
Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 TRAINING DETAILS

A.1.1 HYPERPARAMETERS

All images are cropped to 224x224 and augmented by random resizing with a factor between 0.8
and 1 and random horizontal flips. All models are trained with a batch size of 128 using Adam ?
with a learning rate of 0.001 with default betas, and evaluated with a batch size of 32. This is so that
methods relying on optimizing a self-supervised criterion (TENT, TTT) will have approximately the
same number of updates on the train set and the test set. For each model, we use early stopping on the
validation set. We observed faster convergence on the validation set for non-hebbian models (within
20 epochs) than for hebbian models (within 50 epochs). Setting early stopping parameters accordingly,
for non-hebbian models we train up to 25 epochs, with a patience of 5 epochs. For Hebbian models we
train up to 50 epochs, with a patience of 10 epochs. For each method, we conducted hyperparameter
searches on learning rates: 10�1, 10�2, 10�3 on seen and unseen combinations without continual
shift. We used these hyperparameters for all continual shift runs. For TTT and TENT, we conducted
a hyperparameter search on the test-time learning rate: 10�2, 10�3, 10�4 from ranges used in their
papers on other datasets. We used these hyperparameters for all continual shift runs.

A.1.2 TENT

We use Adam at test time, with a learning rate of 10�4 and default beta parameters.

A.1.3 TTT

We use SGD at test time, with a learning rate of 10�4 and a momentum of 0.9.

A.1.4 HEBBIAN

At training time, in order to regularize the model, we reset the weights for each output hebbian
neuron W t

j by drawing randomly from the unit sphere every 32 examples. At test time, we reset
the weights every 64 examples in the same way. During training, we perform BPTT over batches
by detaching gradients for W t

i,j and �W
t
i,j every batch so memory use is constant per batch. We

initialize the Hebbian update parameters from positive uniform distributions: ⌘i,j ⇠ U [0, 1e�3] and
Ai,j , Bi,j , Ci,j , Di,j , Ei,j ⇠ U [0, 1]

A.1.5 CLASS-SHIFT FINETUNED MODELS

The adaptive models fine-tuned with a class-shift ordering (ARM-CML(Cls:25x10), ARM-
BN(Cls:25x10), LSTM(Cls:25x10)) are first initialized from the relevant model (ARM-CML, ARM-
BN, LSTM, respectively) trained with i.i.d. sampling. We then freeze the backbone and fine-tune only
the adaptive component (contextual network, batch-normalization parameters, LSTM, respectively)
and the predictor heads on the training set (with a learning rate of 10�4), under a class-shift ordering.
Results in Tab ??. are from models finetuned on the training set with 25 tasks with 10 occurrences
each. For the experiments sweeping over Occurrences (Figs 1-4), LSTM-tuned is finetuned on the
training set with the same class shift ordering parameters (of tasks, of occurrences) that it is tested
on.

A.1.6 TRAINING COST

Each model was trained on a single Nvidia RTX 2080ti, taking between 3 (for the static baseline) and
16 hours (for the Hebbian method).

A.2 IMAGE CORRUPTIONS

We evaluate our methods on Cifar-10 Corrupted (with the highest level of corruption - level 5) as
in Sun et al. (2020). LSTM is competitive with UDA-SS on elastic; outperforming on glass, zoom,
pixelate, and jpeg. LSTM is competitive with TTT on zoom, elastic, and pixelate; outperforming on

13

Under review as a conference paper at ICLR 2022

Method orig gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg

UDA-SS 91.00 71.80 73.50 79.20 84.40 56.30 75.50 76.20 75.00 75.10 82.80 87.30 88.40 77.90 79.70 77.40
TTT 91.80 74.20 77.40 69.40 59.40 65.60 81.7 82.90 80.00 82.00 83.10 88.80 84.40 78.40 81.90 78.80

LSTM 84.15 66.13 67.70 42.66 78.57 69.07 70.37 81.33 71.12 69.67 57.34 78.64 29.32 76.39 79.88 79.21
Hebb 81.08 59.26 61.96 40.51 77.26 65.50 69.64 79.06 67.51 66.65 54.77 74.31 27.82 73.37 76.76 76.83

Table 3:

defocus, glass, and jpeg. Hebb is competitive with UDA-SS on jpeg; outperforming on glass and
zoom. Hebb is competitive with TTT on glass and zoom; outperforming on defocus. LSTM is more
robust than Hebb across a set of corruptions. Both methods perform significantly worse on pixel-level
noise (Gauss, shot, impulse) and contrast corruption, while performing well on smoother corruptions
(glass, zoom, pixelate, defocus, jpeg, elastic.) We believe these results demonstrate:

1. Methods that learn to adapt (LSTM Hebb) can perform well on certain kinds of image
corruptions that are smoother in their effects on the image.

2. Improved performance on the image corruption task is not linked to improved performance
on semantic shift, and vice versa. These tasks test different abilities of methods in adapting
to new distributions.

A.3 TAU NORM CLASSIFIER ABLATION

:

No Semantic Shift
(Seen Combinations)

Static Shift
(Unseen Combinations)

⌧ Att Cls Att+Cls Att Cls Att+Cls

0.1 28.02 34.50 14.70 13.22 16.77 1.67
0.2 28.05 35.54 14.69 13.09 16.75 1.73
0.3 28.10 34.45 14.65 13.00 16.67 1.76
0.4 27.95 34.41 14.51 12.94 16.57 1.78
0.5 27.99 34.31 14.57 12.98 16.49 1.83
0.6 27.89 34.32 14.54 12.96 16.42 1.88
0.7 27.63 34.25 14.34 12.95 16.33 1.90
0.8 27.64 34.18 14.27 12.94 16.30 1.96
0.9 27.43 34.16 14.20 12.92 16.22 1.99
1.0 27.47 34.18 14.26 12.78 16.18 1.99

14

	Introduction
	Related Work
	Settings
	Methods

	Semantic Domain Shift
	Static Shift
	Continual Shift

	Experiments
	Experimental Setup
	Methods Evaluated
	Experimental Results
	Adapting to Static Shift
	Adapting to Continual Class Shift
	Adapting to Continual Class-Attribute Shift

	Conclusion
	Appendix
	Training details
	Hyperparameters
	TENT
	TTT
	Hebbian
	Class-shift finetuned models
	Training Cost

	Image Corruptions
	Tau Norm Classifier Ablation

