoupled evaluations. Evaluating all objectives at each iteration can be costly and perhaps
unnecessary for practical problems. To address this problem, researchers in BO have considered
the use of decoupled [34] acquisition functions αM, which considers the quality of querying a
subset of objectives {f (m) : m ∈M}. To the best of our knowledge, all of the existing decoupled
acquisition functions in multi-objective BO are based on information-theoretic acquisition functions
[31, 39, 42, 80]. The novel JES-LB2 and MES-LB2 described in this paper possesses this decoupling
property because it can be decomposed into a sum of acquisition functions for each objective:
αJES-LB2(x|Dn) =

∑M
m=1 αm(x|Dn). By Theorem 4.1 of [80], the JES-0 and MES-0 can also be

generalized to the decoupled setting via a marginalization argument. Upon reviewing the experimental
results of the cited papers, we see that decoupled evaluations typically provide only a marginal
improvement over the non-decoupled strategies. This is possibly down to heuristic choice to search
the space of subsets. A more principled search method based on some emerging ideas about how to
optimize over categorical inputs [32, 62, 72] might be useful to obtain further improvements.

Multi-fidelity Bayesian optimization. For practical optimization problems of interest, it is oc-
casionally possible to evaluate approximations of the true objectives that are much cheaper. This
additional degree of freedom has been exploited before in literature under the name of multi-fidelity
Bayesian optimization [5, 6, 48, 59, 60, 78, 81, 92, 95]. These strategies have demonstrated some
benefit when optimizing with cost constraints on the function evaluations. It is possible to adapt
JES to the multi-fidelity by combining the ideas introduced here with the ideas before in the papers
referred to above such as using cost weights and conditioning arguments on lower fidelities. The
main obstacle to extending this work to the multi-fidelity setting will likely arise from some lengthy
algebraic exercises relating to the conditional entropy and box decompositions.
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