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A RELATIONSHIP BETWEEN IBCL AND MAML

In this section, we discuss the relationship between IBCL and the Model-Agnostic Meta-Learning
(MAML) and Bayesian MAML (BMAML) procedures introduced in Finn et al. (2017); Yoon et al.
(2018b), respectively. These are inherently different than IBCL, since the latter is a continual learn-
ing procedure, while MAML and BMAML are meta-learning algorithms. Nevertheless, given the
popularity of these procedures, we feel that relating IBCL to them would be useful to draw some
insights on IBCL itself.

In MAML and BMAML, a task i is specified by a ni-shot dataset Di that consists of a small number
of training examples, e.g. observations (x1i , y1i), . . . , (xni , yni). Tasks are sampled from a task
distribution T such that the sampled tasks share the statistical regularity of the task distribution. In
IBCL, Assumption 1 guarantees that the tasks Pi share the statistical regularity of class F . MAML
and BMAML leverage this regularity to improve the learning efficiency of subsequent tasks.

At each meta-iteration i,

1. Task-Sampling: For both MAML and BMAML, a mini-batch Ti of tasks is sampled from the
task distribution T. Each task τi ∈ Ti provides task-train and task-validation data, Dtrn

τi and Dval
τi ,

respectively.

2. Inner-Update: For MAML, the parameter of each task τi ∈ Ti is updated starting from the
current generic initial parameter θ0, and then performing ni gradient descent steps on the task-
train loss. For BMAML, the posterior p(θτi | Dtrn

τi , θ0) is computed, for all τi ∈ Ti.

3. Outer-Update: For MAML, the generic initial parameter θ0 is updated by gradient descent. For
BMAML, it is updated using the Chaser loss (Yoon et al., 2018b, Equation (7)).

Notice how in our work w̄ is a probability vector. This implies that if we fix a number of task k
and we let w̄ be equal to (w1, . . . , wk)

⊤, then w̄ · P̄ can be seen as a sample from T such that
T(Pi) = wi, for all i ∈ {1, . . . , k}.
Here lies the main difference between IBCL and BMAML. In the latter the information provided
by the tasks is used to obtain a refinement of the (parameter of the) distribution T on the tasks
themselves. In IBCL, instead, we are interested in the optimal parametrization of the posterior
distribution associated with w̄ · P̄ . Notice also that at time k+1, in IBCL the support of T changes:
it is {P1, . . . , Pk+1}, while for MAML and BMAML it stays the same.

Also, MAML and BMAML can be seen as ensemble methods, since they use different values
(MAML) or different distributions (BMAML) to perform the Outer-Update and come up with a
single value (MAML) or a single distributions (BMAML). Instead, IBCL keeps distributions sepa-
rate via FGCS, thus capturing the ambiguity faced by the designer during the analysis.

Furthermore, we want to point out how while for BMAML the tasks τi are all “candidates” for the
true data generating process (dgp) Pi, in IBCL we approximate Pi with the product

∏i
h=1 Lh of the

likelihoods up to task i. The idea of different candidates for the true dgp is beneficial for IBCL as
well: in the future, we plan to let go of Assumption 1 and let each Pi belong to a credal set Pi. This
would capture the epistemic uncertainty faced by the agent on the true dgp.

To summarize, IBCL is a continual learning technique whose aim is to find the correct parametriza-
tion of the posterior associated with w̄ · P̄ . Here, w̄ expresses the developer’s preferences on the
tasks. MAML and BMAML, instead, are meta-learning algorithms whose main concern is to refine
the distribution T from which the tasks are sampled. While IBCL is able to capture the prefer-
ences of, and the ambiguity faced by, the designer, MAML and BMAML are unable to do so. On
the contrary, these latter seem better suited to solve meta-learning problems. An interesting fu-
ture research direction is to come up with imprecise BMAML, or IBMAML, where a credal set
Conv({T1, . . . ,Tk}) is used to capture the ambiguity faced by the developer in specifying the cor-
rect distribution on the possible tasks. The process of selecting one element from such credal set
may lead to computational gains.
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B REASON TO USE BAYESIAN CONTINUAL LEARNING

Let q0(θ) be our prior pdf/pmf on parameter θ ∈ Θ at time t = 0. At time t = 1, we collect
data (x̄1, ȳ1) pertaining to task 1, we elicit likelihood pdf/pmf l1(x̄1, ȳ1 | θ), and we compute
q1(θ | x̄1, ȳ1) ∝ q0(θ) × l1(x̄1, ȳ1 | θ). At time t = 2, we collect data (x̄2, ȳ2) pertaining to task 2
and we elicit likelihood pdf/pmf l2(x̄2, ȳ2 | θ). Now we have two options.

(i) Bayesian Continual Learning (BCL): we let the prior pdf/pmf at time t = 2 be the posterior
pdf/pmf at time t = 1. That is, our prior pdf/pmf is q1(θ | x̄1, ȳ1), and we compute q2(θ |
x̄1, ȳ1, x̄2, ȳ2) ∝ q1(θ | x̄1, ȳ1)× l2(x̄2, ȳ2 | θ) ∝ q0(θ)× l1(x̄1, ȳ1 | θ)× l2(x̄2, ȳ2 | θ);4

(ii) Bayesian Isolated Learning (BIL): we let the prior pdf/pmf at time t = 2 be a generic prior
pdf/pmf q′0(θ). We compute q′2(θ | x̄2, ȳ2) ∝ q′0(θ) × l2(x̄2, ȳ2 | θ). We can even re-use
the original prior, so that q′0 = q0.

As we can see, in option (i) we assume that the data generating process at time t = 2 takes into
account both tasks, while in option (ii) we posit that it only takes into account task 2. Denote by
σ(X) the sigma-algebra generated by a generic random variable X . Let also Q2 be the probability
measure whose pdf/pmf is q2, and Q′

2 be the probability measure whose pdf/pmf is q′2. Then, we
have the following.
Proposition 3. Posterior probability measure Q2 can be written as a σ(X̄1, Ȳ1, X̄2, Ȳ2)-measurable
random variable taking values in [0, 1], while posterior probability measure Q′

2 can be written as a
σ(X̄2, Ȳ2)-measurable random variable taking values in [0, 1].

Proof. Pick any A ⊂ Θ. Then, Q2[A | σ(X̄1, Ȳ1, X̄2, Ȳ2)] = EQ2
[1A | σ(X̄1, Ȳ1, X̄2, Ȳ2)], a

σ(X̄1, Ȳ1, X̄2, Ȳ2)-measurable random variable taking values in [0, 1]. Notice that 1A denotes the
indicator function for set A. Similarly, Q′

2[A | σ(X̄2, Ȳ2)] = EQ′
2
[1A | σ(X̄2, Ȳ2)], a σ(X̄2, Ȳ2)-

measurable random variable taking values in [0, 1]. This is a well-known result in measure theory.

Of course Proposition 3 holds for all t ≥ 2. Recall that the sigma-algebra σ(X) generated by a
generic random variable X captures the idea of information encoded in observing X . An immediate
corollary is the following.
Corollary 4. Let t ≥ 2. Then, if we opt for BIL, we lose all the information encoded in
{(X̄i, Ȳi)}t−1

i=1 .

In turn, if we opt for BIL, we obtain a posterior that is not measurable with respect to
σ({(X̄i, Ȳi)}ti=1) \ σ(X̄t, Ȳt). If the true data generating process Pt is a function of the previ-
ous data generating processes Pt′ , t′ ≤ t, this leaves us with a worse approximation of the “true”
posterior Qtrue ∝ Q0 × Pt.

The phenomenon in Corollary 4 is commonly referred to as catastrophic forgetting. Continual
learning literature is unanimous in labeling catastrophic forgetting as undesirable – see e.g. Farquhar
and Gal (2019); Li et al. (2020). For this reason, in this work we adopt a BCL approach. In practice,
we cannot compute the posterior pdf/pmf exactly, and we will resort to variational inference to
approximate them – an approach often referred to as Variational Continual Learning (VCL) Nguyen
et al. (2018). As we shall see in Appendix E, Assumption 1 is needed in VCL to avoid catastrophic
forgetting.

B.1 RELATIONSHIP BETWEEN IBCL AND OTHER BCL TECHNIQUES

Like Farquhar and Gal (2019); Li et al. (2020), the weights in our Bayesian neural networks (BNNs)
have Gaussian distribution with diagonal covariance matrix. Besides capturing the designer’s am-
biguity, Qco(1, . . . , k) is also useful because its convexity allows to remove the components of the
knowledge base that are redundant, that is, that can be written as convex combination of the elements
of ex[Qco(1, . . . , k)]. Because IBCL is rooted in Bayesian continual learning, we can initialize IBCL
with a much smaller number of parameters to solve a complex task as long as it can solve a set of

4Here we tacitly assume that the likelihoods are independent.
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simpler tasks. In addition, IBCL does not need to evaluate the importance of parameters by measures
such as computing the Fisher information, which are computationally expensive and intractable in
large models.

C HIGHEST DENSITY REGION

Some scholars indicate HDRs as the Bayesian counterpart of the frequentist concept of confidence
interval. In dimension 1, Rα(Q) can be interpreted as the narrowest interval – or union of intervals
– in which the value of the (true) parameter falls with probability of at least 1 − α according to
distribution Q. We give a simple visual example in Figure 3.

̂p0.25

y

̂p(y)q(θ)
θ

q0.25

Figure 3: The 0.25-HDR from a Normal Mixture density. This picture is a replica of (Hyndman, 1996, Figure
1). The geometric representation of “75% probability according to Q” is the area between the pdf curve q(θ)
and the horizontal bar corresponding to q0.25. A higher probability coverage (according to Q) would correspond
to a lower constant, so qα < q0.25, for all α < 0.25. In the limit, we recover 100% coverage at q0 = 0.

D 2-WASSERSTEIN METRIC

In the main portion of the paper, we endowed ∆XY with the 2-Wasserstein metric. It is defined as

∥P − P ′∥W2 ≡W2(P, P
′) :=

√
inf

γ∈Γ(P,P ′)
E((x1,y1),(x2,y2))∼γ [d((x1, y1), (x2, y2))2], where

1. P, P ′ ∈ ∆XY ;
2. Γ(P, P ′) is the set of all couplings of P and P ′. A coupling γ is a joint probability measure on

(X ×Y)× (X ×Y) whose marginals are P and P ′ on the first and second factors, respectively;
3. d is the product metric endowed to X × Y (Deza and Deza, 2013, Section 4.2).5

E IMPORTANCE OF ASSUMPTION 1

We need Assumption 1 in light of the results in Kessler et al. (2023). There, the authors show that
misspecified models can forget even when Bayesian inference is carried out exactly. By requiring
that diam(F) = r, we control the amount of misspecification via r. In Kessler et al. (2023), the
authors design a new approach – called Prototypical Bayesian Continual Learning, or ProtoCL –
that allows dropping Assumption 1 while retaining the Bayesian benefit of remembering previous
tasks. Because the main goal of this paper is to come up with a procedure that allows the designer to
express preferences over the tasks, we retain Assumption 1, and we work in the classical framework
of Bayesian Continual Learning. In the future, we plan to generalize our results by operating with
ProtoCL.6

5We denote by dX and dY the metrics endowed to X and Y , respectively.
6In Kessler et al. (2023), the authors also show that if there is a task dataset imbalance, then the model can

forget under certain assumptions. To avoid complications, in this work we tacitly assume that task datasets are
balanced.
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F AN EXAMPLE OF A PARAMETRIZED FAMILY F

Let us give an example of a parametrized family F . Suppose that we have one-dimensional data
points and labels. At each task i, the marginal onX of Pi is a NormalN (µ, 1), while the conditional
distribution of label y ∈ Y given data point x ∈ X is a categorical Cat(ϑ). Hence, the parameter
for Pi is θ = (µ, ϑ), and it belongs to Θ = R × R|Y|. In this example, family F can be thought of
as the convex hull of distributions that can be decomposed as we just described, and whose distance
according to the 2-Wasserstein metric does not exceed some r > 0.

G PREFERENCES INDUCE A PARTIAL ORDER ON THE TASKS

Notice how w̄ induces a preference relation ⪯w̄ on the elements of Tk := {P1, P2, . . . , Pk}, k ≥ 2.
We have that Pi ⪯w̄ Pj if and only if wi ≤ wj , i ̸= j. In other words, we favor task j over task
i if the weight wj assigned to task j is larger than the one assigned to task i. In turn, (Tk,⪯w̄) is a
poset, for all k ≥ 2.

H PROOFS OF THE THEOREMS

Proof of Theorem 1. Without loss of generality, suppose we have encountered i = 2 tasks so far, so
the FGCS is Qco

2 . Assume (again without loss of generality) that all the elements in posterior sets
Q1 and Q2 cannot be written as a convex combination of one another. Let Q̂ be any element in the
convex hull Qco

2 . Then, there exists a probability vector β̄ = (β1
1 , . . . , β

m1
1 , β1

2 , . . . , β
m2
2 )⊤ such

that

Q̂ =

m1∑
j=1

βj
1Q

j
1 +

m2∑
j=1

βj
2Q

j
2 ∝ L1

m1∑
j=1

βj
1Q

j
0 + L1L2

m2∑
j=1

βj
2Q

j
0. (4)

This proportional relationship is based on the Bayesian inference (line 4) in Algorithm 1. Hence,
there exists an equivalent preference w̄ = (w1 =

∑m1

j=1 β
j
1, w2 =

∑m2

j=1 β
j
2)

⊤.

Proof of Theorem 2. For maximum generality, assume Θ is uncountable. Let q̂w̄ denote the pdf of
Q̂w̄. The α-level Highest Density Region Rα(Q̂w̄) is defined in (Coolen, 1992) as a subset of the
output space such that∫

Rα(Q̂w̄)

q̂w̄(θ)dθ ≥ 1− α and
∫
Rα(Q̂w̄)

dθ is a minimum.

We need
∫
Rα(Q̂w̄)

dθ to be a minimum because we want Rα(Q̂w̄) to be the smallest possible region
that gives us the desired probabilistic coverage. Equivalently, from Definition 2 we know that we
can write that Rα(Q̂w̄) = {θ ∈ Θ : q̂w̄(θ) ≥ q̂αw̄}, where q̂αw̄ is a constant value. In particular,
it is the largest constant such that PrQ̂w̄

[θ ∈ Rα(Q̂w̄)] ≥ 1 − α (Hyndman, 1996). Equation 3,
then, comes from the fact that PrQ̂w̄

[θ⋆w̄ ∈ Rα(Q̂w̄)] =
∫
Rα(Q̂w̄)

q̂w̄(θ)dθ, a well-known equality in
probability theory (Billingsley, 1986). The integral is greater than or equal to 1−α by the definition
of HDR.

I DETAILS OF EXPERIMENT SETUP

Our experiment code is available at an anonymous GitHub repo: https://github.com/
ibcl-anon/ibcl.

I.1 BENCHMARKS

We select 15 tasks from CelebA. All tasks are binary image classification on celebrity face images.
Each task i is to classify whether the face has an attribute such as wearing eyeglasses or having a
mustache. The first 15 attributes (out of 40) in the attribute list Liu et al. (2015) are selected for our
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tasks. The training, validation and testing sets are already split upon download, with 162,770, 19,867
and 19,962 images, respectively. All images are annotated with binary labels of the 15 attributes in
our tasks. We use the same training, validation and testing set for all tasks, with labels being the
only difference.

We select 20 classes from CIFAR100 (Krizhevsky et al., 2009) to construct 10 Split-CIFAR100 tasks
(Zenke et al., 2017). Each task is a binary image classification between an animal classes (label 0)
and a non-animal class (label 1). The classes are (in order of tasks):

1. Label 0: aquarium fish, beaver, dolphin, flatfish, otter, ray, seal, shark, trout, whale.
2. Label 1: bicycle, bus, lawn mower, motorcycle, pickup truck, rocket, streetcar, tank, tractor,

train.

That is, the first task is to classify between aquarium fish images and bicycle images, and so on. We
want to show that the continual learning model incrementally gains knowledge of how to identify
animals from non-animals throughout the task sequence. For each class, CIFAR100 has 500 training
data points and 100 testing data points. We hold out 100 training data points for validation. There-
fore, at each task we have 400 * 2 = 800 training data, 100 * 2 = 200 validation data and 100 * 2 =
200 testing data.

We also select 20 classes from TinyImageNet (Le and Yang, 2015). The setup is similar to Split-
CIFAR100, with label 0 being animals and 1 being non-animals.

1. Label 0: goldfish, European fire salamander, bullfrog, tailed frog, American alligator, boa con-
strictor, goose, koala, king penguin, albatross.

2. Label 1: cliff, espresso, potpie, pizza, meatloaf, banana, orange, water tower, via duct, tractor.

The dataset already splits 500, 50 and 50 images for training, validation and testing per class. There-
fore, each task has 1000, 100 and 100 images for training, validation and testing, respectively.

20NewsGroups (Lang, 1995) contains news report texts on 20 topics. We select 10 topics for 5
binary text classification tasks. Each task is to distinguish whether the topic is computer-related
(label 0) or not computer-related (label 1), as follows.

1. Label 0: comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware,
comp.sys.mac.hardware, comp.windows.x.

2. Label 1: misc.forsale, rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey.

Each class has different number of news reports. On average, a class has 565 reports for training and
376 for testing. We then hold out 100 reports from the 565 for validation. Therefore, each binary
classification task has 930, 200 and 752 data points for training, validation and testing, on average
respectively.

I.2 TRAINING CONFIGURATIONS

All data points are first preprocessed by a feature extractor. For images, the feature extractor is a
pre-trained ResNet18 (He et al., 2016). We input the images into the ResNet18 model and obtain
its last hidden layer’s activations, which has a dimension of 512. For texts, the extractor is TF-IDF
(Aizawa, 2003) succeeded with PCA to reduce the dimension to 512 as well.

Each Bayesian network model is trained with evidence lower bound (ELBO) loss, with a fixed feed-
forward architecture (input=512, hidden=64, output=1). The hidden layer is ReLU-activated and the
output layer is sigmoid-activated. Therefore, our parameter space Θ is the set of all values that can
be taken by this network’s weights and biases.

The three variational inference priors, learning rate, batch size and number of epcohs are tuned on
validation sets. The tuning results are as follows.

1. CelebA: priors = {N (0, 0.22I),N (0, 0.252I),N (0, 0.32I)}, lr = 1e−3, batch size = 64, epochs
= 10.

2. Split-CIFAR100: priors = {N (0, 22I), N (0, 2.52I), N (0, 32I)}, lr = 5e − 4, batch size = 32,
epochs = 50.
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3. TinyImageNet: priors = {N (0, 22I), N (0, 2.52I), N (0, 32I)}, lr = 5e − 4, batch size = 32,
epochs = 30.

4. 20NewsGroup: priors = {N (0, 22I), N (0, 2.52I), N (0, 32I)}, lr = 5e − 4, batch size = 32,
epochs = 100.

For the baseline methods, we use exactly the same learning rate, batch sizes and epochs. For proba-
bilistic baseline methods (VCL and VCL-reg), we use the prior with the median standard deviation.
For example, on CelebA tasks, VCL and VCL-reg uses the normal prior N (0, 0.252I).

I.3 EVALUATION METHOD

We use widely adopted continual learning metrics, (1) average per-task accuracy and (2) peak per-
task accuracy to evaluate performance, as well as (3) backward transfer (Dı́az-Rodrı́guez et al., 2018)
to evaluate resistance to catastrophic forgetting. These metrics are computed from all accuracies
accij of a model at the end of task i on the testing data on a previous task j ∈ {1, . . . i}. Specifically,

avg per task acci =
1

i

i∑
l=1

accij , i ∈ {1, . . . , N}

peak per task acci = max
j∈{1,...,i}

accij , i ∈ {1, . . . , N}

avg per task bti =
1

i− 1

i∑
l=2

(accij − acci(j−1)), i ∈ {2, . . . , N}

(5)

To obtain an accij that evaluates preference-addressing capability, at each task i, we randomly sam-
ple K = 10 preferences, w̄i1, . . . , w̄iK , over all tasks encountered so far. Therefore, GEM-reg,
VCL-reg and IBCL need to generate K models, one for each preference. All K models are evalu-
ated on testing data of task j ∈ {1, . . . i}, resulting in accuracy accijk, with k ∈ {1, . . . ,K}. We
use preference as weights to compute accij as a weighted sum

accij =

K∑
k=1

w̄ik[j]

Wik
accijk (6)

where Wik =
∑K

k=1 w̄ik[j] is the normalization factor to ensure the resulting accuracy value is in
[0, 1]. Here, w̄ik[j] denotes the j-th scalar entry of preference vector w̄ik. For GEM and VCL, we
only learn 1 model per task to address all preferences. To evaluate that one model’s capability in
preference addressing, we use its testing accuracy in place of accijk in equation 6. By this com-
putation, all accuracy scores are preference-weighted and reflect an algorithm’s ability to produce
preference-addressing models.

Recall that models generated by VCL, VCL-reg and IBCL are probabilistic (BNNs for VCL and
VCL-reg and HDRs for IBCL). Therefore, we sample 100 deterministic models from each of the
output probabilistic models to compute accijk. We record the maximum, mean and minimum values
of accijk across all the sampled models. The maximum value is the estimated Pareto optimality.

J ABLATION STUDIES

We conduct two ablation studies. The first one is on different significance level α in Algorithm 2.

In Figure 4, we evaluate testing accuracy on three different α’s over five different preferences (from
[0.1, 0.9] to [0.9, 0.1]) on the first two tasks of 20NewsGroup. For each preference, we uniformly
sample 200 deterministic models from the HDR. We use the sampled model with the maximum L2
sum of the two accuracies to estimate the Pareto optimality under a preference. We can see that,
as α approaches 0, we tend to sample closer to the Pareto front. This is because, with a smaller α,
HDRs becomes wider and we have a higher probability to sample Pareto-optimal models according
to Theorem 2. For instance, when α = 0.01, we have a probability of at least 0.99 that the Pareto-
optimal solution is contained in the HDR.
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Figure 4: Different α’s on different preferences over the first two tasks in 20NewsGroup.

Figure 5: Different α’s on randomly generated preferences over all tasks in 20NewsGroup.

We then evaluate the three α’s in the same way as in the main experiments, with 10 randomly
generated preferences per task. Figure 5 shows that the performance drops as α increases, because
we are more likely to sample poorly performing models from the HDR.

Figure 6: Different d’s on 20NewsGroup and Split-CIFAR100. The buffer growth curves of d =
5e− 3 and d = 2e− 3 of 20NewsGroup are overlapping.

The second ablation study is on different thresholds d in Algorithm 1. As d increases, we are
allowing more posteriors in the knowledge base to be reused. This will lead to memory efficiency
at the cost of a performance drop. Figure 6 supports this trend. We can see how performance barely
drops by reusing posteriors, while the buffer growth speed becomes sublinear. For Split-CIFAR100,
when d = 8e− 3, the buffer size stops growing after task 6.
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