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ABSTRACT

Learning from off-policy data is essential for sample-efficient reinforcement learn-
ing. In the present work, we build on the insight that the advantage function
can be understood as the causal effect of an action on the return, and show that
this allows us to decompose the return of a trajectory into parts caused by the
agent’s actions (skill) and parts outside of the agent’s control (luck). Furthermore,
this decomposition enables us to naturally extend Direct Advantage Estimation
(DAE) to off-policy settings (Off-policy DAE). The resulting method can learn
from off-policy trajectories without relying on importance sampling techniques
or truncating off-policy actions. We draw connections between Off-policy DAE
and previous methods to demonstrate how it can speed up learning and when the
proposed off-policy corrections are important. Finally, we use the MinAtar envi-
ronments to illustrate how ignoring off-policy corrections can lead to suboptimal
policy optimization performance.

1 INTRODUCTION

Imagine the following scenario: One day, A and B both decide to purchase a lottery ticket, hoping
to win the grand prize. Each of them chose their favorite set of numbers, but only A got lucky and
won the million-dollar prize. In this story, we are likely to say that A got lucky because, while A’s
action (picking a set of numbers) led to the reward, the expected rewards are the same for both A
and B (assuming the lottery is fair), and A was ultimately rewarded due to something outside of their
control.

This shows that, in a decision-making problem, the return is not always determined solely by the
actions of the agent, but also by the randomness of the environment. Therefore, for an agent to
correctly distribute credit among its actions, it is crucial that the agent is able to reason about the
effect of its actions on the rewards and disentangle it from factors outside its control. This is also
known as the problem of credit assignment (Minsky, 1961). While attributing luck to the drawing
process in the lottery example may be easy, it becomes much more complex in sequential settings,
where multiple actions are involved and rewards are delayed.

The key observation of the present work is that we can treat the randomness of the environment as
actions from an imaginary agent, whose actions determine the future of the decision-making agent.
Combining this with the idea that the advantage function can be understood as the causal effect of an
action on the return (Pan et al., 2022), we show that the return can be decomposed into parts caused
by the agent (skill) and parts that are outside the agent’s control (luck). Furthermore, we show
that this decomposition admits a natural way to extend Direct Advantage Estimation (DAE), an on-
policy multi-step learning method, to off-policy settings (Off-policy DAE). The resulting method
makes minimal assumptions about the behavior policy and shows strong empirical performance.

Our contributions can be summarized as follows:

• We generalize DAE to off-policy settings.
• We demonstrate that (Off-policy) DAE can be seen as generalizations of Monte-Carlo (MC)

methods that utilize sample trajectories more efficiently.
• We verify empirically the importance of the proposed off-policy corrections through exper-

iments in both deterministic and stochastic environments.
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2 BACKGROUND

In this work, we consider a discounted Markov Decision Process (S,A, p, r, γ) with finite state
space S, finite action space A, transition probability p(s′|s, a), expected reward function r : S ×
A → R, and discount factor γ ∈ [0, 1). A policy is a function π : S → ∆(A) which maps states to
distributions over the action space. The goal of reinforcement learning (RL) is to find a policy that
maximizes the expected return, π∗ = argmaxπ Eπ[G], where G =

∑∞
t=0 γ

trt and rt = r(st, at).
The value function of a state is defined by V π(s) = Eπ[G|s0=s], the Q-function of a state-action
pair is similarly defined by Qπ(s, a) = Eπ[G|s0=s, a0=a] (Sutton et al., 1998). These functions
quantify the expected return of a given state or state-action pair by following a given policy π, and
are useful for policy improvements. They are typically unknown and are learned via interactions
with the environment.

Direct Advantage Estimation The advantage function, defined by Aπ(s, a) = Qπ(s, a)−V π(s),
is another function that is useful to policy optimization. Recently, Pan et al. (2022) showed that the
advantage function can be understood as the causal effect of an action on the return, and is more
stable under policy variations (under mild assumptions) compared to the Q-function. They argued
that it might be an easier target to learn when used with function approximation, and proposed Direct
Advantage Estimation (DAE), which estimates the advantage function directly by

Aπ = argmin
Â∈Fπ

E
π

( ∞∑
t=0

γt(rt − Ât)

)2
 , Fπ =

{
f

∣∣∣∣∣∑
a∈A

f(s, a)π(a|s) = 0

}
(1)

where Ât = Â(st, at). The method can also be seamlessly combined with a bootstrapping target to
perform multi-step learning by iteratively minimizing the constrained squared error

L(Â, V̂ ) = E
π

(n−1∑
t=0

γt(rt − Ât) + γnVtarget(sn)− V̂ (s0)

)2
 subject to Â ∈ Fπ, (2)

where Vtarget is the bootstrapping target, and (V̂ , Â) are estimates of the value function and the ad-
vantage function. Policy optimization results were reported to improve upon generalized advantage
estimation (Schulman et al., 2015b), a strong baseline for on-policy methods. One major drawback
of DAE, however, is that it can only estimate the advantage function for on-policy data (note that the
expectation and the constraints share the same policy). This limits the range of applications of DAE
to on-policy scenarios, which tend to be less sample efficient.

Multi-step learning In RL, we often update estimates of the value functions based on previous
estimates (e.g., TD(0), SARSA (Sutton et al., 1998)). These methods, however, can suffer from
excessive bias when the previous estimates differ significantly from the true value functions, and it
was shown that such bias can greatly impact the performance when used with function approxima-
tors (Schulman et al., 2015b). One remedy is to extend the backup length, that is, instead of using
one-step targets such as r(s0, a0)+γQtarget(s1, a1) (Qtarget being our previous estimate), we include
more rewards along the trajectory, i.e., r(s0, a0)+γr(s1, a1)+γ2r(s2, a2)+ ...+γnQtarget(sn, an).
This way, we can diminish the impact of Qtarget by the discount factor γn. However, using the re-
wards along the trajectory relies on the assumption that the samples are on-policy (i.e., the behavior
policy is the same as the target policy). To extend such methods to off-policy settings often requires
techniques such as importance sampling (Munos et al., 2016; Rowland et al., 2020) or truncating
(diminishing) off-policy actions (Precup et al., 2000; Watkins, 1989), which can suffer from high
variance or low data utilization with long backup lengths. Surprisingly, empirical results have shown
that ignoring off-policy corrections can still lead to substantial speed-ups and is widely adapted in
modern deep RL algorithms (Hernandez-Garcia & Sutton, 2019; Hessel et al., 2018; Gruslys et al.,
2017).

3 RETURN DECOMPOSITION

From the lottery example in Section 1, we observe that, stochasticity of the return can come from
two sources, namely, (1) the stochastic policy employed by the agent (picking numbers), and (2)
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the stochastic transitions of the environment (lottery drawing). To separate their effect, we begin by
studying deterministic environments where the only source of stochasticity comes from the agent’s
policy. Afterward, we demonstrate why DAE fails when transitions are stochastic, and introduce a
simple fix which generalizes DAE to off-policy settings.

3.1 THE DETERMINISTIC CASE

First, for deterministic environments, we have st+1 = h(st, at), where the transition probability is
replaced by a deterministic transition function h : S × A → S. As a consequence, the Q-function
becomes Qπ(st, at) = r(st, at) + γV π(st+1), and the advantage function becomes Aπ(st, at) =
r(st, at) + γV π(st+1)− V π(st). Let’s start by examining the sum of the advantage function along
a given trajectory (s0, a0, s1, a1, ...) with return G,

∞∑
t=0

γtAπ(st, at) =

∞∑
t=0

γtr(st, at) +

∞∑
t=0

γt (γV π(st+1)− V π(st))︸ ︷︷ ︸
telescoping series

= G− V π(s0), (3)

or, with a simple rearrangement, G = V π(s0) +
∑∞

t=0 γA
π(st, at). One intuitive interpretation of

this equation is: The return of a trajectory is equal to the average return (V π) plus the variations
caused by the actions along the trajectory (Aπ). Since Equation 3 holds for any trajectory, the
following equation holds for any policy µ

E
µ

(G− ∞∑
t=0

γtAπ
t − V π(s0)

)2
 = 0. (4)

This means that (V π, Aπ) is a solution to the off-policy variant of DAE

L(Â, V̂ ) = E
µ

( ∞∑
t=0

γt(rt − Ât)− V̂ (s0)

)2
 s.t.

∑
a∈A

π(a|s)Â(s, a) = 0 ∀s ∈ S, (5)

where the expectation is now taken with respect to an arbitrary behavior policy µ instead of the
target policy π in the constraint (Equation 2, with n→∞). We emphasize that this is a very general
result, as we made no assumptions on the behavior policy µ, and only sample trajectories from µ are
required to compute the squared error. However, two questions remain: (1) Is the solution unique?
(2) Does this hold for stochastic environments? We shall answer these questions in the next section.

3.2 THE STOCHASTIC CASE

The major difficulty in applying the above argument to stochastic environments is that
the telescoping sum (Equation 3) no longer holds because Aπ(st, at) = r(st, at) +
γEs′∼p(·|st,at)[V

π(s′)|st, at] − V π(st) ̸= r(st, at) + γV π(st+1) − V π(st) and the sum of the
advantage function becomes

∞∑
t=0

γtAπ(st, at) =

∞∑
t=0

γt
(
r(st, at) + γEs′∼p(·|st,at) [V

π(s′)|st, at]− V π(st)
)

(6)

= G−
∞∑
t=0

γt+1Bπ
t − V π(s0), (7)

where Bπ
t = Bπ(st, at, st+1) = V π(st+1)− Es′∼p(·|st,at) [V

π(s′)|st, at]. This shows that V π and
Aπ are not enough to fully characterize the return G (compared to Equation 3), and Bπ is required.
But what exactly is Bπ? To understand the meaning of Bπ , we begin by dissecting state transitions
into a two-step process, see Figure 1. In this view, we introduce an imaginary agent nature, also
interacting with the environment, whose actions determine the next states of the decision-making
agent. In this setting, nature follows a stationary policy π̄ equal to the transition probability, i.e.,
π̄(s′|(s, a)) = p(s′|s, a). Since π̄ is fixed, we omit it in the following discussion. The question
we are interested in is, how much do nature’s actions affect the return? We note that, while there
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... ...st

st, at

st+1

at

Step 1:
Agent picks an action
at ∼ π(·|st)

Step 2:
Nature picks a state
st+1 ∼ p(·|st, at)

Figure 1: A two-step view of the state transition process. First, we introduce an imaginary agent
nature, which controls the stochastic part of the transition process. In this view, nature lives in a
world with state space S̄ = S × A and action space Ā = S. At each time step t, the agent chooses
its action at based on st, and, instead of transitioning directly into the next state, it transitions into
an intermediate state denoted (st, at) ∈ S̄, where nature chooses the next state st+1 ∈ Ā based
on (st, at). We use nodes and arrows to represent states and actions by the agent (red) and nature
(blue).

are no immediate rewards associated with nature’s actions, they can still influence future rewards
by choosing whether we transition into high-rewarding states or otherwise. Since the advantage
function was shown to characterize the causal effect of actions on the return, we now examine
nature’s advantage function.

By definition, the advantage function is equal to Qπ(s, a)− V π(s). We first compute both Q̄π and
V̄ π from nature’s point of view (we use the bar notation to differentiate between nature’s view and
the agent’s view). Since S̄ = S × A and Ā = S, V̄ is now a function of S̄ = S × A, and Q̄ is a
function of S̄ × Ā = S ×A× S, taking the form

V̄ π(s, a) = E
π
[
∑
t>0

γtrt|s0=s, a0=a] = Es′∼p(·|s0,a0)[V
π(s′)|s0=s, a0=a], (8)

Q̄π(s, a, s′) = E
π
[
∑
t>0

γtrt|s0=s, a0=a, s1=s′] = V π(s′). (9)

We thus have Āπ(s, a, s′) = Q̄π(s, a, s′)− V̄ π(s, a) = V π(s′)−Es′∼p(·|s,a)[V
π(s′)|s, a], which is

exactly Bπ(s, a, s′) as introduced at the beginning of this section. Now, if we rearrange Equation 6
into

V π(s0) +

∞∑
t=0

γt (Aπ(st, at) + γBπ(st, at, st+1)) = G, (10)

then an intuitive interpretation emerges, which reads: The return of a trajectory can be decomposed
into the average return V π(s0), the causal effect of the agent’s actions Aπ(st, at) (skill), and the
causal effect of nature’s actions Bπ(st, at, st+1) (luck).

Equation 10 has several interesting applications. For example, the policy improvement lemma
(Kakade & Langford, 2002), which relates value functions of different policies by V µ(s) =
V π(s) + Eµ[

∑
t≥0 γ

tAπ
t |s0 = s], is an immediate consequence of taking the conditional expec-

tation Eµ[·|s0=s] of Equation 10. More importantly, this equation admits a natural generalization
of DAE to off-policy settings:
Theorem 1 (Off-policy DAE). Given a behavior policy µ, a target policy π, and backup length
n ≥ 0. Let Ât = Â(st, at), B̂t = B̂(st, at, st+1), and the objective function

L(Â, B̂, V̂ ) = E
µ

( n∑
t=0

γt
(
rt − Ât − γB̂t

)
+ γn+1V̂ (sn+1)− V̂ (s0)

)2


subject to

{∑
a∈A Â(s, a)π(a|s) = 0 ∀s ∈ S∑
s′∈S B̂(s, a, s′)p(s′|s, a) = 0 ∀(s, a) ∈ S ×A

,

(11)
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then (Aπ, Bπ, V π) is a minimizer of the above problem. Furthermore, the minimizer is unique if µ
is sufficiently explorative (i.e., non-zero probability of reaching all possible transitions (s, a, s′)).

See Appendix A for a proof. In practice, we can minimize the empirical variant of Equation 11
from samples to estimate (V π, Aπ, Bπ), which renders this an off-policy multi-step method. We
highlight two major differences between this method and other off-policy multi-step methods. (1)
Minimal assumptions on the behavior policy are made, and no knowledge of the behavior policy is
required during training (in contrast to importance sampling methods). (2) It makes use of the full
trajectory instead of truncating or diminishing future steps when off-policy actions are encountered
(Watkins, 1989; Precup et al., 2000). We note, however, that applying this method in practice can be
non-trivial due to the constraint

∑
s′∈S B̂(s, a, s′)p(s′|s, a) = 0. This constraint is equivalent to the

Â constraint in DAE, in the sense that they both ensure the functions satisfy the centering property
of the advantage function (i.e., Ea∼π[A

π(s, a)|s] = 0). Below, we briefly discuss how to deal with
this.

S ×A S

Zpθ̃(z|s, a)

pθ̃(s
′|s, a, z)

Figure 2: Latent variable model of
transitions; Z is a discrete latent
space, which can be understood as
actions from nature.

Approximating the constraint As a first step, we note
that a similar constraint

∑
a∈A Â(s, a)π(a|s) = 0 can be

enforced through the following parametrization Âθ(s, a) =
fθ(s, a) −

∑
a∈A fθ(s, a)π(a|s), where fθ is the underlying

unconstrained function approximator (Wang et al., 2016b).
Unfortunately, this technique cannot be applied directly to the
B̂ constraint, because (1) it requires a sum over the state space,
which is typically too large, and (2) the transition function
p(s′|s, a) is usually unknown.

To overcome these difficulties, we use a Conditional Varia-
tional Auto-Encoder (CVAE) (Kingma & Welling, 2013; Sohn
et al., 2015) to encode transitions into a discrete latent space
Z such that the sum can be efficiently approximated, see
Figure 2. The CVAE consists of three components: (1) an approximated conditional posterior
qϕ̃(z|s, a, s′) (encoder), (2) a conditional likelihood pθ̃(s

′|s, a, z) (decoder), and (3) a conditional
prior pθ̃(z|s, a). These components can then be learned jointly by maximizing the conditional evi-
dence lower bound (ELBO),

ELBO = −DKL(qϕ̃(z|s, a, s
′)||pθ̃(z|s, a)) + E

z∼qϕ̃(·|s,a,s′)
[log pθ̃(s

′|s, a, z)]. (12)

Once a CVAE is learned, we can construct B̂(s, a, s′) from an unconstrained function gθ(s, a, z) by
B(s, a, s′) = Ez∼qϕ̃(·|s,a,s′)[gθ(s, a, z)|s, a, s

′] − Ez∼pθ̃(·|s,a)[gθ(s, a, z)|s, a], which has the prop-
erty that

∑
s′ p(s

′|s, a)B(s, a, s′) ≈ 0 because qϕ̃(z|s, a, s′) ≈ pθ̃(z|s, a, s′).

4 RELATIONSHIP TO OTHER METHODS

In this section, we first demonstrate that (Off-policy) DAE can be understood as a generalization
of MC methods with better utilization of trajectories. Secondly, we show that the widely used
uncorrected estimator can be seen as a special case of Off-policy DAE and shed light on when it
might work.

4.1 MONTE-CARLO METHODS

To understand how DAE can speed up learning, let us first revisit Monte-Carlo (MC) methods
through the lens of regression. In a typical linear regression problem, we are given a dataset
{(xi, yi) ∈ Rn×R}, and tasked to find coefficients w ∈ Rn minimizing the error

∑
i (w · xi − yi)

2.
In RL, the dataset often consists of transitions or sequences of transitions (as in multi-step methods)
and their returns, that is, (τi, Gi) where τi has the form (s0, a0, s1, a1, ...) and Gi is the return associ-
ated with τi. However, τ may be an abstract object which cannot be used directly for regression, and
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1p(s0=1) = 0.9

2p(s0=2) = 0.1

ru=1

rd=0

3 4

r=0

r=0
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0.6

V̂
(1

)

0 25 50 75

Trajectories

0.4

0.6

V̂
(2

)

TD(0)

MC

DAE

Figure 3: Left: An MDP with S = {1, 2, 3, 4}. Both states 1 and 2 have only a single action with
immediate rewards 0 that leads to state 3. State 3 has two actions, u and d, that lead to the terminal
state 4 with immediate rewards 1 and 0, respectively. Right: We compare the values estimated by
Batch TD(0), MC, and DAE with trajectories sampled from the uniform policy. Lines and shadings
represent the average and one standard deviation of the estimated values over 1000 random seeds.
The dashed line represents the true value V (1) = V (2) = 0.5. See Appendix B for details.

we must first map τ to a feature vector ϕ(τ) ∈ Rn.1 For example, in MC methods, we can estimate
the value of a state by rolling out trajectories using the target policy starting from the given state and
averaging the corresponding returns, i.e., E[

∑
t≥0 γ

trt|s0 = s] ≈
∑k

i=1 Gi/k. This is equivalent to
a linear regression problem, where we first map trajectories to a vector by ϕs(τ) = I(s0 = s) (vector
of length |S| with elements 1 if the starting state is s or 0 otherwise), and minimize the squared error

L(v) =

k∑
i=1

(∑
s

vsϕs(τi)−Gi

)2
 , (13)

where v is the vector of linear regression coefficients vs. Similarly, we can construct feature maps
such as ϕs,a(τ) = I(s0=s, a0=a) and solve the regression problem to arrive at Qπ(s, a). This
view shows that MC methods can be seen as linear regression problems with different feature
maps. Furthermore, it shows that MC methods utilize rather little information from given trajec-
tories (only the starting state(-action)). An interesting question is whether it is possible to construct
features that include more information about the trajectory while retaining the usefulness of the co-
efficients. Indeed, DAE (Equation 2, with n → ∞) can be seen as utilizing two different feature
maps (ϕs,a(τ) =

∑∞
t=0 γ

tI(st=s, at=a) and ϕs(τ) = I(s0=s)), which results in a vector of size
|S| × |A| that counts the multiplicity of each state-action pair in the trajectory and a vector of size
|S| indicating the starting state. This suggests that DAE can be understood as a generalization of
MC methods by using more informative features.

To see how using more informative features can enhance MC methods, let us consider an example
(see Figure 3) adapted from Szepesvári (2010). This toy example demonstrates a major drawback of
MC methods: it does not utilize the relationship between states 2 and 3, and therefore, an accurate
estimate of V̂ (3) does not improve the estimate of V̂ (2). TD methods, on the other hand, can
utilize this relationship to achieve better estimates. DAE, similar to TD methods, also utilizes the
relationship between V̂ (2) and Â(3, ·) to achieve faster convergence on V̂ (2). In fact, in this case,
DAE converges even faster than TD(0) as it can exploit the sampling policy to efficiently estimate
Â(3, ·), whereas TD(0) has to rely on sample means to estimate V̂ (3).

Similarly, we can compare DAE to Off-policy DAE, which further utilizes ϕs,a,s′(τ) =∑∞
t=0 γ

tI(st=s, at=a, st+1=s′), in stochastic environments. See Figure 4 for another example.
Here, we observe that both Off-policy DAE variants can outperform DAE even in the on-policy set-
ting. This is because Off-policy DAE can utilize B̂(4, ·, ·) across different trajectories to account for
the variance caused by the stochastic transitions at state 4.

1This is not to be confused with the features of states, which are commonly used to approximate value
functions.
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ru=1

ru=0
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r=0

r=0

r=1

r=0
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1.0

1.5

V̂
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)
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0.5

1.0

1.5

V̂
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DAE

OffDAE

OffDAE(oracle)

Figure 4: Left: An MDP extended from Figure 3. Instead of terminating at state 4, the agent
transitions randomly to state 5 or 6 with equal probabilities. Both states 5 and 6 have a single action,
with rewards 1 and 0, respectively. State 7 is the terminal state. Right: We compare the values
(with uniform policy) estimated by DAE, Off-policy DAE (learned transition probabilities), and Off-
policy DAE (oracle, known transition probabilities). Lines and shadings represent the average and
one standard deviation of the estimated values over 1000 random seeds. The dashed line represents
the true value V (1) = V (2) = 1.

4.2 THE UNCORRECTED METHOD

The uncorrected method (simply ”Uncorrected” in the following) updates its value estimates using
the multi-step target

∑n
t=0 γ

trt + γn+1Vtarget(sn+1) without any off-policy correction. Hernandez-
Garcia & Sutton (2019) showed that Uncorrected can achieve performance competitive with true
off-policy methods in deep RL, although it was also noted that its performance may be problem-
specific. Here, we examine how Off-policy DAE, DAE, and Uncorrected relate to each other, and
give a possible explanation for when Uncorrected can be used.

We first rewrite the objective of Off-policy DAE (Equation 11) into the following form:(
V̂ (s0)−

( n∑
t=0

γtrt + γn+1Vtarget(sn+1)︸ ︷︷ ︸
Uncorrected

−
n∑

t=0

γtÂt

︸ ︷︷ ︸
DAE

−
n∑

t=0

γt+1B̂t

))2
, (14)

where the underbraces indicate the updating targets of the respective method. We can see now there
is a clear hierarchy between these methods, where DAE is a special case of Off-policy DAE by
assuming B̂ ≡ 0, and Uncorrected is a special case by assuming both Â ≡ 0 and B̂ ≡ 0.

The question is, then, when is Â ≡ 0 or B̂ ≡ 0 a good assumption? Remember that, in deterministic
environments, we have Bπ ≡ 0 for any policy π; therefore, B̂ ≡ 0 is a correct estimate of Bπ ,
meaning that DAE can be directly applied to off-policy data when the environment is deterministic.
Next, to see when Â ≡ 0 is useful, remember that the advantage function can be interpreted as the
causal effect of an action on the return. In other words, if actions in the environment tend to have
minuscule impacts on the return, then Uncorrected can work with a carefully chosen backup length.
This can partially explain why Uncorrected worked in environments like Atari games (Bellemare
et al., 2013; Gruslys et al., 2017; Hessel et al., 2018) for small backup lengths, because the actions
are fine-grained and have small impact (A ≈ 0) in general. In Appendix C, we provide a concrete
example demonstrating how ignoring the correction can lead to biased results.

5 EXPERIMENTS

We now compare (1) Uncorrected, (2) DAE, (3) Off-policy DAE, and (4) Tree Backup (Precup et al.,
2000) in terms of policy optimization performance using a simple off-policy actor-critic algorithm.
By comparing (1), (2), and (3), we test the importance of Â and B̂ as discussed in Section 4.2.
Method (4) serves as a baseline of true off-policy method, and Tree Backup was chosen because,
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Figure 5: Normalized training curves aggregated over deterministic (left) and stochastic (right) en-
vironments. Scores were first normalized using the PPO-DAE baseline and then aggregated over
20 random seeds, environments, and backup lengths. Lines and shadings represent the means and 1
standard error of the means, respectively. The dotted horizontal lines shows the PPO-DAE baseline.

like Off-policy DAE, it also assumes no knowledge of the behavior policy, in contrast to importance
sampling methods. We compare these methods in a controlled setting, by only changing the critic
objective with all other hyperparameters fixed.

Environment We perform our experiments using the MinAtar suite (Young & Tian, 2019). The
MinAtar suite consists of 5 environments that replicate the dynamics of a subset of environments
from the Arcade Learning Environment (ALE) (Bellemare et al., 2013) with simplified state/action
spaces. The MinAtar environments have several properties that are desirable for our study: (1)
Actions tend to have significant consequences due to the coarse discretization of its state/action
spaces. This suggests that ignoring other actions’ effects (Â), as done in Uncorrected, may have a
larger impact on its performance. (2) The MinAtar suite includes both deterministic and stochastic
environments, which allows us to probe the importance of B̂.

Algorithm 1 A Simple Actor-Critic Algorithm
Require: backup

1: Initialize Aθ, Vθ, Bθ, πθ

2: Initialize CVAE qϕ̃, pθ̃
3: Initialize D ← {}, θEMA ← θ
4: for t = 0, 1, 2, . . . do
5: Sample (s, a, r, s′) ∼ πθ

6: D ← D ∪ {(s, a, r, s′)}
7: Sample batch B trajectories from D
8: if backup is Off-policy DAE then
9: Train CVAE (Eq 12) using B

10: Approximate Bθ(s, a, s
′)

11: end if
12: Compute Lcritic (Eq. 14)
13: Compute Lactor

= −Ea∼πθ
[Â] + βKLDKL(πθ||πθEMA)

14: Train Lcritic + Lactor using B
15: θEMA ← τθEMA + (1− τ)θ
16: end for

Agent Design We summarize the agent in Al-
gorithm 1. Since (Off-policy) DAE’s loss func-
tion depends heavily on the target policy, we
found that having a smoothly changing target pol-
icy during training is critical, especially when
the backup length is long. Preliminary experi-
ments indicated that using the greedy policy, i.e.,
argmaxa∈A Â(s, a), as the target policy can lead
to divergence, which is likely due to the phe-
nomenon of policy churning (Schaul et al., 2022).
To mitigate this, we distill a policy by maximiz-
ing Ea∼πθ

[Â(s, a)], and smooth it with exponen-
tial moving average (EMA). The smoothed policy
πEMA is then used as the target policy. Addition-
ally, to avoid premature convergence, we include
a KL-divergence penalty between πθ and πEMA,
similar to trust-region methods (Schulman et al.,
2015a). For critic training, we also use an EMA
of past value functions as the bootstrapping tar-
get. For Off-policy DAE, we additionally learn a
CVAE model of the environment. Since learning
the dynamics of the environment may improve sample efficiency by learning better representations
(Gelada et al., 2019; Schwarzer et al., 2020; Hafner et al., 2020), we isolate this effect by training
a separate network for the CVAE such that the agent can only query p(z|s, a, s′) and p(z|s, a). See
Appendix D for more details about the algorithm and hyperparameters.
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Results Each agent is trained for 10 million frames, and evaluated by averaging the undiscounted
scores of 100 episodes obtained by the trained policy. For comparison, we use the scores reported
by Pan et al. (2022) as an on-policy baseline, which were trained using PPO and DAE (denoted
PPO-DAE). The results are summarized in Figure 5. Additional results for individual environments
and other ablation studies can be found in Appendix D. We make the following observations: (1)
For deterministic environments, both DAE variants performed similarly, demonstrating that B̂ is ir-
relevant. Additionally, both DAE variants converged to similar scores as Tree backup, albeit slightly
slower, suggesting that they can compete with true off-policy methods. Uncorrected, on the other
hand, performed significantly worse than DAE, suggesting that Â is crucial in off-policy settings, as
the two methods only differ in Â. (2) For stochastic environments, we see a clear hierarchy between
Uncorrected, DAE and Off-policy DAE, suggesting that both Â and B̂ corrections are important.
Notably, Tree backup performs significantly worse than both DAE variants in this case, while only
being slightly better than Uncorrected.

6 RELATED WORK

Advantage Function The advantage function was originally proposed by Baird (1994) to address
small time-step domains. Later, it was shown that the advantage function can be used to relate
value functions of different policies (Kakade & Langford, 2002) or reduce the variance of policy
gradient methods (Greensmith et al., 2004). These properties led to wide adoption of the advantage
function in modern policy optimization methods (Schulman et al., 2015a;b; 2017; Mnih et al., 2016).
More recently, the connection between causal effects and the advantage function was pointed out by
Corcoll & Vicente (2020), and further studied by Pan et al. (2022), who also proposed DAE.

Multi-step Learning Multi-step methods (Watkins, 1989; Sutton, 1988) have been widely
adopted in recent deep RL research and shown to have a strong effect on performance (Schulman
et al., 2015b; Hessel et al., 2018; Wang et al., 2016a; Gruslys et al., 2017; Espeholt et al., 2018;
Hernandez-Garcia & Sutton, 2019). Typical off-policy multi-step methods include importance sam-
pling (Munos et al., 2016; Rowland et al., 2020; Precup et al., 2001), truncating (diminishing) off-
policy actions (Watkins, 1989; Precup et al., 2000), a combination of the two (De Asis et al., 2018),
or simply ignoring any correction.

Afterstates The idea of dissecting transitions into a two-step process dates at least back to Sutton
et al. (1998), where afterstates (equivalent to nature’s states in Figure 1) were introduced. It was
shown that learning the values of afterstates can be easier in some problems. Similar ideas also
appeared in the treatment of random events in extensive-form games, where they are sometimes
referred to as ”move by nature” (Fudenberg & Tirole, 1991).

Luck Mesnard et al. (2021) proposed to use future-conditional value functions to capture the effect
of luck, and demonstrated that these functions can be used as baselines in policy gradient methods
to reduce variance. In this work, we approached this problem from a causal effect perspective and
provided a quantitative definition of luck (see Equation 10).

7 DISCUSSION

In the present work, we demonstrated how DAE can be extended to off-policy settings. We also re-
late Off-policy DAE to previous methods to better understand how it can speed up learning. Through
experiments in both stochastic and deterministic environments, we verified that the proposed off-
policy correction is beneficial for policy optimization.

One limitation of the proposed method lies in enforcing the B̂ constraint in stochastic environments.
In the present work, this was approximated using CVAEs, which introduced computational over-
head and additional hyperparameters. One way to reduce computational overhead and scale to high
dimensional domains is to learn a value equivalent model (Antonoglou et al., 2021; Grimm et al.,
2020). We will leave it as future work to explore more efficient ways to enforce the constraint.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS
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Hsiao-Ru Pan, Nico Gürtler, Alexander Neitz, and Bernhard Schölkopf. Direct advantage estima-
tion. Advances in Neural Information Processing Systems, 35:11869–11880, 2022.

Doina Precup, Richard S. Sutton, and Satinder P. Singh. Eligibility traces for off-policy policy
evaluation. In Proceedings of the Seventeenth International Conference on Machine Learning,
ICML ’00, pp. 759–766, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.
ISBN 1558607072.

Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. Off-policy temporal-difference learning
with function approximation. In ICML, pp. 417–424, 2001.

Mark Rowland, Will Dabney, and Rémi Munos. Adaptive trade-offs in off-policy learning. In
International Conference on Artificial Intelligence and Statistics, pp. 34–44. PMLR, 2020.
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A PROOF OF THEOREM 1

Theorem (Off-policy DAE). Given a behavior policy µ and a target policy π and backup length
n ≥ 0. Let Ât = Â(st, at), B̂t = B̂(st, at, st+1), and the constrained squared error

L(Â, B̂, V̂ ) = E
µ

( n∑
t=0

γt
(
rt − Ât − γB̂t

)
+ γn+1V̂ (sn+1)− V̂ (s0)

)2


subject to

{∑
a∈A Â(s, a)π(a|s) = 0 ∀s ∈ S∑
s′∈S B̂(s, a, s′)p(s′|s, a) = 0 ∀(s, a) ∈ S ×A

,

(15)

then (Aπ, Bπ, V π) is a minimizer of the above problem. Furthermore, the minimizer is unique if µ
is sufficiently explorative (i.e., non-zero probability of reaching all possible transitions (s, a, s′)).

Proof. Since

0 ≤ L(Aπ, Bπ, V π) = E
µ

( n∑
t=0

γt(rt −Aπ
t − γBπ

t ) + γn+1V π(sn+1)− V π(s0)

)2
 = 0,

(16)
and both

∑
a∈A π(a|s)Aπ(s, a) = 0 and

∑
s′∈S p(s′|s, a)Bπ(s, a, s′) = 0 constraints are satisfied,

(Aπ, Bπ, V π) is a minimizer of the problem. For uniqueness, we assume the behavior policy is
sufficiently explorative such that any sequence (s0, a0, r0, ...sn+1) has non-zero probability of being
visited. Now, suppose there exists (A′, B′, V ′) that also minimizes L, i.e., L(A′, B′, V ′) = 0, then
for any sequence (s0, a0, ...st+1), we must have

n∑
t=0

γt(rt −A′
t − γB′

t) + γn+1V ′(sn+1)− V ′(s0) = 0, (17)

otherwise L(A′, B′, V ′) ̸= 0. If we take the conditional expectation over (a0, s1, a1, ...sn+1) con-
ditioned on s0 using the target policy π, then

V ′(s0) = E
π
[

n∑
t=0

γt(rt −A′
t − γB′

t) + γn+1V ′(sn+1)|s0] (18)

= E
π
[

n∑
t=0

γtrt + γn+1V ′(sn+1)|s0], (19)

which means that V ′ satisfies the Bellman Equation. Therefore V ′ = V π uniquely. Similarly, if we
take the expectation over (s1, a1, ...sn+1) conditioned on s0, a0, then

A′(s0, a0) = r(s0, a0) + E
π
[

n∑
t=1

γtrt + γn+1V π(sn+1)|s0, a0]− V π(s0) = Aπ(s0, a0) (20)

Finally, if we take the expectation over (a1, s2, ..., st+1) conditioned on s0, a0, s1, then

γB′(s0, a0, s1) = r(s0, a0)−Aπ(s0, a0) + E
π
[

n∑
t=1

γt′rt′ + γt+1V π(st+1)|s0, a0, s1]− V π(s0)

(21)
= γ(V π(s1)− E[V π(s1)|s0, a0]) = γBπ(s0, a0, s1). (22)

Similarly, we get (A′, B′, V ′) = (Aπ, Bπ, V π) for all (st′ , at′ , st′+1) with 0 ≤ t′ ≤ n by re-
peatedly taking the conditional expectations over the sequence. By the assumption that µ has
non-zero probability of visiting any sequence, we have (A′, B′, V ′) = (Aπ, Bπ, V π) for all
(s, a, s′) ∈ S ×A× S .

Remarks: (1) While we used the squared error as the objective function in the theorem, it can be
replaced with an arbitrary metric in R, as the proof does not rely on properties of the squared error.
(2) For uniqueness, the condition on the behavior policy µ can be relaxed if we only care about
states/actions covered by the target policy π. In that case, we only need the coverage of µ to include
the coverage of π.
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B DETAILS OF FIGURE 3 AND FIGURE 4

In this example, we compare the sample efficiency of MC, Batch TD(0) and DAE. We note that there
are only 4 possible trajectories in this environment, depending on the starting state (1 or 2) and the
action chosen at state 3 (u or d). We denote the number of trajectories starting from i and choosing
action a ∈ {u, d} by ni,a, and ni = ni,u + ni,d. The trajectories were sampled using the uniform
policy, i.e., π(u|3) = π(d|3) = 0.5. In the following list, we summarize the estimates from each
method.

• MC: V̂ (1) =
n1,u

n1
, V̂ (2) =

n2,u

n2

• Batch TD(0): V̂ (1) = V̂ (2) = V̂ (3) =
n1,u+n2,u

n1+n2

• DAE: The minimizer of

L(V̂ (1), V̂ (2), Â(3, u), Â(3, d)) = n1,u(1− Â(3, u)− V̂ (1))2 + n1,d(0− Â(3, d)− V̂ (1))2

+ n2,u(1− Â(3, u)− V̂ (2))2 + n2,d(0− Â(3, d)− V̂ (2))2

subject to Â(3, u) + Â(3, d) = 0 (since the sampling policy is uniform).

One can use the method of Lagrange multiplier to solve the DAE problem and arrive at the following
linear equations: (

n1,u − n1,d n1 0
n2,u − n2,d 0 n2

(n1,u + n2,u) n1,u n2,u

)Â(3, u)

V̂ (1)

V̂ (2)

 =

(
n1,u

n2,u

n1,u + n2,u

)
, (23)

Note that there are only 3 equations, since Â(3, u) + Â(3, d) = 0. Additionally, the solution is
unique only when both n1 > 0 and n2 > 0, otherwise the first row or the second row of the matrix
would be 0. For simplicity, we use the pseudoinverse to compute the solution:Â(3, u)

V̂ (1)

V̂ (2)

 =

(
n1,u − n1,d n1 0
n2,u − n2,d 0 n2

(n1,u + n2,u) n1,u n2,u

)+(
n1,u

n2,u

n1,u + n2,u

)
, (24)

where + denotes the pseudoinverse. This explains why the DAE estimates in Figure 3 are slightly
skewed towards 0 at the beginning. Figure 4 can be obtained similarly by adding the B̂ terms to the
DAE loss. One difference is that, in the case of learned transition probabilities, the B̂ constraint was
enforced based on the estimated transition probabilities instead of a fixed distribution.
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1

2
p = 0.5

r = 0
p = 0.5

ru = 1

rd = 0

Figure 6: A simple MDP with S = {1, 2}. State 1 has only a single action, which can lead to state
2 or the terminal state with equal probabilities. State 2 has two actions u and d with rewards 1 and
0, respectively, and both actions lead to the terminal state.

C COUNTEREXAMPLE

In this section, we construct an example to demonstrate that naively applying DAE to off-policy data
can lead to biased results. Consider the environment in Figure 6. Suppose the data is collected with
a behavior policy µ and we wish to estimate values for a target policy π. If we apply DAE directly
to this problem without any off-policy correction, then the loss is equal to

L(Â, V̂ ) =
1

2
µ(u|2)

(
1− Â(2, u)− V̂ (1)

)2
+

1

2
µ(d|2)

(
0− Â(2, d)− V̂ (1)

)2
+

1

2
(0− V̂ (1))2,

(25)

since there are only three possible trajectories in this environment. Now, if we include the constraint
that

∑
a Â(2, a)π(a|2) = 0, then the problem can be solved by the method of Lagrange multiplier

using the following Lagrangian:

L(Â, V̂ ) + λ
∑
a

Â(2, a)π(a|2). (26)

The minimizer (A∗, V ∗) = argminL(Â, V̂ ) is given by:
V ∗(1) = π(u|2)

1+
π(u|2)2
µ(u|2) +

π(d|2)2
µ(d|2)

λ = V ∗(1)

A∗(2, u) = 1− V ∗(1)− V ∗(1)π(u|2)
µ(u|2)

A∗(2, d) = 0− V ∗(1)− V ∗(1)π(d|2)
µ(d|2)

(27)

meaning that V ∗(1) ̸= V π(1) = π(u|2)
2 , and A∗ ̸= Aπ if π ̸= µ. One can also verify that, if π = µ

(on-policy), then (V ∗, A∗) = (V π, Aπ).
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D DETAILS OF THE MINATAR EXPERIMENTS

D.1 PSEUDOCODE

The more detailed pseudocode of the proposed actor-critic method is provided in Algorithm 2. Here
we note some details about the training process. Unlike typical methods that store 1-step transitions
in the replay buffer, our buffer consists of n-step trajectories. When computing the critic loss, we
also compute the loss for each sub-trajectory as in Pan et al. (2022). For example, if (s0, a0, ..., sn)
is a sample trajectory, we accumulate the critic loss for all sub-trajectory (si, ai, ..., sn) for all i ∈
{0, 1, 2, ..., n− 1}. Also, to speed up training, we use parallel actors to sample transitions from the
environments.

Algorithm 2 A simple Off-policy Actor-Critic Algorithm
Require: backup ∈{Uncorrected, DAE, Off-policy DAE, Tree}
Require: n (backup length)

1: Initialize actor-critic components Aθ(s, a), Vθ(s), Bθ(s, a, z), πθ(a|s)
2: Initialize CVAE qϕ̃(z|s, a, s′), pθ̃(z|s, a), pθ̃(s′|s, a, z)
3: θEMA ← θ
4: D = {}
5: Dn = {}
6: for t = 0, 1, 2, . . . do
7: Sample transition (s, a, r, s′) with policy πθ

8: Dn ← Dn ∪ {(s, a, r, s′)}
9: if s′ is terminal or |Dn-step| = n then

10: D ← D ∪ {concatenate(Dn)}
11: Dn ← {}
12: end if
13: if t+ 1 mod steps per update = 0 then
14: Sample batch of trajectories B from D
15: if backup = Off-policy DAE then
16: Train qϕ̃(z|s, a, s′), pθ̃(z|s, a), pθ̃(s′|s, a, z) using B by Equation 12
17: Bθ(s, a, s

′)← Ez∼qϕ̃(·|s,a,s′)[Bθ(s, a, z)|s, a, s′]− Ez∼pθ̃(·|s,a)[Bθ(s, a, z)|s, a]
18: end if
19: Aθ(s, a)← Aθ(s, a)− Ea∼πθEMA

[Aθ(s, a)]
20: Compute critic loss Lcritic according to backup (Eq. 14 or Eq. 28)
21: Anormalized ← stop gradient(Aθ(s, a)/

√
Var[Aθ])

22: Compute actor loss Lactor = −Ea∼πθ
[Anormalized] + βKLDKL(πθ||πθEMA)

23: Train Lcritic + Lactor with Adam (Kingma & Ba, 2014)
24: θEMA ← τθEMA + (1− τ)θ
25: end if
26: end for

The n-step Tree backup Q-target is defined recursively by:

Qn
target(st, at) = r(st, at)+γ

 ∑
a̸=at+1

π(a|st+1)Qtarget(st+1, a) + π(at+1|st+1)Q
n−1
target(st+1, at+1)


(28)

where Qtarget = VθEMA +AθEMA in our case.
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state
10× 10× n

3x3 Conv2d, 128

3x3 Conv2d, 128

Linear, 1024

Linear, 1 Linear, |A| Linear, |A| Linear, |A| × |Z|

π(a|s) B(s, a, z)A(s, a)V (s)

Figure 7: Network architecture for the actor-critic. Each hidden layer is followed by a ReLU activa-
tion function. The dashed line indicates that gradients are stopped.

D.2 ACTOR-CRITIC NETWORK

In our experiments, we use a convolutional neural network followed by multiple heads to approxi-
mate Aθ, Bθ, Vθ, and πθ (see Figure 7)(Mnih et al., 2016; Wang et al., 2016b). Since we train both
the actor and the critic using a single network simultaneously, to avoid interference between the two
losses (Lcritic and Lactor), we simply use the representation learned from by the critic to train the actor
by stopping the gradients from Lactor to the shared network. This eliminates the need to balance for
the different loss functions.
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D.3 CONDITIONAL VARIATIONAL AUTOENCODER (CVAE) NETWORK

We illustrate the training process and the network architecture in Figure 8. First, we use
a small discrete latent space Z which allows us to compute expectations over Z efficiently.
This also alleviates the need to use heuristics such as VQ-VAE (van den Oord et al., 2017)
or Gumbel-Softmax (Jang et al., 2016; Maddison et al., 2016), because we can now compute
Ez∼qϕ̃(·|s,a,s′)[log pθ̃(s

′|s, a, z)] =
∑

z∈Z qϕ̃(z|s, a, s′) log pθ̃(s′|s, a, z) exactly. Second, to elim-
inate the need to balance between KL-divergence loss and the reconstruction loss, the conditional
prior is trained using the representation from the encoder with gradients stopped. This is similar to
the approach in VQ-VAE where a prior is trained separately. Finally, we observed that the posterior
can sometimes collapse early in training. To mitigate this, we add a small entropy penalty for the
posterior. Combining everything together, we have the loss function for CVAE:

LCVAE(θ̃, ϕ̃; s, a, s
′) = DKL(qϕ̃(z|s, a, s

′)||pθ̃(z|s, a))− E
z∼qϕ̃(·|s,a,s′)

[log pθ̃(s
′|s, a, z)]

−βentH(qϕ̃(·|s, a, s
′))

where H(·) is the entropy, and βent controls the strength of the entropy penalty.

D.4 HYPERPARAMETERS

In Table 1, we summarize the hyperparameters used in the MinAtar experiments. In general, the
agent was designed to have very few hyperparameters to reduce potential confounding when com-
paring different backup methods. Our preliminary experiments found that the effects of the hyper-
parameters to be agnostic to backup methods, except for τ which tend to have a larger impact on
Off-policy DAE and DAE, which is likely due to the heavy dependence on the policy when training
with DAE-like loss functions.

For CVAE training, we found the Adam’s suggested β = (0.9, 0.999) can sometimes lead to diver-
gence, and lowering it to (0.5, 0.9) can greatly improve stability.

Table 1: List of hyperparameters. Note that for Off-policy DAE, there are two separate optimizers
used for actor-critic and CVAE training. †: not used in Pan et al. (2022).

Group Parameter Value

Environment setting
Sticky Action False

Difficulty Ramping False
Maximum Episode Length† 108000 frames

Shared
(actor-critic training)

Discount γ 0.99
Parallel actors 128

Initial steps before training 25000 frames
Replay Buffer Size 1000000 frames

Backup Length 8/16/32
Optimizer Adam(Kingma & Ba, 2014)

Learning rate 0.00025 (linearly annealed to 0)
Adam β (0.9, 0.999)
Adam ϵ 10−4

Env. steps per update 32
Batch Size 1024 frames

βKL 3.0
τ (EMA weight) 0.999

Off-policy DAE only
(CVAE training)

Latent size |Z| 16
Optimizer Adam

Learning rate 0.00025
Adam β (0.5, 0.9)
Adam ϵ 10−8

βent 0.0001
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3x3 Conv2d, 128
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Linear, |Z|

avg. pooling

qϕ̃(z|s, a, s′)
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state ŝ′
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DKL(qϕ̃(z|s, a, s′)||pθ̃(z|s, a))

Lrecon(s
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3x3 Conv2d, 128
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Batch Norm

3x3 Conv2d

Batch Norm

3x3 Conv2d

+

SiLU
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Residual
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Figure 8: Network architecture and the training graph for the CVAE. Dashed lines indicate that
gradients are stopped. The Decoder uses the same architecture as the encoder with orders reversed
and convolutions replaced with transposed convolutions. Softmax is applied to both qϕ̃(z|s, a, s′)
and pθ̃(z|s, a)) to ensure they are probability distributions over Z (note the Z is a discrete space
in this case). We use binary cross entropy for the reconstruction loss, since states in the MinAtar
environments are binary images.
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Figure 9: Normalized training curves for each backup method and backup length (from left to right:
8, 16, 32). The dashed horizontal line represents the PPO-DAE baseline.

D.5 MORE RESULTS

In the MinAtar experiments, normalized score were calculated by scorenorm = score−baseline
baseline , where

we use the scores reported by Pan et al. (2022) as baselines. We note that in the MinAtar suite,
Breakout2 and Space Invaders are deterministic environments, while Asterix, Freeway, and Seaquest
are stochastic environments. Interestingly, we found that Off-policy DAE tends to slightly outper-
form DAE on Space Invaders (see Figure 11). This is likely because Space Invaders is partially
observable, and modeling the transitions as stochastic can be helpful.

Table 2: Score comparison between different methods and backup lengths. Results were aggregated
over 20 random seeds. Numbers represent (mean)±(1 standard error).

Environment N Backup Method
Uncorrected DAE Off-policy DAE Tree

Asterix
8 4.5± 0.2 155.6± 5.4 161.5± 5.9 44.3± 1.1

16 2.5± 0.1 194.2± 4.8 207.0± 9.2 39.0± 1.4
32 2.0± 0.1 215.4± 8.1 268.9± 14.0 39.0± 1.3

Breakout
8 5799.9± 611.3 9573.0± 250.1 9423.3± 351.9 9411.4± 505.5

16 5220.1± 448.7 8506.1± 476.6 8887.9± 429.0 10069.0± 288.8
32 3179.3± 661.8 8119.8± 617.5 7372.1± 582.0 10139.8± 338.1

Freeway
8 5.5± 1.8 55.1± 0.1 61.9± 0.6 2.2± 0.4

16 16.8± 1.3 57.6± 0.1 62.3± 0.3 4.1± 1.0
32 8.2± 0.8 58.8± 0.1 62.9± 0.3 5.1± 0.8

Seaquest
8 13.5± 1.5 413.5± 25.1 839.4± 48.3 312.3± 16.4

16 4.1± 0.1 594.3± 36.3 1171.6± 66.6 286.4± 11.6
32 4.0± 0.1 821.6± 52.5 1225.3± 63.7 266.2± 19.1

SpaceInvaders
8 5561.5± 452.3 15116.1± 377.4 18086.9± 419.1 15615.3± 563.0

16 1180.3± 145.0 13478.7± 391.2 16756.8± 460.4 16009.6± 508.1
32 307.7± 32.0 12560.4± 441.4 14970.3± 348.9 17374.2± 584.9

D.6 WITH AND WITHOUT TARGET NETWORK

While Equation 11 suggests that a separate target network for critic training is not necessary, in
practice, we have found that using a target network leads to better performance. See Figure 12 for
results regarding the effect of target networks. In general, we found the critic loss to be lower when
using target networks. One possible explanation is that using target networks results in biased, but
lower variance estimates, which in turn makes the loss easier to optimize. Further investigation is
required to understand the tradeoffs.

2The initial states in Breakout are random, but the transitions are stochastic.
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Figure 10: Training curves of each environment.
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Figure 11: Distributions of the scores obtained by each method under different backup lengths.

0 5 10
0

100

200

300

400

500
Asterix

0 5 10
0

2000

4000

6000

8000

10000
Breakout

0 5 10

20

40

60

Freeway

0 5 10
0

500

1000

1500

2000
Seaquest

0 5 10
0

5000

10000

15000

20000
SpaceInvaders

Frames (Million)

Sc
or

e

With Target Without Target

Figure 12: Off-policy DAE with and without target networks.
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D.7 COMPUTATIONAL RESOURCES

All experiments were performed on an internal cluster of NVIDIA A100 GPUs. Training an agent
takes approximately 2 hours, depending on the backup method and the environment. For Off-policy
DAE, the training time is significantly longer (approx. 15 hours) due to CVAE training. The increase
in training time is largely due to the use of a large residual network for the CVAE, which we found
to be easier to optimize compared to smaller convolutional networks.
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