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B Geometry of regularized Linear Programs

We start by fleshing out the connection between strong convexity and smoothness charted in Lemma 1:
Lemma 1. If F is �-strongly convex w.r.t. k · k over D then F

⇤ is 1
� -smooth w.r.t the dual k · k?.

Proof. Let u,w 2 Rn and x,y 2 D be such that rF ⇤(u) = x and rF ⇤(w) = y. By definition
this also implies that:

hrF (x)� u, z1 � xi � 0, 8z 2 D

hrF (y)�w, z2 � yi � 0, 8z 2 D

Setting z1 = y and z2 = x along with the definition of x,y and summing the two inequalities:

hrF (x)�rF (y),y � xi � hrF ⇤(w)�rF ⇤(u),u�wi. (8)

By strong convexity of F over domain D we see that:

F (x) � F (y) + hrF (y),x� yi+
�

2
kx� yk2

F (y) � F (x) + hrF (x),y � xi+
�

2
kx� yk2

Summing both inequalities yields:

�kx� yk2  hrF (x)�rF (y),x� yi

Plugging in the definition of u and w along with inequality 8:

�krF
⇤(u)�rF ⇤(w)k2  hu�w,rF

⇤(u)�rF ⇤(w)i
(i)
 ku�wk⇤krF

⇤(u)�rF ⇤(w)k.

Where inequality (i) holds by Cauchy-Schwartz and consequently:

krF
⇤(u)�rF ⇤(w)k 

1

�
ku�wk⇤

By the mean value theorem there exists z 2 [u,w]:

F
⇤(u) = F

⇤(w) + hrF ⇤(z),w � ui

= F
⇤(w) + hrF ⇤(w),w � ui+ hrF ⇤(z)�rF ⇤(w),w � ui

 F
⇤(w) + hrF ⇤(w),w � ui+ krF ⇤(z)�rF ⇤(w)kkw � uk⇤

 F
⇤(w) + hrF ⇤(w),w � ui+

1

�
kz�wk⇤kw � uk⇤

 F
⇤(w) + hrF ⇤(w),w � ui+

1

�
kw � uk2⇤

Which concludes the proof.

The proof of Lemma 1 yields the following useful result that characterizes the smoothness properties
of the dual function in a regularized LP:

B.1 Proof of Lemma 2

Lemma 2. Consider the regularized LP RegLP with r 2 Rn, E 2 Rm⇥n, b 2 Rm, and where F

is ��strongly convex w.r.t. norm k · k. The dual function gD : Rm
! R of this regularized LP is

kEk2
·,?

� -smooth w.r.t. to the dual norm k · k?, where we use kEk·,? to denote the k · k norm over the
k · k? norm of E0s rows.
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Proof. Recall that:
gD(v) = hv, bi+ F

⇤(r � v
>
E).

Notice that:

rvgD(v) = b+ ErF
⇤(r � v

>
E).

And therefore for any two v1, v2:

krgD(v1)�rgD(v2)k = kE
�
rF

⇤(r � v
>
1 E)�rF ⇤(r � v

>
2 E)

�
k

(i)
 kEk·,⇤krF

⇤(r � v
>
1 E)�rF ⇤(r � v

>
2 E)k

(ii)
 kEk·,⇤

1

�
kv

>
1 E � v

>
2 Ek⇤

(ii)

kEk

2
·,⇤

�
kv1 � v2k⇤

The result follows.

We can apply Lemma 2 to problem PrimalReg-� and thus characterize the smoothness properties of
the dual function JD.

B.2 Proof of Lemma 3

Lemma 3. The dual function JD(v) is (|S|+ 1)⌘-smooth in the k · k1 norm.

Proof. Recall that PrimalReg-� can be written as RegLP:

max
�2D
hr,�i � F (�)

s.t. E� = b.

Where the regularizer (F (�) := 1
⌘

P
s,a �s,a

⇣
log
⇣

�s,a

qs,a

⌘
� 1
⌘

) is 1
⌘ � k · k1 strongly convex. In

this problem r corresponds to the reward vector, the vector b = (1 � �)µ 2 R|S| and matrix
E 2 R|S|⇥|S|⇥|A| takes the form:

E[s, s0, a] =

⇢
�Pa(s|s0) if s 6= s

0

1� �Pa(s|s) o.w.

Therefore
kEk1,1  S + 1

The result follows as a corollary of Lemma 1.

C Proof of Lemma 4

The objective of this section is to show that a candidate dual variable ev having small gradient gives
rise to a policy whose true visitation distribution has large primal value JP .

Lemma 4. Let ev 2 R|S| be arbitrary and let e� be its corresponding candidate primal variable. If
krvJD(ev)k1  ✏ and Assumptions 2 and 3 hold then whenever |S| � 2:

JP (�
e⇡) � JP (�

?
⌘)� ✏

✓
1 + c

1� �
+ kevk1

◆
,

where c =
1+log( 1

⇢3�
)

⌘ and �?
⌘ is the JP optimum.
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Proof. For any � and v let the lagrangian JL(�,v) be defined as,

JL(�,v) = (1� �)hµ,vi+

⌧
�,Av

�
1

⌘

✓
log

✓
�

q

◆
� 1

◆�

Note that JD(ev) = JL(e�, ev) and that in fact JL is linear in v̄; i.e.,

JL(e�, v̄) = JL(e�, ev) + hrvJL(e�, ev), v̄ � evi.

Using Holder’s inequality we have:

JL(e�, v̄) � JL(e�, ev)� krvJL(e�, ev)k1 · kv̄ � evk1 = JD(ev)� krvJL(e�, ev)k1 · kv̄ � evk1.

Let �? be the candidate primal solution to the optimal dual solution v? = argminv JD(v). By weak
duality we have that JD(ev) � JP (�

?) = JD(v?), and since by assumption krvJL(e�, ev)k1  ✏:

JL(e�, v̄) � JP (�
?)� ✏kv̄ � evk1. (9)

In order to use this inequality to lower bound the value of JP (�
e⇡), we will need to choose an

appropriate v̄ such that the LHS reduces to JP (�
e⇡) while keeping the `1 norm on the RHS small.

Thus we consider setting v̄ as:

v̄s = Ea,s0⇠e⇡⇥T

"
zs + rs,a �

1

⌘

 
log

 
�e⇡
s,a

qs,a

!
� 1

!
+ �v̄s0

#

Where z 2 R|S| is some function to be determined later. It is clear that an appropriate z exists as

long as z, r, 1
⌘

✓
log

✓
�e⇡

s,a

qs,a

◆
� 1

◆
are uniformly bounded. Furthermore:

kv̄k1 

maxs,a

����zs + rs,a �
1
⌘

✓
log

✓
�e⇡

s,a

qs,a

◆
� 1

◆����
1� �



kzk1 + krk1 + 1
⌘

����log
✓

�e⇡
s,a

qs,a

◆
� 1

����
1

1� �
(10)

Notice that by Assumptions 2 and 3, we have that ⇢,�  1
2 . This is because for all ⇡, Assumption 3

implies that:

0  2⇢  |S|⇢ 

X

s

�⇡
s = 1

The proof for �  1
2 is symmetric. Due to Assumption 2 the k · k1 norm of log(�

e⇡

q ) � 1|S||A|
satisfies:
�����log

 
�e⇡

q

!
� 1|S||A|

�����
1

 1+

�����log
 
�e⇡

q

!�����
1

 1+max(| log(⇢/�)|, log(1/�))  1+log(1/⇢)+log(1/�).

Notice the following relationships hold:
*
e�,Av̄ � 1

⌘

 
log

 
e�
q

!
� 1

!+
=
X

s

e�s

 
Ea,s0⇠e⇡⇥P

"
rs,a + �v̄s0 � v̄s �

1
⌘

 
log

 
e�s,a

qs,a

!
� 1

!#!

=
X

s

e�s

 
Ea,s0⇠e⇡⇥P

"
1
⌘

 
log

 
�e⇡

s,a

qs,a

!
� 1

!
� 1

⌘

 
log

 
e�s,a

qs,a

!
� 1

!
� zs

#!

=
X

s

e�s

✓
Ea,s0⇠e⇡⇥P


1
⌘
log
⇣
�e⇡

s,a

⌘
� 1

⌘
log
⇣
e�s,a

⌘
� zs

�◆

=
X

s

e�s

✓
1
⌘
log
⇣
�e⇡

s

⌘
� 1

⌘
log
⇣
e�s

⌘
� zs

◆
(11)
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Where e�s =
P

a
e�s,a and �e⇡

s =
P

a �
e⇡
s,a. Note that by definition:

(1� �)hµ, v̄i =

*
�e⇡

, z+ r�
1

⌘

 
log

 
�e⇡

q

!
� 1

!+
= JP (�

e⇡) + h�e⇡
, zi. (12)

Let’s expand the definition of JL(e�, v̄) using Equations 11 and 12:

JL(e�, v̄) = (1� �)hµ, v̄i+

*
e�,Av̄

�
1

⌘

 
log

 
e�
q

!
� 1

!+

= JP (�
e⇡) + h�e⇡

, zi+
X

s

e�s

✓
1

⌘
log
⇣
�e⇡
s

⌘
�

1

⌘
log
⇣
e�s

⌘
� zs

◆

= JP (�
e⇡) +

X

s

 
zs(�

e⇡
s �

e�s) +
1

⌘

e�s log

 
�e⇡
s

e�s

!!

Since we want this expression to equal JP (�e⇡), we need to choose z such that:

zs =

1
⌘ log

⇣
�e⇡

s
e�s

⌘

1� �e⇡
s

e�s

.

By Assumption 3 we have that for all s:
�e⇡
s

e�s

� ⇢

Now we bound kzsk1. Note that the function h(�) = log �
1�� is non decreasing and negative, and

therefore the maximum of its absolute value is achieved at the lower end of its domain. This implies:

|zs| 
|h(⇢)|

⌘
=

|log(⇢)|

⌘(1� ⇢)


2 log(1/⇢)

⌘
, 8s 2 S.

And therefore Equation 10 implies:

kv̄k1 

2 log(1/⇢)
⌘ + 1 + 1+log(1/⇢)+log(1/�)

⌘

1� �
=

1 +
1+log( 1

⇢3�
)

⌘

1� �

Putting these together we obtain the following version of equation 9:

JL(e�, v̄) � JP (�
?)� ✏

0

@1 +
1+log( 1

⇢3�
)

⌘

1� �
+ kevk1

1

A

As desired.

D Proof of Lemma 5

In this section we derive an upper bound for the l1 norm of the optimal solution v?.
Lemma 5. Under Assumptions 1, 2 and 3, the optimal dual variables are bounded as

kv⇤k1  1
1� �

 
1 +

log |S||A|
�⇢

⌘

!
=: D. (7)

Proof. Recall the Lagrangian form,

min
v

, max
�s,a2�S⇥A

JL(�,v) := (1� �)hv,µi+

⌧
�,Av

�
1

⌘

✓
log

✓
�s,a

qs,a

◆
� 1

◆�
.
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The KKT conditions of �⇤
,v⇤ imply that for any s, a, either (1) �⇤

s,a = 0 and @
@�s,a

JL(�
⇤
, v

⇤)  0

or (2) @
@�s,a

JL(�
⇤
,v⇤) = 0. The partial derivative of JL is given by,

@

@�s,a
JL(�

⇤
,v⇤) = rs,a �

1

⌘
log

✓
�⇤
s,a

qs,a

◆
+ �

X

s0

Pa(s
0
|s)v⇤

s0 � v⇤
s . (13)

Thus, for any s, a, either

�⇤
s,a = 0 and v⇤

s � rs,a �
1

⌘
log

✓
�⇤
s,a

qs,a

◆
+ �

X

s0

Pa(s
0
|s)v⇤

s0 , (14)

or,

�⇤
s,a > 0 and v⇤

s = rs,a �
1

⌘
log

✓
�⇤
s,a

qs,a

◆
+ �

X

s0

Pa(s
0
|s)v⇤

s0 . (15)

Recall that �⇤ is the discounted state-action visitations of some policy ⇡?; i.e., �⇤
s,a = �⇡?

s · ⇡?(a|s)
for some ⇡?. Note that by Assumption 3, any policy ⇡ has �⇡?

s > 0 for all s. Accordingly, the KKT
conditions imply,

⇡?(a|s) = 0 and v⇤
s � rs,a �

1

⌘
log

✓
�⇤
s,a

qs,a

◆
+ �

X

s0

Pa(s
0
|s)v⇤

s0 , (16)

or,

⇡?(a|s) > 0 and v⇤
s = rs,a �

1

⌘
log

✓
�⇤
s,a

qs,a

◆
+ �

X

s0

Pa(s
0
|s)v⇤

s0 . (17)

Equivalently,

v⇤
s = Ea⇠⇡?(s)

"
rs,a �

1

⌘
log

✓
�⇤
s,a

qs,a

◆
+ �

X

s0

Pa(s
0
|s)v⇤

s0

#
(18)

=
1

⌘
Ea⇠⇡?(s)


� log

✓
⇡(a|s)

qa|s

◆�
+ Ea⇠⇡(s)

"
rs,a �

1

⌘
log

✓
�⇡?
s

qs

◆
+ �

X

s0

Pa(s
0
|s)v⇤

s0

#
.

(19)

We may express these conditions as a Bellman recurrence for v⇤
s :

v⇤
s =

1

⌘
Ea⇠⇡?(s)


� log

✓
⇡(a|s)

qa|s

◆�
+ Ea⇠⇡?(s)

"
rs,a �

1

⌘
log

✓
�⇡?
s

qs

◆
+ �

X

s0

Pa(s
0
|s)v⇤

s0

#
.

(20)
The solution to these Bellman equations is bounded when Ea⇠⇡?(s)

h
� log

⇣
⇡?(a|s)
qa|s

⌘i
, rs,a, and

log
⇣

�⇡
s

qs

⌘
are bounded [24]. And indeed, by Assumptions 3 and 1, each of these is bounded by within

[log �, log |A|], [0, 1], and [log ⇢,� log �], respectively. We may thus bound the solution as,

kv⇤
k1 

1

1� �

 
1 +

log |S||A|
�⇢

⌘

!
. (21)

E Convergence rates for REPS

We start with the proof of Lemma 6 which we restate for convenience:
Lemma 11. If x is an ✏�optimal solution for the ↵�smooth function h : Rd

! R w.r.t. norm k · k?
then the gradient of h at x satisfies:

krh(x)k 
p
2↵✏.
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Proof. Let x 2 Rd be an arbitrary point and let x0 equal the point resulting of the update

x0 = argmin
y2D

1

↵
hrh(x),y � xi+

ky � xk2?
2

(22)

Notice that by smoothness of h:

h(x0)  h(x) + hrh(x),x0
� xi+

↵

2
kx0
� xk2? = h(x)�

1

2↵
krh(x)k2 (23)

Since h(x?)  h(x0) and x is ✏�optimal:

1

2↵
krh(x)k2 + h(x?)

(i)


1

2↵
krh(x)k2 + h(x0)

(ii)
 h(x)

(iii)
 h(x?) + ✏

Inequality (i) holds because h(x?)  h(x0), inequality (ii) by Equation 23 and (iii) by ✏�optimality
of x. Therefore:

1

2↵
krh(x)k2  ✏.

The result follows.

We also show that the gradient norm of a smooth function over a bounded domain containing the
optimum can be bounded:
Lemma 12. If h is an ↵�smooth function w.r.t. norm k · k?, and x? is such that rh(x?) = 0 then:

krh(x)k  ↵kx� x?
k?.

And therefore whenever kx� x?
k?  D we have that:

krh(x)k  ↵D.

Proof. Since h is ↵�smooth:

h(x)  h(x?) + hrh(x?),x� x?
i+

↵

2
kx� x?

k
2
? = h(x?) +

↵

2
kx� x?

k
2
?

Therefore:

h(x)� h(x?) 
↵

2
kx� x?

k
2
?.

Therefore, as a consequence of Lemma 6:

krh(x)k  ↵D.

The result follows.

E.1 Proof of Theorem 2

We can now prove the estimation guarantees whenever exact gradients are available.

Theorem 4. For any ✏ > 0, let ⌘ = 1

2✏ log( |S||A|
� )

. If T � (|S| + 1)3/2 (2+c00)2

(1��)2✏2 , then ⇡T is an

✏�optimal policy.

Proof. As a consequence of Corollary 2, we can conclude that:

JP (�
⇡T ) � JP (�

?,⌘)�
✏

2
.

Where �?
⌘ is the regularized optimum. Recall that:

JP (�) =
X

s,a

�s,ars,a �
1

⌘

X

s,a

�s,a

✓
log

✓
�s,a

qs,a

◆
� 1

◆
.
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Since �?,⌘ is the maximizer of the regularized objective, it satisfies JP (�?,⌘) � JP (�
⇤) where �? is

the visitation frequency of the optimal policy corresponding to the unregularized objective. We can
conclude that:

X

s,a

�⇡T
s,ars,a �

X

s,a

�?
s,ars,a +

1

⌘

 
X

s,a

�⇡T
s,a

✓
log

✓
�⇡T
s,a

qs,a

◆
� 1

◆
�

X

s,a

�?
s,a

✓
log

✓
�?
s,a

qs,a

◆
� 1

◆!
�
✏

2

=
X

s,a

�?
s,ars,a +

1

⌘

 
X

s,a

�⇡T
s,a

✓
log

✓
�⇡T
s,a

qs,a

◆◆
�

X

s,a

�?
s,a

✓
log

✓
�?
s,a

qs,a

◆◆!
�
✏

2

�

X

s,a

�?
s,ars,a �

2

⌘
log(

|S||A|

�
)�

✏

2

And therefore if ⌘ = 1

4✏ log( |S||A|
� )

, we can conclude that:

X

s,a

�⇡T
s,ars,a �

X

s,a

�?
s,ars,a � ✏.

F Accelerated Gradient Descent

Algorithm 4 Accelerated Gradient Descent
Input Initial point x0, domain D, distance generating function w.
y0  x0, z0  x0.
for t = 0, · · · , T do

⌘t+1 = t+2
2↵ and ⌧t = 2

t+2 .

xt+1  (1� ⌧t)yt + ⌧tzt

yt+1  argmin
y2D

1

↵
hrh(xt),y � xti+

ky � xtk
2
?

2
.

zt+1  argmin
z2D

⌘thrh(xt), z� zti+Dw(zt, z).

end
For some stepsize parameter sequence ⌘t.

Algorithm 4 satisfies the following convergence guarantee:

G Stochastic Gradient Descent

In this section we will have all the proofs and results corresponding to Section 6 in the main. We start
by showing the proof of Lemma 9.
Lemma 9. Let f : Rd

! R be an L�smooth function. We consider the following update:

x0
t+1 = xt � ⌧ (rf(xt) + ✏t + bt) ; xt+1 = ⇧D(x

0
t+1).

If ⌧  2
L then:

f(xt+1)� f(x?) 
kxt � x?k2 � kxt+1 � x?k2

2⌧
+ 2⌧krf(xt)k2 + 5⌧kbtk2 + 5⌧k✏tk2

+ kbtk1kxt � x?k1 � h✏t,xt � x?i.

Proof. Through the proof we use the notation k · k to denote the L2 norm. By smoothness the
following holds:
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f(xt+1)  f(xt)+hrf(xt),xt+1�xti+
L

2
kxt+1�xtk

2
1  f(xt)+hrf(xt),xt+1�xti+

L

2
kxt+1�xtk

2

Since xt+1 = ⇧D(x0
t+1) and by properties of a convex projection:

hx0
t+1 � xt+1,xt � xt+1i  0.

And therefore:

hxt � ⌧ (rf(xt) + bt + ✏t)� xt+1,xt � xt+1i  0.

Which in turn implies that :

kxt � xt+1k
2
 ⌧hrf(xt) + bt + ✏t,xt � xt+1i.

We can conclude that:

f(xt+1)  f(xt)�
kxt � xt+1k

2

⌧
+ hbt + ✏t,xt � xt+1i+

L

2
kxt+1 � xtk

2
. (24)

By convexity:

f(x?) � f(xt) + hrf(xt),x? � xti.

And therefore f(xt)  f(x?) + hrf(xt),xt � x?i.

Combining this last result with Equation 24:

f(xt+1)  f(x?) + hrf(xt),xt � x?i+

✓
L

2
�

1

⌧

◆
kxt+1 � xtk

2 + hbt + ✏t,xt � xt+1i. (25)

Now observe that as a consequence of the contraction property of projections

kxt+1 � x?k
2
 kxt � ⌧ (rf(xt) + bt + ✏t)� x?k

2

= kxt � x?k
2 + ⌧

2
krf(xt) + bt + ✏tk

2
� 2⌧hrf(xt) + bt + ✏t,xt � x?i.

And therefore:

hrf(xt),xt�x?i 
kxt � x?k

2
� kxt+1 � x?k

2

2⌧
+
⌧

2
krf(xt)+bt+ ✏tk

2
�hbt+ ✏t,xt�x?i.

Substituting this last inequality into Equation 25:

f(xt+1)� f(x?) 
kxt � x?k

2
� kxt+1 � x?k

2

2⌧
+
⌧

2
krf(xt) + bt + ✏tk

2
� hbt + ✏t,xt � x?i+

(26)
✓
L

2
�

1

⌧

◆
kxt+1 � xtk

2 + hbt + ✏t,xt � xt+1i (27)

Notice that as a consequence of the contraction property of projections:
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kxt+1 � xtk
2
 kxt � ⌧ (rf(xt) + bt + ✏t)� xtk

= ⌧krf(xt) + bt + ✏tk

And therefore

hbt + ✏t,xt � xt+1i  kbt + ✏tkkxt � xt+1k  ⌧kbt + ✏tkkrf(xt) + bt + ✏tk

:

Substituting this back into 27 and assuming L
2 

1
⌧ :

f(xt+1)� f(x?) 
kxt � x?k

2
� kxt+1 � x?k

2

2⌧
+
⌧

2
krf(xt) + bt + ✏tk

2
� hbt + ✏t,xt � x?i+

⌧kbt + ✏tkkrf(xt) + bt + ✏tk


kxt � x?k

2
� kxt+1 � x?k

2

2⌧
+ ⌧krf(xt) + bt + ✏tk

2 +
⌧

2
kbt + ✏tk

2
� hbt + ✏t,xt � x?i

(i)

kxt � x?k

2
� kxt+1 � x?k

2

2⌧
+ 2⌧krf(xt)k

2 + 5⌧kbtk
2 + 5⌧k✏tk

2
� hbt + ✏t,xt � x?i


kxt � x?k

2
� kxt+1 � x?k

2

2⌧
+ 2⌧krf(xt)k

2 + 5⌧kbtk
2 + 5⌧k✏tk

2 + kbtk1kxt � x?k1 � h✏t,xt � x?i

Inequality (i) is a result of a repeated use of Young’s inequality. The last inequality is a result of
Cauchy-Schwartz.

H Stochastic Gradients Analysis

We will make use of the following concentration inequality:
Lemma 13 (Uniform empirical Bernstein bound). In the terminology of Howard et al. [16], let
St =

Pt
i=1 Yi be a sub- P process with parameter c > 0 and variance process Wt. Then with

probability at least 1� � for all t 2 N

St  1.44

s

(Wt _m)

✓
1.4 ln ln

✓
2

✓
Wt

m
_ 1

◆◆
+ ln

5.2

�

◆

+ 0.41c

✓
1.4 ln ln

✓
2

✓
Wt

m
_ 1

◆◆
+ ln

5.2

�

◆

where m > 0 is arbitrary but fixed.

Proof. Setting s = 1.4 and ⌘ = 2 in the polynomial stitched boundary in Equation (10) of Howard
et al. [16] shows that uc,�(v) is a sub- G boundary for constant c and level � where

uc,�(v) = 1.44

s

(v _ 1)

✓
1.4 ln ln (2(v _ 1)) + ln

5.2

�

◆

+ 1.21c

✓
1.4 ln ln (2(v _ 1)) + ln

5.2

�

◆
.

By the boundary conversions in Table 1 in Howard et al. [16] uc/3,� is also a sub- P boundary for
constant c and level �. The desired bound then follows from Theorem 1 by Howard et al. [16].

The following estimation bound holds:
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Lemma 14. Let {(s`, a`, s0`)}
1
`=1 be samples generated as above. Let Nt(s, a) =

Pt
`=1 1(s`, a` =

s, a). Let � 2 (0, 1). With probability at least 1� (2|S||A|�) for all t such that ln(2t) + ln 5.2
� 

t�
6

and for all s, a 2 S ⇥A simultaneously:

Nt(s, a) 2


tqs,a

4
,
7tqs,a

4

�

Additionally define bqs,a = Nt(s,a)
t . For any ✏ 2 (0, 1) with probability at least 1� (2|S||A|�) and

for all t such that t
ln ln(2t) �

1+ln 5.2
�

�✏2 :

|bqs,a � qs,a|  3.69✏qs,a.

Proof. We start by producing a lower bound for Nt(s, a). Consider the martingale sequence
Zs,a(`) = 1(s` = s, a` = a) � qs,a with the variance process Vt =

Pt
`=1 E

⇥
Z

2
s,a(`)|F`�1

⇤

satisfying E[Z2
s,a(`)|F`�1]  qs,a. The martingale process Zs,a(`) satisfies the sub- P condition

of [16] with constant c = 1 (see Bennet case in Table 3 of [16]). By Lemma 13, and setting m = qs,a

we conclude that with probability at least 1� � for all t 2 N :

Nt(s, a) � tqs,a � 1.44

s

qs,at

✓
ln ln(2t) + ln

5.2

�

◆
� 0.41

✓
1.4 ln ln(2t) + ln

5.2

�

◆
(28)

(i)
� tqs,a �

tqs,a

2
�

3

2

✓
ln ln(2t) + ln

5.2

�

◆

=
tqs,a

2
�

3

2

✓
ln ln(2t) + ln

5.2

�

◆

Inequality (i) holds because
q
qs,at

�
ln ln(2t) + ln 5.2

�

�


qs,at
2 +

ln ln(2t)+ln 5.2
�

2 . As a consequence
of Assumption 2 we can infer that with probability at least 1�� for all t such that ln ln(2t)+ln 5.2

� 

t�
6 

tqs,a

6 :

Nt(s, a) �
tqs,a

4
The same sequence of inequalities but inverted implies the upper bound result. The last result is a
simple consequence of the union bound. To obtain the stronger bound we start by noting that since

t
ln ln(2t) �

1+ln 5.2
�

�✏2 �
1+ln 5.2

�
qs,a✏2

for all (s, a) we can transform Equation 28 as:

Nt(s, a) � tqs,a � 1.44

s

qs,at

✓
ln ln(2t) + ln

5.2

�

◆
� 0.41

✓
1.4 ln ln(2t) + ln

5.2

�

◆

� tqs,a � 2.88

r
qs,at ln ln(2t)(1 + ln

5.2

�
)� 0.81 ln ln(2t)(1 + ln

5.2

�
)

� tqs,a � 3.69

r
qs,at ln ln(2t)(1 + ln

5.2

�
)

� tqs,a � 3.69qs,a✏

The same sequence of inequalities but inverted implie the upper bound. This finishes the proof.

The gradients of JD(v) can be written as:

(rvJD(v))s = (1� �)µs + �
X

s0,a

exp
�
⌘Av

s0,a

�
qs0,a

Z
Pa(s|s0)�

X

a

exp
�
⌘Av

s,a

�
qs,a

Z
,
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Where Z =
P

s,a exp
�
⌘Av

s,a

�
qs,a. We will work under the assumption that qs,a / exp(⌘Av0

s,a)
for some value vector v0. Given a value vector v we denote its induced policy ⇡v as:

⇡
v(a|s) =

exp
�
⌘Av

s,a

�
qs,a

Zs

Where Zs =
P

a exp
�
⌘Av

s,a

�
qs,a. If we define qs =

P
a qs,a, and we define qa|s =

qs,a

qs
then we

can write:

⇡
v(a|s) =

exp
�
⌘Av

s,a

�
qa|s

Za|s

Where Zs =
P

a exp
�
⌘Av

s,a

�
qa|s. We work under the assumption that qa|s is a policy, and

therefore known to the learner. We start by showing how to maintain a good estimator Âv
s,a

using stochastic gradient descent over a quadratic objective. Let Wv
s,a =

P
s0 Pa(s0|s)vs0 so that

Av
s,a = rs,a � vs + �Wv

s,a where both Wv and cWv are seen as vectors in R|S|⇥|A|.

If we had access to an estimator cWv of Wv such that for some ✏ 2 (0, 1):

kWv
� cWv

k1  ✏. (29)

We can use cWv to produce an estimator of Av
s,a via bAv

s,a = rs,a � vs + �cWv
s,a such that:

kbAv
�Av

k1  �✏.

We now consider the problem of estimating Wv from samples. We assume the following stochastic
setting:

1. The learner receives samples {(s`, a`, s0`)}
1
`=1 such that (s`, a`) ⇠ q while s

0
` ⇠ Pa`(·|s`).

Let Nt(s, a) =
Pt

`=1 1(s`, a` = s, a).

2. Define cWv
s,a(t) =

1
Nt(s,a)

PT
`=1 1(s`, a` = s, a)vs0`

. Notice that for all s, a 2 S ⇥A, the

estimator’s noise ⇠s,a(t) = cWv
s,a(t)�Wv

s,a satisfies E[⇠s,a(t)|Ft�1] = 0 and |⇠s,a(t)| 
2kv0
k1. Where Ft�1 is the sigma algebra corresponding to all the algorithmic choices up

to round t� 1.

Lemma 15. Let {(s`, a`, s0`)}
1
`=1 samples generated as above. Let cWv(t) be the empirical estimator

of Wv defined as:

cWv
s,a(t) =

1

Nt(s, a)

tX

`=1

1(s`, a` = s, a)vs0`
.

Where Nt(s, a) =
Pt

`=1 1(s`, a` = s, a). Let � 2 (0, 1). With probability at least 1 � (2|S||A|)�

for all t 2 N such that ln ln(2t) + ln 5.2
� 

t�
6 and for all (s, a) 2 S simultaneously:

|Wv
s,a �

cWv
s,a(t)|  8kvk1

0

@
s

ln ln(2t) + ln 10.4
�

t�
+

ln ln(2t) + ln 10.4
�

t�

1

A .

Proof. Consider the martingale difference sequence Xs,a(`) = 1(s`, a` = s, a)
⇣
Wv

s,a � vs0`

⌘
.

Notice that for all s, a 2 S ⇥ A |Xs,a(t)|  2kv0
k1 The process St =

Pt
`=1 Xs,a(`) with

variance process Wt =
Pt

`=1 E
⇥
X

2
s,a(`)|F`�1

⇤
satisfies the sub- P condition of [16] with constant

c = 2kv0
k1 (see Bennet case in Table 3 of [16]). By Lemma 13 the bound:

St  1.44

s

(Wt _m)

✓
1.4 ln ln (2(Wt/m _ 1)) + ln

5.2

�

◆
+0.81kvk1

✓
1.4 ln ln

✓
2

✓
Wt

m
_ 1

◆◆
+ ln

5.2

�

◆
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holds for all t 2 N with probability at least 1 � �. Notice that E[X2
s,a(`)|F`�1] 

4kvk21Varq(1s,a) = 4kvk21qs,a(1 � qs,a)  qs,akvk21 and therefore Wt  tqs,akvk21. We
set m = qs,akvk21. And obtain that with probability 1� � and for all t 2 N:
�����������

1

Nt(s, a)

tX

`=1

1(s` = s, a` = 1)vs0`

| {z }
cWv

s,a(t)

�Wv
s,a

�����������


1

Nt(s, a)

⇣
1.44kvk1

s

qs,at

✓
ln ln(2t) + ln

10.4

�

◆
+

0.81kvk1

✓
1.4 ln ln(2t) + ln

10.2

�

◆⌘
(30)

As a consequence of Lemma 14 we know that with probability at least 1 � � for all t such that
ln ln(2t) + ln 5.2

� 
t�
6 

tqs,a

6 :

Nt(s, a) �
tqs,a

4
Plugging this into Equation 30 and applying a union bound over all s, a 2 S ⇥ A yields that for
all t such that ln ln(2t) + ln 5.2

� 
t�
6 

tqs,a

6 and with probability 1 � 2|S||A|� for all s, a 2 S

simultaneously:

|Wv
s,a �

cWv
s,a(t)| 

4

tqs,a

⇣
1.44kvk1

r
tqs,a ln ln(2t) + t ln

10.4

�
+ 0.81kv0

k1

✓
1.4 ln ln(2t) + ln

10.4

�

◆⌘

 8kvk1

0

@
s

ln ln(2t) + ln 10.4
�

tqs,a
+

ln ln(2t) + ln 10.4
�

tqs,a

1

A

 8kvk1

0

@
s

ln ln(2t) + ln 10.4
�

t�
+

ln ln(2t) + ln 10.4
�

t�

1

A .

The result follows.

We can now derive a concentration result for bAv
s,a(t) = rs,a � vs + �cWv

s,a(t), the advantage
estimator resulting from cWv

s,a(t):
Corollary 3. Let � 2 (0, 1). With probability at least 1 � (2|S||A|)� for all t 2 N such that
ln ln(2t) + ln 5.2

� 
t�
6 and for all (s, a) 2 S simultaneously:

|Av
s,a �

bAv
s,a(t)|  8�kvk1

0

@
s

ln ln(2t) + ln 10.4
�

t�
+

ln ln(2t) + ln 10.4
�

t�

1

A .

And therefore:

|Av
s,a �

bAv
s,a(t)|  16�kvk1

s
ln ln(2t) + ln 10.4

�

t�

H.1 Estimating the Gradients

Lemma 16. If ⇠ 2 R such that |⇠|  ✏ < 1, and y 2 R, then:
exp (y) (1� ✏)  exp (y + ⇠)  exp (y) (1 + 2✏)

Proof. Notice that for ✏ 2 (0, 1):
exp(✏)  1 + 2✏, and 1� ✏  exp(�✏).

The result follows by noting that:
exp(y) exp(�|⇠|)  exp(y + ⇠)  exp(y) exp(|⇠|).
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A simple consequence of Lemma 16 is the following:

Lemma 17. Let ✏ 2 (0, 1/2). If C, bC 2 R|S|⇥|A| and bb,b 2 R|S|⇥|A|
+ are two vectors satisfying:

kbC�Ck1  ✏, |bbs,a � bs,a|  ✏bs,a.

For all s, a 2 S⇥A define Bs,a = exp(Cs,a)
Z and bBs,a = exp(bCs,a)

bZ
where Z =

P
s,a exp(Cs,a)bs,a

and bZ =
P

s,a exp(
bCs,a)bbs,a:

���bBs,a �Bs,a

���  38✏Bs,a  38✏.

Proof. Let’s define an intermediate B̃s,a = exp(Cs,a)bbs,a

Z̃
where Z̃ =

P
s,a exp (Cs,a) bbs,a. By

Lemma 16 we can conclude that for any s, a 2 S ⇥A:

eBs,a
1� ✏

1 + 2✏
 bBs,a 

1 + 2✏

1� ✏
eBs,a

And therefore:
bBs,a,

eBs,a 2


eBs,a

1� ✏

1 + 2✏
,
1 + 2✏

1� ✏
eBs,a

�

Which in turn implies that:
���bBs,a �

eBs,a

��� 
✓
1 + 2✏

1� ✏
�

1� ✏

1 + 2✏

◆
eBs,a  15✏eBs,a.

We now bound |eBs,a � Bs,a|. By assumption for all s, a 2 S ⇥ A, it follows that bbs,a(1 � ✏) 

bs,a 
bbs,a(1 + ✏) and therefore:

Bs,a

1 + ✏
 eBs,a 

Bs,a

1� ✏

And therefore:
eBs,a,Bs,a 2


Bs,a

1 + ✏
,
Bs,a

1� ✏

�
.

Hence:

���eBs,a �Bs,a

��� 
✓

1

1� ✏
�

1

1 + ✏

◆
Bs,a 

8

3
✏Bs,a.

And therefore:

|bBs,a �Bs,a|  |bBs,a �
eBs,a|+ |eBs,a �Bs,a|  15✏eBs,a +

8

3
✏Bs,a 

✓
15✏(1 +

8

3
✏) +

8

3
✏

◆
Bs,a  38✏Bs,a.

The result follows.

If we set C = ⌘Av
, bC = ⌘ bAv we obtain the following corollary of Lemma 17:

Corollary 4. Let ✏ 2 (0, 1/2). If bAv and bq satisfies:

kbAv
�Av

k1  ✏, and |bqs,a � qs,a|  ✏qs,a

Then: ���bBv
s,a �Bv

s,a

���  111⌘✏Bv
s,a  111⌘✏.
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We can combine the sample complexity results of Corollary 3 and the approximation results of
Corollary 4 and Lemma 14 to obtain:
Corollary 5. If �, ⇠ 2 (0, 1), with probability at least 1� (4|S||A|�) for all t such that:

t

ln ln(2t)
�

120(ln 10.4
� + 1)

�⇠2
max

�
480⌘2�2kvk21, 1

�

then for all (s, a) 2 S ⇥A simultaneously:
���bBv

s,a(t)�Bv
s,a

���  ⇠Bv
s,a 

⇠

�
, and bBv

s,a  Bv
s,a(1 +

⇠

�
) 

1

�
(1 +

⇠

�
).

H.2 Biased Stochastic Gradients

Notice that:

(rvJD(v))s = (1� �)µs + �

X

s0,a

exp
�
⌘Av

s0,a

�
qs0,a

Z
Pa(s|s

0)�
X

a

exp
�
⌘Av

s,a

�
qs,a

Z

= (1� �)µs + �E(s0,a)⇠q,s00⇠Pa(·|s0)
⇥
Bv

s0,a1(s
00 = s)

⇤
� E(s0,a)⇠q

⇥
Bv

s,a1(s
0 = s)

⇤

= (1� �)µs + E(s0,a)⇠q,s00⇠Pa(·|s0)
⇥
Bv

s0,a (�1(s
00 = s)� 1(s0 = s))

⇤
,

We now proceed to bound the bias of this estimator and prove a more fine grained version of Lemma 8.
Lemma 18. Let �, ⇠ 2 (0, 1). With probability at least 1� � for all t 2 N such that

t

ln ln(2t)
�

120(ln 41.6|S||A|
� + 1)

�⇠2
max

�
480⌘2�2kvk21, 1

�

the plugin estimator brvJD(v) satisfies:

max
u2{1,2,1}

���brvJD(v)� Est+1,at+1,s0t+1

h
brvJD(v)

���bBv(t)
i���

u


4

�
(1 +

⇠

�
) (31)

max
u2{1,2,1}

���E
h
brvJD(v)

i
�rvJD(v)

���
u
 2(1 + �)⇠(1 +

⇠

�
), (32)

E
���brvJD(v)� Est+1,at+1,s0t+1

[brvJD(v)
���bBv(t)]

���
2

2

���bBv(t)

�
 (1 + �

2)(1 + 4⇠)
1

�
(1 +

⇠

�
)

(33)

Proof. As a consequence of Corollary 5, we can conclude that for all t satisfying the assumptions of
the Lemma and with probability at leat 1� � simultaneously for all (s, a) 2 S ⇥A:

���bBv
s,a(t)�Bv

s,a

���  ⇠Bv
s,a(1 +

⇠

�
), and bBv

s,a  Bv
s,a(1 +

⇠

�
) 

1

�
(1 +

⇠

�
). (34)

Let’s start by bounding the first term. Notice that brvJD(v)� (1� �)µ has at most 2 nonzero entries
and therefore:

max
u2{1,2,1}

kbrvJD(v)� (1� �)µku 
2

�
(1 +

⇠

�
).

Therefore for all u 2 {1, 2,1}:
���Est+1,at+1,s0t+1

h
brvJD(v)� (1� �)µ

���bBv(t)
i���

u
 Est+1,at+1,s0t+1

h
kbrvJD(v)� (1� �)µku

���bBv(t)
i


2

�
(1+

⇠

�
).

27



���brvJD(v)� E
h
brvJD(v)

���bBv(t)
i���

u


���brvJD(v)� (1� �)µ
���
u
+
���E
h
brvJD(v)

���bBv(t)
i
� (1� �)µ

���
u


4

�
(1 +

⇠

�
)

Furthermore, notice that the following estimator ofrvJD(v) is unbiased:

⇣
ervJD(v)

⌘

s
= (1� �)µs +Bv

st+1,at+1
(t)
�
�1(s0t+1 = s)� 1(st+1 = s)

�
.

We conclude that for all s 2 S:⇣
brvJD(v)

⌘

s
�

⇣
ervJD(v)

⌘

s
=
�
�1(s0t+1 = s)� 1(st+1 = s)

� ⇣bBv
st+1,at+1

(t)�Bv
st+1,at+1

(t)
⌘

Consequently brvJD(v)� ervJD(v) has at most 2 nonzero entries. Now observe that any nonzero
entry s satisfies:
���E
h⇣
brvJD(v)

⌘

s

i
� (rvJD(v))s

��� =
���Est+1,at+1⇠q

h⇣
brvJD(v)

⌘

s
�

⇣
ervJD(v)

⌘

s

i���

 Est+1,at+1⇠q

h���1(s0t+1 = s)� 1(st+1 = s)
��
���bBv

st+1,at+1
(t)�Bv

st+1,at+1
(t)
���
i

(i)
 Est+1,at+1⇠q[

�
�1(s0t+1 = s) + 1(st+1 = s)

�
⇠Bv

st+1,at+1
(1 +

⇠

�
)]

 (1 + �)⇠(1 +
⇠

�
)Est+1,at+1⇠q[Bst+1,at+1 ]

= (1 + �)⇠(1 +
⇠

�
)

Inequality (i) holds by the triangle inequality and Equation 34 and because Bv
s,a � 0. This finishes

the proof of the first result. Since brvJD(v) � ervJD(v) has at most 2 nonzero entries for all
u 2 {1, 2,1}:

���E
h⇣
brvJD(v)

⌘

s

i
� (rvJD(v))s

���
u
 2(1 + �)⇠(1 +

⇠

�
)

The second inequality follows.

Recall that for any s:
⇣
brvJD(v)

⌘

s
= (1� �)µs + bBv

st+1,at+1(t)

�
�1(s0t+1 = s)� 1(st+1 = s)

�
.

Observe that:

E
���brvJD(v)� E[brvJD(v)

���bBv(t)]
���
2

2

���bBv(t)

�
 E

���brvJD(v)
���
2

2

���bBv(t)

�

=
X

s0,a

⇣
bBv
s0,a(t)

⌘2
�
2qs0,aPa(s|s

0)+

X

a

⇣
bBv
s,a(t)

⌘2
qs,a (1� 2�)Pa(s|s)

 (1 + �
2)E(s0,a)⇠bq(t)bBv(t)


bBv
s0,a(t)

qs0,a

bqs0,a

�

(i)
 (1 + �

2)(1 + 4⇠)
1

�
(1 +

⇠

�
).

Inequality (i) follows because bBs,aqs,a 
qs,a

bqs,a
 (1 + 4⇠) and because by Corollary 5 we have that

bBv
s,a 

1
� (1 +

⇠
� ).

The result follows.
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Combining the guarantees of Lemma 9 and 8 for Algorithm 3 applied to the objective function JD:

Lemma 19. Let ⇠t = min(
q

c0

t ,�) for all t where c
0 = 2(|S| + 1)2⌘2D2 + 320

�2 + 240 and

D = 1
1��

✓
1 +

log |S||A|
�⇢

⌘

◆
. If n(t) is such that:

n(t)

ln ln(2n(t))
�

120
⇣
ln 83.2|S||A|t2

� + 1
⌘

�⇠2t

max
�
280⌘2�2kvtk

2
1, 1

�
(35)

And ⌧t = cp
t

where c = D
2
p
c0

then for all t � 1 we have that with probability at least 1 � 2� and
simulataneously for all T 2 N :

JD

 
1

T

TX

t=1

vt

!
 JD(v?) +

36D
p
T

max

0

@(|S|+ 1) ⌘D,

18 + 16
q

ln ln(2T ) + ln 5.2
�

�
, 16

1

A

Proof. We will make use of Lemmas 8 and 9. We identify ✏t = brvJD(vt) �

E
h
brvJD(vt)

���bBvt(n(t))
i

and bt = rvJD(vt) � E
h
brvtJD(vt)

���bBvt(n(t))
i
. As a consequence

of Cauchy-Schwartz and Lemma 8 we see that if n(t) is such that:

n(t)

ln ln(2n(t))
�

120
⇣
ln 83.2|S||A|t2

� + 1
⌘

�⇠2t

max
�
280⌘2�2kvtk

2
1, 1

�

Then for all t with probability at least 1� �
2t2 the bounds in Equations 31, 32, and 33 in Lemma 8

hold and therefore:

|h✏t,vt � v?i|  kvt�v?k1k✏tk1 
1

1� �

 
1 +

log |S||A|
�⇢

⌘

!
4

�
(1+

⇠t

�
)
(i)


1

1� �

 
1 +

log |S||A|
�⇢

⌘

!
8

�

| {z }
:=U1

.

Where inequality (i) holds by the assumption ⇠t  �. Notice that Xt = h✏t,vt � v?i is a martingale
difference sequence. A simple application of Lemma 13 yields that with probability at least 1� � for
all t 2 N:

�

TX

t=1

h✏t,xt � x?i  2U1

s

t

✓
ln

2t2

�

◆
(36)

Similarly observe that for all t with probability at least 1� �
2t2 , since the bounds in Equations 31, 32,

and 33 in Lemma 8 hold,

kbtk1 =
���rvJD(vt)� E

h
brvtJD(vt)

���bBvt(n(t))
i���

1
 2(1 + �)⇠t(1 +

⇠t

�
) (37)

Notice that similarly and for all t with probability at least 1� �
2t2 , since the bounds in Equations 31, 32,

and 33 in Lemma 8 hold:

k✏tk
2
2 

16

�2

✓
1 +

⇠t

�

◆2

, and kbtk
2
2  4(1 + �)2⇠2t (1 +

⇠t

�
)2

Finally we show a bound on the l2 norm of the gradient of JD. Since v? 2 D =⇢
v s.t. kvk1  1

1��

✓
1 +

log |S||A|
�⇢

⌘

◆�
. Recall that by Lemma 3, we have that JD is (|S| + 1)⌘-

smooth in the k · k1 norm. Therefore by Lemma 12:
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krJD(vt)k1  (|S|+ 1)
⌘

1� �

 
1 +

log |S||A|
�⇢

⌘

!

Since krJD(vt)k2  krJD(vt)k1 this in turn implies that:

krJD(vt)k
2
2  (|S|+ 1)2

⌘
2

(1� �)2

 
1 +

log |S||A|
�⇢

⌘

!2

.

We now invoke the guarantees of Lemma 9 to show that with probability 1� 2� and simultaneously
for all T 2 N:

TX

t=1

JD(vt)� JD(v?) 
TX

t=1

kvt � v?k
2
� kvt+1 � v?k

2

2⌧t
+

⌧t

0

@2(|S|+ 1)2
⌘
2

(1� �)2

 
1 +

log |S||A|
�⇢

⌘

!2

+
80

�2

✓
1 +

⇠t

�

◆2

+ 20(1 + �)2⇠2t (1 +
⇠t

�
)2

1

A+

2(1 + �)⇠t(1 +
⇠t

�
)⇥

1

1� �

 
1 +

log |S||A|
�⇢

⌘

!
+ 2U1

s

T

✓
ln

2t2

�

◆

(i)


TX

t=1

kvt � v?k
2
� kvt+1 � v?k

2

2⌧t
+ ⌧t

✓
2(|S|+ 1)2⌘2D2 +

320

�2
+ 240

◆
+ 8D⇠t+

2U1

s

T

✓
ln

2t2

�

◆

Recall that U1 = 1
1��

✓
1 +

log |S||A|
�⇢

⌘

◆
8
� = 8D

� and where D = 1
1��

✓
1 +

log |S||A|
�⇢

⌘

◆
. Inequality

(i) holds because ⇠t  � and because �  1. Let ⌧t = cp
t

for some constant to be specified later and
let’s analyze the terms in the sum above that depend on these ⌧t values:

TX

t=1

kvt � v?k
2
� kvt+1 � v?k

2

2⌧t
= �
kvT+1 � v?k

2

2⌧T
+

1

2c

TX

t=1

kvt � v?k
2
⇣p

t�
p
t� 1

⌘


D

2

2c

p

T

The second term can be bounded as:

TX

t=1

⌧tc
0 = cc

0
TX

t=1

1
p
t
 cc

02
p

T

Where c
0 = 2(|S|+ 1)2⌘2D2 + 320

�2 + 240. Therefore under this assumption we obtain:

TX

t=1

JD(vt)� JD(v?) 
D

2

2c

p

T + cc
02
p

T + 8D

 
TX

t=1

⇠t

!
+ 2U1

s

T

✓
ln

2t2

�

◆
.

The minimizing choice for c equals c = D
2
p
c0

. And in this case:
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TX

t=1

JD(vt)� JD(v?)  2D
p

c0T + 8D

 
TX

t=1

⇠t

!
+ 2U1

s

T

✓
ln

2t2

�

◆

If we set ⇠t = min(
q

c0

t ,�) we get:

TX

t=1

JD(vt)� JD(v?)  18D
p

c0T + 2U1

s

T

✓
ln

2t2

�

◆

(i)
 36Dmax

✓
(|S|+ 1) ⌘D,

18

�
, 16

◆
p

T + 2U1

s

T

✓
ln

2t2

�

◆

 36Dmax

0

@(|S|+ 1) ⌘D,

18 + 16
q

ln ln(2T ) + ln 5.2
�

�
, 16

1

ApT

Inequality (i) holds because
p
c0  2max

⇣
(|S|+ 1) ⌘D,

18
� , 16

⌘
.

We conclude that:

JD

 
1

T

TX

t=1

vt

!
(i)


1

T

TX

t=1

JD(vt)

 JD(v?) +
36D
p
T

max

0

@(|S|+ 1) ⌘D,

18 + 16
q

ln ln(2T ) + ln 5.2
�

�
, 16

1

A

Inequality (i) holds by convexity of JD. The result follows.

We are ready to present the proof of Lemma 10 which corresponds to a simplified version of
Lemma 19.

H.3 Proof of Lemma 10

Lemma 10. We assume ⌘ � 4
� . Set ⇠t =

8|S|⌘Dp
t

and ⌧t = 1
16|S|⌘

p
t
. If we take t gradient steps using

n(t) samples from q⇥P (possibly reusing the samples for multiple gradient computations) with n(t)

satisfying n(t) �
525t

✓
ln 100|S||A|t2

� +1

◆3

�|S|2 . Then for all t � 1 we have that with probability at least

1� 3� and simultaneously for all t 2 N such that t � 64|S|2⌘2D2

� :

JD

✓
1

t

Pt
`=1 v`

◆
 JD(v?) + eO

✓
D

2
|S|⌘
p
t

◆
.

Proof. First note that the c
0 of Lemma 19 satisfies c

0 = max
⇣
2 (|S|+ 1)2 ⌘2D2

,
320
�2 , 240

⌘
and

therefore:

c
0
 8max

✓
8|S|2⌘2D2

,
320

�

◆

Thus
p
c0 = max(8|S|⌘D,

31
� ) = 8|S|⌘D (the last equality holds because ⌘ � 4

� ) and therefore:

⇠t = min(
8|S|⌘D
p
t

,�) =
8|S|⌘D
p
t
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The last equality holds because t �
64|S|2⌘2D2

� .

Then the condition in Equation 35 of Lemma 19 is satisfies whenever:

n(t)

ln ln(2n(t))
�

120t⇥ 280⌘2D2
⇣
ln 100|S||A|t2

� + 1
⌘

�64|S|2⌘2D2
=

525t
⇣
ln 100|S||A|t2

� + 1
⌘

�|S|2
(38)

And therefore if we set n(t) =
525t

✓
ln 100|S||A|t2

� +1

◆3

�|S|2 �

525t ln ln(2t)

✓
ln 100|S||A|t2

� +1

◆

�|S|2 ln( 2t
2

� ) we
see that with probability at least 1� 3� and simultaneously for all t 2 N:

JD

 
1

t

tX

`=1

v`

!
 JD(v?) +

36D
p
t
max

0

@(|S|+ 1) ⌘D,

18 + 16
q
ln ln(2t) + ln 5.2

�

�
, 16

1

A

= JD(v?) +
72D2

|S|⌘
p
t

 
5 + 4

r
ln ln(2t) + ln

5.2

�

!

The last inequality holds since ⌘ � 4
� . This implies that using a budget of n(t) samples where n(t)

satisfies Inequality 38 we can take t gradient steps.

I Extended Results for Tsallis Entropy Regularizers

For ↵ > 1 recall the Tsallis entropy between distributions q,� equals:

D
T
↵ (� k q) =

1

↵� 1

✓
E(s,a)⇠q

✓
�s,a

qs,a

◆↵

� 1

�◆

=
1

↵� 1

 
E(s,a)⇠�

"✓
�s,a

qs,a

◆↵�1

� 1

#!

Let F (�) = 1
⌘D

T
↵ (� k q). The Fenchel Dual of a Tsallis Entropy satisfies:

F
⇤(u) =

⌧
�(u),u�

(u+ x⇤1)

↵
�(u)↵�1 +

1

⌘(↵� 1)
1

�

Where �(u) = (⌘u+ ⌘x⇤1)1/(↵�1)
�
↵�1
↵

�1/(↵�1)
q and where x⇤ 2 R such that

P
s,a �s,a(u) = 1

and �s,a(u) � 0 for all s, a 2 S ⇥A. This implies that:

J
T ,↵
D (v) = (1� �)

X

s

vsµs +

⌧
�(Av),Av

�
(Av + x⇤1)

↵
�(Av)↵�1 +

1

⌘(↵� 1)
1

�

I.0.1 Strong Convexity of Tsallis Entropy

In this section we show that whenever ↵ 2 (1, 2], the Tsallis entropy is a strongly convex function of
� in the k · k2 norm,
Lemma 20. If ↵ 2 (1, 2], the function F (�) = 1

⌘D
T
↵ (� k q) is ↵

⌘ -strongly convex in the k · k2 norm.

Proof. It is easy to see that r2
�D

T
↵ (� k q) is a diagonal matrix satisfying:

⇥
r

2
�D

T
↵ (� k q)

⇤
s,a

=
↵�↵�2

s,a

⌘q↵�1
s,a

.
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Whenever ↵  2, and noting that q 2 [0, 1] we conclude that any of these terms must be lower
bounded by ↵

⌘ . The result follows.

I.1 Tsallis entropy version of Lemma 4

Lemma 21. Let ṽ 2 R|S| be arbitrary and let �̃ be its corresponding candidate primal variable (i.e.
�̃ = �(Av)). If krvJD(ṽ)k1  ✏ and Assumptions 3 and 2 hold then whenever |S| � 2:

J
T ,↵
P (�⇡̃) � J

T ,↵
P (�⇤

⌘)� ✏

✓
1 + c

1� �
+ kṽk1

◆

Where c = 1
⌘(↵�1)

1
�↵�1

⇣
max(↵� 1, 2

⇢↵�1 ) + 2
⌘

and �?
⌘ is the JP optimum.

Proof. For any � and v let the lagrangian JL(�,v) be defined as,

JL(�,v) = (1� �)hµ,vi+

*
�,Av

�
1

⌘(↵� 1)

 ✓
�

q

◆↵�1

� 1

!+

Note that JD(ev) = JL(e�, ev) and that in fact JL is linear in v̄; i.e.,

JL(e�, v̄) = JL(e�, ev) + hrvJL(e�, ev), v̄ � evi.

Using Holder’s inequality we have:

JL(e�, v̄) � JL(e�, ev)� krvJL(e�, ev)k1 · kv̄ � evk1 = JD(ev)� krvJL(e�, ev)k1 · kv̄ � evk1.

Let �? be the candidate primal solution to the optimal dual solution v? = argminv JD(v). By weak
duality we have that JD(ev) � JP (�

?) = JD(v?), and since by assumption krvJL(e�, ev)k1  ✏:

JL(e�, v̄) � JP (�
?)� ✏kv̄ � evk1. (39)

In order to use this inequality to lower bound the value of JP (�
e⇡), we will need to choose an

appropriate v̄ such that the LHS reduces to JP (�
e⇡) while keeping the `1 norm on the RHS small.

Thus we consider setting v̄ as:

v̄s = Ea,s0⇠e⇡⇥T

2

4zs + rs,a �
1

⌘(↵� 1)

0

@
 
�e⇡
s,a

qs,a

!↵�1

� 1

1

A+ �v̄s0

3

5

Where z 2 R|S| is some function to be determined later. It is clear that an appropriate z exists as

long as z, r, 1
⌘(↵�1)

✓✓
�e⇡

s,a

qs,a

◆
� 1

◆↵�1

are uniformly bounded. Furthermore:

kv̄k1 

maxs,a

�����zs + rs,a �
1

⌘(↵�1)
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�e⇡

s,a
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◆↵�1

� 1

!�����
1� �
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⌘(↵�1)

�����

✓
�e⇡
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� 1

�����
1
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(40)

We proceed to bound the norm of

�����

✓
�e⇡

s,a

qs,a

◆↵�1

� 1

�����
1

. Observe that by Assumptions 2 and 3, for

all states s, a 2 S ⇥A, the ratio |
�e⇡

s,a

qs,a
| 

1
� and therefore:

������
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� 1

������
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Notice the following relationships hold:
*
e�,Av̄ � 1

⌘(↵� 1)

  
e�
q

!↵�1

� 1
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=
X

s
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"
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1
⌘(↵� 1)

  
e�s,a

qs,a

!↵�1

� 1

!#!

=
X

s

e�s

 
Ea,s0⇠e⇡⇥P

"
1

⌘(↵� 1)

  
�e⇡
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=
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e⇡↵(a|s)
q↵�1
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(41)

Where e�s =
P

a
e�s,a and �e⇡

s =
P

a �
e⇡
s,a. Note that by definition:

(1� �)hµ, v̄i =

*
�e⇡

, z+ r�
1

⌘(↵� 1)

0

@
 
�e⇡

q

!↵�1

� 1

1

A
+

= JP (�
e⇡) + h�e⇡

, zi. (42)

Let’s expand the definition of JL(e�, v̄) using Equations 11 and 12:

JL(e�, v̄) = (1� �)hµ, v̄i+

*
e�,Av̄

�
1

⌘(↵� 1)

0

@
 
e�
q

!↵�1

� 1

1

A
+

= JP (�
e⇡) + h�e⇡

, zi+
X

s

e�s

0

@ 1

⌘(↵� 1)

0

@
 
�e⇡
s

qs

!↵�1

�

 
e�s

qs

!↵�1
1

A
"
X

a

e⇡↵(a|s)

q↵�1
a|s

#
� zs

1

A

= JP (�
e⇡) +

X

s

0

@zs(�
e⇡
s �

e�s) +
e�s

⌘(↵� 1)

0

@
 
�e⇡
s

qs

!↵�1

�

 
e�s

qs

!↵�1
1

A
"
X

a

e⇡↵(a|s)

q↵�1
a|s

#1

A

Since we want this expression to equal JP (�e⇡), we need to choose z such that:
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1
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and therefore, since for all s and when

↵ � 1 by Assumption 2 we have that
P

a
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⇢ ]. Then,
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1
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It is easy to see that when ↵ � 0 the function f(✓) = 1�✓↵�1

1� 1
✓

= ✓�✓↵

✓�1 is decreasing in the
interval (0, 1] and increasing afterwards. Furthermore, by L’Hopital’s rule, f(1) = 1 � ↵ and

f( 1⇢ ) =
1

⇢↵ � 1
⇢

1
⇢�1


2

⇢↵�1 since ⇢  1
2 . This implies,
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1
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1
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2
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And therefore Equation 40 implies:
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Putting these together we obtain the following version of equation 39:
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I.2 Extension of Lemma 5 to Tsallis Entropy

Lemma 22. Under Assumptions 1, 2 and 3, the optimal dual variables are bounded as
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◆
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Proof. Recall the Lagrangian form,

min
v
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JL(�,v) := (1� �)hv,µi+
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The KKT conditions of �⇤
,v⇤ imply that for any s, a, either (1) �⇤
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@�s,a

JL(�
⇤
, v

⇤)  0

or (2) @
@�s,a
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,v⇤) = 0. The partial derivative of JL is given by,
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Thus, for any s, a, either

�⇤
s,a = 0 and v⇤

s � rs,a �
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or,
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Recall that �⇤ is the discounted state-action visitations of some policy ⇡?; i.e., �⇤
s,a = �⇡?

s · ⇡?(a|s)
for some ⇡?. Note that by Assumption 3, any policy ⇡ has �⇡?

s > 0 for all s. Accordingly, the KKT
conditions imply,
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Equivalently,
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(50)

We may express these conditions as a Bellman recurrence for v⇤
s and the solution to these Bellman

equations is bounded when rs,a �
↵

⌘(↵�1)

⇣
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thus bound the solution as,
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I.3 Gradient descent results for the Tsallis Entropy

Remark 1. Throughout this section we make the assumption that ↵ 2 (1, 2].

We start by characterizing the smoothness properties of JT ,↵
D (v), the dual function of the Tsallis

regularized LP.

Lemma 23. If ↵ 2 (1, 2] the dual function J
T ,↵
D (v) is ⌘|S||A|

↵ -smooth in the k · k2 norm.

Proof. Recall that PrimalReg-� can be written as RegLP:

max
�2D
hr,�i � F (�)

s.t. E� = b.

Where the regularizer (F (�) := 1
⌘D

T
↵ (� k q)) is ↵

⌘ � k · k2 strongly convex. In this problem r

corresponds to the reward vector, the vector b = (1 � �)µ 2 R|S| and matrix E 2 R|S|⇥|S|⇥|A|

takes the form:

E[s, s0, a] =

⇢
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0

1� �Pa(s|s) o.w.

Therefore (since kEk2,2 is simply the Frobenius norm of matrix E),
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The result follows as a corollary of Lemma 1.

Throughout this section we use the notation DT ,↵ to refer to kv⇤
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1
1��

⇣
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⌘(↵�1)�↵�1

⌘
. We

are ready to prove convergence guarantees for Algorithm 4 when applied to the objective J
T ,↵
D .

Lemma 24. Let Assumptions 1, 2 and 3 hold. Let DT ,↵ = {v s.t. kvk1  DT ,↵}, and define the
distance generating function to be w(x) = kxk22. After T steps of Algorithm 4, the objective function
J
T ,↵
D evaluated at the iterate vT = yT satisfies:

J
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D (vT )� J
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|S|
2
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Where c
0 = 2

⌘(↵�1)�↵�1 .

Proof. This results follows simply by invoking the guarantees of Theorem 1, making use of the fact
that JT ,↵

D is ⌘|S||A|
↵ �smooth as proven by Lemma 3, observing that as a consequence of Lemma 22,

v?
2 DT ,↵ and using the inequality kxk22  |S|kxk21 for x 2 R|S|.
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Lemma 24 can be easily turned into the following guarantee regarding the dual function value of the
final iterate:
Corollary 6. Let ✏ > 0. If Algorithm 4 is ran for at least T rounds

T � 2⌘1/2(|S||A|
1/2)

(1 + c
0)

↵1/2(1� �)
p
✏

then vT is an ✏�optimal solution for the dual objective J
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D .

If T satisfies the conditions of Corollary 6 a simple use of Lemma 6 allows us to bound the k · k2
norm of the dual function’s gradient at vT :
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⌘ is the JP optimum.

This leads us to the main result of this section:

Corollary 7. Let ↵ 2 (1, d]. For any ⇠ > 0. If T � 4⌘|S|3/2|A|
1/2 (2+c+c0)2

↵(1��)2⇠ then:
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Thus Algorithm 4 achieves an O(1/(1��)2✏) rate of convergence to an ✏�optimal regularized policy.
We now proceed to show that an appropriate choice for ⌘ can be leveraged to obtain an ✏�optimal
policy.
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Proof. As a consequence of Corollary 7, we can conclude that:
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And therefore if ⌘ = 2
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