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B Geometry of regularized Linear Programs

We start by fleshing out the connection between strong convexity and smoothness charted in Lemma [T}

Lemma 1. If F is 3-strongly convex w.r.t. || - || over D then F* is %—smooth w.r.t the dual || - ||

Proof. Letu,w € R" and x,y € D be such that VF*(u) = x and VF*(w) = y. By definition
this also implies that:

(VF(x) —u,z1 —x) >0, VzeD
(VF(y) —w,zo —y) >0, VzeD
Setting z; = y and z5 = x along with the definition of x, y and summing the two inequalities:
(VE(x) = VF(y),y —x) > (VF*(w) = VF*(u),u— w). (8)

By strong convexity of F' over domain D we see that:
B
F(x) > F(y) + (VF(y),x = y) + 5 x|
B
Fy) 2 F(x) + (VF(x),y = x) + S x — v
Summing both inequalities yields:
Blx —yl* < (VF(x) - VF(y),x —y)

Plugging in the definition of u and w along with inequality [8}

BIVE*(u) = VF*(w)|* < (u — w,VF"(u) - VF"(w)) < [u = wll.[[VE* (u) = VE*(w)].

Where inequality (¢) holds by Cauchy-Schwartz and consequently:

IVF*(u) - VF*(w)] < %nu—wn*

By the mean value theorem there exists z € [u, w]:

F*(u) = F*(w)+ (VF*(z),w — u)
=F*(w)+ (VF*(w),w —u) + (VF*(z) - VF*(w),w — u)
S FH(w) + (VEY (W), w —w) + [VF(2) = V" (w)]||w — ull.
< FH(w) +(VFY (W), w — ) + 2|z — wl. [w — ul.

B
< F*(w) + (VF*(w),w — u) + %nw ~ul?

Which concludes the proof.
O

The proof of Lemma [T]yields the following useful result that characterizes the smoothness properties
of the dual function in a regularized LP:

B.1 Proof of Lemmalf2]

Lemma 2. Consider the regularized LPwith rc R E e R™" b e R™, and where F

is S—strongly convex w.r.t. norm || - ||. The dual function gp : R™ — R of this regularized LP is
&2,

-smooth w.r.t. to the dual norm || - ||, where we use ||E||. « to denote the || - | norm over the
I - |« norm of E's rows.
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Proof. Recall that:
gp(v) = (v,b) + F*(r —v " E).

Notice that:
Vogp(v) =b+ EVF*(r — ’UTE).

And therefore for any two vy, vs:

IVgp(v1) = Vgp(va)| = | E(VE*(r —v] E) = VF*(r — vy B)) |

(i) .
< BN AVF(r v E) = VF*(r — v, E)|

(i) 1

< [|E| -,*BHUlTE — vy B,
@) |||,

< THUl — vz

The result follows.

O

We can apply Lemma 2] to problem [PrimalReg-X and thus characterize the smoothness properties of
the dual function Jp.

B.2 Proof of Lemma[3l

Lemma 3. The dual function Jp(v) is (|S| 4+ 1)n-smooth in the || - ||oc norm.

Proof. Recall that|PrimalReg-\|can be written as
max(r,A) — F(\)
XeD

s.t. EXA = b.

Where the regularizer (F'(X) := %Zs@ As.a (log (;—Z) — 1)) is %} — |l - |l1 strongly convex. In

this problem r corresponds to the reward vector, the vector b = (1 — y)u € RIS and matrix
E € RISIXISIXIAl takes the form:

;1 Pa(s]s) ifs # s
Els, &', a] = {1 — P, (s]s) o.w.

Therefore
”E”l,oo S S + 1

The result follows as a corollary of Lemmal|T}

C Proof of Lemma 4

The objective of this section is to show that a candidate dual variable v having small gradient gives
rise to a policy whose true visitation distribution has large primal value Jp.

Lemma 4. Let v € RIS! be arbitrary and let X be its corresponding candidate primal variable. If
IVvJIp(V)||1 < eand Assumptionsand hold then whenever |S| > 2:

T ||V|oo) ,

Tp(AT) > Jp(AL) — e (1_7

1+log(-35)

where c = 8- and )\7*7 is the Jp optimum.
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Proof. For any X and v let the lagrangian Jy, (A, v) be defined as,

IO = (1= + (Aar - (g (2) <1))

Note that Jp (V) = J (X, V) and that in fact .J, is linear in v i.e.,
JL(X7 ‘7) = JL(;H v) + <VVJL(X7 V)a A v>
Using Holder’s inequality we have:

TeA9) 2 TLA V) = [V TLAI) 1 - IV = Voo = T (V) = Vo T X 9l - [V = V.

Let A, be the candidate primal solution to the optimal dual solution v, = arg min, Jp(v). By weak
duality we have that Jp (V) > Jp(X*) = Jp(vy), and since by assumption ||V JL (A, V)||1 < e

JL(A9) = Jp(AY) = €|V — ¥ - )

In order to use this inequality to lower bound the value of J p()\%), we will need to choose an
appropriate v such that the LHS reduces to Jp(A™) while keeping the £, norm on the RHS small.

Thus we consider setting v as:
1 AT
Zs+Tsq— — | log 2l —-1)+ YV
n qs,a

Where z € RIS is some function to be determined later. It is clear that an appropriate z exists as

s (52)
x

L=~

Vs = Ea,s/N%XT

T

long as z, r, % (log (:“) — 1> are uniformly bounded. Furthermore:

maxs ¢

}\7{
et rea =4 (g (32) < 1)| et e+
<

[¥]loo < <

(10
Notice that by Assumptions [2|and [3] we have that p, 5 < % This is because for all m, Assumption
implies that:

0<20<|Slp< > AT =1

The proof for 3 < 1 is symmetric. Due to AssumptionEthe Il - oo norm of log(%%) — 15114

satisfies:
)\%
log | —
q

)\%
log | — | = Lisjj4
q

< 1+max(|log(p/B)l,log(1/B)) < 1+log(1/p)+log(1/B).
Notice the following relationships hold:

-~ .1 by ~ A
MNA = Zlog [ 2] =1 )= A |Eosonxp |Tsa+7Ve —Vs— = [ o 22 ) -1
- AT Y
:ZAS Eo, s nixp 1 log | =22 ] -1 _1 log Asa —1| —zs
s n qs,a n qs,a
Ea,s’N%XP l lOg A?,a - l IOg ;‘Saa — Zs
n n

%log (XZ) — %log (Xg) — zs) (1)

<1+

o0

oo

[

3
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Where A, = Yo Ao and AT = > )\ia. Note that by definition:

e <ﬁ’z+r o (k’g (2) - 1)> = Jp(\T) + (A", 2).

Let’s expand the definition of Jy, (X, v) using Equations|11|and

JL9) = (1= 7). 9) + <X,Av - <1og (3) - 1) >

= Jp(A™) + (A", z) + Z s <717 log (Xj) - %log (XS) - zs>

=Jp(A) + (zs()\f —X) + %Xs log (;‘;T))

S

Since we want this expression to equal .J p(}\%), we need to choose z such that:
1 AL
y log ( x. )

Z; —

By Assumption 3] we have that for all s:

(12)

Now we bound ||z |~. Note that the function 2(¢) = %22 is non decreasing and negative, and

1-¢

therefore the maximum of its absolute value is achieved at the lower end of its domain. This implies:

24| < R(p)l _ Nlog(p)l _ 2los(1/p)
n n(1—p) n

And therefore Equation[I0]implies:

seS.

2108(1/p) , | 4 1Hlog(/p)+log(1/8) | HoEGHR)
[¥]oo < — . = N
l—x 1—~

Putting these together we obtain the following version of equation [0}

1+10g(ﬁ)

— 4 ¥Vl
gl

TN V) > Jp(A*) —¢ =

As desired.

D Proof of Lemma /5

In this section we derive an upper bound for the [, norm of the optimal solution v*.
Lemma 5. Under Assumptions|I}[2|and 3] the optimal dual variables are bounded as

1S|14]

1 log

[Vl < —— 14+ —FL2 | = D.
L=y ul

Proof. Recall the Lagrangian form,

min, max  Jr(Av) = (1 — 1) (v, ) + <,\,Av - % (1og ()‘) - 1)> .

v )\s,aeASXA qs,a

17
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The KKT conditions of A*, v* imply that for any s, a, either (1) A , = 0 and 2= JL (A", 0*) <0
or (2) 8)\ = J1 (A", v*) = 0. The partial derivative of .Jp, is given by,

3] 1 Al
TN V) = ran — Llog () £ S RS lvE - v (3
6)\s,a n s,a o
Thus, for any s, a, either
Al =0and v >r,— log< >+72P (s')s)v?, (14)
or,
/\:,a>0andV::rs7a—nlog< > +WZP (15)

Recall that A* is the discounted state-action visitations of some pohcy T le, Ay, = AS - mi(als)
for some 7. Note that by Assumption any policy 7 has A7* > 0 for all s. Accordingly, the KKT
conditions imply,

1
mi(als) =0and v > r,, — Elog <

Asa
~ )+72Pa(5'|5)":/, (16)
or,

mi(als) >0and v =r,, — log ( ) + VZP (17)

Equivalently,
) L (Asa
Vi = Bunn (o) [Faa = log | 020 ) + vZP (18)
1 m(als 1 AL
= 7Ea~7r* (s) |:_ log <(|)):| + ]E(LNTI'(S) Ts,a — — log <
n Qa|s n qs

) +y> Pa(s’|s)vj,] .
, >
We may express these conditions as a Bellman recurrence for v;:

)i

(19)
1
V: = 7Ea~7n(s) |: log <7r(a|5)>:| +E‘1N‘ﬂ'*(s) Tsa — log (
n Qals
(20)

The solution to these Bellman equations is bounded when E, ., (5 [— log (%ﬁ'g))}, Irsq, and

log (2 ) are bounded [24]]. And indeed, by Assumptionsand each of these is bounded by within

[log 3,log | Al], [0, 1], and [log p, — log 8], respectively. We may thus bound the solution as,

) log 1814l
V1l < 7= (1 + ) : 1)
n

E Convergence rates for REPS

We start with the proof of Lemma [6] which we restate for convenience:

Lemma 11. Ifx is an e—optimal solution for the c—smooth function h : R — R w.r.t. norm || - ||+
then the gradient of h at x satisfies:

IVAX)|| < vaae.

18



Proof. Letx € R4 be an arbitrary point and let x” equal the point resulting of the update
1 _ 2
x' = argmin —(Vh(x),y — x) + lly = x|z
yED (6% 2

Notice that by smoothness of h:

h(x') < h(x) + (Vh(x),x' = x) + 5 [[x — x]|? = h(x) - %IIWL(X)II2

2
Since h(x*) < h(x’) and x is e—optimal:

(¢
S VRGO 4+ h(x) <

1\9‘)_l

(i%) (iid)
~IVAE)I® +h(x') < h(x) < h(x*) +e
Inequality () holds because h(x*) < h(
of x. Therefore:

>

1 2
N < €.
S IVRGOI < e

The result follows.

(22)

(23)

"), inequality (4¢) by Equation|23|and (i4i) by e—optimality

O

We also show that the gradient norm of a smooth function over a bounded domain containing the

optimum can be bounded:

Lemma 12. If h is an a—smooth function w.r.t. norm || - ||«, and x* is such that Vh(x*) = O then:

IVA)|| < aflx = x|
And therefore whenever ||x — x*||,. < D we have that:

IVh(x)| < aD.

Proof. Since h is a—smooth:

h(x) < hix") + (VA(x"), x = x*) 4 Slx = x" |2 = hix) + Z[x = x*?

Therefore:

* « *
hx) — hix') < =<2
Therefore, as a consequence of Lemma@
IVh)|| < aD.

The result follows.

E.1 Proof of Theorem2]

We can now prove the estimation guarantees whenever exact gradients are available.

- 1 3/2 (24c”)? .
Theorem 4. For any € > 0, let n = 2eTog( STEATy IFT > (S| +1) then 7 is an
elog(=5—

(1-7)%e*’
e—optimal policy.

Proof. As a consequence of Corollary [2] we can conclude that:

Jp(A™T) > Jp(A7) — %

Where )\:] is the regularized optimum. Recall that:

JP()‘) = Z As,ars,a - %Z As,a (10g (:S’a> — 1) .

19



Since A*" is the maximizer of the regularized objective, it satisfies Jp(A*") > Jp(A*) where X* is
the visitation frequency of the optimal policy corresponding to the unregularized objective. We can
conclude that:

S S (0 (o () 1) -3 (s (22) ) -

s,a s,a

e (e () ()

S,a

| ™

SIIALY €
> )\ Ts.a — Y
R
And therefore if = m, we can conclude that:
€ 10, B

Z DL als,a > Z )‘;ars a
s,a

F Accelerated Gradient Descent

Algorithm 4 Accelerated Gradient Descent

Input Initial point xg, domain D, distance generating function w.
Yo < Xo, ZO < Xp.

fort=0,---,Tdo

Nt+1 = + and Tt = H—%
Xer1 — (1= 7)ye + 1z
o1 — x4 |2

Vi1 < argmin —(Vh(xy),y — x¢) + M
yep « 2

zp1 < argminn (Vh(x¢),z — z¢) + Du(z¢, 2).
z€D

end

For some stepsize parameter sequence 7j;.

Algorithm [ satisfies the following convergence guarantee:

G Stochastic Gradient Descent

In this section we will have all the proofs and results corresponding to Section [6]in the main. We start
by showing the proof of Lemma[9]

Lemma9. Let f : RY — R be an L—smooth function. We consider the following update:

X;+1 =Xt — T (Vf<Xt) + €t + bt) ;o X1 = HD(X2+1)

Ifr < # then
Xt — %o |12 = ||xea1 — X4 |2
Fxern) = foee) < XXt 2oy 12 4 Bl + 57
Fbeflrllxe — xulloo — (€1, %t — x4).
Proof. Through the proof we use the notation || - || to denote the Ly norm. By smoothness the

following holds:

20



L L
f(xe1) < f(Xt)+<Vf(Xt)7Xt+1—Xt>+§HXt+1—Xt||§o < f(Xt)+<Vf(Xt)’Xt+1—Xt>+§||Xt+1—Xt||2
Since x;41 = IIp(x} ) and by properties of a convex projection:

i
(X1 — X1, X — Xg41) < 0.

And therefore:

(x¢ =7 (Vf(x¢) +bs + €) — Xeq1, % — X¢41) <0

Which in turn implies that :

Ix: — Xt+1H2 < T(Vf(x¢) + b+ €, % — Xpq1)-
‘We can conclude that:
Xt — X 2 L
fxer1) < fxe) — M + (b + €, % — X¢q1) + §||Xt+1 - Xt||2- 24)

By convexity:

F(x) 2 f(x0) + (Vf(%e), %0 = %)
And therefore f(x;) < f(x.) + (Vf(xe), %Xt — Xy).
Combining this last result with Equation

L 1

F(xeq1) < f(x0) H(VF(xe), %0 — X)) + (2 — T> Ixet1 — Xt||2 + (b + €, % — x¢11). (25)

Now observe that as a consequence of the contraction property of projections

[xep1 — xu]1? < llxe = 7 (Vf(x¢) + by + &) — x|
= |lx¢ — %[> + T2V F(xe) + by + €| — 27(Vf(xe) + by + €, % — X,).
And therefore:

%t = % |* = lIxe1 — %7

(VF(x0). - x.) < -

-
+ §||Vf(xt) + by +€|* — (by + €, x; — X,

Substituting this last inequality into Equation 25}

X — X |2 = ||Ixeer — %2 T
Floxren) — foen) < XX 2B g ) oyt el - bt e -+
(26)
L 1 )
9 7 %41 — x| + (by + €1, % — X¢41) 27

Notice that as a consequence of the contraction property of projections:

21



%41 — x¢||* < [lxe — 7 (VF(xe) + by + €) — x4
= 7|V f(x:) + by + &

And therefore

(bt + €, x¢ — Xp41) < [[by + €ll[xe — xeq1]| < 7[[be + €[V (xe) + be + €
Substituting this back into|2_7|and assuming % < %:

%0 — x| = [Ixe41 — x|
2T
7|bs + € |||V f(x¢) + by + €]

o e = % = llxegn = %4

J(xey1) = f(x) <

.
+ §||Vf(xt) +b; + €tH2 — (b + €, % — %)+

-
+ 7|V f(xe) + by + € + §Hbt + &l — (b + €, x¢ — %)

- 2T
(D) |Ixp — X || = 11 — x4 |2
& e el s XI5 o) 2 4+ 5+ Sl — (b + €130 )
x: — Xy ||? — ||xea1 — x4 ||?
< e P 2l g9 2 4 bl + 5+ el — e — (e

Inequality (¢) is a result of a repeated use of Young’s inequality. The last inequality is a result of
Cauchy-Schwartz.

O

H Stochastic Gradients Analysis

We will make use of the following concentration inequality:

Lemma 13 (Uniform empirical Bernstein bound). In the terminology of Howard et al. [l16]], let

St = 25:1 Y; be a sub-1{p process with parameter ¢ > 0 and variance process W;. Then with
probability at least 1 — § forallt € N

S < 1.44\/(Wt vV m) <1.41n1n (2 (Vvt v 1)) +In %2)
m
+ 0.41c <1.4lnln (2 <VVt \Y, 1>> + In 52)
m 1)

where m > 0 is arbitrary but fixed.

Proof. Setting s = 1.4 and 7 = 2 in the polynomial stitched boundary in Equation (10) of Howard
et al. [16] shows that u. s(v) is a sub-1) boundary for constant ¢ and level § where

Ue,s(V) = 1.44\/(11 V1) (1.4111111 (2(vVv1)+In 552)

+1.21¢ (1‘4111111 (2(vVv1)+In ?) .

By the boundary conversions in Table 1 in Howard et al. [16] u 3 s is also a sub-1)p boundary for
constant ¢ and level 6. The desired bound then follows from Theorem 1 by Howard et al. [16]. [

The following estimation bound holds:

22



Lemma 14. Lez {(s¢, as,5,)}32, be samples generated as above. Let Ny(s,a) = 3 y_, 1(ss,ap =

s,a). Let 6 € (0,1). With probability at least 1 — (2|S||A|6) for all t such that In(2t) + In 32 < %
and for all s,a € S x A simultaneously:

tha 7tq5a
N ) )
(0) € | Mo, T

Additionally define Qs o = M For any € € (0, 1) with probability at least 1 — (2|S||.A|0) and

1+In %2
for all t such that o lrf(%) > ﬁtz E

|as,a - q(s,a| < 3.69€qs,q-

Proof. We start by producing a lower bound for N;(s,a). Consider the martingale sequence
Zsa(l) = 1(s¢ = s,a¢ = a) — qs,, with the variance process V; = >, E [Z2,(0)|Fy_1]
satisfying E[Z2 , (¢)|F¢s-1] < qs.q. The martingale process Z; ,(¢) satisfies the sub-1)p condition
of [16] with constant ¢ = 1 (see Bennet case in Table 3 of [16]). By Lemma and setting m = Qs 4
we conclude that with probability at least 1 — § forall ¢t € N :

2 2
Ni(s,a) > tqsq — 1.44\/qs)at <1n In(2t) + In 55> —0.41 <1.41n In(2t) + In 55) (28)

Q] t 2
> tQs.q — % — g <ln In(2¢) + In 5)

5
_ Wsa 3 (lnln(?t) +ln %2)

2 2
Inequality () holds because \/qsyat (Inln(2t) + In 32) < qsz,at 4 I 1n(2t)2+1n 2 Asa consequence
of Assumptionwe can infer that with probability at least 1 — § for all ¢ such that In In(2¢) +1In % <
tB < tQs,a .
6 =6 -

t S,a
N(s,a) > qT

The same sequence of inequalities but inverted implies the upper bound result. The last result is a

simple consequence of the union bound. To obtain the stronger bound we start by noting that since
1+In 52 1+In 32 :
_ lf(%) > +ﬂr;2 5> :ieg for all (s, a) we can transform Equatlonas:

2 2
Ni(s,a) > tqsq — 1.44\/qs’at (ln In(2t) + In 5(5) —0.41 (1.4111 In(2t) + In 55)

5.2 5.2
2> ts,a — 2.88\/qs’atln In(2¢)(1 +1n T) —0.81InIn(2t)(1 +1In T)

5.2
> tqs,q — 3.69\/q5’at Inln(2t)(1 + In T)
2 tqs,a - 3~69qs,a6
The same sequence of inequalities but inverted implie the upper bound. This finishes the proof.

O

The gradients of Jp(v) can be written as:
(’r]AZ’,a) qs’,a

exp
(Vodp(v), = (L=, +7> Z Pu(s|s")—
> exp (nAY,) 9s,a
Z b

a

23



Where Z = 3°, , exp (7AY,) ds,o. We will work under the assumption that g, , o exp(nAY,)
for some value vector v’. Given a value vector v we denote its induced policy 7V as:

Av S,a
(als) = &P (nAY.) as,

Z,
Where .ZS =3, exp (nAY,) Qs,q. If we define q; = Y, qs.q, and we define q, s = q;;“ then we
can write:
ex AY
WV(G‘S) _ p (77 s,a) Qals

Za|s

Where Z, = >, exp (nAY,) q)s- We work under the assumption that qq, is a policy, and

therefore known to the learner. We start by showing how to maintain a good estimator A;’ a
using stochastic gradient descent over a quadratic objective. Let WY , = >, P,(s[s)v, so that

AY . =Tsa — Vs + YWY, where both WY and WY are seen as vectors in RISIxIAL
If we had access to an estimator WY of WV such that for some € € (0, 1):

WY - WY <e (29)
We can use WY to produce an estimator of AY , via K‘S”a =Tsq — Vs + YWY, such that:

IAY = AY||oe < 7e.

We now consider the problem of estimating WV from samples. We assume the following stochastic
setting:

1. The learner receives samples {(s¢, as, s3) }72, such that (s;, a¢) ~ g while sj ~ P,,(-|s¢).
Let Ny(s,a) = S0_, 1(se, a0 = s, ).

2. Define VAV;’ﬂ(t) = m Zszl 1(s¢, ap = s,a)vg,. Notice that for all s,a € S x A, the

estimator’s noise s o (t) = W;’a(t) — WY, satisfies E[{, o (t)[F;—1] = 0 and |€, o (t)] <
2||v'||co- Where F;_1 is the sigma algebra corresponding to all the algorithmic choices up
toround ¢ — 1.

Lemma 15. Let {(s;, ar, s;) }32, samples generated as above. Let \/7\7"(15) be the empirical estimator
of WY defined as:

1

t
W:,a(t) = Nt(s,a) ; l(Sg,CLg = S,Q)VSE'

Where Ni(s,a) = Y 4_, 1(s¢,a0 = s,a). Let € (0,1). With probability at least 1 — (2|S]|A|)d
forall't € N such that Inln(2t) + In 22 < % and for all (s,a) € S simultaneously:

Inln(2t) + In 164 N Inln(2¢) + In 494
I 18

(Wia = W] <8IVl \/

Proof. Consider the martingale difference sequence X; ,(¢) = 1(s¢,ar = s,a) (Wf{a — V52>.

Notice that for all s,a € S x A |X,4(t)] < 2||v/[lec The process S; = S1b_, X, 4(¢) with
variance process W; = Zzzl E [X2,()|F—1] satisfies the sub-t)p condition of [16] with constant
¢ = 2||v||s (see Bennet case in Table 3 of [16])). By Lemmathe bound:

S < 1.44\/(Wt Vm) <1.4lnln(2(Wt/m V1)) +In 5('52>+0.81||v||OO <1.41n1n (2 <I/Vt \Y% 1))

m
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holds for all ¢ € N with probability at least 1 — 4. Notice that E[XZ ,(¢)|F,—1] <
Alv[ZVarg(1s.a) = 4V asa(l = @sa) < s,al[VI[3 and therefore W, < tq,.qf|v]|Z. We
set m = g o||v||%. And obtain that with probability 1 — ¢ and for all ¢ € N:

! t = = 1 10.4
1 ; vy =WY I < (1.44 st | Gs.at | Inln(2t) + In ——
Ni(s,a) ; (s = s,a0=1)vy, sal = Ny(s,a) [Iv]] \/q 7 (n n(2t) + In 5 >+

WY, (1)

10.2
0.81]v] s (1.41n1n(2t) +1n %) ) (30)

As a consequence of Lemma |14 we know that with probability at least 1 — & for all ¢ such that
Inln(2t) +In 32 < &£ < tee,

t S,a
Ni(s,a) > %

Plugging this into Equation [30/and applying a union bound over all s,a € S x A yields that for
all ¢ such that Inln(2¢) 4+ In 22 < % < tq% and with probability 1 — 2|S||A|d for all s,a € S
simultaneously:

= 4 10.4 10.4
(WY, — Wi, ()] < i (1.44||V||Oo\/tqs,a InIn(2t) +¢ln < +0.81]|v|| o (1.4111 In(2t) +In 5) )
s,a
4 4
< 8V \/1nln(2t)+lnl% N InIn(2t) + In 152
tQS,a tqsﬂl

10.4 10.4
< 8||vl| Inln(2t) + In =5 N Inln(2t) + In =

The result follows. O

We can now derive a concentration result for fA;ﬂa(t) =Ts, — Vs + fy\/ﬁ;’)a(t), the advantage
estimator resulting from WY  (¢):

Corollary 3. Let 6 € (0,1). With probability at least 1 — (2|S||A|)d for all t € N such that
Inln(2t) +In 22 < % and for all (s,a) € S simultaneously:

Inln(2t) + In 154 N Inln(2t) + In 204

v AV <
AL, AL 0] < sl \/ - -

And therefore:

Inln(2t) + In 204
126,

|AY, — A, (1)] < 167||v|oo\/

H.1 Estimating the Gradients

Lemma 16. If £ € R such that |§] < e < 1, and y € R, then:
exp (y) (1 —¢) <exp(y+£) < exp(y) (1 + 2e)

Proof. Notice that for € € (0,1):
exp(e) <1+2¢ and1—e < exp(—e).
The result follows by noting that:
exp(y) exp(—[¢]) < exp(y + &) < exp(y) exp([¢]).
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A simple consequence of Lemma [16]is the following:

Lemma 17. Let ¢ € (0,1/2). If C, C € RISl and b, b e RIS

are two vectors satisfying:

Ha - C”oo S €, |Bs,a - bs,a| S 6bs,a~

Forall s,a € S x Adefine B, , = CXP(TC“) andf’)s,a = w where Z. =3~ ,exp(Cs.a)bs.q

and 2 = Zs,a eXp(as,a)Bs,a-'

‘ﬁs,a ~B,.| <38B,., < 38

Proof. Let’s define an intermediate B, , = % where Z = Y, exp(Cs.a) by.. By
Lemma [[6] we can conclude that for any s,a € S x A:

1+ 2e ’ 1—€¢ 7
And therefore:
EN ~ ~ 1l—€ 142
Bs,aa Bs,a € |:Bs,a1+265 17—6 e,a:|
Which in turn implies that:
~ ~ 142 1-— ~ ~
‘Bsa_Bsa é + 6_ ¢ Bsa§15€Bsa~
’ ’ 1—e¢ 1+ 2 ’ ’

We now bound |]§s,a — B q|. By assumption for all s,a € S x A, it follows that Bs,a(l —€) <
bs.o < bsa(1+ €) and therefore:

Bio g, < Bue
1+e ’ 1—¢€
And therefore:
]'é B c Bs,a s,a
s,ays,a 1+€7176
Hence:
~ 1 1
‘Bsa_Bsa = - B5a§§€Bsa
’ ’ 1—€¢ 1+4¢€ ’ 3 ’
And therefore:

_ _ . - . 8 8. 8
[Bua—Bual < Buu ~Bual + Bua ~Bual < 156B. + 5eBa < <156(1 +56) + 3e> B, < 38B,.,.

The result follows.

If we set C = nAv, C= an" we obtain the following corollary of Lemma
Corollary 4. Letc € (0,1/2). If AY and q satisfies:
H;&v - Av”oo S €, lll’ld |as,a - qs,a| S 6(ls,a

Then:
‘Bz,a - B;',a

< 111neBY , < 111ne.

s,a =
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We can combine the sample complexity results of Corollary [3 and the approximation results of
Corollary @] and Lemma|[T4]to obtain:

Corollary 5. If 6,¢ € (0, 1), with probability at least 1 — (4|S||.A|9) for all t such that:
t . 120(In 284 4+ 1)

max (480772'y2||v\|§o, 1)

Inln(2t) ﬁ§2
then for all (s,a) € S x A simultaneously:
B, (t)—-B;, <&BY, <=, and BsagB = —(1+=>).
alt) = Bla| <€Bi, < 3 +3) s 50+3)

H.2 Biased Stochastic Gradients

Notice that:

exp (nAY ) 4y, exp (nAY,) qs,
(VvJp(v)), = (1=~ uﬁvz (o “Pa(s|5’)_zw

(L =7)ps + ’Y]E<sna>~q,s~~Pa<<|s') [BY..
(1= Nty + Ewraymqsr~rale) [BY o (71" =) = 1(s" = 5))],

We now proceed to bound the bias of this estimator and prove a more fine grained version of Lemma|g]
Lemma 18. Let §,& € (0,1). With probability at least 1 — 6 for all t € N such that

t _ 120(n ALOISIAL 4 1)

480 2_ 2 2 1
Inln(2t) = B¢ max (4807°77(|v]1%, 1)

the plugin estimator Vb (v) satisfies:

L |94 ID) = By, [VoIn(v)|BY (1) < %(1 - %) 31)
o B [ o)) = Vo) <200+ + %), (32)

EM@WbOO—E%mwﬂﬁﬂﬁ v[Be ) B } (1472)(1 +46) 51+ )
(33)

Proof. As a consequence of Corollary 5] we can conclude that for all ¢ satisfying the assumptions of
the Lemma and with probability at leat 1 — § simultaneously for all (s,a) € S x A:

;a+§,am ﬁLSBgu+% %a+§

Let’s start by bounding the first term. Notice that V,..Jp (v) — (1 —~y) s has at most 2 nonzero entries
and therefore:

BY,(t) -

). (34

£

~ 2

ue{l,2,00}

=)

Therefore for all u € {1,2, c0}:

Est+17at+175;+1 VV‘]D(V) - (1 - V)N‘Bv(t)} Hu S E5t+17at+175;+1 [”VVJD(V) - (1 - ’Y)
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H%vJD(v) _E [@vJD(v)’ }

| N

o)~ 1= [ [P 70] -1~
4 £
E B)

Furthermore, notice that the following estimator of V.Jp(v) is unbiased:

u

IN

(1+

(Vo)) = (=N + B, 0, () (1L(5}r = ) = Lsta = 5)
We conclude that for all s € S:

(Vedo™) = (VIp(v)) = (1hlspir = ) = Lstrr = 5)) (BY,,, 0, () = BY, 0y, (1)

Consequently V., Jp(v) — VyJp(v) has at most 2 nonzero entries. Now observe that any nonzero
entry s satisfies:

E[(VeIpW) | = (Tuinv)),

= [Bursaciima [ (T o) = (Volnv) |

< Epirargima |[V1(sE1 = 8) — L(s141 = 5)| ]/?;:t+1,at+1(t) - B

Bl (V550 = )+ L(se11 = ) €BY,, (14 )
<+ By mmalBacer o]

— 1+ +5)

Inequality (¢) holds by the triangle inequality and Equation and because BY , > 0. This finishes

the proof of the first result. Since %vJ p(v) — VoJ p(v) has at most 2 nonzero entries for all
u € {1,2,00}:

|E[(Veio®) | = (Tvinv)),

The second inequality follows.

u

3
< 2(1+79)E(1 + ﬁ)

Recall that for any s:

(Vedn)) ==+ B, i (1L(hy = ) = Lsis = 5)
Observe that:

E {H@vJD(v) _ E[@VJD(V)‘E;V@)]HE ’ﬁ"(t)] <E [H%VJD(V)Hz ’ﬁ"(t)]

= (]/?\)Z/’a(t))272q5’,aPa(s|s/)+

2 DV qs’,a
< A+7)E G aymdyBr (o) {Bs’,a(t)%]
§

1
B(1+B)'

gs’” < (1 4 4¢) and because by Corollary [5|we have that

(@) )
< (1+97)(1+49)

Inequality (¢) follows because ﬁs’aqsya <
By, <1(1+5).
The result follows. O
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Combining the guarantees of Lemma [9]and [8]for Algorithm [3|applied to the objective function Jp:
Lemma 19. Let §& = min(y/<, B) for all t where ¢ = 2(|S| + 1)*n?D? + %0 + 240 and

log silal
D=_— (1 + ) If n(t) is such that:

o (s )
Inln(2n(t)) — BE?

And Ty = % where ¢ = 2\/7 then for all t > 1 we have that with probability at least 1 — 20 and
simulataneously for all T € N :

max (280n%%°||v¢[|%, 1) (35)

T 18+ 16,/ InIn(27) + In 52
1 36D 5
—E vi | <Jp(vy) + —= max | (|S|+1)nD, ,16
D (T vt t> D( ) \/T (| ‘ )77 B
Proof. We will make use of Lemmas E and [9. We identify € = @VJD(vt) —

E {?vJD(Vt)‘ﬁ"f (n(t))} and by = VyJp(vy) — E @vt JD(Vt)’ﬁ"f (n(t))} As a consequence
of Cauchy-Schwartz and Lemmawe see that if n(t) is such that:

83.2|S||Alt?
n(t) 120 (n S2ASJAE 4 1)

I (2n(0)) — 5e?

Then for all ¢ with probability at least 1 — % the bounds in Equations E, @, andlgin Lemmalg
hold and therefore:

max (2807%7? v |%, 1)

IS||-A| , \snA\
1 log =5 4. & @ 1 log
v < ViVl <— (14 =L )2+ < 1
(€t vi = vi)| < [[vi—villoo €]l < 1_7< + ” >ﬂ( +=) < -~ + ”

)

=U;

Where inequality (¢) holds by the assumption & < S. Notice that X; = (e, v+ — v, is a martingale
difference sequence. A simple application of Lemma|13|yields that with probability at least 1 — ¢ for
allt e N:

d 22
= e x —x,) <203 <ln 5) (36)
t=1
Similarly observe that for all ¢ with probability at least 1 — 5 t2 , since the bounds in Equations
and[33]in Lemma 3| hold,
Il = Vo To(ve) ~ B[S o(w) [Brmo)] || <20+ 960+ 5) @)

Notice that similarly and for all ¢ with probability at least 1 — t2 , since the bounds in Equatlons..
and[33]in Lemma 8] hold:

2 &t &ty
€ 1+ > , and ||b¢|lz <41 +9)% (1 +
el < 35 (1+5 bl < 401+ €0+ 57
Finally we show a bound on the l; norm of the gradient of Jp. Since v, € D =
IS|A]
vt [Vl < 755 (14 log# . Recall that by LemmaE, we have that Jp is (|S| + 1)n-

smooth in the || - ||o norm. Therefore by Lemma|12}

29



: log 1SII4l
IVJp(ve)llh < (IS + 1)m (1 + 77”)

Since ||[VJp(ve)|l2 < ||[VJIp(ve)||1 this in turn implies that:

) Jog 1114l
IV Ip (vl < (8] + 1) (1 - gf)

We now invoke the guarantees of Lemma|9]to show that with probability 1 — 24 and simultaneously
forall T € N:

T
S Un(vi) — Ip(v.) < Z Ive = el e — vl
t=1 ¢

) log IS4
(20804 02 <1+ = ) % (1 %) L Rg S|+
6

|S||A\
1 log / 2t2
ﬂ) 1_7<1+ >+2U1 1117

@) L — v, |2 12
< Z Ive = vall” = Ve = vl | ( (18] + 1)2y2D? + B +240> £ 8DE+

27}
2t2
2U1 (hl 6)

op 1SIIA|
Recall that U = (1 + lgﬁ) % = 8[? and where D = —— (1 +

21+ )& (1 +

S||A
log LSlIA
n

A/ ) . Inequality

(7) holds because ft < f and because v < 1. Let 73 = % for some constant to be specified later and
let’s analyze the terms in the sum above that depend on these 7; values:

2 2 T

- — — 1

an A URELA N TN S T
27 2rp 2¢c —

D2
< VT
2c

The second term can be bounded as:
T T
/ / /
Zth = cc Z— Sch\/T
t=1 oVt
Where ¢’ = 2(|S| + 1)*7*D? 4 32 4 240. Therefore under this assumption we obtain:

2t

ZJth JDv*)§f+c02f+8D<th>+2Ul (1n5).

The minimizing choice for c equals ¢ = 2%;?. And in this case:
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T
; (Vi) = Jp(v,) < 2DVIT + 8D (th> + 20U, (m 2(’;)

t=1

If we set & = min(y/ <, B) we get:
d 212
3" Jp(ve) — Ip(v.) < 18DVET + 20, <ln 5)
t=1

(@) 18 212
< 36D max (|S|+1)77D,ﬁ,16 VT + 20| T In =

18+ 16\/111 In(2T) + In 52

T
3 16 | VT

<36Dmax | (|S|+1)nD,

Inequality (i) holds because v/¢/ < 2max ((|S| + 1)nD, 1/38, 16)

‘We conclude that:

) ®
JD (;;Vt> 1ZJD Vt

18 + 16\/1n1n(2T) +1n 22
B

36D
< Jp(vy) + —= max | (|S| +1)nD,

.16
VT

Inequality (¢) holds by convexity of Jp. The result follows. O

We are ready to present the proof of Lemma [I0 which corresponds to a simplified version of
Lemmal[T9

H.3 Proof of Lemma [10]

S\S\nD

Lemma 10. We assume n > 4 Set§ = and Ty = 6] Slm N If we take t gradient steps using

n(t) samples from q x P ( posszbly reusing the samples for multiple gradient computations) with n(t)

2 3
525¢ ( In 200USIAIZ 4 g

satisfying n(t) > . Then for all t > 1 we have that with probability at least

64|5\2772D2.

» (1 S W) < Infvs) 1+ 5 <D2\|}j77>

Proof. First note that the ¢ of LemmaE satisfies ¢ = max (2 (IS] + 1)? n2 D2, 320 240) and

BIST?
1 — 30 and simultaneously for all t € N such that t >

s B2
therefore:
¢ < 8max (8|82772D2, 3;0)
Thus v/¢/ = max(8|S|nD, 3[3—1) = 8|S|nD (the last equality holds because i > %) and therefore:
g = min(2 12 ) = ST
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The last equality holds because ¢ > W.

Then the condition in Equation [35]of Lemma|[I9]is satisfies whenever:

n(t) 120t x 280n>D>? (ln L00ISILAIEE o 1) 525¢ (1n L00IS|IAIE 1)

min(2n() = 564|522 D2 = ESE (38)

3
525t (In 10QUSLAIZ |y 525t In In(2t) <1n MH) o
And therefore if we set n(t) = ESE > EISE In(%-) we

see that with probability at least 1 — 39 and simultaneously for all ¢ € N:

36D 18 4+ 164/In1n(2t) + In %2
) < Jp(va) + 7 max | (8] +1)nD. ° 16

Vi B

2
= Jp(vy) + 72D\/¥S‘|n <5 +4\/1n1n(2t) +1n 552)

1
Jp (t ZVZ

{=1

The last inequality holds since > %. This implies that using a budget of n(t) samples where n(t)
satisfies Inequality [38| we can take ¢ gradient steps.

O

I Extended Results for Tsallis Entropy Regularizers

For o > 1 recall the Tsallis entropy between distributions q, A equals:

1 )\s’a @
DZ<A||q>—a_1<E<s,a>~q[(q ) 1})
1 Asa a—1
Es o)~ d —1
a_l( e | (222) ])

Let F'(A) = %Dl—()\ Il @). The Fenchel Dual of a Tsallis Entropy satisfies:

* (u + x*]‘) —1 1
Fr(u) = { Au),u— 28 et — =1
(W = (Mw.u- et
Where A(u) = (nu+nz,1)Y/ (@D (%)1/(0‘_1) q and where 2, € R such that 37, A o(u) =1
and A o(u) > 0 forall s,a € S x A. This implies that:

AY +1z,1)

TE ) = (=) Eovan, + (AaY), A - AAY) )

e nla—1

1.0.1 Strong Convexity of Tsallis Entropy

In this section we show that whenever a € (1, 2], the Tsallis entropy is a strongly convex function of
Ain the || - ||2 norm,

Lemma 20. If o € (1,2], the function F(X) = %DZ—()\ Il Q) is & -strongly convex in the I - |2 norm.

Proof. Itis easy to see that V3 D7 (X || q) is a diagonal matrix satisfying:
a)\;{g?

s,a a—1"
s,a

[VADI (A || )]
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Whenever a < 2, and noting that q € [0, 1] we conclude that any of these terms must be lower
bounded by % The result follows.

O
I.1 Tsallis entropy version of Lemma 4]

Lemma 21. Letv € RISI be arbitrary and let X be its corresponding candidate primal variable (i.e.
A=XAY) If|IVvIp(¥V)]1 <€ andAssumptionsand@hold then whenever |S| > 2:

« T @ * 1+C ~
T 2 TE ) = ¢ (155 4 191

Where ¢ = mﬁ (max(a -1, pa—z,l) + 2) and )\; is the Jp optimum.

Proof. For any A and v let the lagrangian J, (A, v) be defined as,

Y 1 A\t
JL(A,V):(1—7)<H,V>+<A,A ‘W_l)((q) _1>>

Note that Jp (V) = JL(X, v) and that in fact Jp, is linear in v; i.e.,
JL (A V) = JL(A V) + (VoL (A, V), v — V).
Using Holder’s inequality we have:

TLA V) 2 TLAY) = [V TL AT 1 - 1V = Voo = Tp(¥) = Vo JL A 91 - [V = Voo
Let A, be the candidate primal solution to the optimal dual solution v, = argmin,, J D (v). By weak
duality we have that Jp (V) > Jp(A*) = Jp(v,), and since by assumption ||V JL (A, V)||1 < e

TLY) > Tp(N) = €|V = Voo (39)

In order to use this inequality to lower bound the value of J p()\ﬁ), we will need to choose an

appropriate v such that the LHS reduces to .J p()\%) while keeping the /., norm on the RHS small.
Thus we consider setting v as:

~ a—1
_ 1 Asa _
Vs = Ea,s’N%XT Zs + Isa— ’ -1+ YVs
77(& - ]-) Us,a

Where z € RIS is some function to be determined later. It is clear that an appropriate z exists as

AT a—1
< Sya) - 1
ds,a

ds,a

~ a—1
Al _ 1
Zs + Tsa — m <<q5a> _1>| 2]l + [Iloo + n(al—l)
<

~ a—1
long as z, r, m (<)‘“) - 1> are uniformly bounded. Furthermore:

maxs o

(e8]

[Vl < <
1—7 1—7

AF a—1
( s’a> - 1
ds,a

% | < % and therefore:
_ -1
A;r,a " 1 <1+ !
gs,a B ﬂail
o0
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We proceed to bound the norm of

. Observe that by Assumptions |§ and E, for

oo

all states s,a € S X A, the ratio




Notice the following relationships hold:

oz (3 )

. 1 Ao ) ,
u.s~7r><P rSE+’7vs’7Vs*m Qo _
1 Ao )T
< a,s’' ~TXP <( ) )77(a_1)<<%> 1)
1 (X .
as '~ X P Oi— 1) Qoo s
AN (A )]
( a—1) ((qS) <q3> ) |:; Cl;ﬂ;l :| S)
(41)

Where A, = > Xs,a and AT = 3 )\ja. Note that by definition:

>42

2%
2
2
=2

~\ a—1
(1v)<u,v><A%,z+r77(Of_1) (i‘l) -1 >JP(X~T)+<>\%,Z>. (42)

Let’s expand the definition of .J;, (X, ¥) using Equations|11|and

JL(XaV)(17)<u,V>+<X,AVn(al_1) (:) 4 >
AT a—1 X a—1 0 (a]s)
= Jp(N") + +ZA Tm <q> - <q> lz o ]zs

a

~ 7\ ¢! X\ 7%(als
o ot () (2)) [

a

Since we want this expression to equal J p(A%), we need to choose z such that:

s (737 [z

s — =

AT
1-— X
1 Fya—1_(x \a-1 7(als)
e ()" =) [, ek | ‘
Observe that z, = A;r fa and therefore, since for all s and when
a>1by Assumptlonlwe have that Z s (a 5) < ﬁ(},l,
= a—1 ~a—1
1 1 ’<A> ST
|zs| < - =
T pla—1) got ‘1_ Al
AT 1 1
Let 3= =3 where 6 € [0, J]. Then,
1 =1 —0°7"

<
n(a—1)pa-177 |1 — %|
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. . — a—1 —Q« . . .
It is easy to see that when o > 0 the function f(f) = 1 19_1 = 99_91 is decreasing in the

interval (0 1] and increasing afterwards. Furthermore, by L’Hopital’s rule, f(1) = 1 — a and

11
f(%) = ”‘f o < Ersince p < 5 L. This implies,

1 1 2

|ZS| S WW max(a — 17 F)

And therefore Equation [40]implies:

s e max(a = L) + 14ty (g +1) gt (max(a - 1) +2) 41

< =
1—7 11—
Putting these together we obtain the following version of equation
I—vy

[1¥]]o0

JL(A,¥) > Jp(A*) — + [Vl

1.2 Extension of Lemma|5|to Tsallis Entropy

Lemma 22. Under Assumptions[I} [2|and[3} the optimal dual variables are bounded as

1 2
oo < 1 =Dpa. 43
Wl £ 12 (14 2o ) = Do @)

Proof. Recall the Lagrangian form,

. v 1 AN
m‘}n, AS,GIIeli);XA JL(A,V) = (1 — /.Y)<V7IL> -+ <A,A — m <<qs)a) — 1) > .

The KKT conditions of A", v* imply that for any s, a, either (1) A , = 0 and 55— JL()\ ,v*) <0
or (2) a J (A", v*) = 0. The partial derivative of .J, is given by,

) a A* a—1 1
LA V) =Ty Po(s|s)vi —vi— — = (e — 44
a)\&a L( , vV ) r s +7; (S is)vs vs 77(057 1) (qs,a> + ’I](Oé* 1) ( )

Thus, for any s, a, either

* a—1
« A 1
Al =0andvi>r,, — ( s’“) + Y Pu(s]8)VE, (45)
’ n(a—1) \ds,a n(a—1) 25:
or,
o )\* a—1 1
Al ,>0andvi=r,, — — ( a) Y P.(s|s)VE. (46)
s,a S a n(a _ 1) qs,a 77(0( _ 1) ; &

Recall that A™ is the discounted state-action visitations of some policy 7; i.e., Ay , = AT* - 7, (als)
for some ,. Note that by Assumption any policy 7 has AL* > 0 for all s. Accordingly, the KKT
conditions imply,

* a—1
me(als) =0and vi >r,, — ﬁ <2::> + ﬁ + W;Pa(sﬂs)v;, (47)
or,
muals) > Dand vi = xoq -~ (A) LY RV @)
©onla—=1) \sa n(e—1) - °
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Equivalently,

* a—1
@] A?a 1
* = Epori(o) |Foa — 2 (2 1 vl
" *”lr o (52) e RS ULNE] D

(50)
We may express these conditions as a Bellman recurrence for v and the solution to these Bellman

* a—1
equations is bounded when r, , — ﬁ (3—”) + m is bounded [24]. And indeed, by

* a—1 1
(8] s,a
ro ey (322) e
thus bound the solution as,

Assumptions|2 and|1,

1 1
S T+ 5G-n 1 seonge-r We may

1 2
g L — [1+ —F—— ). 51
ol 1—7 ( n(a — 1)60‘1> D

O

L3 Gradient descent results for the Tsallis Entropy

Remark 1. Throughout this section we make the assumption that o« € (1, 2].
We start by characterizing the smoothness properties of Jg’a (v), the dual function of the Tsallis
regularized LP.

Lemma 23. If o € (1, 2] the dual function JZ,—’O‘(V) is W—smooth inthe || - ||2 norm.

Proof. Recall that|PrimalReg-)|can be written as[RegLP}
max(r, A) — F(A)
s.t. EA =b.

Where the regularizer (F'(A) := }]DZ;()\ I Q) is i I - ||l2 strongly convex. In this problem r

corresponds to the reward vector, the vector b = (1 — v)u € RIS and matrix E € RISIXISIxIAl
takes the form:
P ! if !
Els, s, a] = YP,(s]s") ifs+#s
1—~P.(s]s) o.w.

Therefore (since ||E||2,2 is simply the Frobenius norm of matrix E),

[Ell2,2 < 2[S||A|

The result follows as a corollary of Lemmal|T} O

Throughout this section we use the notation D, to refer to ||[v*||oc < ﬁ (1 + W) We

are ready to prove convergence guarantees for Algorithm@when applied to the objective J,.
Lemma 24. Let Assumptions|l, |2 and[3 hold. Let Do = {v s.t. V|| < D7.o}, and define the
distance generating function to be w(x) = ||x||3. After T steps of Algorithm the objective function
Jg’a evaluated at the iterate v = yr satisfies: )

T T [SPIA]_(1+¢)

JD (VT) - JD (V ) < 47] o (1 — 7)2T2 .

/ 2
Where ¢’ = Ta—hpe=T

Proof. This results follows simply by invoking the guarantees of Theorem [I] making use of the fact
that Jg’a is % —smooth as proven by Lemma observing that as a consequence of Lemma |22}
v* € Dr, and using the inequality ||x|3 < |S|||x||% for x € RIS O
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Lemma|24|can be easily turned into the following guarantee regarding the dual function value of the
final iterate:

Corollary 6. Let € > 0. If Algorithm[{]is ran for at least T rounds

14 ¢
T> 2n1/2<|8|AI1/2>M

then v is an e—optimal solution for the dual objective Jg’a.

If T satisfies the conditions of Corollary[6 a simple use of Lemma 6 allows us to bound the || - |2
norm of the dual function’s gradient at v:

IVp (v <y 20AE

If we denote as 7 to be the policy induced by AY7, and )\; is the candidate dual solution corre-
sponding to v*. A simple application of Lemma|21|yields:

T NT) 2 Ip(X;) = o (2ot eor ) LA

Where ¢ = m% (max(a —1, “Z )+ 2), ¢ = % and A is the .Jp optimum.

n(a
This leads us to the main result of this section:
Corollary 7. Let o € (1,d]. Forany ¢ > 0. If T > 4”|5‘3/2|A|1/2M then:
Jp(A™) > Jp(A%) — €.
Thus Algorithmachieves an O(1/(1 —+)?e) rate of convergence to an e—optimal regularized policy.
‘We now proceed to show that an appropriate choice for 7 can be leveraged to obtain an e—optimal

policy.
Theorem 5. For any € > 0, let ) = m IfT > 8\8\3/2|A|1/2%, then T is

an e—optimal policy.

Proof. As a consequence of Corollary [7] we can conclude that:

Jp(A™T) > Jp(A7) — %

Where /\,*7 is the regularized optimum. Recall that:

1 Asa )"
= Asarsa_i Esarv : -1 .
SZ(; o (04—1)77< () q[(qs,a> }>

Since X" is the maximizer of the regularized objective, it satisfies Jp(A*") > Jp(A*) where A* is
the visitation frequency of the optimal policy corresponding to the unregularized objective. We can
conclude that:

SIS S gm(;aqs,a«ggig) - Sa ((22) 1)) -
St (S (32) S (3))

. 1 1\ e
> Z)\sﬂrs,a “la—1y (3) 3
And therefore if n = W’ we can conclude that:

T *
E Asalsa = E Asalsa
s,a

s,a

DO

S
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