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Abstract

High frame-rate (HFR) videos of action recognition improve fine-
grained expression while reducing the spatio-temporal relation and
motion information density. Thus, large amounts of video sam-
ples are continuously required for traditional data-driven training.
However, samples are not always sufficient in real-world scenar-
ios, promoting few-shot action recognition (FSAR) research. We
observe that most recent FSAR works build spatio-temporal rela-
tion of video samples via temporal alignment after spatial feature
extraction, cutting apart spatial and temporal features within sam-
ples. They also capture motion information via narrow perspectives
between adjacent frames without considering density, leading to
insufficient motion information capturing. Therefore, we propose a
novel plug-and-play architecture for FSAR called Spatio-tempOral
frAme tuPle enhancer (SOAP) in this paper. The model we designed
with such architecture refers to SOAP-Net. Temporal connections
between different feature channels and spatio-temporal relation of
features are considered instead of simple feature extraction. Com-
prehensive motion information is also captured, using frame tu-
ples with multiple frames containing more motion information
than adjacent frames. Combining frame tuples of diverse frame
counts further provides a broader perspective. SOAP-Net achieves
new state-of-the-art performance across well-known benchmarks
such as SthSthV2, Kinetics, UCF101, and HMDB51. Extensive em-
pirical evaluations underscore the competitiveness, pluggability,
generalization, and robustness of SOAP. The code is released at
https://github.com/wenbohuang1002/SOAP.
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1 Introduction

Ubiquitous videos in daily lives are rapidly accelerating the devel-
opment of multimedia analytic research. As a fundamental task,
action recognition is experiencing an explosive demand in a wide
range of applications including intelligent surveillance, video un-
derstanding, and health monitoring [4, 15, 20]. Progress in video
recorders contributes to high frame-rate (HFR) videos, with more
similar frames per second improving the expression of fine-grained
actions [17]. As the example shown in Figure 1, we can explicitly
observe that the timeline and displacement of object in HFR video
frames are much subtler than those in low frame-rate (LFR) video
frames, better reflecting fine-grained actions. However, the spatio-
temporal relation and motion information density decrease with
the improvement of video fluency [36]. Therefore, a larger amount
of video samples are continuously required to train data-driven
models. Unfortunately, samples for target actions such as “falling
down” are usually insufficient and hard to collect in real-world sce-
narios. Contemporary few-shot learning mitigates data dependence
by transferring knowledge from a few samples, promoting few-shot
action recognition (FSAR) research.

According to data characteristics of HFR videos, two prevailing
challenges of FSAR exist. Challenge 1: Optimizing spatio-temporal
relation construction. Spatial and temporal features work as a whole
in video samples, only focusing on spatial information makes mod-
els misidentify horizontal or vertical actions such as “pushing”,
“pulling”, “putting up”, and “putting down”. However, the spatio-
temporal relation of HFR videos is subtle, making the construction
challenging. Challenge 2: Comprehensive motion information captur-
ing. As an exclusive characteristic of videos, motion information
plays a crucial role in helping models recognize target actions in a
dynamic manner. However, the difficulties in motion information
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Figure 1: Spatio-temporal relation and motion information
density of HFR video frames are much subtler, reflecting
by timeline and displacement. Therefore, larger amounts of
samples are required for data-driven training,.

capturing is exaggerated by low motion information density from
HEFR videos and limited frames processed at one time with main-
stream methods. In summary, the challenges mentioned above not
only stem from HFR videos but are also aggravated by the insuffi-
cient samples in few-shot settings.

In FSAR, the metric-based paradigm predominates due to its
simplicity and efficacy. It embeds samples into action prototypes to
calculate support-query distances for classification in an episodic
task [1, 18, 30, 41, 43]. We observe that these works prioritize tem-
poral alignment after spatial feature extraction, cutting apart spatial
and temporal features within samples and overlooking the impor-
tance of motion information capture. Some works [29, 31, 33] in-
corporate motion information into action recognition and achieve
remarkable performance. However, the motion information is cap-
tured between adjacent frames. This narrow perspective inevitably
overlooks density of motion information and results in inadequate
capturing. So far, no solution exists for both challenges.

Motivated by aforementioned challenges, we propose a novel
plug-and-play architecture for FSAR called Spatio-tempOral frAme
tuPle enhancer (SOAP). The model we designed with such architec-
ture is defined as SOAP-Net. The cores are optimizing construction
of spatio-temporal relation and capturing comprehensive motion
information. For the first goal, simply extracting features from
video frames is insufficient. These features are located in different
channels and have temporal connections between each channel.
Spatio-temporal relation within features also play a key role in
FSAR. For the second goal, we consider motion information density
and find that frame tuples with multiple frames contain richer mo-
tion information than adjacent frames. Combining frame tuples of
various frame counts further provides a broader perspective. To be
specific, SOAP has three components: 3-Dimension Enhancement
Module (3DEM) uses a 3D convolution for spatio-temporal relation
construction and Channel-Wise Enhancement Module (CWEM)
calibrates channel-wise feature responses adaptively while Hybrid
Motion Enhancement Module (HMEM) applies a broader perspec-
tive to help models capture comprehensive motion information.
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These three modules work in parallel, adding priors into raw input.
To our best knowledge, SOAP is the first to address all challenges
simultaneously. Our main contribution are three-fold:

¢ Spatio-Temporal Relation Construction. The proposed
SOAP optimizes spatio-temporal relation construction, avoid-
ing simply operating temporal alignment after extracting
spatial features.

e Motion Information Capturing. Taking motion informa-
tion density and the processing method into account, our
SOAP finds a comprehensive solution, overcoming the sec-
ond challenge with a broader perspective that combines
frame tuples with various frame counts.

o Effectiveness. SOAP-Net achieves new SOTA performance
on several well-known FSAR benchmarks, including Sth-
SthV2, Kinetics, UCF101, and HMDB51. Comprehensive ex-
periments demonstrate the competitiveness, pluggability,
generalization, and robustness of SOAP.

2 Related Works
2.1 Few-Shot Learning

The core goal of few-shot learning is to recognize unseen classes
from only few samples. Unlike traditional deep learning, few-shot
learning utilizes episodic training where training units are struc-
tured as similar tasks with small labeled sets. Three primary groups
of few-shot learning are data-augmentation based, optimization-
based, and metric-based paradigms. In the first data-augmentation
paradigm, generating additional samples to supplement available
data is a key feature. Specifically, MetaGAN [39] utilizes genera-
tive adversarial networks (GANs) and statistics of existing samples
to synthesize data. The most representative optimization-based
method is MAML [7], which identifies a model parameters set and
adapts it to individual tasks via gradient descent. The metric-based
paradigm is well-known and widely used for its simplicity and
effectiveness. It leverages similarity between support samples to
classify query samples into corresponding classes. Prototypical
Networks [22] construct prototypes based on class centroids and
then classify samples by measuring distance to each prototype.
Most few-shot learning paradigms are applied to image classifica-
tion, with fewer in the field of videos. Our SOAP belongs to the
metric-based paradigm for FSAR, focusing on improving prototype
representation ability.

2.2 Action Recognition

Compared to image classification, action recognition is a more
complex and extensively researched problem in the community
due to the spatio-temporal relation and motion information. Pre-
vious works [3, 19, 26, 32] have typically utilized 3D backbones to
construct spatio-temporal relations, while optical flow is applied
by additional networks to inject video motion information for ac-
tion recognition, resulting in promising results. However, these
works with high acquisition costs are all designed for traditional
data-driven training without considering insufficient samples in
real-world scenarios. In contrast, SOAP is specifically designed for
a more realistic few-shot setting.
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2.3 Few-Shot Action Recognition

Existing methods of FSAR mainly focus on metric-based paradigm
for effective prototype construction. Among them, CMN [43, 44]
introduces a multi-saliency embedding algorithm for key frame
encoding, improving the prototype representation; ARN [38] cap-
tures short-range dependencies using 3D backbones with a self-
trained permutation invariant attention; OTAM [1] aligns support
and query with a dynamic time warping (DTW) algorithm. Joint
spatio-temporal modeling approaches such as TA2N [13], ITA [40],
STRM [24], and SloshNet [34] employ spatial-temporal frameworks
to address the support-query misalignment from multiple perspec-
tives; Temporal relation is emphasized by TRX [18], using a Cross
Transformer for sub-sequence alignment and achieving notable
improvement; HyRSM [30] learns the task-specific embedding by
exploiting the relation within and cross videos; SA-CT [41] com-
plement the temporal information by learning the spatial relation.
The temporal alignment all operated after spatial feature extrac-
tion. Diverse types of information including optical flow [31] and
depth [8] are introduced by extra networks, increasing computa-
tions. MoLo [29] and MTFAN [33] explicitly extract motion infor-
mation from raw videos and leverage temporal context for FSAR.
Although achieving promising performance, these works are either
cut apart spatial and temporal features or ignore motion infor-
mation density. Therefore, our SOAP focuses on spatio-temporal
relation and motion information capturing.

3 Methodology
3.1 Problem Formulation

Classifying an unlabeled query into one of the support classes
is the inference goal of FSAR. The support set has at least one
labeled sample per class. Following the prior works [1, 18, 29, 30],
we randomly select few-shot tasks from training set for episodic
training. In each task, the support set S contains N classes and
K samples per class, i.e., N-way K-shot setting. The query set Q
in each task has samples to be classified. Uniformly sampling F
frames of each video, we define the kth (k=1,---,K) sample of
the cth (c=1,---,N) class of support set S as:

5 = |5,k € PO, (1)

Notions used are F (frames), C (channels), H (height), and W (width),
while the sample with F frames of query is defined as:

Q= [q.....qp] € RFXCA, @
Models of FSAR need to predict labels for query samples with the
guidance of the support set.

3.2 Overall Architecture

An overview of SOAP-Net is provided in Figure 2. For clear descrip-
tion, we take the Q and ¢ of S as an example to illustrate the whole
process of our method. First, video samples are decoded into frames
at fixed intervals to serve as the input. Then, support and query
are sent into three main modules of SOAP, i.e., 3DEM, CWEM, and
HMEM. To be specific, 3DEM establishes spatio-temporal relation
of features, while CWEM adaptively calibrates temporal connec-
tions between channels. Instead of solely concentrating on motion
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information between adjacent frames, HMEM adopts a broader
perspective on frame tuples of varying frame counts, delivering
comprehensive motion information through a hybrid approach.
The three modules are arranged in parallel to generate triple prior
guidance before feature extraction. Several linear layers are subse-
quently adopted for prototype construction. Finally, the distance
between query and prototype can be calculated for classification.

3.3 3-Dimension Enhancement Module

For the relation construction between spatial and temporal infor-
mation, 3DEM is designed based on 3D convolution. The structure
of this module is shown in Figure 3. Firstly, 3DEM averages the
support and query across the channels, resulting in spatio-temporal
tensors. Then the corresponding tensors are reshaped. The above
operation can be formulated as:

c
S 1
ka = Reshape,; | = Z Sk (. g,:) | € RIXFXHXW,
co

; ®
5 1 IXFXHXW
Q1 = Reshape,; | = Z 0(49,5)|€eR .
co

A 3D convolution is used for constructing the spatio-temporal
relation and another reshape operation is used for shape recovery:

gfk = Reshape, (Conv3D (55")) € RFXIXHXW

0= Reshape, (ConvSD (Ql)) e RFXIXHXW, @

Finally, spatio-temporal relation are fed into a Sigmoid activation
and residually connected with the input to generate the 3D prior
knowledge before feature extraction:

55 = 5 + Sigmoid (35 ) x 5%,
R ©)
01 = O + Sigmoid (Ql) x 0.

For each input channel, 3DEM can assist the spatio-temporal rela-
tion construction.

3.4 Channel-Wise Enhancement Module

Features located in different channels have temporal connections
between each channel. Inspired by SE [11], we design this module
with the addition of a simple 1D convolution. The structure of
CWEM is detailed in Figure 4. First, a spatial average pooling is
performed on the support and query, followed by a 2D convolution
that expands the channel number to C,, represented as:

H W

- 1
Sgk = Conv2Dq Ixw Z Z sek G0 j) | € REXCrx1x1

*WiE A

(6)
2 1 GV FXCpx1x1
_ i XC;

Q2 = Conv2D; HXwZZQ(.,.,z,]) eR .

Il
-
.
Il
—_
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Figure 2: Overview of the SOAP-Net. It comprises three main modules: the 3DEM for constructing relation between spatial
and temporal information, the CWEM for modeling temporal connections between channels, and the HMEM for capturing
comprehensive motion information with frame tuples of varying frame counts using a hybrid approach. The “A” symbol at the
right part of the figure shows an averaging calculation used to construct a query-specific prototype P¢ in Eqn (17).

Reshape <

Figure 3: The structure of 3-Dimension Enhancement Mod-
ule (3DEM). The “A” at left part means the averaging calcula-
tion in Eqn (3).

C
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Figure 4: The structure of Channel-Wise Enhancement Mod-
ule (CWEM).

The third reshape operation prepares for the 1D convolution, which
adaptively calibrates channel-wise feature responses, as:

551‘ = Conv1D (Reshape3 (S"Z’k)) € REr>Fx1
K 3 CoxF (7)
Q2 = ConviD (Reshape3 (Qz)) e REXFXT,

Once channel-wise feature responses are calibrated, the next steps
are reshape and 2D convolution. Together, these operations recover
the original dimension and channel numbers of the feature maps.
This process can be formulated as follows:

Sgk = Conv2D, (Reshape4 (Sgk)) € RFXCxIx1

0, = Conv2D, (Reshape4 (Qg)) € RFXCxIx1, ®

The final step of CWEM is formulated similarly to Eqn (5), using Sig-
moid and residual connection, to generate channel prior knowledge

before feature extraction:
S5k = 5 + sigmoid (35) x 5°,
Q2 = Q + Sigmoid (Q2) X Q.

©)

3.5 Hybrid Motion Enhancement Module

In previous works [29, 31], motion information plays a significant
role. However, we find that focusing only on the motion information
between adjacent frames is insufficient, as subtle displacements
are hard to detect. In order to capture more motion information
using HMEM, we extend perspective from adjacent frames to frame
tuples and apply the combination of multiple scales. The structure
of HMEM is demonstrated in Figure 5. We define a set O as a
hyperparameter, where the value of element T (T € O, T < F and
T € N¥) represents frame counts of a tuple and the cardinality of
set |O| denotes the number of branches. Being achieved by sliding
window algorithm SW (-, -), frame tuple sets of support and query
with element index ¢ (t € [1, F — T + 1]) can be represented as:

W (k1) = |-+ of o |
(10)
SW(Q,T) = [ ’th’w?ﬂ"”] .
We concatenate tuple differences in the first dimension, preparing
for motion information calculation. For a simple description, we
choose the et (e € [1,|0|] and e € N*) branch as an example:

Mf = Concat ( .. ,ConVZDM (mtsﬂ) — wf, cee ),

(11)
MEQ = Concat ( ce Conv2DM (wgrl) - w?, cee ) .

Motion information with different scales can be captured by setting

multiple branches. Then we concatenate them along the first di-

mension, achieving tensors belong to RXXCXHXW Fyunction Z ()
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Figure 5: The structure of Hybrid Motion Enhancement Mod-
ule (HMEM), where O = {1,2,3} and “Concat” denotes for
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that performs flatten (RXXCXHXW , RXX(CXHXW)) Jinear trans-

formation (RX*(CXHXW) , RFX(CXHXW)) and reshape opera-
tion (RFX(CXHXW) , FXCXHXW) in sequence, acquiring com-
prehensive motion information. This process is concluded as:

Ssk=z (Concat ( M )) € RFXCXHXW.

Qs =Z (Concat ( .. ,MQ, s )) € REXCXHXW, 12

A spatial average pooling is operated for reducing computation, as:

1
X W

M:

ZSCk(’ L1, j) eRF><C><1><1

T
I\

(13)
A 1
HXW 4

c RFXCXle.

Q3 (41, j)

%
™M=
Mg ||

1l
—_

I
—_

J

Similar with the prior knowledge calculated by two previous mod-
ules, the hybrid motion prior can be represented as:

sek = s + Sigmoid (sck ) x ¢k,
' (14)
03 = O + Sigmoid (Q3) Q.

3.6 Prototype Construction
Triple prior guidance are added into the raw support and query
before feature extraction:
§ck _ (Sck +Sck +Sck) +Sck _ [gck §ck] € RFXCXHXW
="t 2 3 =151 5F L
0=(Q1+Q2+0Q3) +Q=[G1,...,Gp] € RFFOHW,
(15)
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Sk and Q are sent to the backbone network. Features of support
and query are defined as:

sck = [fe( )+ﬁ,e(1) fg( )+ﬁ,e(F)]€RFXD

Qr = [fo (@) + fpe (1)..... fo (GF) + fpe (F)] € RFX¥P.

fo () : REHEXW , RD i the backbone for embedding each
frame into a D-dimensional vector. While fpe (-) represents the
position embedding function, which can be a cosine/sine function
or a learnable function, it is important to note that the function
type can impact the performance of the model.

Three linear layers including ¥ (-),T () : RFXP 1 RFXdk and
A () : RFXD s RFXdo gre applied for constructing the prototype
of support P¢, refers to:

e -infefa) ({5
Pe = %]; (Softmax (ACk ) A (5}"))

The LN (-) means the layer normalization and Softmax (-) repre-
sents the Softmax function.

(16)

(17)

3.7 Training Objective
The linear layer A (-) is applied on Qf to ensure the same operation

as S}k - By obtaining the closest distance between Q and P¢, model

(o))l

N
D(Q.59)

The cross-entropy loss Lce is selected as the objective loss for

training, which can be calculated with the ground truth y:

can predict the label § of Q, as:

y = arg min
¢ (18)

N
1 .
Lee=-5 ;yl— log (1) (19)

4 Experiments

4.1 Experimental Configuration

4.1.1 Datasets Processing. We select four widely used datasets,
i.e., SthSthV2 [9], Kinetics [2], UCF101 [23], and HMDB51 [12].
Apart from SthSthV2, which is temporal-related, other three datasets
are all spatial-related. When decoding videos, we set the sam-
pling intervals to every 1 frame. For simulating various fluency,
the intervals can be adjusted. Building upon data split from prior
works [1, 38, 43], we split our datasets into training, validation, and
testing sets. A task within each set, classifying query samples into
one of the support classes serves as a training unit.

Following TSN [27], 8 frames (F = 8) resized to 3 X 256 X 256
are uniformly and sparsely sampled each time. Data augmentations
in training include random crops to 3 X 224 X 224 and horizontal
flipping, while only a center crop is used during testing. As pointed
out in previous works [1], many action classes in SthSthV2 are
sensitive to horizontal direction (e.g., “Pulling S from left to right”?).
Hence, we avoid horizontal flipping on this dataset.

1“3 refers to “something”
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Table 1: Performance (] Acc. %) comparison. “x”: our implementation, “i”: multimodal methods, “N/A”: not available in the
publication, Bold texts: the best results, underline texts: the previous best results.

Methods Backbone SthSthv2 Kinetics UCF101 HMDB51
1-shot | 5-shot | 1-shot | 5-shot | 1-shot | 5-shot | 1-shot | 5-shot

CMN [43, 44] ResNet-50 36.2 42.8 60.5 78.9 N/A N/A N/A N/A
OTAM [1] ResNet-50 42.8 52.3 73.0 85.8 N/A N/A N/A N/A
ITANet [40] ResNet-50 49.2 62.6 73.6 84.3 N/A N/A N/A N/A
TA®N [13] ResNet-50 47.6 61.0 72.8 85.8 81.9 95.1 59.7 73.9
LSTC [16] ResNet-50 47.6 66.7 73.4 86.5 85.7 96.5 60.9 76.8
STRM [24] ResNet-50 N/A 68.1 N/A 86.7 N/A 96.9 N/A 76.3
HCL [42] ResNet-50 47.3 64.9 73.7 85.8 82.6 94.5 59.1 76.3
SloshNet [34] ResNet-50 46.5 68.3 N/A 87.0 N/A 97.1 N/A 77.5
SA-CT [41] ResNet-50 48.9 69.1 71.9 87.1 85.4 96.4 60.4 78.3
GCSM [37] ResNet-50 | N/A | N/A | 742 | 882 | 865 | 971 | 613 | 793
GgHM [35] ResNet-50 54.5 69.2 74.9 87.4 85.2 96.3 61.2 76.9
*TRX [18] ResNet-50 55.8 69.8 74.9 85.9 85.7 96.3 66.5 77.2
*HyRSM [30] ResNet-50 54.1 68.7 73.5 86.2 83.6 94.6 60.1 76.2
*MoLo [29] ResNet-50 | 56.6 | 707 | 752 | 857 | 862 | 954 | 671 | 773
T AmeFu-Net [8] ResNet-50 N/A N/A 74.1 86.8 85.1 95.5 60.2 75.5
fMTFAN [33] ResNet-50 45.7 60.4 74.6 87.4 84.8 95.1 59.0 74.6
TAMFAR [31] ResNet-50 | 617 | 795 | 801 | 926 | 912 | 99.0 | 739 | 87.8
* T Lite-MKD [14] | ResNet-50 55.7 69.9 75.0 87.5 85.3 96.8 66.9 74.7
SOAP-Net (Ours) | ResNet-50 61.9 79.8 81.1 93.8 94.1 99.3 76.5 88.4
STRM [24] ViT-B N/A 70.2 N/A 91.2 N/A 98.1 N/A 81.3
SA-CT [41] ViT-B N/A 66.3 N/A 91.2 N/A 98.0 N/A 81.6
*TRX [18] ViT-B 57.2 71.4 76.3 87.5 88.9 97.2 66.9 78.8
*HyRSM [30] ViT-B 58.8 71.3 76.8 92.3 86.6 96.4 69.6 82.2
*MoLo [29] ViT-B | 611 | 717 | 789 | 958 | 884 | 976 | 713 | 844
TCLIP-FSAR [28] ViT-B 61.9 72.1 89.7 95.0 96.6 99.0 75.8 87.7
SOAP-Net (Ours) ViT-B 66.7 81.2 89.9 95.5 96.8 99.5 79.3 89.8

4.1.2 Implementation Details and Evaluation. In 3DEM, the
size of Conv3D is 3 X 3 X 3. For CWEM, the expand channel number
Cy is set to 16, while Conv1D size is 3. We set O = {1,2,3} in
HMEM, the Conv2DM with shared parameters are also 3 X 3 in
each branch. All 2D convolution for changing channel number is
set to 1 X 1. Except for these channel recovery convolutions, other
convolutions maintain the same shape of input and output. We
employ widely-used ResNet-50 [10] or ViT-B [6] as the backbone
initialized with pre-trained weights on ImageNet [5]. The final
outputs of the backbone are 2048-dimensional vectors (D = 2048).
For three linear layers, the parameters are randomly initialized
while dj. and d, are both set to 1152.

We utilize the standard 5-way 5-shot and 1-shot few-shot settings.
Due to its larger size, SthSthV2 requires 75,000 tasks for training,
while other datasets employ 10,000 tasks. An SGD optimizer is
applied to train our model, with an initial learning rate of 10~3. The
training process is conducted on a deep learning server equipped
with two NVIDIA 24GB RTX3090 GPUs. Validation set determines
hyperparameters. During testing, we report average accuracy across
10,000 random tasks from the testing set.

4.2 Comparison with Various Methods

4.2.1 Comparison with ResNet-50 Backbone Methods. Based
on the average accuracy reported in Table 1, we have the follow-
ing observation. Our SOAP-Net outperforms other methods and
achieves SOTA performance. For example, on the Kinetics dataset

under the 1-shot setting, SOAP improves the current SOTA perfor-
mance of MoLo [29] from 75.2% to 81.1%. We believe the motion
information within adjacent frames is insufficient, despite MoLo in-
troducing it. Similar improvements are also found in other datasets
under diverse few-shot settings, showing that spatio-temporal re-
lation and comprehensive motion information from SOAP lead
to significant improvement in FSAR. It is worth mentioning that
SOAP-Net even surpasses multimodal methods.

4.2.2 Comparison with ViT-B Backbone Methods. ResNet-50
serves as the backbone network in most previous works, while
ViT-B is rarely used in FSAR. For a comprehensive comparison, we
implemented several methods and replaced their backbones with
ViT-B, finding it outperformed ResNet-50 in FSAR due to larger
model capacity. The previous SOTA performance is also achieved
by MoLo, benefiting from optimizing spatio-temporal relation con-
struction and comprehensive motion information. A similar trend
is observed on ResNet-50 and ViT-B. These comparisons reveal the
competitiveness of our proposed method.

4.3 Essential Components and Factors

4.3.1 Analysis of Key Components. We first divide SOAP into
three key components: 3DEM, CWEM, and HMEM. Experiments on
individual or combined components are conducted on two datasets
under diverse few-shot settings. As shown in Table 2, results indi-
cate that each SOAP component can improve FSAR performance.
However, the most significant boost comes from HMEM, likely due
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Table 2: Analysis (T Acc. %) of Key Components.

SthSthv2 Kinetics
1-shot | 5-shot | 1-shot | 5-shot
54.5 67.3 74.1 85.2
55.6 69.4 76.8 86.6
55.4 70.2 76.1 86.1
58.3 72.3 78.5 88.9
58.5 73.1 78.8 89.3
60.5 77.8 79.0 92.2
60.7 78.5 80.2 92.6
61.9 79.8 81.1 93.8

3DEM | CWEM | HMEM

AANE SR 3 I NE S
ANE A NE S N Ik
RN R XN X X%

to fuller motion information usage. Combining two components
with HMEM performs better than without HMEM. We conclude
that comprehensive motion information plays a more significant
role in FSAR. Using all SOAP components yields the best results,
proving all are essential.

4.3.2 Frame Tuples and Branches Design. Results under vari-
ous hyperparameter O settings of HMEM is demonstrated in Ta-
ble 3. Each element represents frame counts, with the cardinality
of set |O| equaling number of branches. Performance generally
improves with more branches. Specifically, any frame tuple size
improves with HMEM having one branch. Better results occur
with two branches. Best performance occurs at 3 branches under
O = {1, 2,3} setting. This aligns with intuition comprehensive mo-
tion information contributes more for FSAR. However, excessive
branches risk degradation. Too much motion information overlap
does not provide useful information. For example, O = {4} acts
similarly to two O = {2} configurations together, implying that
they perform worse than other non-overlapping settings. While
O = {1} provides motion information between frames not conflict-
ing with other O settings for building frame tuples, introducing
comprehensive motion information.

Table 3: Impact (T Acc. %) of O Design.

O Design SthSthv2 Kinetics
1-shot | 5-shot | 1-shot | 5-shot

o0 ={1} 59.1 73.9 78.9 89.5
0={2} 595 | 743 791 | 90.8
O = {3} 59.4 74.6 79.5 90.8
0= {4} 59.5 74.2 79.3 90.5
0= {1, 2} 60.6 77.6 80.3 92.3
O ={1,3} 60.7 77.8 80.1 924
0= {1, 4} 60.4 78.2 80.5 92.4
0 =1{2,3} 60.7 78.3 80.5 92.1
0= {2, 4} 60.1 77.2 80.0 91.9
O = {3,4} 60.4 78.3 80.2 92.9
0 ={1,2,3} 61.9 79.8 81.1 93.8
0 ={1,2,4} 60.7 77.9 80.5 92.6
0 =1{1,3,4} 61.9 79.3 80.7 93.5
0 ={2,3,4} 60.7 77.7 80.3 92.3
0 =1{1,2,3,4} 61.5 79.2 80.7 92.8

4.3.3 The Impact of Temporal Order. Up to this point, we be-
lieve the frame tuple should follow the temporal order for better
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Table 4: Impact (T Acc. %) of Temporal Order.

Reversed SthSthv2 Kinetics
Order 1-shot | 5-shot | 1-shot | 5-shot
v 54.1 66.6 79.2 91.6
X 61.9 79.8 81.1 93.8

representation. After determining O = {1, 2, 3} setting, we conduct
experiments with temporal and reversed order. In an extreme sce-
nario, the frames in support take the temporal order while frames
in query are reversely ordered during inference. As the results in
Table 4, SthSthV2 and Kinetics datasets both have a drop with re-
versed order settings. However, the drop in SthSthV2 is much larger
than in Kinetics. The dataset type supports our previous observa-
tion that the temporal-related SthSthV2 is more sensitive to order
than the spatial-related Kinetics. Based on above results, we can
infer that SOAP is closely tied to temporal order.

4.4 Research on How SOAP Works

4.4.1 CAM Visualization. The CAM [21] for “crossing river”
from the Kinetics dataset is shown in Figure 6. The first row shows
raw HFR video frames. We observe that the timeline and displace-
ment of the moving peoples are very subtle, making it difficult to
detect the spatio-temporal relation and motion information. In the
second row, we see that the model attends more to the background
than moving peoples. This result supports our observation in HFR
videos. With the help of SOAP, we detect that the focus shifts from
the background to the moving peoples, despite the subtle timeline
and displacement. Based on this analysis of the CAM, we con-
clude that motion information is crucial in FSAR. Spatio-temporal
relation and comprehensive motion information from SOAP can
significantly improve feature representation.

Figure 6: Example of the “crossing river” selected from Ki-
netics, timeline is from left to right.

4.4.2 T-SNE Visualization. In the 5-way task, feature distribu-
tions can be visualized using t-SNE [25]. We select five represen-
tative yet challenging support action classes from Kinetics: “ski
jumping”, “snowboarding”, “skateboarding”, “crossing river”, and
“driving tractor”. The t-SNE visualization is shown in Figure 7, with
different colors and markers representing distinct action classes.
Without SOAP (Figure 7(a)), the five classes are generally separable
but with some overlapping, such as in the right (“driving tractor”
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Figure 7: T-SNE visualization of five action classes in support
from Kinetics. Blue Rabbits: “ski jumping”, :
“crossing river”, Green Cats: “driving tractor”, Red Monkeys:
“snowboarding”, Purple Pigs: “skateboarding”.

and “crossing river”), left (“skateboarding” and “snowboarding”),
and center (“ski jumping”). By contrast, with SOAP (Figure 7(b)), the
five classes are more distinctly separated and same-class samples
are more tightly clustered. This strong evidence demonstrates the
enhanced representational ability of SOAP for support features.

4.5 Pluggability of SOAP

4.5.1 On RGB-Based Methods. In Table 5, we experimentally
demonstrate that the SOAP generalizes well to other methods by
inserting it into widely used methods including TRX, HyRSM, and
MoLo. Using Kinetics as an example, TRX benefits from compre-
hensive motion information and achieves 7.6% gains in the 1-shot
setting and 8.5% in the 5-shot setting. Similar improvements are also
observed in the other two methods. These results fully prove that
optimizing spatio-temporal relation and comprehensive motion
information are particularly useful for feature extraction.

Table 5: Pluggability (T Acc. %) on RGB-Based Methods.

SthSthv2 Kinetics
RGB-Based Methods 1-shot | 5-shot | 1-shot | 5-shot
TRX 55.8 69.8 74.9 85.9
SOAP-TRX 62.3 80.3 82.5 944
HyRSM 54.1 68.7 73.5 86.2
SOAP-HyRSM 60.1 75.8 79.9 91.6
MoLo 56.6 70.7 75.2 85.7
SOAP-MoLo 60.9 76.6 79.6 92.1

4.5.2 On Multimodal Methods. Backbone networks serve as
feature extractors in multimodal methods for FSAR. Additional
information from other modalities enhances performance. In most
multimodal methods, depth or optical flow information augments
RGB data. Apart from the RGB backbone, additional depth-specific
or optical-flow-specific networks are also utilized. As depth and
optical flow are both derived from raw RGB frames, they inherently
contain spatio-temporal relation and motion information. There-
fore, we hypothesize SOAP can also benefit multimodal methods
and implement several multimodal methods equipped with SOAP
for evaluation. Results in Table 6 demonstrate that all selected
multimodal methods achieve further improvement via optimized
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Table 6: Pluggability (T Acc. %) on Multimodal Methods.

. SthSthv2 Kinetics
Multimodal Methods 1-shot | 5-shot | 1-shot | 5-shot
AmeFu-Net 56.2 71.1 76.3 88.2
SOAP-AmeFu-Net 62.5 80.4 82.2 94.6
MTFAN 55.8 70.6 74.8 87.8
SOAP-MTFAN 62.2 81.3 81.6 93.7
Lite-MKD 55.7 69.9 75.0 87.5
SOAP-Lite-MKD 61.8 80.6 81.1 93.2
AMFAR 61.3 78.9 79.3 914
SOAP-AMFAR 64.7 82.6 83.9 95.3

spatio-temporal relation construction and comprehensive motion
information capturing from SOAP. These results provide legiti-
mate validation for our hypothesis and emphasize the advanced
pluggability of SOAP on multimodal methods.

4.6 Generalization Study

In this study, we aim to simulate different levels of frame-rate by
varying the sampling interval from a minimum of 1 to a maximum
of 6 and conduct a series of experiments under a well-established
5-way 5-shot setting. As shown in Figure 8, the performance tends
to decrease gradually with the increase of frame-rate. We find that
recent FSAR methods all experience drastic degradation in perfor-
mance with HFR videos while SOAP-Net indicates performance
stability, demonstrating the superiority of SOAP across varying
frame-rate. These phenomena also highlight the key role of spatio-
temporal relation optimization and comprehensive motion infor-
mation in advancing FSAR performance.

- sKinetics (5-way 5-shot)

. SthSthV2 (5-way 5-shot)
—--845 819 2%
82 ? """" ‘INL“*a—]y—l, 80.6 96 %? 1\_99‘.\1\9 2
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Figure 8: Performance (T Acc. %) of Various Frame-Rates.

5 Conclusion

In this paper, we propose the plug-and-play SOAP to optimize
spatio-temporal relation construction and capture comprehensive
motion information for FSAR. SOAP takes into account temporal
connections across feature channels and spatio-temporal relation
within features. It combines frame tuples of various frame counts to
provide a broader perspective for motion information. Considering
the competitiveness, pluggability, generalization, and robustness
of SOAP, we hope and believe that our work will offer valuable
insights for future research in multimedia analytic.
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