
Appendices to448

“Embodied Lifelong Learning for449

Task and Motion Planning”450

Anonymous Author(s)451

A Experimental Details452

This section provides additional details about the experiments in Section 5 in the main paper.453

A.1 Network Architectures and Diffusion Models454

All network architectures used throughout our work were simple multi-layer perceptrons with two455

hidden layers of 256 nodes each. For our nested models, the hidden layers were shared between the456

generative model pψ and the auxiliary predictor f , and only the output layer was separate—note457

that there was no sharing of parameters between specialized pℓ and generic p samplers. All training458

proceeded for 1,000 epochs over the training data in mini-batches of size 512 (when that many459

samples were available, and a single batch otherwise), using an Adam optimizer with the default460

hyperparameters of PyTorch, including a learning rate of 10−3. The one exception was the replay461

model, which used 100 epochs of training during model adaptation.462

To train the diffusion models, for each point (s,ϕ), a time step t ∈ [1, T ] was randomly chosen463

for T = 100, and a sample was drawn from the forward process ϕt = ϕ
√
ᾱt + ϵ

√
1− ᾱt, where464

ϵ ∼ N (0, I) is standard Gaussian noise and ᾱt is a scaling constant obtained by expanding the465

expression of q(·). The loss function then measured how closely ϵψ(ϕt,x, t) approximated the true466

noise ϵ: L(s,ϕ, t, ϵ) = ∥ϵψ(ϕt,x, t) − ϵ∥. Once trained, the planner sampled from the model by467

simulating the reverse process pψ(ϕT :0 | s).468

To process the input composed of three vectors (ϕt,x, t), the time index t was first processed using469

sinusoidal positional embeddings [6] of the same dimension as x. Then, the three vectors were470

concatenated into a single input to the network. Since the auxiliary predictor shared the same base471

layers of the network, we used t = 0 as a constant input to f .472

All inputs and outputs were scaled to [0, 1], except when the range of the variable was less than 1, in473

which case the given variable was shifted to 0, but not rescaled.474

A.2 2D Domain Experimental Setting475

We now provide the details of our evaluations on the 2D domains we created.476

A.2.1 Domain Descriptions477

We created five different 2D domains, specially crafted to require distinct sampling distributions478

across objects. Figure A.1 depicts the simulated domains.479

• Books Various rectangular books of sides wbook ∈ [0.5, 1].lbook ∈ [1, 1.5] are scattered in480

a room and must be picked and placed on a rectangular shelf of sides wshelf ∈ [2, 5], lshelf ∈481

[5, 10].482

• Cups Square cups with sides lcup ∈ [0.5, 1] must be picked by the handle (one specific483

side) and palced in a cupboard of sides wcupboard ∈ [2, 5], lcupboard ∈ [5, 10]. The cupboard484

is always against a wall.485

• Boxes Boxes of sides wbox ∈ [0.5, 1].lbox ∈ [1, 1.5] must be placed on pockets at the486

extremes of a tray of width wtray ∈ [3, 5] and length ltray ∈ [11, 13].487

12



Books Boxes Cups Sticks Blocks

Figure A.1: 2D domains used to evaluate our sampler learning approaches. The objects in each
domain have properties that ensure that samplers must generate diverse candidate action parameters
to solve the tasks.

• Blocks Small square blocks of sides lblock ∈ [0.25, 0.5] must be place in a square bin of488

sides lbin ∈ [4, 6]. While previous tasks contain n ∈ [4, 5] objects, these require placing489

n ∈ [9, 10] blocks.490

• Sitcks Long sticks of sides wstick ∈ [0.5, 1], lstick ∈ [5, 6] in a container of sides491

wcontainer ∈ [3, 5], lcontainer ∈ [7, 10].492

The robot has three controllers that it can execute: NAVIGATETO(object), parameterized by the rela-493

tive target coordinates normalized by the object’s size; PICK(object), parameterized by the length494

to extend the robot’s gripper and the angle to hold the object at; and PLACE(object, container),495

parameterized by the gripper extension.496

A.2.2 Auxiliary Geometric Signals497

This section describes the auxiliary signals we used to train our predictors f , and we later describe498

how those were used to construct the mixture distributions for our samplers. We used the following499

auxiliary signals for each form of controller:500

• NAVIGATETO: distance to the nearest point between the robot and the object—in the case of501

the cup, this signal measured distance to the handle, and in the case of the tray, it measured502

distance to the nearest pocket; coordinates of the nearest point on the object’s boundaries (in503

the object’s frame); target coordinates (in the world frame); and target coordinates (in the504

object’s frame)505

• PICK: position of the gripper’s point (in the world frame; and position of the gripper’s point506

(in the object’s frame)507

• PLACE: position of the center of mass of the object (in the world frame); and position of the508

center of mass of the object (in the container’s frame).509

Note that all these signals measure the intended effects of an action, but cannot measure the actual510

attained effect, which would require knowledge of all objects in the world. However, by measuring511

the agent’s accuracy in predicting these signals, we can asses how well-trained it is in the neighboring512

region of the current state, and use that as a measure of how well its samples may generalize.513

A.2.3 Constructing the Mixture Distribution514

In these 2D domains, we created mixture distributions over three mixture components: a generic515

sampler trained on all object types, a specialized sampler for each object type, and a fixed uniform516

sampler over the parameter space of the controller. We used the inverse of the root mean square error517

as the assessment of reliability, ρ. For this, we first computed (offline) the average prediction error518

for random guessing via simulation, and assigned this fixed error value to the uniform sampler. Then,519

we used this value to normalize prediction errors across the various signals.520

13



A.2.4 Lifelong Training Details521

In the lifelong setting, upon facing a new problem, the agent used its mixture sampler to generate522

samples for any previously seen object type. For unknown types, the agent used a mixture over the523

generic and the uniform sampler with 0.5 weight for each. At the very beginning, the samplers were524

initialized with a uniform distribution over the parameter space.525

A.2.5 Evaluation Protocols526

In the offline setting, we generated 50 test tasks for each of 10 trials, with varying random seeds527

controlling the sizes of objects and their placements.528

In the lifelong setting, each trial shuffled the order of the domains using the random seed, and529

presented the agent with a sequence of 500 tasks from each domain. Instead of updating the models530

after each task, which would render most updates very minor, we updated the models at intervals of531

50 tasks, resulting in a total of 10 model updates per domain.532

In both settings, we used Fast-Downward as the skeleton generator, getting a single skeleton for each533

task (i.e., N = 1) and setting the maximum total number of samples to B = 10,000. During search,534

a maximum of M = 100 samples were attempted at any given state before backtracking. We did not535

impose a timeout for these experiments.536

A.3 BEHAVIOR Domain Experimental Setting537

Next, we describe the precise details of our lifelong learning evaluation on BEHAVIOR tasks.538

A.3.1 Domain Descriptions539

We considered 10 different BEHAVIOR tasks: boxing books up for storage,540

collecting aluminum cans, locking every door, locking every window,541

organizing file cabinet, polishing furniture, putting leftovers away,542

re-shelving library books, throwing away leftovers, and unpacking suitcase.543

We followed the evaluation setting from prior work to adapt BEHAV-544

IOR domains to the TAMP setting [23]. In particular, only actions with545

NAVIGATETO(object), GRASP(object, surface), PLACEONTOP(object, surface),546

PLACEINSIDE(object, surface), PLACEUNDER(object, surface), and547

PLACENEXTTO(object, target, surface) controllers were implemented at the continu-548

ous level, while other actions (e.g., CLEANDUSTY or OPEN) were implemented only at the abstract549

level and assumed to always succeed.550

A.3.2 Auxiliary Geometric Signals551

The auxiliary signals that we used to assess each sampler’s reliability were:552

• NAVIGATETO: sine and cosine of the robot’s yaw; distance to target; nearest point on the553

object’s bounding box (in the object’s frame); distance to the nearest point in the object’s554

bounding box; and robot position (in the object’s frame).555

• GRASP: sine and cosine of the Euler angles of the robot’s gripper; distance of the gripper556

to the target and the surface; distance of the gripper to the nearest point on the target’s and557

surface’s bounding boxes; position, and sine and cosine of the Euler angles, of the gripper’s558

pose in the target and surface coordinate frames.559

• PLACE · · · : distance from hand and object to surface; nearest points from hand and object560

to surface’s bounding box; nearest point from hand to object’s bounding box; distances to561

these nearest points; positions, and sines and cosines of Euler angles, of the gripper’s and562

object’s poses in the surface’s coordinate frame. For PLACENEXTTO, additionally compute563

the relevant distances, nearest points, and relative coordinates with respect to the target564

object.565

14



��� ��� ���

�������������

����

����

����

����

�
�
�
��
��
�
�
�
��
�

(a) Number of samples per solved problem

��� ��� ���

�������������

��

��

��

��

�
�
�
��

��
�
��
�
�

(b) Number of problems solved

��������

��������

��������������

����������������

��������������

�������

Figure A.2: Alternative choices of the mixture strategy to generate samples for TAMP in the 2D
domains. Our geometric prediction method is most effective in the low-data setting.

Like in the 2D domains, these signals measure only intended effects, but have no means to effectively566

measure if those effects are attained (e.g., due to collisions with unforeseen objects).567

A.3.3 Constructing the Mixture Distribution568

In BEHAVIOR domains, we only considered the trained specialized and generic samplers as mixture569

components, since computing the uniform sampler’s error like in the 2D case would have required570

precomputing the error of random predictors via simulation, which was prohibitively expensive for571

BEHAVIOR. In consequence, we used the root mean square error directly (without normalization) to572

weight the two mixture components.573

A.3.4 Lifelong Training Details574

In the lifelong setting, we only used the learned samplers for exploration when both generic and575

specialized samplers had been trained. In consequence, whenever a new object type was encountered,576

hand-crafted samplers were used. At the start of the robot’s lifetime, all samplers were initialized577

to hand-crafted distributions from prior work [23]—note that, for BEHAVIOR domains, a uniform578

distribution would never complete tasks within any reasonable time limit.579

A.3.5 Evaluation Protocols580

We repeated the BEHAVIOR experiments over 8 trials with varying random seeds, which controlled581

both the order of BEHAVIOR tasks and the sampled problems within each. We trained the agent582

sequentially on six randomly chosen tasks in each trial. We presented the robot with 96 tasks of each583

type in sequence, and updated models every 48 tasks.584

We again used Fast-Downward as the skeleton generator with N = 1. We set the sample bound to585

B = 1,000, with up to M = 10 samples at each state before backtracking. We did not use a timeout586

for these experiments.587

B Additional Experiments588

In this section, we present ablations and additional experiments to those presented in Section 5 in the589

main paper.590

B.1 Evaluating the Mixture Weight Construction591

While the results of our main experiments strongly support the choice of using mixture distributions592

for generating samples for TAMP, we were interested in more clearly understanding the choices of593

how to construct those mixture distributions. For this purpose, we implemented and evaluated five594

alternative strategies for constructing the mixture distribution from our nested models:595

15



• Distance Our first alternative mixture still followed the process of training auxiliary models596

but, unlike our main implementation, uses only a single auxiliary variable: distance to target.597

This allows us to verify whether a collection of auxiliary signals is necessary, or a single598

one may suffice599

• Reconstruction We similarly create an auxiliary model for directly reconstructing the state600

features x. With this, we check the usefulness of including the action parameters ϕ in the601

auxiliary tasks.602

• Uniform This strategy simply uses a uniform mixture distribution. The purpose of603

evaluating this technique is to check whether all the gains of mixture distributions come604

from the mere fact of using a mixture, or the weighting plays an important role.605

• Proportional This cheating method observes the outcomes of the uniform mixture over all606

test tasks, and computes the proportion of successful samples that were drawn from each607

mixture component. We include this strategy to check whether there may exist some fixed608

choice of mixture weights that works across all states.609

• Classifier This additional cheating method also observes the outcomes of the uniform610

mixture and trains a classifier to generate the mixture weights. This enables us to study611

whether it may be possible to train a model to directly choose which sampler to use, as an612

alternative to using auxiliary tasks as an assessment of reliability.613

The results across the five 2D domains are shown in Figure A.2. While all mixture choices indeed614

perform well, in the low-data regime, which is crucial in lifelong settings, our geometric predictions615

lead to the highest efficiency across all mixture choices. Notably, the uniform mixture solves the616

largest fraction of problems. This is expected, given that our mixtures include the uniform sampler617

over the action space, which is guaranteed to eventually find a successful sample; only the uniform618

mixture guarantees that this sampler is used sufficiently often to guarantee solving most problems619

(albeit less efficiently than other samplers). The reconstruction error performs worst of all in the620

low-data setting, but eventually matches the performance of our geometry-prediction implementation;621

this validates the importance of including the action parameters ϕ as part of the auxiliary signal622

computation. Neither of the strategies that cheat is especially strong, indicating that 1) fixed mixture623

weights are not sufficiently flexible and 2) directly predicting which sampler to use, given the state, is624

difficult.625

B.2 Replay Training Matches Full Retraining in Lifelong Setting on 2D Domains626

To validate our use of balanced replay instead of full retraining, with 10× gains in training627

speed due to starting from previously trained models, we compared the performance of the628

two methods on a lifelong sequence of 2D domains. Results in Figure B.3 validate this claim.629

�������������� ��������������� ����������������

� � �
��������� ���

�

����

����

�
��
�
�
�
��
�
��
�
��
�
��
�
�

Figure B.3: Comparison of retraining vs re-
play on the lifelong learning evaluation in 2D
domains. Replay (which is more efficient)
matches the performance of retraining over
the sequence of problems.

630

16


