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Abstract: Leveraging human motion data to impart robots with versatile manipu-
lation skills has emerged as a promising paradigm in robotic manipulation. Never-
theless, translating multi-source human hand motions into feasible robot behaviors
remains challenging, particularly for robots equipped with multi-fingered dex-
terous hands characterized by complex, high-dimensional action spaces. In this
paper, we introduce HERMES, a human-to-robot learning framework for mobile
bimanual dexterous manipulation. First, HERMES formulates a unified reinforce-
ment learning approach capable of seamlessly transforming heterogeneous human
hand motions from multiple sources into physically plausible robotic behaviors.
Subsequently, to mitigate the sim2real gap, we devise an end-to-end, depth image-
based sim2real transfer method for improved generalization to real-world sce-
narios. Furthermore, to enable autonomous operation in varied and unstructured
environments, we augment the navigation foundation model with a closed-loop
Perspective-n-Point (PnP) localization mechanism, ensuring precise alignment of
visual goals and effectively bridging autonomous navigation and dexterous ma-
nipulation. Extensive experimental results demonstrate that HERMES consis-
tently exhibits generalizable behaviors across diverse, in-the-wild scenarios, suc-
cessfully performing numerous complex mobile bimanual dexterous manipulation
tasks. Project Page https://hermes-manipulation.github.io/

1 Introduction

Humans continuously generate diverse bimanual manipulation data, inherently serving as natural
guidance for robots to emulate human-like behaviors. Several previous studies [1, 2, 3, 4, 5] have
attempted to extract trajectories of human hands and manipulated objects from video data, sub-
sequently applying them to robotic manipulation tasks. Nevertheless, these methods have pre-
dominantly targeted robots equipped with simple gripper-based end effectors, failing to general-
ize effectively to dexterous hands due to the vastly greater complexity of action space. Despite
recent advances that utilize kinematic retargeting approaches to produce human-like robotic mo-
tions [6, 7, 8, 9, 10], these approaches still fall short in achieving physically-aware pose retargeting
and bridging the embodiment gap to derive feasible robot actions capable of successfully accom-
plishing the intended tasks. A critical limitation lies in the omission of explicit modeling of interac-
tions between robotic hands and manipulated objects, a fundamental component of manipulation
tasks. Consequently, neglecting these interactions undermines the robot’s ability to fully understand
and adapt to the dynamics of manipulation scenarios.

Motivated by these challenges, we propose HERMES, a versatile human-to-robot embodied learn-
ing framework tailored for mobile bimanual dexterous hand manipulation. HERMES offers the
following three advantages: 1. Diverse sources of human motion: Our framework supports several
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Figure 1: The main pipeline of HERMES. HERMES comprises a four-stage pipeline for achiev-
ing mobile bimanual dexterous manipulation through sim2real transfer. First, we acquire a one-shot
human demonstration drawn from diverse sources. Then, in stage 2, we train a state-based RL
teacher policy, then apply DAgger to distill into a vision-based student policy. Following this, HER-
MES execute long-horizon navigation using ViNT, followed by real-time PnP to finely adjust the
robot’s pose and achieve precise alignment in stage 3. Once localization is achieved, the student
policy is deployed in a zero-shot fashion directly in the real world.

human motion sources, including teleoperated simulation data, motion capture (mocap) data, and
raw human videos. We also provide corresponding approaches for data acquisition, enabling HER-
MES to efficiently transform varied human motion data into robot-feasible behaviors through RL.
Furthermore, these tasks share a uniform set of reward terms, obviating the necessity of designing
intricate and task-specific reward functions. In contrast to the methods that depend on collecting
a large amount of demonstrations, we can achieve generalizable policy by editing a single refer-
ence human motion trajectory coupling with RL training. 2. End-to-end vision-based sim2real
transfer: HERMES facilitates robust vision-based sim2real transfer by employing DAgger distil-
lation, which converts state-based expert policies into vision-based student policies. Moreover, we
introduce a generalized, object-centric depth image augmentation and hybrid control approach, ef-
fectively bridging the perception and dynamic sim2real gap. 3. Mobile manipulation capability:
Our method endows robots with mobile manipulation skills. Building upon ViNT [11], we develop
a RGB-D based module for precise localization wherein the task is modeled as a Perspective-n-
Point (PnP) problem and addressed through an iterative process. This ensures seamless integration
with subsequent manipulation tasks and unlock the policy’s capacity to operate autonomously across
a broad spectrum of real-world environments.

2 Method

2.1 Collect One-shot Human Motion

To validate the effectiveness and robustness of HERMES, we employ three distinct sources of human
motion: teleoperation in simulation, motion capture data obtained from public datasets, and hand-
object poses extracted from raw videos. Moreover, by leveraging merely a single human reference
trajectory in conjunction with RL training, we are able to derive the generalizable robot policy
without the need for collecting extensive demonstrations. More details can be found in Appendix A.

Synthesize multiple trajectories: To obtain a more generalizable policy, we perform the trajectory
editing for the one-shot human motion reference by randomizing the object’s position and orientation
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in a predefined range. The hand and object poses across the augmented trajectories are transformed
as follows:

Âpose [τk] = Ttrans ·Apose [τk] . (1)

For any given frame k in the trajectory τ , we apply a transformation matrix Ttrans to alter its
pose, where Apose may represent either the object pose or the hand pose. By editing the reference
trajectory, we enable spatial generalization from a single human motion demonstration, obviating
the need to manually collect large numbers of teleoped demonstrations.

Upon obtaining synthesized object and hand trajectories from various data sources, we initially em-
ploy the DexPilot retargeting method [12] to map the captured human hand poses onto corresponding
robot hand configurations. Subsequently, reinforcement learning is leveraged to refine and adapt the
initialized robot behaviors.

2.2 Generalizable Reward Design for Manipulation

Standard reinforcement learning typically relies on hand-crafted reward functions tailored to each
specific task. However, designing such complicated reward structures often impedes scalability and
usability, particularly for the dexterous hand. To alleviate this issue, we leverage one-shot human
demonstration combined with a generalizable reward formulation, enabling the reuse of a unified
reward function across tasks and facilitating the straightforward construction of challenging, long-
horizon manipulation tasks.

Object-centric Distance chain: Capturing the dynamic spatial relationships between the human
hands and the object stands as a pivotal factor in enabling the policy to acquire fine-grained hand-
object interaction skills. We designate the coordinates of the fingertips and palm of the hand, along
with the center of the object’s collision mesh, as keypoints. By modeling the temporal evolution of
vectors between these keypoints, we formulate the following reward function:

rchain =

{
exp

{
1
n

∑n
i=1

∥∥∥r⃗(i)ref − r⃗(i)
∥∥∥} , if Ncontact ≥ Nnum

0, otherwise
(2)

where r⃗(i) is the vector from object center to the fingertip or palm. Furthermore, we incorporate
contact information into this reward term. Specifically, during the computation of the distance chain,
we also evaluate the number of contact points between the fingertips and palms of both hand mesh
Chand and the object’s collision mesh Cobj. This reward component is activated only when the
number of contact points Ncontact exceeds a predefined threshold Nnum, ensuring that the policy
attends to physically meaningful hand-object interactions.

We also incorporate an object trajectory tracking and a power-penalty term to align the policy’s
behavior with the target object’s trajectory and enhance the smoothness of policy execution and to
alleviate the jittering actions. We adopt DrM [13], an off-policy method, leverages a dormant ratio
mechanism [14] to enhance exploration capabilities and demonstrates high sample efficiency.

3 Sim-to-real Transfer

The training of state-based RL policies typically relies on privileged information which is not ac-
cessible in real-world deployment scenarios. Consequently, it is imperative to distill the state-based
policy into a visual policy for achieving sim2real transfer. We leverage the depth image as visual
input. More details can be found in Appendix C.

DAgger Distillation Training: In DAgger training, the state-based expert policy acts as the teacher
to guide the learning of a visual student policy. In contrast to prior approaches that distill to object
masks or segmented images, HERMES directly distills the state into raw visual observations of
entire visual scenarios. This design obviates the need for explicit camera calibration and facilitates
the acquisition of the robot’s in-the-wild generalization capabilities. Furthermore, we introduce a
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Figure 2: Depth image visualization. After applying our preprocessing pipeline, the depth repre-
sentations of the hand and object exhibit a strong semantic correspondence, highlighting the efficacy
of HERMES in bridging the sim2real gap.

series of auxiliary design choices aimed at enhancing both the asymptotic performance of DAgger
training.

Hybrid sim2real control: To mitigate the gap between simulation and real-world dynamics as well
as proprioceptive information, we adopt a hybrid control strategy: real-world visual observations
are used to infer the actual action, which is then applied to the simulation environment to perform
a forward step. The updated joint positions of the simulated robot are subsequently transferred to
the real robot for execution. By sharing the same Inverse Kinematics (IK) method and dynamic
parameters across simulation and the real world, this approach not only enables the policy to adapt
its behavior based on real-world environmental variations but also effectively narrows the sim2real
discrepancy.

4 Navigation Methodology

We choose ViNT [11] for achieving image-goal robotic navigation. ViNT not only enables long-
range, in-the-wild navigation but also demonstrates effective zero-shot generalization capability
without necessitating model fine-tuning. For our mobile manipulation tasks, moderate discrepan-
cies between the robot’s final pose and the target pose can lead to the manipulation policy failing
to finish the task. However, ViNT does not guarantee termination within a sufficiently tight error
bound. To address this, we introduce a local refinement step after ViNT completes navigation: a
closed-loop Perspective-n-Point (PnP) localization algorithm is employed to adjust the robot’s pose,
ensuring closer alignment with the goal image pose. More details can be found in Appendix B.

5 Mobile Manipulation Experiments
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Figure 3: Real-world mobile manipulation
results.

To evaluate the mobile manipulation ability of HER-
MES, we integrate the entire pipeline across all
tasks. Each trained policy is tested over 10 runs.
As illustrated in Figure 3, HERMES demonstrates
strong real-world navigation, precise localization,
and dexterous manipulation capabilities. We also ap-
ply the identical manipulation policy equipped with
ViNT as a baseline. Figure 3 reveals that, without
closed-loop PnP localization, the policy cannot gen-
eralize or successfully complete tasks when faced
with significant positional and rotational shifts. Con-
versely, HERMES achieves a notable +54.0% im-
provement in manipulation success rate compared to
pure ViNT. These findings underscore that closed-
loop PnP localization is the essential bridge linking navigation and manipulation, enabling both
modules to synergize for enhanced performance.

4



References
[1] H. Zhou, R. Wang, Y. Tai, Y. Deng, G. Liu, and K. Jia. You only teach once: Learn one-shot

bimanual robotic manipulation from video demonstrations. arXiv preprint arXiv:2501.14208,
2025.

[2] H. Kim, J. Kang, H. Kang, M. Cho, S. J. Kim, and Y. Lee. Uniskill: Imitating human videos
via cross-embodiment skill representations. arXiv preprint arXiv:2505.08787, 2025.

[3] T. G. W. Lum, O. Y. Lee, C. K. Liu, and J. Bohg. Crossing the human-robot embodiment gap
with sim-to-real rl using one human demonstration. arXiv preprint arXiv:2504.12609, 2025.

[4] P. Dan, K. Kedia, A. Chao, E. W. Duan, M. A. Pace, W.-C. Ma, and S. Choudhury. X-sim:
Cross-embodiment learning via real-to-sim-to-real. arXiv preprint arXiv:2505.07096, 2025.

[5] C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu, Y. Zhu, and A. Anandkumar. Mimicplay:
Long-horizon imitation learning by watching human play. In 7th Annual Conference on Robot
Learning, 2023.

[6] R.-Z. Qiu, S. Yang, X. Cheng, C. Chawla, J. Li, T. He, G. Yan, D. J. Yoon, R. Hoque,
L. Paulsen, et al. Humanoid policy˜ human policy. arXiv preprint arXiv:2503.13441, 2025.

[7] Y. Qin, W. Yang, B. Huang, K. Van Wyk, H. Su, X. Wang, Y.-W. Chao, and D. Fox.
Anyteleop: A general vision-based dexterous robot arm-hand teleoperation system. arXiv
preprint arXiv:2307.04577, 2023.

[8] R. Yang, Q. Yu, Y. Wu, R. Yan, B. Li, A.-C. Cheng, X. Zou, Y. Fang, H. Yin, S. Liu,
et al. Egovla: Learning vision-language-action models from egocentric human videos. arXiv
preprint arXiv:2507.12440, 2025.

[9] K. Shaw, S. Bahl, A. Sivakumar, A. Kannan, and D. Pathak. Learning dexterity from human
hand motion in internet videos. The International Journal of Robotics Research, 43(4):513–
532, 2024.

[10] K. Shaw, S. Bahl, and D. Pathak. Videodex: Learning dexterity from internet videos. In
Conference on Robot Learning, pages 654–665. PMLR, 2023.

[11] D. Shah, A. Sridhar, N. Dashora, K. Stachowicz, K. Black, N. Hirose, and S. Levine. Vint:
A foundation model for visual navigation. In Conference on Robot Learning, pages 711–733.
PMLR, 2023.

[12] A. Handa, K. Van Wyk, W. Yang, J. Liang, Y.-W. Chao, Q. Wan, S. Birchfield, N. Ratliff, and
D. Fox. Dexpilot: Vision-based teleoperation of dexterous robotic hand-arm system. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages 9164–9170. IEEE,
2020.

[13] G. Xu, R. Zheng, Y. Liang, X. Wang, Z. Yuan, T. Ji, Y. Luo, X. Liu, J. Yuan, P. Hua, et al. Drm:
Mastering visual reinforcement learning through dormant ratio minimization. In The Twelfth
International Conference on Learning Representations, 2024.

[14] G. Sokar, R. Agarwal, P. S. Castro, and U. Evci. The dormant neuron phenomenon in deep re-
inforcement learning. In International Conference on Machine Learning, pages 32145–32168.
PMLR, 2023.

[15] X. Zhan, L. Yang, Y. Zhao, K. Mao, H. Xu, Z. Lin, K. Li, and C. Lu. Oakink2: A dataset
of bimanual hands-object manipulation in complex task completion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 445–456, 2024.

[16] R. A. Potamias, J. Zhang, J. Deng, and S. Zafeiriou. Wilor: End-to-end 3d hand localization
and reconstruction in-the-wild, 2024.

5



[17] S. Li, C. Xu, and M. Xie. A robust o (n) solution to the perspective-n-point problem. IEEE
transactions on pattern analysis and machine intelligence, 34(7):1444–1450, 2012.

[18] B. Wen, W. Yang, J. Kautz, and S. Birchfield. Foundationpose: Unified 6d pose estimation and
tracking of novel objects. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 17868–17879, 2024.

[19] AR Code. Ar code, 2022. URL https://ar-code.com/. Accessed: 2024-09-28.

[20] Y. Wang, X. He, S. Peng, D. Tan, and X. Zhou. Efficient loftr: Semi-dense local feature
matching with sparse-like speed. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 21666–21675, 2024.

[21] M. Zuliani. Ransac for dummies. Vision Research Lab, University of California, Santa Bar-
bara, 1, 2009.

[22] K. Madsen, H. B. Nielsen, and O. Tingleff. Methods for non-linear least squares problems.
Informatics and Mathematical Modelling Technical University of Denmark, 1, 2004.

[23] E. Eade. Gauss-newton/levenberg-marquardt optimization. Tech. Rep., 2013.

[24] M. J. Willis. Proportional-integral-derivative control. Dept. of Chemical and Process Engi-
neering University of Newcastle, 6, 1999.

6

https://ar-code.com/


Appendix

The visualization of real-world and simulation results are provided in Figure 4 and Figure 5.

Figure 4: HERMES exhibits a rich spectrum of mobile bimanual dexterous manipulation
skills. The robot is able to navigate over extended distances in both indoor and outdoor environ-
ments, and effectively execute a variety of complex manipulation tasks in unstructured, real-world
scenarios, drawing upon behaviors learned from only one-shot human motion.
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Figure 5: Simulation training visualization. We visualize the majority of the training tasks.
Leveraging a single reference trajectory in conjunction with a general reward design, HERMES can
convert diverse human motion sources into robot feasible behaviors via RL training.

A Collect One-shot Human Motion

Teleoperation in simulation: We provide access to the pre-configured simulation that enables direct
teleoperation of the robot for collecting demonstrations. The Apple Vision Pro is utilized to extract
hand poses and arm movements, with data captured at a frequency of 75 Hz.

Mocap data: In contrast to direct teleoperation in simulation, retargeting mocap data to robotic
hands presents significant challenges due to the embodiment gap between human and robotic hand
structures. This discrepancy renders the retargeted trajectories from mocap data unsuitable for direct
replay in simulation. Consequently, RL is often employed to enable robots to learn the desired
behaviors from reference trajectories. In our study, we utilize the OakInk2 mocap dataset [15] to
acquire human motion data for this purpose.

Figure 6: Pose extraction from videos.

Extracted arm and hand poses
from videos: Leveraging video data
holds considerable promise for un-
locking vast quantities of informa-
tion to facilitate robot learning. To
this end, we also provide a pipeline
for extracting human hand poses and
object trajectories directly from raw
video. To acquire the hand poses, we first employ WiLoR [16] to detect the hands in each video
frame and extract 2D hand keypoints along with their corresponding 3D counterparts. We then se-
lect a relatively stable subset of keypoints for the subsequent estimation, specifically those located
at the wrist and the metacarpophalangeal joints. The spatial translation of the wrist in the camera
coordinate system is estimated by solving a Perspective-n-Point (PnP) problem [17] based on the
2D-3D correspondences, while the palm’s orientation is derived by fitting a plane to the selected
3D keypoints. Regarding the manipulated objects, we employ FoundationPose [18] to estimate the
object poses directly from video frames, and utilize ARCode [19] scanning to reconstruct the ob-
ject mesh. By leveraging the aforementioned procedures, we can align the hand and object poses
extracted from the video with the robot’s frame to facilitate the subsequent learning process.
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Figure 7: The pipeline of closed-loop PnP localization. We first employ the efficient LoFTR to
extract dense visual features, followed by estimating the transformation between the current frame
and the goal location via solving the PnP problem. Subsequently, we use PID controller to execute
the action. This entire process is executed in a closed-loop manner and continues iteratively until the
spatial discrepancy between the robot’s current pose and the goal falls below a predefined threshold.

B Navigation Details

As shown in Figure 7, we first utilize the neural feature matching module Efficient LoFTR [20] to
detect the correspondence between the current robot captured image Ic and the goal image Ig . Then
the detected features are lifted to 3D space with respect to the robot’s current coordinate frame by
leveraging the camera intrinsic matrix and the depth map. Next, we leverage the RANSAC PnP [21]
and refine PnP algorithm [22, 23] to compute the relative rotation and translation between the robot’s
current viewpoint and the goal pose that can minimize the reprojection error. By leveraging real-
time feedback from PnP as the robot incrementally converges toward the target pose, we are able
to iteratively refine the pose estimation, thereby attaining more accurate visual correspondence.
After getting the target pose calculated by our closed-loop PnP localization algorithm, we utilize a
Proportional-Integral-Derivative (PID) controller [24] to adjust the pose of our robot. The input of
the controller is the instantaneous position and orientation error between the robot’s desired state
and its actual state.

C Sim-to-real Transfer

Leveraging depth image as visual input: Prior work has explored the use of depth images for
vision-based sim2real transfer. However, they often necessitate intricate and highly customized
augmentation strategies to bridge the gap. In this work, we introduce a more versatile, manipulation-
tailored egocentric depth-image augmentation method. Specifically, we clip depth values beyond a
threshold distance d (set per task). For real depth images, missing depth values resulting from edge
capture failures are filled in with the maximum depth. To emulate real-world edge noise and blur
in simulation, we augment simulated depth images by adding Gaussian noise and Gaussian blur
during training. Additionally, to mimic missing depth values, we randomly set 0.5% of pixel values
in simulation-rendered images to the maximum depth. As illustrated in Figure 2, our augmentation
not only semantically aligns simulated renderings with real-world depth images, but also preserves
crucial depth disparity cues essential for accurate visuomotor control.
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