
Appendix

A Phosphene Model

A.1 Methods

This section describes the phosphene model used to simulate patient’s perception resulting from
stimulation. The model takes in a stimulus vector s ∈ Rne×3 specifying the frequency (freq),
amplitude (amp), and pulse duration (pdur) of a biphasic pulse train on each electrode. In addition,
the model also takes in a vector of patient-specific parameters ϕ (see Table 1). We break these
parameters down into implant parameters (x, y, rot), global parameters (ρ, λ, ω, ODx, ODy), and
stimulus-related parameters (a0-a4); all explained below.

Exact implant locations vary patient-to-patient. The three implant parameters allow our model to
account for these changes. We used a simulated implant inspired by designs of real epiretinal implants
[3, 56] and those used in previous simulation studies [14]. It consists of 225 disk electrodes (radius
75 µm arranged onto a square, 15× 15 grid with 400 µm spacing, initially centered over the fovea.
The three implant-related parameters translate and rotate the initial implant to be centered at (x, y),
and to be rotated by rot degrees. The implant used is depicted in Figure A.2, overlaid on top of a
simulated map of axon nerve fiber bundles [57].

Figure A.1: The implant used for optimization, and an example implant after rotation and translation
based on patient-specific parameters ϕ. The white circle on the right is the optic disc. Arced lines
depict simulated axon nerve fiber bundles.

The remaining model parameters are inspired by various psychophysical and electrophysiological
studies [8, 10, 18, 19, 58], and are summarized in the following list:

• ρ : Average phosphene size. This will be modified locally based on stimulus parameters.
• λ : Average phosphene eccentricity (a measure of phosphene elongation; not to be confused with

retinal eccentricity). This will be modified locally based on stimulus parameters.
• ω : Orientation scaling factor. The orientation of phosphenes will be the orientation of the

underlying axon bundle, scaled by ω (Eq. 12).
• ODx, ODy: The x and y location of the patient’s optic disc, into which axon nerve fiber bundles

terminate.
• a0-a2: Coefficients to modulate phosphene brightness with stimulus parameters (Eq. 9).
• a3 : Coefficient to modulate phosphene size with stimulus parameters (Eq. 10).
• a4 : Coefficient to modulate phosphene eccentricity with stimulus parameters (Eq. 11).

Each electrode’s location on the retina can be determined from the implant parameters. The cor-
responding location in the visual field (µe) is determined using the retinotopic map described in
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Watson et al. [59]. Each electrode’s phosphene orientation is then θe = ωθaxon, where θaxon is the
orientation of the axon nerve fiber bundle (NFB) underlying the cell (pixel). Axon NFBs are modeled
as spirals originating at the optic disc and terminating at each simulated cell. These spirals follow
a simulated axon map [47] based on tracings of axon trajectories in 55 human eyes. In summary,
phosphene size, eccentricity, brightness, and orientation are modulated based on stimulus parameters
and implant location according to the following equations:

be = a0(ampe)
a1 + a2(freqe) (9)

ρe = ρ ∗ a3 ∗ ampe (10)

λe = λ

(
pdur

0.45

)a4

(11)

θe = ω ∗ θaxon (12)

The phosphene for each electrode is a multivariate Gaussian blob, centered at the electrodes location
in visual field (µe), and with covariance matrix Σe constructed such that the resulting phosphene will
have brightness be, size ρe, eccentricity λe, and orientation θe, as shown in the following equations
(repeated from main text for convenience):

b(x, y) = 2πbe det (Σe) N ([x, y]⊤|µe,Σe), (13)

The covariance matrix Σe = RΣ0R
T is calculated from the eigenvalue matrix Σ0 and a rotation

matrix R:

Σ0 =

[
α2
e 0
0 β2

e

]
, R =

[
cos θe − sin θe
sin θe cos θe

]
.

The eigenvalues αe and βe depend on the intended phosphene area (ρe) elongation (λe), and a
constant ϵ (set to e−2):

α2
e = −

ρe
√
1− λ2

e

2π ln ϵ
, β2

e = − ρe

2π ln ϵ
√

1− λ2
e

.

This formulation guarantees that the Gaussian blob, when thresholded using ϵ, will have the intended
area, orientation, eccentricity, and brightness.

Blobs from individual electrodes are summed into a global percept. This linear summation is
supported by recent studies, which have shown that percepts from multi-electrode stimulation are
often linearly related to the percepts from stimulation on the individual electrodes [36]. Although the
sum across electrodes is linear, modulating the size and eccentricity of phosphenes makes the final
result a nonlinear function of stimulus parameters, preventing analytic inversion.

A.2 Evaluation

Our model is motivated by similar anatomical and psychophysical phenomena as the previous state-
of-the-art model for epiretinal prostheses [11], but its formulation allows for favorable computational
properties. In comparison, our model is on average 45x faster to run, and consumes about 120x less
GPU memory. These computational benefits are the main reason a new model was necessary, and
enables a more advanced deep stimulus encoder by allowing training with larger encoder models,
longer training duration, and larger batch sizes.

Nonetheless, we also verified that the model produces state-of-the-art predictions, as described in
Section 4.1. Despite its similar design, our model achieves much better scores on the Beyeler et
al. [8] evaluation for phosphene shape. This is likely because our formulation allows much tighter
control of phosphene shape attributes (e.g., size, eccentricity), allowing (for the first time) positive
R2 on shape descriptors for held-out electrodes. Our model performs similarly to the previous
state-of-the-art model on the Granley et al. [11] evaluation, which is to be expected given that the
equations modulating phosphene appearance with stimulus parameters in both models are very similar.
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Fig. A.2 reproduces the plots from Figures 4A-C and 5 of [11], but with our proposed model included.
These figures show the brightness or size rating from Argus II patient(s) as stimulus parameters
vary [19, 37], in subjective units. For brightness, ‘10’ means the same as the reference pulse, ‘20’
means twice as bright, etc. For size, ‘1’ means the same as reference pulse, ‘2’ means twice as large
(notation matching [11, 19, 37]).

Figure A.2: Evaluation of phosphene brightness and size as stimulus parameters vary. Reproduced
from [11], but with our proposed phosphene model included. State-of-the-art denotes the phosphene
model from [11]. Units are subjective, in comparison to a reference pulse (i.e. brightness of 20 means
twice as bright, size of 3 means 3 times as bright) [19]
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B Deep Stimulus Inversion

B.1 Architecture

The encoder architecture described in Section 3 is illustrated in Fig. B.1.

Figure B.1: Deep stimulus encoder architecture. FC: fully connected layer, BN: batch normalization
layer, B: block of layers (shown at top). Two arrows merging into one fully connected layer denotes
concatenation. 45M total parameters.
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C Human-in-the-Loop Optimization

C.1 Kernel Selection and Hyperparameters

This section gives more details on fitting the hyperparameters for the Gaussian process (GP) kernel
used in preferential Bayesian optimization (PBO). As stated previously, the performance of PBO
crucially depends on the GP kernel and its hyperparameters, which encode our prior assumptions
about the latent preference function. To select hyperparameters, we used a transfer learning strategy,
selecting hyperparameters that generalized best within a small validation group of simulated patients
(see Appendix C.2 for discussion).

We simulated 600 random duels (ϕ1 and ϕ2 chosen randomly) on each of 10 simulated patients. For
each patient, we fit four commonly used kernels (Squared Exponential, Squared Exponential with
Automatic Relevance Determination (ARD), Matérn 3/2, and Matérn 5/2) and inferred hyperparame-
ters using type II maximum likelihood estimation [60]. The bounds for each hyperparameter were
[exp(−10), exp(10)]. For each of these candidate kernel-hyperparameter pairs, we fit a GP with the
corresponding kernel and hyperparameters to 50 training duels for each of the other 9 patients. Then,
the performance of the candidate GP was evaluated on the remaining 550 data points using Brier
score [43], a commonly used metric measuring the accuracy of probabilistic predictions:

BS =
1

n

n∑
i=1

(ytrue − ypred)
2, (14)

where ytrue is the true duel outcome (1 or 0) as decided by the simulated patient, and ypred is the
probability of ϕ1 being selected as the winner (corresponding to outcome of 1), as predicted by the
Gaussian process.

The kernel and hyperparameters with the lowest Brier score, averaged across all 9 other patients,
were selected (Matérn 5/2). To verify that this kernel performed well, we also ran human-in-the-loop
optimization (HILO) for 20 random simulated patients, using the best hyperparameters for each of
the four previously mentioned kernels. The results are shown in Figure C.1. The Matérn 5/2 kernel
performed slightly better than the Matérn 3/2 kernel, and significantly better than the ARD kernel.
While performance was similar to the Squared Exponential kernel, we ultimately selected Matérn 5/2
due to its lower Brier score.

Figure C.1: Joint perceptual loss (y axis, log scale) plotted throughout HILO with different Gaussian
process kernels. Error bars denote SEM.
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C.2 Hyperparameter Optimality

The Gaussian process kernel hyperparameters selected with our transfer learning strategy performed
well in our simulations, leading to higher-quality patient-specific stimulus encodings (Figure 4).
This transfer learning approach was chosen to match a clinical setting, where limited human data
availability. However, it is certainly possible that better performing hyperparameters exist. To
investigate the optimality of our hyperparameters, we examine two other strategies: an ideal case
where ‘patient-optimal’ hyperparameters are used for each patient, and an online strategy where
hyperparameters are updated during optimization with each patient,

Patient-optimal Hyperparameter Selection In this strategy, hyperparameters were precomputed
for each patient by simulating 200 random duels. Kernel parameters were again fit using type II
maximum likelihood estimation [60]. These ‘patient-optimal’ hyperparameters were then used during
HILO for the patient.

Figure C.2: Reconstruction error using Gaussian process kernel hyperparameters selected via transfer
learning and ’patient-optimal’ strategies throughout HILO.

Optimization results for 20 random patients are shown in Figure C.2. Both the transfer and the
patient-optimal settings led to similar performance, and there was no significant difference between
the final reconstruction errors (p > .05, two-sided paired t-test). Thus it seems the transfer learning
strategy indeed selected hyperparameters that generalize well for new patients. Note that in general
the transfer learning selection strategy is more practically applicable than the patient-optimal strategy
since it does not require a long calibration period, but the patient-optimal strategy is an alternative
that could be used for the first human subjects when no human data (only simulated data) is available.

Online hyperparameters selection While it is common to keep kernel hyperparameters constant
during optimization [33, 61, 62], online optimization is an alternative, where kernel parameters
are periodically re-fit to the patient data during optimization. We tested online optimization where
hyperparameters were recalculated with an update period of 1, 5, 10, or 20 duels, or were never
updated. In all settings, the initial hyperparameters were chosen using the transfer learning strategy.

The results for online hyperparameters optimization are shown in Figure C.3. All update periods
eventually converged to similar performance as with the transfer learning strategy (i.e never updating
hyperparameters), but since recalculating hyperparameters is costly, online hyperparameter updates
increased the optimization time required to reach a desired performance (Figure C.3, right). This
suggests that just using the transfer learning hyperparameters is a better strategy than online updates.
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Figure C.3: Reconstruction error (left) and Bayesian optimization time required to reach a specified
reconstruction error (right) for HILO with online updates of GP hyperparameters.

C.3 Acquisition function

The acquisition function is responsible for choosing ϕ1 and ϕ2 for each duel, and must balance
exploration of the search space with exploiting values of ϕ that are expected to work well. The
Maximally Uncertain Challenge (MUC) [42] acquisition presented in the main text was initially
compared against 2 other top-ranking [42] acquisition functions: Bivariate Expected Improvement
(Bivariate EI) [63], and Dueling Upper Credibility Bound (Dueling UCB) [64]. In addition, we also
compare against a baseline acquisition, where ϕ1 and ϕ2 are chosen randomly for each duel. We ran
HILO for the same 20 random patients for each acquisition.

The joint perceptual loss throughout optimization for each acquisition is presented in Figure C.4. All
of the tested acquisition functions dramatically outperformed the random baseline, which converged
to a value near the mean DSE without HILO. Although MUC and Dueling UCB performed similarly,
we ultimately selected MUC due to its slightly lower final loss.

Figure C.4: Joint perceptual loss (y axis, log scale) plotted throughout HILO with different acquisition
functions. Error bars denote SEM.
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C.4 Batch Bayesian Optimization

While the proposed Bayesian optimization strategy of sequentially presenting the user with stimuli
would likely not be prohibitively time consuming (about 17 minutes with 100 duels, 10 seconds
per duel), it is possible that batch Bayesian optimization could speed up optimization. We consider
two formulations of batch Bayesian optimizations: 1) the user selects their preference from a batch
of stimuli in each iteration, and 2) each duel still has only two options, but batches of duels are
precomputed to save on updated the Gaussian process posterior and the acquisition function time
between duels.

Option 1 is theoretically more ideal, since more information acquired in each comparison would
hopefully allow for fewer comparisons. However, this would require the patient to remember an
entire batch of stimuli before making a comparison, and in practice phosphenes can be very difficult
to discriminate [7]. It is difficult to evaluate the effect of this cognitive burden on simulated patients,
and we thus leave it to future work to consider whether the parallelization of data acquisition would
make up for the increased difficulty of the task.

Therefore, option 2 was tested by precomputing batches of 1 (i.e. original), 3, 6, or 10 duels at a
time. We used a batch variant of the maximally-uncertain challenge acquisition function [42]. Results
for 20 simulated patients are shown in Figure C.5. Precomputing batches reduced the optimization
time required to reach a desired performance, but at the cost of requiring more duels. In practice,
the optimal batch size could be determined by balancing the time required per duel with the time
required for optimization. Faster acquisitions (e.g. KernelSelfSparring [65]) could further reduce
optimization time.

Figure C.5: Reconstruction error (left) and Bayesian optimization time required to reach a specified
reconstruction error (right) for HILO with different batch sizes.

C.5 Baselines and Robustness

In this section, we provide further details for the naive encoder we compared against, and the
robustness experiments.

Naive Encoder The naive encoder is the encoding strategy currently used in commercial epiretinal
prostheses [3]. This encoder operates under the assumption that each electrode can be thought of as a
pixel in an image. The optimal stimulus under this assumption is therefore simply a downsampled
version of the target image. The frequency and pulse duration are constant across all electrodes.
This naive encoder has been previously shown to be suboptimal [14], but we still include it as a
comparison to the currently used encoding strategy.

Robustness In section 4.4 we evaluate the robustness of human-in-the-loop optimization (HILO) to
misspecifications in the forward model. Here, we provide specific details on the implementation of
these misspecifications, and how we adapted the baseline encoders to the misspecified scenarios.
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• Axon Trajectories: The simulated axon map from [47] has two parameters, βinf and βsup,
which control the axon trajectories in the inferior and superior retina, respectively. [47] also
reports the observed ranges for these parameters: βsup ∈ [−2.5,−1.3] and βinf ∈ [0.1, 1.3].
The unmodified model uses the centers of these ranges. Under misspecification, we randomly
set both βsup and βinf to one of these bounds for each patient.

• Thresholds: Threshold is the amplitude at which a phosphene becomes visible to a patient
50% of the time. In epiretinal prostheses, thresholds are notoriously noisy, and vary
significantly across electrodes, patients, and over time [48]. While some progress has been
made towards predicting these thresholds [66], most state-of-the-art models assume that
thresholds are known.
With this misspecification, the assumed threshold on each electrode was modified by a
random but systematic amount. Specifically, the threshold on each electrode was randomly
selected to be between 1

2x and 2x its original value for the 100% condition and between 1
4x

and 4x its original value for the 300% condition.
• Out of Distribution: It is also possible that a new patient does not fall within our assumed

ranges. Thus, we tested a variant where the true patient-specific parameters ϕ were sampled
from outside the ranges in Table 1. Specifically, each parameter was sampled to be 0-50%
above or below the specified range (some parameters were clipped to stay within defined
ranges, e.g., λ cannot be outside of [0, 1)).
During HILO, the acquisition functions have specified bounds that constrain candidate ϕ.
We therefore tested two variants, one where PBO was allowed to expand the bounds, and
another where it was confined to within its original bounds. The end results were similar in
terms of DSE performance, so the variant with its original bounds is presented in the main
text.

DSE-ϕGuess is our best approximation of what a DSE would guessed patient-specific parameters
would perform, and is bounded by the performance of a DSE with mean ϕ, and random ϕ from the
ranges in Table 1. For each of the misspecifications, the mean and random ϕ baseline DSEs are still
encoded with the same ϕ as in the unchanged patient, but since the phosphene model for the patient
is changed, the resulting loss is different. DSE-ϕTrue is still parameterized with the patients true ϕ,
however, the true ϕ are no longer a perfect description of the misspecified patient. This is shown by
the fact that HILO surpasses the true encoders performance: under the misspecified model, there
exists some other ϕ which leads to percepts with improved perceptual quality when decoded using
the misspecified phosphene model, compared to those encoded with the true ϕ. This highlights the
robustness of optimization based on user preferences.
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