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Abstract

In many applications of machine learning, a large number of variables are consid-
ered. Motivated by machine learning of interacting particle systems, we consider
the situation when the number of input variables goes to infinity. First, we continue
the recent investigation of the mean field limit of kernels and their reproducing
kernel Hilbert spaces, completing the existing theory. Next, we provide results
relevant for approximation with such kernels in the mean field limit, including
a representer theorem. Finally, we use these kernels in the context of statistical
learning in the mean field limit, focusing on Support Vector Machines. In particu-
lar, we show mean field convergence of empirical and infinite-sample solutions as
well as the convergence of the corresponding risks. On the one hand, our results
establish rigorous mean field limits in the context of kernel methods, providing
new theoretical tools and insights for large-scale problems. On the other hand, our
setting corresponds to a new form of limit of learning problems, which seems to
have not been investigated yet in the statistical learning theory literature.

1 Introduction

Models with many variables play an important role in many fields of mathematical and physical
sciences. In this context, going to the limit of infinitely many variables is an important analysis and
modeling approach. A classic example are interacting particle systems; these are usually modeled
as dynamical systems describing the temporal evolution of many interacting objects. In physics,
such systems were first investigated in the context of gas dynamics, cf. [11]]. Since even small
volumes of gases typically contain an enormous number of molecules, a microscopic modeling
approach quickly becomes infeasible and one considers the evolution of densities instead [12].
In the past decades, interacting particle systems arising from many different domains have been
considered, for example, animal movement [4, 23], social and political dynamics [31} [10], crowd
modeling and control [17} 15} [1]], swarms of robots [28| 27} [13] or vehicular traffic [32]]. There
is now a vast literature on such applications, and we refer to the surveys [26, 33 21] as starting
points. A prototypical example of such a system is given by &; = 77 Zfil o(xi, zj)(xj — x;), for
i=1,...,M,where M € N particles or agents are modelled by their state x; € R%,i =1,..., M,
evolving according to some interaction rule ¢ : R¢ x R? — R. Typical questions then concern the
long-term behavior of such systems, in particular, emergent phenomena like consensus or alignment
[9]. While first-principles modeling has been very successful for interacting particle systems in
physical domains, using this approach to model the interaction rules in complex domains like social
and opinion dynamics, pedestrian and animal movement or vehicular traffic, can be problematic.
Therefore, learning interaction rules from data has been recently intensively investigated, for example,
in the pioneering works [6} 25]. The data consists typically of (sampled) trajectories of the particle
states, potentially with measurement noise, and the goal is to learn a good approximation of the
interaction rule ¢.
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A related question is that of learning a function F; : (R9)™ — R of the particle states. This
corresponds to a (real-valued) feature of a given population, which depends on each individual particle
state. Similar to the case of the interaction rule, we might not be able to model such a feature, but we
could measure it at different time instants and try to learn this mapping from data. We can formalize

this as a standard supervised learning task: The data set consists of DE\J,W] = ((Z1,91), .-, (@N,YN)),

where Z,, € (R?)M are snapshot measurements of the particle states (corresponding to the input of
the functional) and ¥,, € R is the value of the functional of interest, potentially with measurement
noise, at snapshot state Z,,. Let us assume an additive noise model, i.e., y, = Fy (&) + €, for
n =1,..., N, where €1,...,ex € R are noise variables. This is now a regression problem that
could be solved for example using a Support Vector Machine (SVM) [30]. Note that for this we need
akernel ks : (RHOM x (RH)M — R on (RY)M.

Similarly to classical physical examples like gas dynamics, the case of a large number of particles
is also relevant in modern complex interacting particle systems. Since this poses computational
and modeling challenges, it can be advantageous to go also here to a kinetic level and model the
evolution of the particle distribution instead of every individual particle. It is well-established how
to derive a kinetic partial differential equation from ordinary differential equations systems on the
particle level, for example, using the Boltzmann equation or via a mean field limit, cf. [9] for
an overview in the context of multi-agent systems. Formally, instead of trajectories of particle
states of the form [0, 7] > t — Z(t) € (R%)M, we then have trajectories of probability measures
[0,7] 3 t — p(t) € P(R?). This immediately raises the question of whether the learning setup
outlined above also allows a corresponding kinetic limit. More precisely, let X C R be compact and
assume that all particles remain confined to this compactum, i.e., z;(t) € K foralli = 1,..., M
and all ¢ € [0, T under the microscopic dynamicsﬂ If the underlying dynamics have a mean field
limit, then it is reasonable to assume that the finite-input functionals Fy; : K™ — R converge also in
mean field to some F : P(K) — R for M — oo, see Sectionfor a precise definition of this notion.
In turn, we can now formulate a corresponding learning problem on the mean field level: A data set
is then given by Dy = ((tt1,91), - - -, (un,yn)), where u,, € P(K) are snapshots of the particle
state distribution over time and y,, € R are again potentially noisy measurements of the functional.
Assuming an additive noise model, this corresponds to y,, = F(un) + €n,n = 1,..., N. If we
want to use an SVM on the kinetic level, we need a kernel k : P(K) x P(K) — R on probability
distributions. There are several options available for this, see e.g. [14]. However, assuming that all
ingredients of the learning problem arise as a mean field limit, this naturally leads to the question
of whether a mean field limit of kernels exists, and what this means for the relation of the learning
problems on the finite-input and kinetic level. In [18]], this reasoning has motivated the introduction
and investigation of the mean field limit of kernels. In the present work, we extend the theory of
these kernels and investigate them in the context of statistical learning theory. We would like to stress
that the technical developments here are independent of the motivation outlined above, in that they
apply to mean field limits of functions and kernels that do not necessarily arise form the dynamics of
interacting particle systems.

Contributions Our contributions cover three closely related aspects. 1) We extend and complete the
theory of mean field limit kernels and their RKHSs (Section[Z). In Theorem[2.3] we precisely describe
the relationship between the RKHS of the finite-input kernels and the RKHS of the mean field kernel,
completing the results from [[18]. In particular, this allows us to interpret the latter RKHS as the mean
field limit of the former RKHSs. Furthermore, in Lemma [2.4]and [2.5] we provide inequalities for
the corresponding RKHS norms, which are necessary for I'-convergence arguments. 2) We provide
results relevant for approximation with mean field limit kernels (Section [3). With Proposition [3.1] we
give a first result on the approximation power of mean field limit kernels, and in Theorem[3.3]we can
also provide a representer theorem for these kernels. For its proof, we use a I'-convergence argument,
which is to the best of our knowledge the first time this technique has been used in the context of
kernel methods. 3) We investigate the mean field limit of kernels in the context of statistical learning
theory (Sectiond]). We first establish an appropriate mean field limit setup for statistical learning
problems, based on a slightly stronger mean field limit existence result than available so far, cf.
Proposition 2.1] To the best of our knowledge, this is a new form of a limit for learning problems. In
this setup, we then provide existence, uniqueness, and representer theorems for empirical and (using
an apparently new notion of mean field convergence of probability distributions) infinite-sample

'This means the dynamics on the level of individual particles.
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solutions of SVMs, cf. Proposition[d.3|and @.5] Finally, under a uniformity assumption, we can also
establish convergence of the minimal risks in Proposition 4.7}

Our developments are relevant from two different perspectives: on the one hand, they constitute
a theoretical proof-of-concept that the mean field limit can be “pulled through” the (kernel-based)
statistical learning theory setup. In particular, this demonstrates that rigorous theoretical results can
be transferred through the mean field limit, similar to works in the context of control of interacting
particle systems, see e.g. [22]. On the other hand, our setup appears to be a new variant of a large-
number-of-variables limit in the context of machine learning, complementing established settings
like infinite-width neural networks [2]].

Due to space constraints, all proofs and some additional technical results have been placed in the
supplementary material.

2 Kernels and their RKHSs in the mean field limit

Setup and preliminaries Let (X, dx) be a compact metric space and denote by P(X) the set
of Borel probability measures on X. We endow P(X) with the topology of weak convergence
of probability measures. Recall that for p,, € P(X), we say that p, — p weakly if for all
bounded and continuous f : X — R (since X is compact, this is equivalent to f continuous) we have
limg, o0 [y @(@)dpn(z) = [y ¢(x)dp(z). The topology of weak convergence can be metrized by
the Kantorowich-Rubinstein metric dgg, defined by

dxr (11, 12) = sup {/X ¢(x)d(p1 — p2)(z) | ¢ : X — Ris 1-Lipschitz } .

Note that since X is compact and hence separable, the Kantorowich-Rubinstein metric is equal to the 1-
Wasserstein metric here. Furthermore, P(X) is compact in this topology. For M € N and ¥ € X,
denote the i-th component of # by @;, and define the empirical measure for & by 7] = < Zgl Oy
where §, denotes the Dirac measure centered at z € X. The empirical measures are dense in P (X)
w.r.t. the Kantorowich-Rubinstein metric. Additionally, define dz : P(X)? x P(X)? — Rxg
by dir ((u1s 11), (2, 1)) = dr (1, pr2) + dr (11, 1), and note that (P(X)?, dig) is a compact
metric space. Moreover, denote the set of permutations on {1,..., M} by Sy, and for a tuple
# € XM and permutation o € Sy define 07 = (4(1) - -+ To(ary). Finally, we recall some
well-known definitions and results from the theory of reproducing kernel Hilbert spaces, following
[30, Chapter 4]. For an arbitrary set X’ # () and a Hilbert space (H, (-, -) i) of functions on X, we
say that a map k : X x X — R is a reproducing kernel for H if 1) k(-,x) € H for all z € X,
2)forallz € X and f € H we have f(z) = (f,k(-,x))n. Note that if a reproducing kernel
exists, it is unique. If such a Hilbert space has a reproducing kernel, we call H a reproducing kernel
Hilbert space (RKHS) and k its (reproducing) kernel. It is well-known that a reproducing kernel is
symmetric and positive semidefinite, and that every symmetric and positive semidefinite function has
a unique RKHS for which it is the reproducing kernel. For brevity, if k is symmetric and positive
semidefinite, or equivalently, if it is the reproducing kernel of an RKHS, we call k simply a kernel,
and denote by (Hy, (-, -)x) its unique associated RKHS. Define also HY© = span{k(-,z) | z € X},

then for f = 25:1 ank(-,x,) € HY and g = Z%:l Bk (-, ym) € HL® we have (f,g)r =
Zﬁlzl 2%21 Bk (Ym, Tn), and HY' is dense in Hy,.

The mean field limit of functions and kernels Given fy; : X» — R, M € N, ,and f : P(X) —
R, we say that fi; converges in mean field to f and that f is the (or a) mean field limit of fy, if

limps o0 SUpze xm | far(Z) — f(4[Z])| = 0. In this case, we write fas N f. Letnow (Y, dy) be
another metric space and fy; : XM xY — R, M € Ny, and f : P(X) x Y — R, then we say that
far converges in mean field to f and that f is the (or a) mean field limit of f, if for all compact
K CY we have

lim  sup  [fu(Zy) — f(A[Z], y)] = 0. (D
]\/f—)ooi'exlvl7yeK

and also write fs KN f. The following existence results for mean field limits is slightly more
general than what is available in the literature, and it is essentially a direct generalization of [7,
Theorem 2.1], in the form of [§, Lemma 1.2].



140
141
142
143
144
145

146
147

148

149
150

151
152
153

154

155
156

157
158
159
160
161
162

163

164

166

167
168

169
170
171

172

173

174

175

176

177
178

179
180

Proposition 2.1. Let (X, dx) be a compact metric space and (Z,dz) a metric space that has a
countable basis (U,,),, such that U,, is compact for all n € N. Let fa; : XM x Z — R, M € N,
be a sequence of functions fulfilling the following conditions: 1) (Symmetry in & E] Forall M € N4,
# € XM, 2 € Z and permutations ¢ € Sy, we have fi(0%,2) = fu(Z,2); 2) (Uniform
boundedness) There exists By € R>( and a function b : Z — R>( such that VM € N, ¥ €
XM 2 €21 |fu(Z,2)| < Bp+b(2); 3) (Uniform Lipschitz continuity) There exists some L; € R~
such that for all M € N+, i"l,fg S XM, 21,29 € Z we have |fN[(51,21) — fM(fQ,ZQ” <

Ly (dgr(A[21], f[Z2]) + dz (21, 22)).
Then there exists a subsequence (fys, )¢ and a continuous function f : P(X) x Z — R such that

e, N f for £ — oo. Furthermore, f is L y-Lipschitz continuous and there exists By € R>( such
that for all u € P(X), z € Z we have |f(u, 2)| < Bp + b(2).

We now turn to the mean field limit of kernels as introduced in [I8]]: Given kp; : XM x XM 5 R
and k : P(X) x P(X) — R, we say that kys converges in mean field to k and that k is the (or a)
mean field limit of kyy, if

lim  sup [|ka (2, 7) — k(4[2], Alz'])] = 0. )

M —o0 f,f/EXZW

. . P
In this case we write ky; — k.
For convenience, we recall [18, Theorem 2.1], which ensures the existence of a mean field limit of a
sequence of kernels.

Proposition 2.2. Let ky; : XM x X™ — R be a sequence of kernels fulfilling the following

conditions. 1) (Symmetry in ¥) For all M € N, Z,# € XM and permutations ¢ € Sy; we
have ky (0%, Z') = ka (&, &); 2) (Uniform boundedness) There exists Cy, € R>¢ such that VM €
N, 7@ € XM : |ky(2,7")| < Cy; 3) (Uniform Lipschitz continuity) There exists some Ly, €
R+ such that for all M € N, fl,fll,fg,fé € XM we have |]€M(fl,f/1) - kiM(fg,féﬂ <
Lydig [(al21], pl21]), ([22], £[75))].

Then there exists a subsequence (ky, ), and a continuous kernel & : P(X) x P(X) — R such that
kw, &> k, and k is also bounded by C.

Let kp : XM x XM — R be a given sequence of kernels fulfilling the conditions of Proposition
Then there exists a subsequence (kyy, ), converging in mean field to a kernel k : P(X) x P(X) — R.

. . . . . P
From now on, we only consider this subsequence and denote it again by (kas) s, i.e., kys - k.
Unless noted otherwise, every time we need a further subsequence, we will make this explicitE]

The RKHS of the mean field limit kernel Denote by H,; := Hy,, the (unique) RKHS corre-
sponding to kernel k;; and denote by Hj, the unique RKHS of k. For basic properties of these objects
as well as classes of suitable kernels we refer to [[18]].

We clarify the relation between H yyand Hy, in the next result.

Theorem 2.3. 1) For every f € Hj, there exists a sequence fy; € Hy, M € Ny, such that
I P, f.2) Let far € Hys be sequence such that there exists B € Rx>o with || fas| s < B for all
M € N,. Then there exists a subsequence (fr, )¢ and f € Hy, with fay, icN fand | fllx < B.

In other words, on the one hand, every RKHS function from Hyarises as a mean field limit of RKHS

functions from H ;.0On the other hand, every uniformly norm-bounded sequence of RKHS functions
(far)ar has a mean field limit in Hy.

Note that the preceding result is considerably stronger than the corresponding results in [[18]]: In
contrast to [[18, Theorem 4.4] we do not need to go to another subsequence in the first item, and

2As is well-known, cf. [8] Remark 1.1.3], this condition is actually implied by the next condition. However,
as usual in the kinetic theory literature, we kept this condition for emphasis.

31t is customary in the kinetic theory literature to switch to such a subsequence. However, for some results
that are about to follow, it is important that no further switch to a subsequence happens, hence we need to be
more explicit in these cases.
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Figure 1: The kernel k arises as the mean field limit (MFL) of the kernels kj; (Proposition [2.2).
Every uniformly norm-bounded sequence fa; € Hyr, M € Ny, has an MFL in Hj, and every
function f € Hy, arises as such an MFL (Theorem [2.3). Based on [18] Figure 1].

we ensure that the mean field limit f is contained in H}, (and norm-bounded by the same uniform
bound), which was missing from Corollary 4.3 in the same reference.

The relation between the kernels k), and their RKHSs H;, and the mean field limit kernel £ and
its RKHS Hj, is illustrated as a commutative diagram in Figure[I] In order to arrive at the mean
field RKHS H;., on the one hand, we consider the mean field limit & of the k,;, and then form the
corresponding RKHS Hj;. This is essentially the content of Proposition[2.2} On the other hand, we
can first go from the kernel kj; to the associated unique RKHS H); (for each M € N ). Theorem
[2.3]then says that H}, can be interpreted as a mean field limit of the RKHSs Hy, since every function
in Hj arises as a mean field limit of a sequence of functions from the H,;, and every uniformly
norm-bounded sequence of such functions has a mean field limit that is in Hy.

Next, we state two technical results that will play an important role in the following developments,
and which might be of independent interest. They describe lim inf and lim sup inequalities required
for I'-convergence arguments used later on.

Lemma 2.4. Let fy; € Hy, M € Ny, and f € Hj, such that fp, N f, then
/1l < liminf [| far || ar- 3)
M — o0

Lemma 2.5. Let f € Hj. Then there exist fyy € Hy, M € N, such that
lim]\/[*)oo SUPzec x M ‘f]\/[(:f) — f(ﬂ[{f]” = 0, and
limsup [ farllar < || flk- 4
M— o0

3 Approximation with kernels in the mean field limit

Kernel-based machine learning methods use in general an RKHS as the hypothesis space, and learning
often reduces to a search or optimization problem over this function space. For this reason, it is
important to investigate the approximation properties of a given kernel and its associated RKHS as
well as to ensure that the learning problem over an RKHS (which is in general an infinite-dimensional
object) can be tackled with finite computations.

The next result asserts that, under a uniformity condition, the approximation power of the finite-input
kernels kj; is inherited by the mean field limit kernel.

Proposition 3.1. For M € N,, let Fj; be the set of symmetric functions that are continuous
wrt. (Z,7) — dgr([Z], 4[Z']). Let F € C°(P(X),R) such that for all f € F and e > 0

there exist B € R>( and sequences fy; € Far, fM € Hy, M € N4, such that 1) fas P, 2
[far — faslloo < €forall M € Ny 3) || farllar < Bforall M € Ny. Then forall f € Fand e > 0,
there exists f € Hy, with || f — f]le < e

Intuitively, the set F consists of all continuous functions on P(X) that arise as a mean field limit of
functions which can be uniformly approximated by uniformly norm-bounded RKHS functions. The
result then states (to use a somewhat imprecise terminology) that the RKHS Hj, is dense in F. We
can interpret this as an appropriate mean field variant of the universality property of kernels: a kernel
on a compact metric space is called universal if its associated RKHS is dense w.r.t. the supremum
norm in the space of continuous functions, and many common kernels are universal, cf. e.g. [30,
Section 4.6]. In our setting, ideally universality of the finite-input kernels %, is inherited by the mean
field limit kernel k. However, since the mean field limit can be interpreted as a form of smoothing
limit, some uniformity requirements should be expected. Proposition [3.1] provides exactly such a
condition.
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Remark 3.2. In Proposition the set F is a subvectorspace of C°(P(X), R). Furthermore, if the
P1-convergence in the definition of F is uniform, then F is closed.

Since k) and k are kernels, we have the usual representer theorem for their corresponding RKHSs,
cf. e.g. [29]]. A natural question is then whether we have mean field convergence of the minimizers
and their representation. This is clarified by the next result.

Theorem 3.3. Let N € N, p1,...,puy € P(X)andforn =1,...,Nlet#M € XM, M e N,

such that /l[:fLM]] D, pin for M — oco. Let L : RY — R be continuous and strictly convex and

A > 0. For each M € N_ consider the problem

gmin LM, @) + ALl 5)
as well as the problem
i L7 £) + M ©)

Then for each M € N, problem (3) has a unique solution f;,, which is of the form f}, =
ery:l oM M (5 f%M]) € Hy, with a[lM], e a[NM] € R, and problem () has a unique solution
f*, which is of the form f* = 27]:]:1 ank(c, pn) € H, with aq, ..., an € R. Furthermore, there

exists a subsequence (f},, )¢ such that 3, D, f* and

LOf, @M, Fan @) 4 M g, = LU (), S5 () + AL e (D

for ¢ — oo.

The main point of this result is the convergence of the minimizers, which we will establish using a
I"-convergence argument. This approach seems to have been introduced by [20, 16} [19] originally in
the context of multi-agent systems.

Remark 3.4. An inspection of the proof reveals that in Theorem [3.3|we can replace the term A| - || as
and A|| - ||z by Q(|| - ||ar) and Q(|| - ||%), where © : R>¢ — Rx¢ is a nonnegative, strictly increasing
and continuous function.

4 Support Vector Machines with mean field limit kernels

We now turn to the mean field limit of kernels in the context of statistical learning theory, focusing
on SVMs. We first briefly recall the standard setup of statistical learning theory, and formulate an
appropriate mean field limit thereof. We then investigate empirical and infinite-sample solutions of
SVMs and their mean field limits, as well as the convergence of the corresponding risks.

Statistical learning theory setup We now introduce the standard setup of statistical learning
theory, following mostly [30, Chapters 2 and 5]. Let X’ # ) (associated with some o-algebra) and
() #Y C R closed (associated with the corresponding Borel o-algebra). A loss function is in this
setting a measurable function £ : X x Y x R — R>(. Let P be a probability distribution on X' x Y’
and f : X — R a measurable function, then the risk of f w.r.t. P and loss function ¢ is defined by

Rep(f) = /X Yé(m, f(x))dP.

Note that this is always well-defined since (z,y) — £(x,y, f(z)) is a measurable and nonnegative
function. For a set H C R of measurable functions we also define the minimal risk over H by

Rip flgHRe,P(f)

If H is a normed vector space, we additionally define the regularized risk of f € H and the minimal
regularized risk over H by

Repalf) =Rep(f) +AIfIE Ripa= flgg Repa(f),
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where A € R is the regularization parameter. A data set of size N € N, is atuple Dy =
(z1,91)s- -+, (N, yn)) € (X x Y)Y and for a function f : X — R we define its empirical risk by

1 N
Re,Dn (f) = N Zf(ffmymf(ifn))

If H is a normed vector space and f € H, we define additionally the regularized empirical risk and
the minimal regularized empirical risk over H by

Re.pwn(f) = Repn () + A flIFs RiE DA = flg{ Re.px (),

where A € R+ is again the regularization parameter. Note that the notation for the empirical risks
is consistent with the risk w.r.t. a probability distribution P, if we identify a data set Dy by the

corresponding empirical distribution % 25:1 O yn)-

In the following, H will be a RKHS and a minimizer (assuming existence and uniqueness) of Rf PA

will be called an infinite-sample support vector machine (SVM). Similarly, Ré Dy x Will be called the
empirical solution of the SVM w.r.t. the data set Dy .

Statistical learning theory setup in the mean field limit Let now () # Y C R be compact and
by XM xY xR — R>o, M € N, such that 1) ¢y (0%, y,t) = lrm(Z,y,t) forall & € XM,
o € Sp,y €Y, t €R;2) there exists C; € R>( and a nondecreasing function b : R>¢ — Rxg
with |£3/(Z,y,t)| < Cp+b(|t|) forall M € Nand # € XM,y € Y,t € R; 3) there exists L, € R>g
with

100 (Z1, 91, t1) — €ar (Ta, y2, t2)| < Le(der (2[Z1], 2[F2]) + [y1 — y2| + [t1 — t2|)

forall Z1,z0 € XM, y1,y] € Y,t1,t2 € R. In particular, all £5; are measurable (assuming the Borel
o-algebra on X ™) and hence are loss functions on X x Y. Proposition[2.1]ensures the existence
of a subsequence (£, )m and an Ly-Lipschitz continuous function £ : P(X) x Y x R — R with

lim  sup |l (Z,y,t) — L(A[], y,t)| = O ®)
1 — o0 FeXMm
yeY,teK

for all compact K C R, and we write again £y, ﬁ> L. For readability, from now on we switch to
this subsequence. Furthermore, we also get from Propositionthat there exists some C';, € R>g
such that [¢(p, y,t)| < Cp +b(|t]) forall p € P(X),y € Y,t € R.

Remark 4.1. Note that, for Proposition to apply, it is enough to assume in item 2) above the
existence of a function b : R — Rxq with |(5/(Z,y,t)| < C¢ + b(|t|). However, we chose the
slightly stronger condition that b is nondecreasing, since then ¢, is a Nemitskii loss according to [30]
Definition 2.16]. Since the function with constant value CY is actually P,/-integrable, this means that
£y is even a Pyy-integrable Nemitskii loss according to [30]. A similar remark then applies to /.

Lemma 4.2. The function ¢ is nonnegative. Furthermore, if all £;; are convex loss functions [30}
Definition 2.12], i.e., if forall M € N, ¥ € XM y € Y,t;,t, € Rand A € (0,1) we have
ZM(f?% >\t1 + (1 - )\)tQ) S )\gkf(f7yut1) + (1 - A)EJW(i.'a y7t2)7 (9)

then so is /.

Empirical SVM solutions Given data sets DE\I,M] = ((f[lM] , ng]), ce (f%ﬂ , y%w])) forall M €

N, with fLM] e XM, LM] €Y, and DN = ((u1,y1)s -+, (un,yn)) with p,, € P(X) and

yn €Y, we write DE\, I Py Dy if u[ ] r, Iy and yL I yn (Where M — oo) for all

n =1,..., N. We can interpret this as mean field convergence of the data sets.
Furthermore, consider the empirical risk of hypothesis fy; € Hj; (and f € Hy) on data set DK\/]
(and Dy)

N
7yn fM( ))a RZ,DN Z ,unayn: ,un))v

uMz

Ry ot (far) =
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and the corresponding regularized risk

Ry plan 5 (far) = Zf @My g (ZM)) + A farll3s

1 N
RZ,DN,)\(f) = N Zg(ﬂnvyna f(lu‘n)) + AHf”ia

n=1
where A € Ry is the regularization parameter.

Proposmon 4.3. Let A > 0, assume that all /;; are convex and let D[M] Dy be finite data sets
with DY) P4 Dy Then forall M € N, Hy 3 far — R, DI 5
fM,)\ € Hyrand H,, 3 f — Ry, py,a(f) has a unique mimmlzer f/\ € Hj,. Furthermore, for all
M € N, there exist o) € R, n = 1,..., N, such that f,, = S0 ol (-, 207), and
there exist aq,...,an € Rsuch that f{ = 27]7\,[:1 ok (-, ur). Finally, there exists a subsequence

* * P *
(f31,, »)m such that f3, —5 f and R,, Dl A 2) = Repy a(f5) form — oo.

(far) has a unique minimizer

Convergence of distributions and infinite-sample SVMs in the mean field limit We now turn
to the question of mean field limits of distributions and the associated learning problems and SVM
solutions. Let (P [M] ) be a sequence of distributions, where PMI 5 a probability distribution on
XM » Y, and let P be a probability distribution on P(X) x Y. We say that PI™] converges in mean

field to P and write P[M] KN P, if for all continuous (w.r.t. the product topology on P(X) x Y)
and bounded ] f we have

/ F(alz], y)dPMY(z, y) — / F(py)dP(p,y). (10)
XMxy P(X)xY

This convergence notion of probability distributions (on different input spaces) appears to be not
standard, but it is a natural concept in the present context. Essentially, it is weak (also called narrow)
convergence of probability distributions adapated to our setting.

Consider now data sets D[ ] , D, with D[ I 7 — Dy, then we also have convergence in mean field
of the datasets, 1nterpreted as empirical dlstrlbutlons. let f € C°(P(X) x Y, R) be bounded, then

/ A, ) ADE (7 ) = ~ 3 F(ala], i)
XMxy

M— o0 1 _
—WZJ’(un,yn) —/p(X)ny(u,y)dDN(My)

This shows that the mean field convergence of probability distributions as defined here is a direct
generalization of the natural notion of mean field convergence of data sets.

Finally, consider the risk of hypothesis f; € Hys and f € Hy, w.r.t. the distribution P [M] and P,
respectively,

RzM,P[M](fM):/XM YE (2, y, far(2)dPM(Z )

Rep(f) = /P oy L AP,

as well as the minimal risks

Hpr* _ Hypx _
Ry pon = i lng Reypin(far)  Ryp = flenlgk Rep(f).

Our first result ensures that mean field convergence of distributions pM ], loss functions ¢, and data

M]

sets DEV ensures the convergence of the corresponding risks of the empirical SVM solutions.

*Of course, since Y’ is compact, all continuous f are bounded in our present setting.
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Lemma 4.4. Consider the situation and notation of Proposition and assume that PIM] 74 p.

We then have Ry, poni (f3y,, 1) = Re,p(f3) form — oc.

Next, we investigate the mean field convergence of infinite-sample SVM solutions and their associated
risks. Define for A € R>¢ (and all M € N, ) the regularized risk of fy; € Hys and f € Hy,
respectively, by

Ry, pion 3 (1) = Rey, pown (Far) + Al far 3, Repalf) =Rep(f) + AfIE

and the corresponding minimal risks by

Riviponn = g Jof Repona(fan): - Ry = imf Repa(f).
Proposition 4.5. Let A > 0, assume that all ¢;; are convex loss functions and let PM] and P
be probability distributions on X x Y and P(X) x Y, respectively, with P 2% P Then
forall M € Ny, Hy 3 fur = Ry, pian z(far) has a unique minimizer f1T4,>\ € Hys and
Hi > f— Repa(f)hasa unique minimizer f5 € Hj,. Furthermore, there exists a subsequence

(fir,, x)m such that f]*wm’/\ % f% and Ry, PO, (me)\) — Rep(fy) form — co. In
partlcular R, iy, x " platml x Rf 5

Finally, we would like to show that R M2 oy PIM] Rf};* for PIM P4, p, Up to a subsequence, this is

established under Assumption[4.6 Deﬁne the approximation error functions, cf. [30, Definition 5.14],
by

M Hpx . Hy,*
A0 = it Ry pooa() = R han AN = inf Repa(f) = REE,

where M € N and A € R>q. Note that (for all M € N,) A[QM],Az : R>o — Ry are increas-
ing, concave and continuous, and A[QM], As(0) = 0, cf. [30, Lemma 5.15]. We need essentially
equicontinuity of (A[QM] ) in 0, which is formalized in the following assumption.

Assumption 4.6. For all € > 0 there exists A\c > 0 such that forall 0 < A < A and M € N we
have A[QM}()\) <e
Proposition 4.7. Assume that all £); are convex loss functions, let P™] and P be probability

distributions on X™ x Y and P(X) x Y, respectively, with P! Py poaf Assumptionholds,

"
Mm * —>RH’“* for m — oo.

there exists a strictly increasing sequence (M, ),, with R " Pl

5 Conclusion

We investigated the mean field limit of kernels and their RKHSs, as well as the mean field limit of
statistical learning problems solved with SVMs. In particular, we managed to complete the basic
theory of mean field kernels as started in [18]]. Additionally, we investigated their approximation
capabilities by providing a first approximation result and a variant of the representer theorem for
mean field kernels. Finally, we introduced a corresponding mean field limit of statistical learning
problems and provided convergence results for SVMs using mean field kernels. In contrast to other
settings involving a large number of variables, for example, infinite-width neural networks, here we
considered the case of an increasing number of inputs. This work opens many directions for future
investigation. For example, it would be interesting to remove or weaken Assumption [4.6|for a result
like Proposition[d.7] Another relevant direction is to find approximation results that are stronger than
Proposition [3.1] Finally, it would be interesting to investigate whether statistical guarantees, like
consistency or learning rates, for the finite-input learning problems can be transferred to the mean
field level.

5Note that Propositionis actually a corollary of this result. However, since the former result is independent
of the notion of mean field convergence of probability distributions, we stated and proved it separately.
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Supplementary Material

A Proofs

In this section of the supplementary material, we provide detailed proofs for all results in the main
text.

A.1 Proofs for Section

We start with Proposition [2.1] whose proof is based on [8, Lemma 1.2].

Proof. of PropositionFor M € N, define the McShane extension Fjs : P(X) x Z — R by
Fra(p,2) = _mf far(F,2) + Lydgr (A2, ).
Observe that F) is well-defined (i.e., R-valued) since fas(-, z) and L ¢dkgr (fi[-], 1) are bounded for

every z € Z (since fas and dggr(fi[-], 1) are continuous and P(X) is compact, hence bounded).

Step 1 Fs extends fu, i.e., forall M € N, # € XM and 2 € Z we have Fy;(ii[7], 2) = fa (7, 2).
To show this, let # € X™ and z € Z be arbitrary and observe that by definition

Fn(pld),2) = inf far(7, 2)+Lypdr (BE] AZ)) < far (T, 2)+Lydir (A2, AIE]) = fre(, 2).

If Far(0[7), 2) < far(%, 2), then there exists some 7 € X ™ such that
(@, 2) + Lydgr (7], Al2]) < fu(, 2),

but this means that

Lydxr(0[7'], 0[7]) < far(,2) = fau (&, 2) < | fu (@, 2) — fau (@ 2)],
contradicting the L y-Lipschitz continuity of fa;.
Step 2 All Fy; are L¢-continuous: Let M € N, p; € P(X) and z; € Z, i = 1,2, be arbitrary.
Since XM is compact and fu;(-, z) and Lydgr(fi[-], p1:), i = 1,2, are continuous, the infimum in

the definition of F}; is actually attained. Let #» € X™ such that Fi(uz, 20) = far(T2, 22) +
L ydxr (f1[%2], pt2), then we have

Frar(pa, z1) < far (@2, 21) + Lpdkr (B[22], 1)
= fm(Z2, 21) + Lpdxr(A[T2], p2) — Lydxr(A]Z2], p2) + Lpdgr (7], p1)
< I (T2, 22) + Lydgr(f]22), p2) + Lydz (21, 22) — Lpdgr (f1[Z2], p12)

+ Lydxr (A[Z2], 1)
< Fuar(pe, 22) + Lydz (21, 22) — Lydgr(fi[Z2], po) + Lpdrr (i1, p2)
+ Lydgr(f[Z2], p2)
= Fr(p2, 22) + Ly (dxr (11, p2) + dz (21, 22)),
where we used the definition of F); in the first inequality, the Lipschitz continuity of fy; (w.r.t.
the second argument) for the second inequality, and then the fact that Z5 attains the infimum in the

definition of F'y; (2, z2) and the triangle inequality for dkg. Interchanging the roles of 4, z; and
L2, 2o then establishes the claim.

Step 3 There exists Bp € R such that for all M € N4, 4 € P(X) and z € Z we have
|Far(p, 2)| < Bp + h(2): Let Dp(x) be the diameter of P(X) (which is finite since P(X) is
compact), then for all M € N and & € XM ez, 1 € P(X) we have

—(By + LyDpix) +b(2)) < far (&, 2) + Lyd (il#) 0) < By + Ly Dp + b(2),
therefore | Fis (u, 2)| < By 4 Ly Dp(x) + b(2), showing the claim with Bp = By + Ly Dp(x).

Step 4 Summarizing, (Fs) s is a sequence of L ¢-Lipschitz continuous and hence equicontinuous
functions such that for all u € P(X) and z € Z, the set { Fas (i, z) | M € N, } is relatively compact
(since it is a bounded subset of R). We can now use a variant of the Arzela-Ascoli theorem, cf. [24]

12
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Corollary I11.3.3]. From the assumption on Z, we can find a sequence (V},),, of open subsets of Z
such that all V,, are compact, V,, C V.11 and we have | J,, V;, = Z. Then (Fix|y, )as is a sequence
of functions that fulfills the conditions of the Arzela-Ascoli theorem (since P(X) x K, is compact),
so there exists a subsequence (FMén) |y, )¢ that converges uniformly to a continuous function on
P(X) x V,,. Denote the diagonal subsequence of all these subsequences by (Fyz, )¢, then there exists
a continuous f : P(X) x Z — R such that (¥, ), converges uniformly on compact subsets to f.
Since P(X) is compact, this means that for all compact K C Z

lim sup |Fa,(p,2) — f(u,2)] =0.
£ ueP(x)
zeK
This also implies that for all u € P(X) and z € Z we have | f(u, 2)| < Bp + b(z).

Furthermore, f is also L ¢-Lipschitz continuous: Let p; € P(X), 2z; € Z,i = 1,2, and € > 0 be
arbitrary. Let K C Z be compact with 21, zo € K and choose ¢ € N such that

sup [Fiug, (1, 2) — f(p,2)| < 5
HEP(X)
zeK
We then have
|f(p1, 21) = flpo, 22)| < 1f (1, 21) = Fag, (1, 20) | + |Far, (1, 21) — Far, (p2, 22))|
+ [Foa, (p2, 22) — f(p2, 22)|
< Ly (dxr(p1, p2) + dz (21, 22)) + ¢,
and since € > (0 was arbitrary, the claim follows.
Step 5For £ € N, and ¥ € X™¢, 2 € Z we have
|fu (2, 2) = f(RIZ], 2)| = |Fn, (A7), 2) — f(A[T], 2)]
since Fys, extends fy,, and hence
sup ‘fMe(fvz) - f(ﬂ[f],Z” — 0.

FeXxMe
zeK

Next, we provide the proofs for the I'-lim inf and I'-lim sup results.

Proof. of Lemma [2.4] Assume the statement is not true, i.e., || f|lx > liminfa/ o || far|/az. This
means that there exists a subsequence My and C' € Rxq such that || f||r > limg || far, || s, = C. Note
that this implies that || f|| > 0.

Let €162 > O and a > 1, 8 € (0,1) be arbitrary. From Theorem [B.1] there exists ({7, @) €
P(X)N x RY such that
D(/jv &a fa k) +e > ||fHk7

and w.l.o.g. we can assume that ¢; > 0 is small enough so that D(f7, &, f, k) > 0. The latter implies
that £(f, &, ), W(ii, &, k) > 0, so defining

a—1
o= i,
o= —E(7,d, )
eg = (1/8 = )W(ii, d, k)
we get e, eg > 0. Foreachn = 1,..., N, choose J‘U'LM] € XM gsuch that xn LN iy for M — oo.
Choose now L; € N such that for all / > L; we get

E(X, &, far,) = £, )] < ea
WX, & kear,) = WA, @ K| < .
(cf. also the proof of Theorem and W(XMe | g, k[Me]) > 0. We then get

E(i.d. f) < a€(XM. &, fuy,)
W(ii, &, k) > BW(X M G, gIMel),

13



478 so altogether
(M a sz)
(Me] 7, k[Mz])

&i,a. f) _ a&(
W(ii, d, k) BW(
479 Using Theorem[B.T]again leads to
O“S(X[Me] _’a fM)
BW(X [Mtz a, kMd)
g0 Finally, let Lo such that for all £ > Ly we have || far, ||ar, < C + €3. For £ > Ly, Ly we then get
C<||fH1€<D(,u7 f7 )+€1

X
X

= D(XMI @, far,, KDY < || fag, || o, -

E(i,a, f) .
‘W@&@*
< 045()5 sz) )

ﬁ
@
S e + =€+ €
B
481 Since €1,e9 > 0and o > 1, B € (0, 1) were arbitrary, this implies that
C<|lfllk<C,
482 a contradiction. O

483 Proof. of Lemma[2.3|Let f € Hy, be arbitrary and choose (e,), C Rsq with €, N\, 0.
484 Step 1 For each n € N choose

fpre o Z Oégn)k (n) H]Erey

485 Whereagn),.. (")ERandu )...,,uL e P(X )with

If = 7%l <

- 3\/
ags and ||fh°|ls < ||f]lx- To see that such a sequence of functions exists choose some sequence

a87 (fn)n € HY® with f, = Ze"l o‘zEn k(- ol )) where ag " e R, ,u[ € P(X), with f,, —5 Il f
488 (exists since Hy© is dense in Hy). Define now forn € N

H, =span{k(-,p{™) |m=1,....,n, £=1,..., Ly}
wo and f, = Py f, where Py _is the orthogonal projection onto H,,. Then H, C H™, || fullx =
a0 || Py, fllk < [If]lxand || f— Falle < IIf = Falle — 0 (since f,, = Pg  f is the orthogonal projection
a9t of f onto H, and f,, € H,), hence fn M f. We can now choose (fh°), as a subsequence of

492 (fn)n

ss Next, foralln € Nand £ =1, ..., L, choose #" € XM with j[#] 4% u(”) for M — oo.
494 Furthermore, for all n € N choose M € N such that forall M > M, and ¢ =1,..., L, we have

2
n

3(1+ Le iy o) 2 (1422 Sl 1))

€n €

dxr (i [ac(n 13)} (n)) < min

495 and
] AT AT : €n 6%
sup |k (7, 7') — k(A[7], p[7])| < min NN - o
FEexM 3(1+ X lefl) 2 (14 h o™ 1)
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a6 W.lo.g. we can assume that (M,,),, is strictly increasing. For M € N, let n(M) be the largest integer
497 such that M, sy < M and define

Ly ()

pre o Z a(n(M))k ﬂ[—'(n(]\/l) E)D c H]Ere

Loy (ary

= 3 o 7 €

498 Step 2 We now show that f, KN f. For this, let € > 0 be arbitrary and n. € N such that ¢,, < e.
499 Letnow M > M, (note that this implies that n(A) > n. and hence €,(5s) < €,) and T € XM,
s00 then we have

@) = fa @ < £ @R = Faoany (D] + | faon (2(7) = F7 @[] + | F7 (2[7]) = far(@)]

=1 =II =III

501 We continue with

I = f(al7]) = fan (A[7]))]
=[{f = faqry, ( A7)k
<Nf = Faan llIEC, AIED]

= |f = faqan kv E(R[Z], A[2])
€n(M)
< N Cy

s02  where we first used the reproducing property of k, then Cauchy-Schwarz, again the reproducing
s03 property of k, and finally the choice f,,(»s) and the boundedness of k.

504 Next,
IT = | foan (l2]) — f57 (A[7])]

L (ary L)

Z QPO (. (D)) Zan(M | AERAD0))

Ln(M)
n(M nM ~ n(M),t
< 30 ol M Ik ) — kG Al
=1
Ln(ary
< Ly Z ‘aen(M ’dK (A7 _»(n(]\/[) 4)] Mgn(]\/[)))
=1
- 3

505 where we used the triangle inequality, the Lipschitz continuity of k, and then the choice of the
s06  sequence (M, ).

507 Finally,
111 = | f37 (Al@]) — fur ()]

Ln(ary , Ln(ary ,
n(M ~ra(n(M n(M —(n(M
:Za§())k('a[(())]) (())k( ()))
(=1 =1
n(IW)
n(M)) ~r=(n(M),L S(n(M),L
< 30 | (e Al — har L E)
/=1
< 6n(M)7
- 3
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soe where the triangle inequality has been used in the first step and then again the choice of the sequence
509 (My)n.

st0  Altogether,
\f(alZ]) = fu (@) < T+ 1T+ 111
En(M) En(M) €n(M)
<
- 3 * 3 3
<k,

511 establishing fas KN f.

512 Step 3 We now show limsup,,_, . | fallar < || f]|x- Let € > 0 be arbitrary and n,. € N such that
513 €, < eandlet M > M, . We have

Ly (nr)
Il = D ag™ M agr Mk @00, 200 0)
0,0'=1
Ly (nr)
n(M n(M n(M n(M
< Z oz§( ))O[&/( ))k(,ug,( ))7@( ))) +|Ry| + | Ry
0,0'=1

= | fon i + B+ Ra

< |I£1? + Ry + Ro.
514 with remainder terms

Ly () Lo (ary
n(M n(M (n(M),0") (n(M),0 n(M n(M —(n(M),e ~Aro(n(M),e

R, = Z 0‘2( ))OZE/( >)kM(13§VI< ) )7x§M( ) ))7 Z (( ) (( )>k( [( ) )] [5\4( ) )])

£,0'=1 £,0'=1

Lo () Ly

n(M n(M S(n(M), ~ro(n(M),e n(M n(M n(M n(M

Ry = Z a ) ( ( ))k( [ (n(M), )] /L[IEEM< ) )])7 Z ag( ”oz@,( ))k(/l;/< ) Né( )))

0,0'=1 £,0=1

515 We now bound these terms, so that

Lo () Lon(ar)

Z a(n(M)) (n(M))k (ﬂ(n(M)é) H(n(M)E) Z a(n(M)) (n(M))k( [H(H(M)Z)] ﬂ[fS\Z(MM/)])

£,0'=1 £,0'=1

Ry

Lo ()

Z |a("(M)>|| ("(M))Hk ( n(M)Z> ﬂ('ﬂ(M)f)) k(

2,0/=1

—(n(M),0')y ar=(n(M),e
@™ D)

IN

fi

€n(an)
> 9
L) Lo
n(M n(M ~ra(n(M), e —(n(M),0’ n(M)) (n(M n(M n(M
Ro= |3 afrOM{rm (e e Gatney) _ §™ om00) o an) o) | ()
0,0'=1 0,0'=1

Lo (n)

n(M n(M ~r=(n(M),0 ~r=(n(M),e n(M n(M
D2 Lo Mg Ik alzy ), ala M) = g M )

0,0=1

IN

Ly ()
< Ly Z |a(n(M "(M))l ( (ﬂ[ﬂ("(M) 4)]’M( (M))) + dxr (/:L[—'(TL(M) 2 )]’MZE(M))))
£,0'=1
63l(M)
i 2 .
517 Altogether,

13l < IFIR + [Ral + | Re|

2 Eme) 921<M>
< fllx + 9 +T

< IfI% + €,
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518
519

520

521

522
523
524
525

526

527
528

530

531

533
534

535
536

537

538

539
540
541
542
543

544
545

546

547
548

549

so [fallar < |Ifllx + € for all M > M,_, and since ¢ > 0 was arbitrary, we finally get
limsupy, oo 1fasllne < 1 f]- =

Finally, we can now provide the proof for the central Theorem 2.3]

Proof. of Theorem|2.3| The first statement is part of Lemma[2.3] Let us turn to the second statement:

The existence of the subsequence (fas, )¢ and the continuous function f : P(X) — R with fay, KN f
was shown in [18] Corollary 4.3], so we only have to ensure that f € Hy, with || ||, < B. For this,
we use the characterization of RKHS functions from Theorem[B.1] In particular, we will utilize the
notation introduced there.

Step 1 Let (ji, @) € P(X)N x RN. We show that if W(ji, &, k) = 0, then E(ji, a, f) = 0.

Assume that W(fi, a, k) = 0. If B = 0, then fj; = 0 and f)y, KN J implies that f = 0, so the
claim is clear in this case. Assume now B > 0, let e > 0 be arbitary and forn = 1,..., N, choose

sequences :ELM] € XM such that 7, [M] dxw, wun, for M — oo. For convenience, define X X M) =

(f[M] .. j‘[M]). Choose now ¢, € N such that for all M > M,_we get W(X[” ,a, k) <

¢/ B. This is possible since ks Pk together with the continuity of ks and k as well as xn M) d,

fn for M — coandalln = 1,..., N implies that W(X™M & ky) — W(ii, &, k) = 0. Let now
¢ > {. be arbitrary and observe that fi; € Hys implies N'(far, ky) < oo according to Theorem

S0 in particular 'D(X[Z\/jl] ,a, f]\h R k]\/jz) < 0.

If W()_('[Mf],&,kMZ) = 0, then we get that £(X M[],O?,sz) = 0 < € since
D(X[Mfl,d', fa,s ka,) < oo, which implies by definition that E(X[M"], Y, fa,) =

IEW(XIMel @, kyy,) > 0, then we have

S(X[Ml]a O_Za f]\/fg)
W(XIMe], @, kyy,)

= D(‘)?[Mdv&’wakMe) SN(sz’kMz) = HszHMz < B,

which implies
g()_(‘[]u[ sz) < BW( MZ] «, kMz) <e

Since f, N f together with the continuity of f;; and f as well as x I e, 1, implies that
E(XMd g, fa,) = E(f, A, f), we get that E(fZ, &, f) < e, and since € > 0 was arbitrary we arrive
atE(ji, d, f) < 0.

Assume now that £(ii, &, f) < 0. This implies that there exist 6 > 0 and ¢5; € N such that for all ¢ >
{5 we have E(XMd @, fr,) < —6 < 0, since E(XM &, far,) — E(fi, @, f). Let £ > L5, then we

get that £(XMd, —&, fry,) > 6 > 0 and we have W(XMe), —@, kyy,) = W(XIM &, kyy,) > 0.
We can then continue with

5 _ E(XMI, -4, far,)
W(XIM @, kyy,) ~ W(XIM -G kyy,)
< D(XM &, far, kg,
<N (fays k)

= ”fMeHMe < B,
which implies that W(XMd —@ ky,) = W(X[Mf] a,ky,) > 0/B.  But since
W(XM] & ky,) —> W(ﬁ N ) this implies that W(ji, &, k) > §/B > 0, a contradiction. Alto-

gether, E(f, @ )
Step 2 Let (fi,d) € ( WV x RN IfW(ii, @, k) > 0and E(fi, @, f) > 0, then
E(f,

f)
Wiaw <P

lel
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551

552

553

554

555

556

557
558

559
560

562

563

564

565
566
567

568

569
570

To show this, let « > 1 and 8 € (0, 1) be arbitrary. Define

a—1_ . _
€a = 8(“7 Q, f)
¢g = (1/8 = )W(, a, k)
and observe that €, eg > 0. Furthermore, for all n = 1, ..., N choose a sequence # e XM such
that 71 2%, for M — oo, and define X M) = (ﬂ[M] . fw) Choose /. € N such that

for all £ > /. we have
E(X, @, fr,) - (@, )] < ea
WO, k) = WO 1) < 5
and W(X @, kar,) > 0. Such an £, exists because ks Pk together with the continuity of ks
and k as well as the convergence of #M 1o {in, imply that W(X[Me] & Y, ka,) = W(HE, &, k), and
far, =% f together with the continuity of fy; and f imply that £(X [Mf a, far,) — E(ji, a, f).

Let now ¢ > £, be arbitrary. By definition of ¢, we get ae,, < (a—1)E(ii, &, f), which in turn leads
to

€a < €q —aeq + (@ — 1E(H,
=—(a—1)eq + (a — 1)&(
= (a=1(E(, a, f) — €a)
< (Oé - 1)S(X[M[]a 077 fMé)y
where we used in the last inequality that & — 1 > 0 and by choice of ¢, we have £(fi, @, f) <
E(XM] &, far,) + €4. We can then continue with
(ﬁ7& f)<(C/’(X[]er fMﬁ)+€a
< EXMa, far,) + (a = DEXIM, G, far,)
= Oég()Z[M[] 5 62, f]\/[e).
Next, by definition of eg and choice of /. we find that
WX & k) < W, @ k) + e
=W(ii,d, k) + (1/8 = YW (i, a, k)
= (1/B)W (i, a, k),
1 < 1
W(ﬁu C_ia k) ﬁW( M/] a k]w[)
Combining these results, we get that for all £ > /.
g(ﬁv 0_27 f) « (‘:( Me] 7fMe) « « «
< < =N Jkar,) = = , < =B.
WG R) S BT ) < 7w = gl <
Since @ > 1 and 3 € (0, 1) were arbitrary, this shows that
E(ji,a, f)
Wi, & k)

)
a, f)

a
iy

hence

< B.

Step 3 Let (ji,@) € P(X)V x RN be arbitrary. If W(ji,d, k) = 0, then we get from Step 1 that
E(ji,a, f) =0 < B. Assume now W(ii,d, k) > 0. If E(fi, a, f) = 0 then again £(f, &, f) =0 <
B.If E(fi, &, f) > 0, then Step 2 ensures that

E(fi, a, f) o
———= =D k)< B
Wi ah) (i, d, f, k) <
Finally, if £(ji, &, f) < 0, then again
E(fi,a, f)
=B pi,d, f,k) <0< B.
wiiaky S SE
Altogether, we get that D(fi, d, f, k) < B. Since (fi, @) was arbitrary, maximization leads to
N(f,k) < B < oo, hence f € Hy and || f||x = N(f,k) < B. O
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584

585
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593

594

A.2 Proofs for Section

In this section we provide the proofs for the results relating to approximation with kernels in the
mean field limit.

Proof. of Proposition 31| Let f € F and € > 0 be arbitrary. Let B € Ry and fy; € Fur,
far € Hyr, M € N, such that fy; icN follfa — full < £ and I fazllas < B forall M € N,
(exist by definition of F). Theorem ensures that there exists a subsequence (faz, )¢ and f € Hy

with || f|| < B such that fy, P, f for £ — co. Choose now Ly € N such that for all £ > L; we
have

sup | fau, (%) — F(l#)] < ¢
FeXxMe

sup |, () — F(Ala])] < £
FeXx M

Let now p € P(X) be arbitrary and choose a sequence #y; € XM with i[/] LN . Finally, let
Lo € Ny such that for all £ > Ly we have

(such an Ly exists due to the continuity of f and f ).
We now have for ¢ > max{L;, Lo} that

1F () = F()] < 1F () = FCal@a )]+ |F (l@ag,]) — Fary @Ena)| + [ are (Eagy) — Fary (Fa,)|

+ | fag, (@aa,) — F(ALEs )] + | (AlZar,]) = f ()]

<L E €€ €
—F+ -+ -+ -+ - =e
-5 5 5 5 5

Since p was arbitrary, the result follows. O

Proof. of Remark [3.2] We first show that F is a subvectorspace. Let f,g € Fand A € R, e > 0

be arbitrary. W.l.0.g. we can assume A # 0. Choose sequences fas, gar € Fass fM,gM € Hy,
M € N, and constants By, B, € R>( from the definition of F for f, ﬁ, and g, 5, respectively.

Let M € N, Z € XM be arbitrary, then
IAfa (@) + g(2) — (Af(ala]) — g(alZ])] < (A far (@) — FRIED] + |gr (2) — g(alz])]

together with f, N fam N g shows that A\ fy; + gpr KN Af+g.
Next, we have for all M € N that
€ €
=e.

[(Mar +gar) — M far + ga0)llse < I = Farlloo + lgar — Garlloo < |)\|m + 5=

Finally,
INfar + g llar < M Faellas + lgarliar < [ABy + By,
establishing that (A f M + gar) a is uniformly norm-bounded. Altogether, we have that \f + g € F.

We now turn to the second claim. Let (f(™)),, C F such that f(") — f for some f € C°(P(X),R)
and for all € > 0 there exist fl(\:;) € Fu, Ag;) € Hu, (pm)m € Ry and B(™ ¢ R>( with
oy N\ 0, ||fI(V7[L) — fl(;;)Hoo < €and ||f]\(/7[L)||M < B™ forall n, M € N, and

swp £ (@) = 1 @) < o
FexM
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603

604

605

606

607

608

609

610

611
612

613

614

615

616

for all n, M € N,. We now show that f € F. For this, let ¢ > 0 be arbitrary and choose f](\/’;) € Fu,
f(n) c Hy, (pM)M C R and BM ¢ R>( as above with € = . Let N € N, be such that

| fm) — f(”)H < forallm,n > N (such an N exists since (f(”)) converges in C°(P(X),R)
and hence is a Cauchy sequence) Furthermore, let M € N, be such that for all M > M, we have

pu < §. Define now fy; = f](év and fM fM forM =1,...,M,—1,and f); = ](V[M+N),
far = FI) for M > M,
Step 1 Let M > M, and ¥ € XM be arbitrary. We have

| (@) — FRE)] = 17570 (@) — f(alz)|
< |fi @) — fYED ()| + |FND (afE]) — f(alF)]
< par + [ FETM — fll o,

and since the right hand side (which is independent of ) converges to 0 for M — oo, we get
fu 25 .
Step 2 For M =1,..., M, we get
1ar = Farlloo = 53" = Fislloc < €<
Letnow M > M,and ¥ € X M pe arbitrary. We have
(@) = @] = 113 @) = A @)
<IN @ - f<N+M D]+ 170 ala]) = £ |

+ 1M @) - 1@+ 1@ - @)
< sup |fy"N(@) - f(M+N)(ﬂ[f’])|+||f(M+N)ff“v)lloo
reXxM
+ s [fNGEED = £ @ = A e
eXM
SpM+§+pM+€
<45 =

4

and since & € XM was arbitrary, we get || far — far oo < €.

Step 3 For M =1,..., M, — 1 we get by construction that I Farllar = ||f1(éw) llar < B, and for
M > M, we find ||fM||M = ||f(N)||M < BWN), Altogether, we get for M € N, that

| farllas < max{BW, ... BUM.~1) BN},
Combining the three steps establishes that f € F. O

Finally, here is the proof of the represnter theorem in the mean field limit.

Proof. of Theorem The existence and uniqueness of fj; and f follows from the well-known
representer theorem (applied to all £k, and k).
We now turn to the convergence of the minimizers. For all M € N we have
S M i
Al firllar < L@ S @)+ A lar < L0, 0),
ie., [|fi/llar < L(O,...,0)/A. Define

L HM%R>0,f’—>L(f( )a'“af( ))JF)‘”fHM

and let fyy € Hpy with fy KN f for some f € Hjy. The continuity of fu;, f
and L as well as x[M] iw, pn for M — oo and all n = 1,..., N, imply then that
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617 limp oo L (fM(i" )7 oo fu 1( )) = L(f(p1),...,f(un)). Combining this with Lemma
e18 [2.4lleads to

L(f) < liminf Las(f).

st Letnow f € Hy, be arbitrary and let fa; € Hjs be the sequence from Lemma[2:5] Using the same
620 arguments as above we find that

limsup Lar(far) < |1 flk-
M— o0

621 We have shown that £/ L £ and hence Proposition ensures that there exists a subsequence
* * P * * *
622 (fyy,)e suchthat fy, — f*and Loz, (f37,) = L(f*). O

623 A.3 Proofs for Sectiond
624 Proof. of Lemma {.2] That { is nonnegative is clear from the proof of Proposition 2.1} Let now
625 all {3y be convex and let u € P(X), y € Y,t1,t2 € Rand A € (0,1) be arbitrary, and define

26 | = [min{ty,t2}, max{t;,t2}]. Furthermore, let )y € XM with 7y, D, u for M — oo and
627 € > 0 be arbitrary. Choose now M so large that

AT € - AT =
|£(/’La Y, )‘tl + (1 - A)tQ) - E(N[IM], Y, Atl + (1 - )\)tQ)l <= sup |£]Vf(x7yl7t/) - E(u[m],y',t')\
6 = M
y:};ee}iftel
€
< —.
)

628 This is possible due to the continuity of ¢, as well as s P4, 4. We then have

sy X+ (1= N)t2) < G, Y X+ (1= N)ta) + &

< Ui (Zar,y, Aty + (1= Nta) + %

. . €

<My (Zar,ystn) + (1= Nl (Zar,y, t2) + 3
o Ll € €
S M@, y, t) + (1= ([T, y,t2) + o+ (A+1— /\)6

3
< )‘K(N»yvtl) + (1 - A)e(ﬂvf%tQ) + 6
620 and since € > (0 was arbitrary, this establishes

é(/’('a Y, Atl + (1 - /\)t2) S )\g(/,é, y?tl) + (1 - /\)é(uaya t2)>
630 1.e., convexity of /. O

s31  Proof. of Proposition[d.3|From Lemma[#.2] we get that ¢ is nonnegative and convex. The existence,
632 uniqueness and the representation formulas follow then from the standard representer theorem, cf.
633 e.g., [30, Theorem 5.5].

634+ Furthermore, for all M € N we have

M Firallir < ZKM (@M M fM,\( ))""/\”fM)\”M

< R€M7D[NM],>\(
S NCZ)

e3s  hence || f3; \llm < \/ e

es6 Let f € Hy and (far)ar, fir € Hur, such that fp KN f. From D%w] N Dy and the continuity
637 of £y, £, together with £, 1, ¢ and the boundedness of {yLM} | M eNy,n=1,....N} CY
638 and {fM(:Z"’LlM]) |M€N+, =1,...,N} we find that

0)

N
Z fins Y, f(1n)-

Z\H

hm*ZfM Ly, far (2
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651
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653

654

Combining this with Lemma and Lemma then establishes that R 21 DR\ —> Re,py,x and
the remaining claims follow from Proposition|B.3|and the uniqueness of the minimizers. O

Proof. of Lemma[.4|Let € > 0 be arbitrary. Recall from the proof of Proposition [4.3] that for all

N/\Cf , and hence for all # € XM we have

|Fae @) < N aeallelloar (5 @)k

NC
<V £V/Cr.
A similar argument applies to fy € Hj, so we can find a compact set ' C R with

{(Fia@EM) | MeN ,n=1,...,N}U{f{(n) In=1,..., N} C K.
Choose now m, € N such that for all m > m,. we have
~ * — . N/ AT €
sup |las,,, (%55 fiar,, A (D)) = O, (T, FX(AIZ]D)] < 5

FeXxMm
yey

M € Ny we have || f3; \[lm <

Sup |€M'm (f) y7 t) - g([)/[f]’ y) t)‘ S
gexMm
yeY,te K

/ AT, v, S (AP (2, y) — / Uiy, £ () d( )| <
XMm xy P(X)XY

N P . . . .
Such a m, exists since fy; | — fx and all /5, are uniformly Lipschitz continuous (first inequal-

ity), far,, P fand Y and K are compact (second inequality), and P[M] P14 P as well as that
(1,y) — £(p,y, £ (1)) is continuous and bounded (third inequality). We now have

‘Rmm o) (far,, ) = Rep(fX)

- ‘/ Oat (Z s £, A(8) = Lo, (F, S5 (1)) AP (3 y>’
XMm xy
‘/XMM N (Z,y, £ ([F])) — e(alz], v, £5(alF)dPM1(z, y)’

_|_

/ AL, v, £3 (Ala) AP (7, y) — / sy, £5()) (1, )
XMm xy P(X)xY

< / s, (Z., i A(B) — ag,, (Foy £ (AED)| AP (2, y)
XMm xYy

Ll @ SR E) — ALy, £ (Al PP 3. )
XMm xY

+

Wl ™

<€

and since € > 0 was arbitrary, the claim follows. O

Proof. of PmpositionObserve that all ks are bounded measurable kernels, R, pin) (fm) < o0

for all f € Hyy, ) is a convex, plM] -integrable Nemitskii loss (cf. Remark i and hence [30,
Lemma 5.1, Theorem 5.2] guarantee the existence and uniqueness of f}, . A completely analogous
argument shows the existence and uniqueness of fy.

We now show that R, pin » LA Re,p,»- For the I'-lim inf-inequality, let fas € Hys, f € Hy, be
arbitrary with fj, KN f,andlet ¢ > 0. Choose M, € N so large that for all M > M,

[ el P 0) [ o 10)P )| <

DN | ™
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es5 (this is possible since (1, y) — £(11,y, f(1)) is bounded and continuous and P! 21 P)and
. . o i €
[€01(Z, y, fur (@) = L(A[7), y, F(AIZD)] < 5

es6 forall # € XM y €Y (this is possible due to the same argument used in the proof of Lemma |4.4)).
657 For M > M, we then find

Reralf) = [ty S0P ) + A1
< [ tas(@y. fu@)aP Mz )
| [ e £GP @) = [ oG £GP )
| [ 302 (@) = (a1 £GP )| + A

< [ (@, Dar(@)APY(E. ) + Mt | 3y +

es8 where we used Lemma[2.4]in the last inequality.

659 For the I'-lim sup-inequality, let f € Hj, be arbitrary and let ( f37) s be the recovery sequence from
ss0 Lemma[2.5] The desired inequality then follows by repeating the arguments from above.

es1  Finally, using exactly the same argument as in the proof of Proposition shows that || f3; y|lar <

662 N AC £ so we can apply Proposition and the result follows. O

663 Proof. of PropositionLet (eén)n C Rsg with e, N\, 0. We construct a strictly increasing sequence
e64 (M), such that
Hnp, *

<e
eMn7 — N

Hy*
’R PlMp] R&P

665 forallm € Ny.

e66 We start with n = 1: Since A2(0) = 0 and A, is continuous in 0, cf. [30, Lemma 5.15], there exists
667 A7 € Rsg such that Ay(\) < ¢ forall 0 < A < \}. From Assumption[4.6 we get A{ € R such

ees that for all M € N we have A[ ]()\) S forall 0 < A < AY. Define now \; = mln{)\ MY,
es9 and observe that \; > 0. Proposmon - ensures the existence of a strictly increasing sequence

1
670 (M) C Ny with .,
ay*
M Hy*
. ", » Re by
(1), PMm I A
1\/1'7"/

671 for m — oco. Choose m; € N such that for all m > m; we have

HMv(&)* Hk* €1
(1) 0,P, )\ < o
gM(l),p[Mm Y ) 3
1
672 We now set My = M,(nl) and get that
H_(1)* H_(1)* H (1) *
H gy * Hy, Mv(n,l Mg Moy, Hy
RzM pin — Rep [ <R el -R oy R IV O NN PV
1’ 0 (1) ,pProma 14 (1) S PYT™MLY N 4 (1) S PETMLY N
Mg My

+ R, — R
(1)
< AM )+ 2 5+ A200)

< €1.

673 We can now repeat the argument from above inductively: Suppose we have constructed our sub-
674 sequence up ton € Ny, ie., My,...,M,. Choose ' € Ry such that As(\) < 6”“ for
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675

676
677

678

679

680

681

682

683

684
685

686

687
688
689

690

all 0 < X < ) (exists due to continuity), and \ € R~ such that for all M € N, we have
A[QM]()\) < il forall 0 < A < A (using Assumption . Define now A, 1 = min{\ \"'},
and observe that A, 1, > 0. Proposition[d.5]ensures the existence of a strictly increasing sequence

+1
(My(,:'Jr )> such that
m
HAA,?“)* _ ,RH;C*
) i) 0,P,An i1

14 A
M7(y?+1 sAn41

for m — oo. Choose m,, 41 such that for all m > m,,; we have

RHM7(Y?,+1)* o Hpx < €n+1
gt EPAn| S T3

£M$,+1)7P I An41

Define now M, 11 = max{M, + 1, My(,?ﬂ)}, then we get

n+1
H +1) * H +1) *
Hapy g % _ RHk* <R Mﬁ'?nﬁ—i R MT(W?W,+}
Caty gy, P4 R Bl " P ¢ P
" (n+1) > " (n+1) » n sAn41
an+1 an+1
H  (ny1)*
My, H
n+1 Kk
+|R (nt1) —RePans
¢ Pl ) *
(n+1) > " sAn41
A/Imn«i»l
Hy* Hy*
T Re P — Rep
M(n+D) €
M1 n+l
S A2 ()\n+1) + 3 + A2()\n+1)
< €nt1-
The resulting sequence (M, ),, fulfills then
Hpp,, * Hy*
Ry pony = Ry p
for n — oo. O

B Additional technical results

In this section we state and prove two technical results that play an important role in the proofs of the
main results.

B.1 A characterization of RKHS functions
Here we recall the following characterization of RKHS functions from [3] Section 1.4]. Let X # ) be

arbitrary. For k : X x X — R symmetric and positive semidefinite and some f € R* as well as
N€N+,EGXN,C?E]RNdeﬁne

N
E(E,a, )= anf(wn)
n=1

N
W(fa 627 k) = Z aiajk(‘rjvxi)a

1,j=1

where we might omit some arguments if they are clear. Furthermore, define

SEAIL N E(T,, f) # 0,W(F,d, k) # 0
D(Z,d, f.k) =40 if £(Z,d, f) = W(Z,a, k) =0
00 if E(Z,a, f) #0,W(Z,d,k) =0



691 and

N(f, k)= sup D(Z,a, f, k).
(#,@)ex N xRN
NEN+

692 We collect now some simple facts that will be used repeatedly.

s93 Leti € XN, a e RN, N € N,, be arbitrary, and define
Z ank(-,z,) € HY".

694 1. By construction, W(Z, &, k) € R>( (recall that & is positive semidefinite).

695 2. Since f € H}, its RKHS norm has an explicit form and we find

N
£l = | D cwajk(a;, ;) = W(ZF,a, k).

ij=1
696 This also implies that f = 0 if and only if W(Z,d, k) = 0.
697 . IEW(&,a, k) > 0, then
D6 [ F) = S TT)
W(Z,d, k)
N
> iy if (i)

\/Z?szl aiajk(xj,xi)
N
_ Zi,j:l aiajk(z;, i)
N
\/Zi,j:l aiaik(zy, i)
W(Z, d,k)?

= W = W(J),O&, k‘)

698 We can now state the characterization result.

699 Theorem B.1. Let k : X x X — R be a kernel and f € RY. Then f € Hj, if and only if
700 N(f,k) <oo.If f € Hg, then || f||x = N(f, k).

701 For convenience, we provide a full self-contained proof of this result.

702 Proof. Step 1 First, we show that for f € Hy, we have || f||, = N(f, k).
703 N(f,k) < ||fllx: Let N € N, and (#,d) € XN x R be arbitrary. Observe that

< f1lx

§ an x’ll

= ||f|\kW(f, a, k).

) = I k(s 20|l = 0, then S k(- 2n) = O, , hence E(Z,d, f) =
0 and by definition D(:z: a, fo k) =0<|fllk-

k

704 If W( i3

,a,k
705 Hy )k =

25
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707

708
709
710

711

712

713

714

715

716

77

718

If W(Z, &, k) > 0, we can rearrange to get
E(&,d, f)
W(Z, d, k)

Since (7, @) was arbitrary, we find that N'(Z, @, f, k) < || f|lx-

N E) > 1 flle: Lete>0andchoosefe—zg1ank:( n) €
If W(Z,d,k) = || fellk = 0, then f. = Op, and hence (7, a,f) =
definition, this then shows

=D(,a, f k) < [|fllx-

D(Z,a, f) = 0= [lfellx = [fllx — e

Before we continue, note that for all f1, fo € Hy we have

H
(f

P such that ||f — fe|lx < e
7f€>k = <f70Hk>k =0. By

N
E(F,d, f1) = E(F,a, f2)] = | Y an(fi(@n) = fa(n))
n=1
N
- Zan<f1 - f27k('7xn)>k
n=1
= fl f2vzan n
<|[fi— f2||k||fe||k
Assume now that W(Z, &, k) > 0, then we get
R S _‘7 _‘7
D@ [ = =)
> 8(570_27f6) N ||f_f6||k||fe||k
~ W(Z,a, k) W(Z, d, k)
> E(_’,o_z',fe) . €||fe||k
~W(&,a, k) W(Z,a, k)
=W(&,a, k) —e
= [[fellx —€
> [ fllx — 2€

Altogether, by definition of A/(f, k), we get that

Since € > 0 was arbitrary, we find that N'(f, k) > || f||&.
Step 2 Let f € R be arbitrary. We show that if A'(f, k) < oo, then

lp: HY — R
N N
n=1 n=1
is a well-defined, linear and continuous (w.r.t. || - ||;) map.

-

To establish the well-posedness, let (Z,d) € XN x RN and (7, ) € XM x RM such that

N
Z O‘nk('v'xn Z /B'm Hpre
n=1

This implies that

N
Zank('axn + Z 6rn y7n = OHk
n=1
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735

736

737

738

739

740
741

742

and hence W((Z,7), (@, —5), k) = | N, ank(-,20) + SN (= Bk (-, ym)|lx = 0. Assume
now that

N m
Z anf(xn) # Z Bmf(mm)7
n=1 m=1

then we get that

-,

Z anf(-rn) + Z (_6m)f(xm) = g((f’ g)? (627 - )a f) #0

-,

which by definition implies that D((Z, %), (&, —f), f,k) = oo and therefore N(f, k) = oo, a
contradiction.

The linearity is then clear. Finally, to show the continuity, let HY > fo = S0 ank(-,x,) be

arbitrary and set = (z1 -+ an),d=(oq -+ oan),then
N
5 (fo)l = D anf(zn)
n=1
=&, a, f)
SN(f, kW, a, k)
=N(f, k) follx-

Since N (f, k) is finite and independent of fo, and ¢ is a linear map, this shows the continuity of £.

Step 3 Let f € R such that N'(f, k) < co. Since according to Step 2 ¢ is a linear and continuous
map on Hzre and the latter is dense in Hy, there exists a unique linear and continuous extension
¢y : Hp, — R of {;. Furthermore, from the Riesz Representation Theorem there exists a unique

f € Hy, with £; = (-, f)),. Forall z € X we then get
f(x) = (f k(- x)
= <_k(7x)af

)k
)

k

hence f = f € Hy. O

B.2 A I'-convergence argument

We use repeatedly the concept of I'-convergence, see for example [16]. For convenience, in this
section we summarize the well-known and standard main argument, roughly following [5} Chapter 5].

Definition B.2. Let Fi; : Hyy — RU {oo} and F' : Hi, — R U {oo}. We say that F); I'-converges
to F' and write LN F,if

1. For all sequences (far)ar» far € Hr, with for KN f for some f € Hy, we have
F(f) < lim inf En(far)-

2. For all f € H, there exists a sequence (fas)a with fry € Hyy such that fy iR f and
F(f) > limA;upFM(fM)-

The sequence in the second item is commonly called a recovery sequence (for f).

Proposition B.3. Let F, L Fand far € argmingcpy F(f) forall M € N (in particular, all
the minima are attained). If there exists B € R such that || f3;||as < B for all M € N, then there

exists a subsequence (fy;,)¢ and f* € Hj, such that fy,, NN f*. Furthermore, Fr, (fy;,) — F(f*).

27
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Proof. From Theoremwe get the existence of (f};, )¢ and f* € Hy, and that f3, P, f*. Let
f € Hy, be arbitrary and let (far)as be a recovery sequence for f. We then have

F(f) > lim];upFM(fM)
> limsup F, (far,)
M,
> linjf\l{inf Far, (fr,)
> li%izanMg(fM)
> F(f"),

where we used the lim sup-inequality of I'-convergence in the first step, standard properties of
lim sup and lim inf in the second and third step, the fact that f;, is a minimizer of F}, in the fourth
step, and finally the lim inf-inequality of I'-convergence. Since f € Hj, was arbitrary, this shows that
f* is a minimizer of F.

Furthermore, let (fs) s be a recovery sequence for f*, then
F(f*) > limI;up Fr(far)
2 limesup FMz (sz)

2 limsupFMz(f;\}g)7
L

where we used the lim sup-inequality in the first step, an elementary property of lim sup in the
second step, and finally that f3, is a minimizer of F,. Since [}, N f*, the lim inf-inequality of

I"-convergence implies that
F(f") < limginf Far, (far,)

so we find that
limesupFMz(fX/[Z) <F(f") < lim@ianMz(f]\}z),

establishing that Far, (fy,,) — F(f*). O
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