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In the Supplementary Material, we provide:
• Partial Generalization Study.
• Robustness Study.
• Additional CAM Visualizations.
• Configuration of hyperparameters.
• Pseudo-code for a better understanding.

A GENERALIZATION STUDY
A.1 Generalization on More Complex Tasks
In a range of real-world scenarios, tasks are often more complex
than a mere 5-way classification. Recognizing this complexity, we
seek to enhance the challenge of these tasks by augmenting the
number of ways (classes). Experiments are conducted on SthSthV2
and Kinetics. From Figure I, performance of various methods [1–3]
decreases with increasing complexity. Although task complexity
hinders performance boosts, SOAP-Net consistently outperforms
other methods. Surprisingly, SOAP-Net decays less than other meth-
ods on complex tasks. The above results show better generalization
of SOAP on more complex tasks. It also indicates spatio-temporal
relation and comprehensive motion information support better
generalization.
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Figure I: Performance (↑ Acc. %) of More Complex Tasks.

∗Corresponding authors: Jinghui Zhang

A.2 Generalization on Any-Shot Setting
In real-word applications, it is often challenging to ensure that
every task has an equal number of samples. To create a more au-
thentic testing environment for assessing the generalization ability
of SOAP, we utilize a shot number in the range of 1 to 5, effec-
tively establishing an any-shot setting for our experiments. Results
with 95% confidence intervals are shown in Table I. SOAP-Net out-
performs three recent methods under the any-shot setting, and
shows similar performance in normal 1-shot or 5-shot settings. The
confidence intervals indicate that our SOAP-Net exhibits more sta-
ble performance under the more realistic evaluation scenario. The
above experiments underscore the potential of SOAP in practical
applications.

Table I: Any-shot Performance (↑ Acc. %) comparison.

Methods SthSthV2 Kinetics
TRX 61.3 (±0.5) 79.3 (±0.4)
HyRSM 62.2 (±0.6) 79.5 (±0.5)
MoLo 63.7 (±0.4) 80.9 (±0.3)
SOAP-Net 70.2 (±0.3) 87.4 (±0.2)

B ROBUSTNESS STUDY
B.1 Robustness on Sample-Level Noise
In a more authentic testing environment, noise inevitably occurs
during sample collection, and removing it incurs additional costs.
Specifically, a particular class might be mixed with samples from
other classes. As shown in Figure II, directly replacing one or more
samples with noise within a few-shot task during inference is called
sample-level noise. Evaluating FSAR methods with sample-level
noise simulates more realistic sample scenarios. For a clear demon-
stration, we conduct 10-shot experiments and reveal the results in
Table II. In general, performance decreases with increasing noise.
For every 10% increase in the sample-level noise ratio, performance
drops by about 4%. Although the overall trend remains regardless
of the method, we observe a distinction between SOAP-Net and
other methods. The performance decrease with the sample-level
noise ratio for SOAP-Net is about 2%, much less than others. The
stable performance against sample-level noise highlights superior
robustness of our SOAP.
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Figure II: The 5-shot example of “snowboarding”, where the
sample-level noise is highlighted by red box. Sample-level
noise means directly replacing a pure sample with noise
within a few-shot task.

Table II: Evaluation (↑ Acc. %) with Sample-Level Noise.

Datasets Methods Sample-Level Noise Ratio
0% 10% 20% 30% 40%

SthSthV2

TRX 74.4 69.9 66.3 62.6 57.2
HyRSM 73.6 68.9 64.3 60.9 54.9
MoLo 75.3 71.6 67.1 64.0 59.8
SOAP-Net 84.9 83.2 81.6 79.1 77.9

Kinetics

TRX 90.1 86.9 82.4 77.8 73.2
HyRSM 89.7 85.6 81.4 77.2 72.9
MoLo 90.6 86.2 82.3 76.8 70.1
SOAP-Net 96.4 94.1 91.9 89.6 87.7

B.2 Robustness on Frame-Level Noise
Due to the uncertainty of video recorder, it is not guaranteed that
the view of all frames is alignedwith themoving subject. In some un-
desirable cases, multiple irrelevant frames are mixed in. Under such
conditions, higher requirements are placed on the FSAR method.
As shown in Figure III, we replace some pure frames with irrele-
vant frames from other action classes during inference. We define
this as frame-level noise. The 5-way 10-shot setting is the same as
the evaluation, and the results are detailed in Table III. Compared
to sample-level noise, the negative impact of frame-level noise is
small, with a similar overall trend. SOAP-Net outperforms other
methods under any frame-level noise number. We find the impact
of frame noise on TRX and HyRSM is greater than on MoLo and
our SOAP-Net. The commonality of MoLo and SOAP-Net is both
apply motion information, which plays a vital role in FSAR. Our
proposed method is less affected, proving comprehensive motion
information provides better robustness to frame-level noise.

C ADDITIONAL CAM VISUALIZATIONS
As a complement to the CAM visualization in the main paper, we
provide additional examples in Figure IV. For the example “snow-
boarding”, each frame is sampled without much background varia-
tion. However, the high fluency makes motion information weak,
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Figure III: The 5-shot example of “snowboarding”, where
the frame-level noise is highlighted by red box. Frame-level
noise means introducing noise frames.

Table III: Evaluation (↑ Acc. %) with Frame-Level Noise.

Datasets Methods Frame-Level Noise Number
0 1 2 3 4

SthSthV2

TRX 74.4 71.5 68.4 65.1 62.2
HyRSM 73.6 70.2 66.9 64.2 61.1
MoLo 75.3 74.1 72.2 70.1 68.8
SOAP-Net 84.9 84.2 83.6 82.2 80.9

Kinetics

TRX 90.1 87.3 84.8 81.2 79.0
HyRSM 89.7 86.5 84.4 82.2 80.1
MoLo 90.6 89.5 88.3 87.0 85.8
SOAP-Net 96.4 95.5 94.3 93.1 91.7

and the model attention mistakenly focuses on the background.
Fortunately, the model with SOAP concentrates more on the skier
instead of the outlying background. Due to disordered scenery like
driftwood and tourists, the example “diving cliff” is more complex
than the first. In the second row, we can clearly see the model is
disrupted and does not know where to focus. When motion infor-
mation is highlighted, people diving the cliff is easier to find.

D HYPERPARAMETER STUDY
Table IV illustrates the SOAP-Net structure in our implementation,
as detailed in the main paper. The Conv3D size is 3× 3× 3 in 3DEM.
In CWEM, the expand channel number𝐶𝑟 is set to 16, while Conv1D
size is 3.O = {1, 2, 3} and the Conv2D𝑀 sizes are 3×3 in HMEM. For
a supplementary interpretation of implementation details, extensive
experiments are conducted on individual modules with diverse
configuration to determine the optimal hyperparameters.

D.1 Hyperparameter Study of 3DEM
The size of the Conv3D plays a crucial role as the main hyperpa-
rameter in 3DEM. As a result, we only apply 3DEM to conduct
few-shot experiments on two datasets and have reported the re-
sults in Table V. In most cases, the best performance appears in
the 3 × 3 × 3 row. Based on these findings, we conclude that the
3 × 3 × 3 Conv3D is the optimal hyperparameter for 3DEM.
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Figure IV: Additional CAM Visualizations.

Table IV: Structure of SOAP-Net. Notations are consistent
with the main paper.

Modules /
Operation Input Input Size Output Onput Size

3DEM 𝑆𝑐𝑘 [8,3,224,224] 𝑆𝑐𝑘1 [8,1,224,224]
𝑄 [8,3,224,224] 𝑄̂1 [8,1,224,224]

CWEM 𝑆𝑐𝑘 [8,3,224,224] ¤𝑆𝑐𝑘2 [8,3,1,1]
𝑄 [8,3,224,224] ¤𝑄2 [8,3,1,1]

HMEM 𝑆𝑐𝑘 [8,3,224,224] 𝑆𝑐𝑘3 [8,3,1,1]
𝑄 [8,3,224,224] 𝑄̂3 [8,3,1,1]

Eqn.(15)

𝑆𝑐𝑘 [8,3,224,224]

𝑆𝑐𝑘 [8,3,224,224]𝑆𝑐𝑘1 [8,3,224,224]
𝑆𝑐𝑘2 [8,3,224,224]
𝑆𝑐𝑘3 [8,3,224,224]
𝑄 [8,3,224,224]

𝑄̃ [8,3,224,224]𝑄1 [8,3,224,224]
𝑄2 [8,3,224,224]
𝑄3 [8,3,224,224]

Eqn.(16) 𝑆𝑐𝑘 [8,3,224,224] 𝑆𝑐𝑘
𝑓

[8,2048]
𝑄̃ [8,3,224,224] 𝑄 𝑓 [8,2048]

D.2 Hyperparameter Study of CWEM
The size of Conv1D and the expand channel number 𝐶𝑟 are essen-
tial primary hyperparameters. A well-matched combination can
effectively calibrate temporal connections between each channel.

Table V: Hyperparameter Study (↑ Acc. %) of 3DEM.

Conv3D SthSthV2 Kinetics
1-shot 5-shot 1-shot 5-shot

1 × 1 × 1 54.9 67.6 74.6 85.7
3 × 3 × 3 55.6 69.4 76.8 86.6
5 × 5 × 5 55.1 69.5 76.6 86.3
7 × 7 × 7 54.6 68.2 75.9 85.8

Therefore, after arranging and combining these two hyperparam-
eters, we present all results using only CWEM in Table VI. Our
findings indicate that Conv1D with sizes of 3 or 5 outperforms
those with sizes of 1 or 7. Further experiments on 𝐶𝑟 reveal that
𝐶𝑟 = 16 contributes to optimal performance in most cases. Taking
a comprehensive consideration based on reported results, we con-
clude that Conv1D with a size of 3 and 𝐶𝑟 = 16 represents the best
set of hyperparameters for CWEM.

Table VI: Hyperparameter Study (↑ Acc. %) of CWEM.

SthSthV2 KineticsConv1D 𝐶𝑟 1-shot 5-shot 1-shot 5-shot
8 54.5 67.3 74.2 85.3
16 54.7 67.6 74.4 85.6
32 54.6 67.4 74.4 85.41

64 54.5 67.4 74.3 85.6
8 55.1 69.6 75.7 85.8
16 55.4 70.2 76.1 86.1
32 55.4 70.0 75.8 85.93

64 55.2 69.7 75.7 85.5
8 54.8 69.1 75.2 85.5
16 55.1 69.3 75.7 85.8
32 55.2 69.3 75.5 85.65

64 55.1 69.2 75.3 85.9
8 54.2 67.4 74.1 85.1
16 54.6 67.6 74.2 85.5
32 54.5 67.5 74.3 85.67

64 54.3 67.3 74.2 85.2

D.3 Hyperparameter Study of HMEM
Similar to CWEM, HMEM also has two hyperparameters: the size
of Conv2D𝑀 and the design of O. The former determines the vi-
sual receptive field size, while the latter determines the number of
branches and frame tuple sizes. The results obtained using only
HMEM through permutation and combination are presented in Ta-
ble VII. Performance with 3×3 and 5×5 Conv2D𝑀 is slightly better
than other settings. As indicated in the main paper, performance
generally improves with more branches, but excessive branches
can lead to degradation. Considering the O design, it is confirmed
that a configuration of 3 × 3 Conv2D𝑀 with O = {1, 2, 3} is the
most suitable hyperparameter setting for HMEM.

E PSEUDO-CODE
For a better understanding of HMEM, we provide a summary
of the two main processes: the sliding window algorithm (Algo-
rithm 1) and motion information calculation (Algorithm 2), using
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Table VII: Hyperparameter Study (↑ Acc. %) of HMEM.

Conv2D𝑀 O Design SthSthV2 Kinetics
1-shot 5-shot 1-shot 5-shot

1 × 1

O = {3} 57.1 71.8 77.2 87.3
O = {2, 3} 57.5 72.1 77.6 87.8
O = {1, 2, 3} 57.9 72.1 78.1 88.6
O = {1, 2, 3, 4} 57.3 71.4 77.1 87.2

3 × 3

O = {3} 57.6 71.4 77.7 88.1
O = {2, 3} 57.8 71.9 78.2 88.7
O = {1, 2, 3} 58.3 72.3 78.5 88.9
O = {1, 2, 3, 4} 57.2 71.0 77.6 88.0

5 × 5

O = {3} 57.5 71.9 77.5 88.2
O = {2, 3} 57.8 72.2 77.7 88.4
O = {1, 2, 3} 58.1 72.1 78.2 88.7
O = {1, 2, 3, 4} 57.1 71.6 77.2 87.7

7 × 7

O = {3} 57.6 70.4 76.2 87.3
O = {2, 3} 58.0 70.8 76.6 87.5
O = {1, 2, 3} 57.9 71.1 77.3 88.1
O = {1, 2, 3, 4} 56.8 70.2 76.1 87.1

pseudocode. Both processes consist of one layer loops with a com-
putational complexity of 𝑂 (𝑁w) due to |S𝑡 | = 𝑁w. In order to
comprehensively calculate motion information (Algorithm 3), the
above two algorithms are included in a larger loop for hyperparam-
eter O set. As a result, the computational complexity of the entire
HMEM is 𝑂 ( |O| 𝑁w).

Algorithm 1: Sliding window algorithm SW (·, ·)
Input: 𝐼 = [𝐼1, . . . , 𝐼𝐹 ] ∈ R𝐹×𝐶×𝐻×𝑊 ,𝑇 (𝑇 ∈ O,𝑇 < 𝐹,𝑇 ∈ N∗ )
Output: S𝑡

1 𝐹 ← Shape (𝐼 , 0) ; 𝑁w ← 𝐹 − 𝑇 + 1;
2 S𝑡 ← ∅; // Defining an empty list

3 for each 𝑖 ∈ [0, 𝑁w − 1] do
4 S𝑡 ← Append (S𝑡 , 𝐼 [:, 𝑖 : 𝑖 +𝑇, · · · ] ) ;
5 end
6 return S𝑡

Algorithm 2:Motion information calculation MIC (·)
Input: S𝑡
Output:M

1 M ← ∅; // Defining an empty list

2 for each 𝑖 ∈ [0, |S𝑡 | − 1] do
3 𝑚 ← Conv(S𝑡 [𝑖 + 1] ) − S𝑡 [𝑖 ]; // Conv2D𝑀

4 if M = ∅ then
5 M ←𝑚;
6 end
7 else
8 M ← Concat ( [M,𝑚] , dim = 0) ;
9 end

10 end
11 returnM

Algorithm 3:Motion information calculation
Input: 𝐼 = [𝐼1, . . . , 𝐼𝐹 ] ∈ R𝐹×𝐶×𝐻×𝑊 , O
Output:M𝑐

1 M𝑐 ← ∅; // Defining an empty list

2 for𝑇 ∈ O do
3 S𝑡 ← SW (𝐼 ,𝑇 ) ; // Slide window algorithm

4 M ← MIC (S𝑡 ) ; // Motion information calculation

5 if M𝑐 = ∅ then
6 M𝑐 ← M;
7 end
8 else
9 M𝑐 ← Concat ( [M𝑐 ,M] , dim = 0) ;

10 end
11 end
12 returnM𝑐
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