Supplementary Material

A Proofs of Lemmas 7 and 8

The proofs of Lemmas 7 and 8 require additional notations and some preliminary results. Returning
to the process depicted in Algorithm 3, let the conditional probability measures for all i € [K] be

Qi) =P(- | i*=1),

and denote Qo the probability over the loss sequence when A = 0, and all actions incur the same
loss. Next, let & be the o-algebra generated by the player’s observations {¢; j, },¢rj. Denote the
total variation distance between Q; and Q; on F by

d3,(9:1.9;) = sup|Q:(E) - Q;(E)|.
EeF

We also denote Eg, as the expectation on the conditional distribution Q;. Lastly, we present the
following result from Dekel et al. [8].

Lemma 10 ([8, Lemma 3 and Corollary 1]). For any i € [K] it holds that

A
\/I—(\/[EQQ [87]log, T,

K
1 F
% O d(20.9) <
i=1
and specifically for K =2,
d3,(21,9,) < (AJo)\2E[Sr] log, T.
With this Lemma at hand, we are ready to prove Lemmas 7 and 8.

Proof of Lemma 7. Observe that Ry > 0 by the construction in Algorithm 3. Then, if E[S7] >
1/(cA?log) T) for ¢ = 40% we have that E[Ry + 87] > 1/(cA?logj T), which guarantees the desired
lower bound. On the other hand, applying Lemma 10 when E[87] < 1/(cA%log; T), we get

d2,(21,9,) < (1/0)42/(clog3 T) < L. (13)

Let E be the event that arm ¢ = 1 is picked at least 7/2 times, namely
E= { Z 1l =1} > T/Z},
te[T]

and let E€ be its complementary event. If Q| (E) < % then,

E[R7] > Eo, [Rr|E€] - Qi(E®) - P(i* =1) (Rr 2 0)
> AT/8. (Ry = AT /2 under the conditional event)
If Qi (E) > } then from Eq. (13) we obtain that Q,(E) > i. This implies,
E[Rr] 2 Eg,[Rr|E] - Q:(E) - P(i* =2) (R = 0)
> AT /24. (Ry = AT /2 under the conditional event)
Since 87 > 0 we conclude the proof. ]

Proof of Lemma 8. The proof is comprised of two steps. First, we prove the lower bound for
deterministic players that make at most K'/3T?/3 switches. Towards the end of the proof we
generalize our claim to any deterministic player. To prove the former, we present the next Lemma,
which follows from the proof in [8, Thm 2]. For completeness the proof for this Lemma is provided
at the end of the section.

Lemma 11. For any deterministic player that makes at most AT switches over the sequence defined
in Algorithm 3,

| 18AT 3 [ o
[E[:RT + ST] > gAT + Eo, [ST] - W IOg2 T Eo, [ST],

provided that A < 1/6 and T > 6.
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Setting A = % in Lemma 11 we get,

Tlogg/2

2VK

In addition, recall that we are interested in deterministic players that satisfy the following regret
guarantee in the adversarial regime,

E[Rr +87] < O(K'PT%3). (15)
Hence, taking Egs. (14) and (15) we have,

1
E[Rr +87] = ET +Eo,[87] - Eo,[87] (14)

1 T10g3/2
O(K'PT?B) > —T +Eo,[87] - ——=—/Eg,[87] (16)
18 ’ 2VK ’
Now, assuming that \/Eg, [87] < ﬁ we get that for every K < T
og,
T10g3/2
1/372/3
OK'PT*3) > 8T+|EQO[ST] VT Eo,[87]
T T
> — =0
18 20 ™
Which is a contradiction. Therefore, in our case, \/Eq,[87] > W Furthermore, Lemma 11

also holds for any deterministic player that makes at most K'/3T2/3 switches, which is less than
AT under the condition that A > K'/37-1/3. Suppose that Eg,[87] < K313 /(607 logg T), then

choosing 1 > A = VK/(60y/Eg,[S7] 10g3/2 T) > K'3T-1/3 we obtain,
VKT

3-103yEq, [87] log2* T

Taking both observations in Egs. (15) and (17) implies that Eo, [87] > Q(K'/3T?/3/log3 T). To put

simply, we have shown that for any deterministic player that makes at most K'/372/3 switches and
holds Eq. (15), then

[E[:RT + 8T] 2 [EQ() [ST] (17)

Eo,[87] = Q(K'PT*3/10g3 T), (18)

independently of A. On the other hand, for any A > 0, since Q;(87 > K'/3T%/3) = 0 for any
i € [K]u{0},

LK1/3T2/3J

Eo,[87] - Eo, 871 = Z (Q0(87 > ) = 2(87 = 5))
< K1/3T2/3 -d3,(Q0,9)).

Averaging over i and rearranging terms we get,

7213 K 5
o7 ZdTv(Qo, Q)

> Eo, [87] — 9K~ °T* 10} T\[Eq, [S1] (Lemma 10)

Using Eq. (18) and the assumption 87 < K'/3T?/3, we get that for any A < aK'/3T71/3 log;9/2 T for
some constant a > 0 and sufficiently large 7',

E[Rr +87] = E[87] = Q(K'PT*3 /1083 T). (19)

E[S7] = Eg,[87] -

The above lower bound holds for any deterministic player that makes at most K'/37%/3 switches.
However, given a general deterministic player denoted by A we can construct an alternative player,
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denoted by A, which is identical to A, up to the round A performs the | §K'/3T%/3| switch. After

that A employs the Tsalis-INF algorithm with blocks of size B = [4K~'/3T'/3] for the remaining
rounds (see Algorithm 2). Clearly, the number of switches this block algorithm does is upper
bounded by 7/B + 1 < K'3T?/3/2, therefore A performs at most K'/3T2/3 switches. We denote,

IR? + 8? the regret with switching cost of player A and ZR;i + S‘}i respectively. Observe that when
84 < | 3K'PT?3] we get,

RE+ 84 =RE+ 84,
While for 82 > [1K1/3T%3,

RE+ 84 < RA + 84+ 21K P12 (Corollary 4 with B = [4K~1/3T1/37)
< RE + 6384 (84 > 1K'PT*B for T > 15)
This implies that IRA + S? > 5 (IRA + SA) and together with Eq. (19) it concludes the proof. W

Proof of Lemma 11. We examine deterministic players that make at most AT switches. Since
St < AT we have that,

[AT]
Eo,[87] - Eo,[87] = Z(QO(ST >5)-Qi(8r>5)) (Q(Sr>AT)=0 Vie[K]Uu{0})

s=1

< AT -d V(Qo,Q)

Averaging over i and rearranging terms we get,

ElS7] 2 Eo,[81] - Zd V(20,2 (20)

Next we present the following Lemma that is taken verbatim from Dekel et al. [8].
Lemma 12 ([8, Lemmas 4 and 5]). Assume that T > max{K,6} and A < 1/6 then,

AT AT
E[Rr +87] 2 5 - — Zd V(20.2) +E[S7].

Using Lemma 12 together with Eq. (20) we obtain,

K
AT 2AT .
E[Rr+87] 2 5 -~ == Zdw@o,gi) +Eg,[87]
AT 2A°T
> — 5 U\/_ Eo,[87]log, T + Eq,[87] (Lemma 10)
AT 18A T o2
=5 32T \JEo,[81] + Eg, [87]. (0 =1/(91og,T))

Setting o = 1/(91og, T') we conclude,

AT  18A%T
E[Rr +87] = —- - e 10222 T\[Ea, [87] + Eo, [87].
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