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ABSTRACT

State-of-the-art generic low-precision training algorithms use a mix of 16-bit and
32-bit precision, creating the folklore that 16-bit precision alone is not enough to
maximize model accuracy. As a result, deep learning accelerators are forced to
support both 16-bit and 32-bit compute units which is more costly than only using
16-bit units for hardware design. We ask can we do pure 16-bit training which re-
quires only 16-bit compute units, while still matching the model accuracy attained
by 32-bit training. Towards this end, we study pure 16-bit training algorithms on
the widely adopted BFloat16 compute unit. While these units conventionally use
nearest rounding to cast output to 16-bit precision, we show that nearest round-
ing for model weight updates can often cancel small updates, which degrades the
convergence and model accuracy. Motivated by this, we identify two simple exist-
ing techniques, stochastic rounding and Kahan summation, to remedy the model
accuracy degradation in pure 16-bit training. We empirically show that these two
techniques can enable up to 7% absolute validation accuracy gain in pure 16-bit
training. This leads to 0.1% lower to 0.2% higher matching validation accuracy
compared to 32-bit precision training across seven deep learning applications.

1 INTRODUCTION

Recently there has been an explosion in the compute resources required for training deep learning
models (Shoeybi et al.l 2019; Rajbhandari et al., [2019; [Real et al., 2019). As a result, there has
been broad interest in leveraging low-precision (< 32-bit) training algorithms to reduce the required
compute resources (De Sa et al.,|2017; Hubara et al.,[2017; |Gupta et al., 2015). Among these algo-
rithms, mixed-precision training—in which model activations and gradients are stored using a 16-bit
floating point format while model weights and optimizer states use 32-bit precision—is commonly
used when training generic deep learning models (Micikevicius et al., [2017} |Kalamkar et al.,[2019).
While there is a wide body of literature showing that low-precision training can minimally impact
accuracy on specific models (Wang et al., 2018b; [De Sa et al., 2015; |[Zhang et al., 2017), conven-
tional wisdom suggests that at least some 32-bit computation is required as a fail-safe in generic deep
learning training. As such, new accelerator architectures for deep learning are forced to support both
32-bit and 16-bit compute units. This is much more costly in terms of area, power, and speed when
compared to hardware with only 16-bit compute units (Horowitz, 2014; Galal et al., 2013).

In this paper we question if 32-bit compute units are truly needed for new deep learning hardware
accelerators. Namely, can we match the model accuracy of 32-bit-precision algorithms while lever-
aging only 16-bit compute units? To answer this question, we study pure 16-bit training algorithms,
ones which use only 16-bit compute units and which store activations, gradients, model weights, and
optimizer states all in a 16-bit precision. Specifically, we focus on training with the BFloat16 com-
pute unit which is widely adopted in modern deep learning accelerators (Jouppi et al., [ 2017; Burgess
et al.|[2019). Such units take 16-bit inputs, perform computation, and then round the results to a 16-
bit output. BFloat16 compute units can provide 3x higher power efficiency, 1.5x lower latency, and
1.5x less chip area than 32-bit units (Horowitz, 2014; (Galal et al., [2013)). In addition, pure 16-bit
training algorithms can reduce the memory footprint and bandwidth consumption of model weights
and optimizers by 2x compared to mixed precision or 32-bit precision training, especially for large
models with billions of weights (Shoeybi et al.| 2019} Rajbhandari et al.| 2019). Developing reliable
pure 16-bit training algorithms will enable hardware designers to realize these advantages.

The simplest approach to pure 16-bit training is to take a 32-bit baseline and “make it low-precision”
by replacing all the 32-bit numbers with 16-bit numbers and replacing each 32-bit floating-point op-
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eration with its 16-bit analog, using nearest roundinto quantize as necessary: we call this approach
the standard algorithm. Unfortunately, we show empirically that standard pure 16-bit training does
not match 32-bit training on model accuracy across deep learning models. For example, the stan-
dard pure 16-bit training algorithm one would run on conventional hardware attains 16% and 7%
lower training and validation accuracies than a 32-bit baseline. Motivated by this observation, we
start by analyzing what factors limit the model accuracy of this standard pure 16-bit algorithm.

The goal of our analysis is to inspire a clean, minimal set of simple techniques that allow pure 16-bit
training to attain strong model accuracy for state-of-the-art deep learning models across applica-
tion domains. Towards this end, we derive insights from a simple least-squares regression model
in Section 3| Using this least-squares regression model, we reveal that nearest rounding of compute
unit outputs causes significant convergence degradation and consequent model accuracy loss. More
concretely, we show a key theoretical insight hidden in existing work: when running stochastic gra-
dient descent on a least-squares regression model, nearest rounding while updating model weights
ignores small updates. This phenomenon significantly degrades the convergence of stochastic gra-
dient descent when model updates become small relative to model weights, which is also what we
observe when training deep learning models. In comparison, nearest rounding in the forward and
backward pass of backpropagation has a negligible impact on convergence. These insights lead us to
consider two simple existing techniques to achieve high-accuracy pure 16-bit training. First, we can
use stochastic rounding instead of nearest rounding for the model weight updates. Here, the rounded
weights become an unbiased estimate of the precise weights without rounding: thus, regardless of
the magnitude of updates, the expectation of rounded weights converges at the same speed as the
precise weights. Second, we can use the well-known Kahan summation algorithm (Kahan, [1965)
to accumulate model updates while still keeping nearest rounding for all operations. This method
tracks and compensates weight rounding errors across iterations with auxiliary 16-bit values, which
avoids catastrophic cancellation of many small model weight updates.

Empirically, in Section 4] we first validate that, as suggested by our theory, nearest rounding for
model weight updates is the sole bottleneck for convergence and model accuracy on several deep
learning models. We then demonstrate that pure 16-bit training using stochastic rounding or Kahan
summation on model weight updates can match 32-bit training in model accuracy across a wide
range of applications (He et al.| 2016; |JAmodei et al., 2016; [Devlin et al.l [2018; [Naumov et al.,
2019). To validate that nearest rounding for model weight updates is the cause of the accuracy
degradation, we show that if we store model weights in 32-bit precision without rounding during
weight updates, and we keep using 16-bits and nearest rounding for all other operations, then the
attained model accuracy matches full 32-bit precision training. Next, we demonstrate that 16-bit
training with stochastic rounding for weight updates attains model accuracy matching 32-bit training
for five out of seven applications in our study. Note that while it works most of the time, this is not a
silver bullet, as using stochastic rounding alone could not fully match 32-bit training on all models.
To address this, we show that Kahan summation for model weight updates closes remaining gaps on
all the models we consider; this Kahan summation comes with a trade off, as it requires 2x weight
memory, but achieves up to 0.2% higher validation accuracy than stochastic rounding. Our results
suggest that deep learning accelerators using only 16-bit compute units are feasible if stochastic
rounding and Kahan summation are supported respectively by the hardware and the software stack.

2 PRELIMINARY

In this section we establish the background and notation for our study and present the prelimi-
nary observations that motivate our work. We focus on the case of stochastic gradient descent
(SGD), which is the primary workhorse used to train deep learning models. SGD computes gradi-
ents from a subset of training samples, and uses them to update the model weights so as to decrease
the loss in expectation. In the classic supervised learning setting, let (X, y) be a dataset where
X = [z, T, ..., 2] € R and y = (y1,¥2,..,¥n) € R™. On this dataset, we use stochastic
gradient descent to optimize a loss function f(w) = 1/n ) ., fi(w,x;,y;) defined by the model.
At the t-th iteration, we sample an index subset o (¢) C {1,2,..,n} and compute a sample gradient
V fot)(w;) as an unbiased estimate of the full gradient V f(w). In deep learning, model training
can be described as a compute graph where the compute graph operators such as addition and ma-

!"This nearest rounding is the standard rounding mode for compute unit output commonly supported across
hardware platforms (Intel| 2018} Nvidia, [2020).
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trix multiplication are the nodes. For example, the model weight update operator is defined as the
subtraction in the operation w; 1 = w; — aV f, ) (w;) which updates the model weight w.

16-bit Compute Units On modern hardware, numerical operators in the compute graph are sup-
ported by fused multiply-and-accumulation (FMAC) compute units. These units work by computing
a < a+ (z x y), where x and y are input floating point numbers, and « is an accumulator that is
part of the FMAC unit. Importantly, for a 16-bit FMAC unit, the accumulator a has higher-than-16-
bit precision. This higher precision accumulator is inexpensive compared to the multiply in terms
of chip area and energy consumption in FMAC units, but is critical to the numerical accuracy of
operations such as matrix multiplication and convolution. Thus 16-bit FMAC units with higher
precision accumulator is standard for modern hardware including TPUs and GPUs (Chao & Saetal
2019; Markidis et al.l 2018 [Stephens} 2019); this will likely continue to be standard in emerging
accelerators. Because of the higher precision accumulator, the result in the accumulator then needs
to be rounded to 16-bits before it is output from the FMAC unit (e.g. before writing to memory).
FMAC units use the same hardware implementation to support all operators from simple additions
to computationally intensive convolutions, so this output-rounding step happens for all the operators
in a compute graph.

Nearest Rounding FMAC output rounding is widely implemented with nearest rounding as the
standard mode, due to its efficient support across hardware platforms. “Nearest rounding” means
rounding a higher precision floating point number to the closest low-precision representable value.
Given that the add step already uses accurate higher preicision accumulators, this nearest rounding
is the primary source of numerical errors for training using 16-bit FMAC units. In this context of
16 bit FMAC units and nearest rounding, we discuss the following training-precision approaches.

o In 32-bit precision training, all the compute graph operators read and write memory using a 32-
bit precision. These operators require 32-bit compute units, which constrains the compute and
memory efficiency.

o In mixed precision training, model weights are stored in 32-bit precision while activations and
gradients use 16-bit precision. Thus, new accelerators customized to maximize efficiency for
mixed precision training still require 32-bit compute units for operators involving 32-bit weights
as the input; this has lower efficiency in power, speed and chip area than only using 16-bit units.

o In pure 16-bit training, activation, gradients and model weights are all stored in 16-bit precision.
All operators use pure 16-bit input and write out 16-bit output after rounding. Thus, aside from
just saving memory, pure 16-bit training can eliminate the requirement for 32-bit compute units.
This opens the possibility for highly-efficient accelerators using only 16-bit compute units. In
spite of this favorable efficiency, we now show that it can be surprisingly challenging for standard
pure 16-bit training to match 32-bit training on model accuracy.

Motivating Observations Although recent works have shown
that certain models are robust to numerical error during train-

ing (Wang et al.| [2018b} [De Sa et al.| 2015} Zhang et al.| [2017), ;;580.

surprisingly, we observe that it is challenging for pure 16-bit train- =

ing to attain the same accuracy as 32-bit precision training on sev- = W 32bit

eral state-of-the-art deep learning models. To demonstrate this, we % —— Standard 16-bit
compare 32-bit precision training and standard pure 16-bit train- ) ST T
ing (using nearest rounding for all its operator outputs). For ex- " lterations

ample, Figure [T] illustrates that for a BERT-Base model for natu-
ral language inference, the standard pure 16-bit training algorithm
demonstrates 16% and 7% lower training and validation accura-
cies than 32-bit precision traininﬁ This gap suggests that nearest
rounding is the primary source of numerical error in pure 16-bit
algorithms, significantly degrading the convergence and model accuracy. To alleviate this problem,
in Section [3| we study how nearest rounding impacts convergence, and we expose insights which
lead to simple techniques to improve the model accuracy in pure 16-bit training.

Figure 1: Standard pure 16-
bit training shows lower train-
ing accuracy compared to 32-
bit training on a BERT model.

2We note that 32-bit and standard 16-bit training in Figure start from the same initialization with the same
model accuracy. The gap at the beginning of the two curves is due to curve smoothing for visualization clarity.
We refer to Appendix E]for the unsmoothed curves which start from the same model accuracy.
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3 PRECISE MODEL WEIGHT UPDATES ARE ALL YOU NEED

To understand how to improve the model accuracy attained by pure 16-bit training, in this section
we analyze the impact of nearest rounding, the primary source of numerical error in the standard
16-bit training algorithm. In Section we show that when model updates are small relative to the
model weights, nearest rounding for model weight updates ignores small updates and consequently
impedes convergence of stochastic gradient descent. In contrast, we show that nearest rounding in
the forward and backward compute can have a much weaker impact on the convergence throughout
training. These insights emphasize the importance of more precise model weight updates for pure
16-bit training. To achieve such precise updates using pure 16-bit training, in Section [3.2] we con-
sider using two simple existing numerical techniques, stochastic rounding and Kahan summation,
for model weight updates. Although we use a least-squares regression model for its simplicity in
exposing insights, we will show in Section [] that our insights transfer empirically to representative
deep learning models.

3.1 UNDERSTANDING THE IMPACT OF NEAREST ROUNDING

In this section, we use a simple least-squares regression model 5~ > | ||&] w — y;||* with batch
size 1 as a proxy to expose the impact of numerical errors due to nearest rounding. First, we discuss
the impact of nearest rounding for model weight updates. Then, we show that nearest rounding
for forward and backward compute has comparatively much weaker influence on accuracy. More
concretely, we focus on underdetermined least-squares regression problems with high dimensional
model weights and input features; this is intended to reflect the overparameterized setting in modern
deep learning models (L1 et al.l 2018} |Jacot et al.,[2018). In this setting, the model has the capacity
to perfectly fit the dataset with y; = @] w* where w* is the minimizer of f(w) (A1). To ensure
convergence with a bounded gradient variance, we assume bounded input data ||z;]|? < L (A2).
We let € denote the machine epsilon of our floating point format, such that if 4 and v are adjacent
representable numbers in our floating point format, €lu| < |u — v| < 2¢|u|. Under this stan-
dard assumption for numerical analysis on floating point numbers (Stoer & Bulirschi [2013), nearest
rounding @ (-) will have a bounded error of |Q(u) — u| < €|u] for any w in range. To simplify the
presentation, we ignore overflow and underflow in our analysis here, and disregard factors of €2 (as
is standard in analyses of floating point error).

Nearest Rounding for Model Weight Updates When stochastic gradient descent updates model
weights with nearest rounding, the model weights evolve as w11 = Q (wt —aV fow ('wt)). For
a weight dimension ¢, if the model update [QV fo(t)(wt)}i is smaller than half of the difference
between [w]; and its neighboring representable value in a certain precision format, nearest rounding
cancels this model update. This often emerges in the mid-to-late training stage when the magnitude
of gradient becomes small or learning rate decays small. Formally, we show that nearest rounding
can cancel updates across all dimensions for a least-squares regression model when approaching the
optimal weights in Theorem [T} we defer the proof to Appendix [A]

Theorem 1. Consider running one step of SGD on a least-squares regression model under assump-
tions AI and A2. The model weight update will be entirely canceled by nearest rounding if

lw —w*| < - min |w} ], (1)
J

ol +¢

where w} denotes the j-th dimension of the optimal solution w* = arg min,,cga f(w). Addition-
ally, if we run multiple steps of SGD using nearest-rounded weight updates and fixed learning rate

a < 1/L, then the distance of the weights w; at any timestep t from the optimum is bounded by
e(l—al)

— w*ll > mi
||y w||_m1n< ol +e

. mjln ‘w]*|  |lwo — w*||> .

Theorem |1| reveals that for the least-squares regression model, nearest rounding cancels the entire
model updates when the distance towards the optimal solution w* is small relative to the magni-
tude of w*. Thus in the late stage of training, the model weights can halt in a region with radius
SIyc ming |w;‘ | around w*. Our lower bound shows that this region limits the convergence of SGD
with nearest rounding on model weight updates for least-squares regression models. In this bound,
the key property is the dependency on the step size: as the step size becomes small, this error lower
bound becomes worse, which is the opposite of the usual effect of diminishing the step size in SGD.
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Given that w* can be arbitrarily far from the zero vector, our lower bound also reveals a substantial
convergence degradation for stochastic gradient descent using floating point numbers. This specific
degradation, which depends on the magnitude of w™, does not emerge in training with fixed point
numbers which is a setting widely used for analyzing the impact of rounding (Hou et al.| 2018; |L1
etal.,[2017). Because the lower bound on ||wy—w™*|| is also in the order of O (e), this bound is worse
for lower precision formats with a large e value. In Section |4, we will empirically show that these
insights from the least-squares regression model can also generalize to deep learning models, which
explains the convergence and model accuracy degradation due to the small updates cancellation in
model weight updates.

Nearest Rounding for Forward and Backward Compute In contrast to the significant conver-
gence degradation imposed by nearest rounding on model weight updates, we show that the nearest
rounding in the gradient computation (in the forward and backward passes of backpropagation) can
impact convergence minimally. To show this, we consider stochastic gradient descent with nearest
rounding only for compute operations which generate activations and gradients. Here to compute
the gradient for least-squares regression models, the linear layer passes the rounded activation a; =
Q (a:ZTw - yz) to the loss layer. (We see no quantization error within the dot product 7 w itself, as
all accumulation here is done with the higher-precision accumulator of the FMAC.) In the backward
stage, the loss layer feeds the rounded activation gradients g, ;, = Q (a;) back to the linear layer. The
weight gradient is then computed as Vg fi(w) := Q (¢a,i®i) = Q (Q (Q (xw; —y;)) x;). To
isolate the impact of nearest rounding for activations and gradients, we do not round model weights
in this setting. Formally, we show that SGD with activation and gradient rounding allows for an
upper bound on ||w; — w*|| which can be substantially smaller than the lower bound in Theorem|[1}

Theorem 2. Consider running multiple steps of SGD on a least-squares regression model under
assumptions Al and A2, using nearest rounding for only forward and backward compute, but exact
arithmetic for model weight updates. Then if the step size is small enough that o < 1/L, the distance
of the weights w; at any timestep t from the optimum will be bounded by

E [[lw, — w* 2] < exp (—apt (1= 4L)) - g — w2,
where 1 is the smallest eigenvalue of the data covariance matrix % Yo x;xl.

As t can be made arbitrarily large, this bound guarantees us substantially more accurate solutions
than the lower bound attained by using nearest rounding only for model weight updates in Theo-
rem([I] This shows that rounding for the weight updates is the primary source of error, as even with
all other operations quantized, the algorithm is guaranteed to converge closer to the optimum than
is even possible with just the weight updates rounded with nearest rounding. Note that the bound
in Theorem [2]is able to guarantee arbitrarily accurate solutions because we ignore underflow here.
In practice, precision would eventually be limited by underflow even in the setting of Theorem
however, the underflow threshold for BFloat16 is small enough that this represents a level of error
that deep learning applications are generally able to tolerate. We refer to Appendix [Afor the proof.

Theory Validation To validate our insights, we compare the
impact of nearest rounding for model weight updates against
that of nearest rounding in forward and backward compute on

16-bit weight 16-bit act. & grad
nearest rounding nearest rounding

—¥—32-bit—@—
% 10°%

SS

a synthetic 10-dimensional least-squares regression problem. £ \.—_.——.—_‘
Specifically, the input data are sampled from a zero-mean unit- % 10° i

variance normal distribution while the model weight is gener- = A D -
ated from a uniform distribution in the range of [0, 100). We 0 500 1000 1500 2000
perturb the label with a zero-mean normal distribution with Iterations

standard deviation 0.5. As shown in Figure [2| when using

a learning rate 0.01 and 16-bit nearest rounding for model Figure 2: Theory validation. On
weight updates, we observe that the training loss saturates ata a least square regression model,
magnitudes higher level than stochastic gradient descent with- (smoothed) training losses with 16-
out rounding because of updates cancellation. Meanwhile, bit nearest rounding for weight up-
when using nearest rounding only for forward and backward dates saturate at a higher level than
compute, the loss saturates at a level close to that attained by  32-bit training. With only using
training without rounding. These observations align with our nearest rounding for forward and
insights on the relative impact of nearest rounding for model backward compute, the losses satu-
weight updates and for forward and backward compute. rate much closer to 32-bit training.
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3.2 HIGH-ACCURACY PURE 16-BIT TRAINING

In Section [3.I] we showed that nearest rounding for model weight updates is the bottleneck for
convergence in the standard pure 16-bit training algorithm; this is because it cancels small model
updates which degrades the model weight precision. This motivates us to consider two existing
techniques, stochastic rounding and Kahan summation (Kahan,|1965])) for improving weight updates.
These techniques have been reliably applied in different numerical domains (Hopkins et al., 2020;
Antonana et al.,2017) and can hypothetically enable high-accuracy pure 16-bit training. We present
details on how to integrate these techniques into SGD and AdamW optimizers with pure 16-bit
model weights and optimizer states such as momentum in Appendix B}

Stochastic Rounding Stochastic rounding for floating point numbers has been used in training
certain model components (Zhang et al.,|2018) and can potentially improve the model accuracy of
pure 16-bit training for general models. Specifically, let S be the set of all values representable by a
limited precision format: the upper and lower neighboring values for a € R are a,, = ming>q ges
and a; = maxy<, ges . Stochastic rounding randomly rounds a up to a, with probability (a —
a;)/(a, — a;) and otherwise rounds down to a;. We consider pure 16-bit training using stochastic
rounding only for the subtraction output in the model update w; — 'V f,(;)(w;). We keep nearest
rounding for all the other compute operations. Here, the rounded model weight is an unbiased
estimate of the precise value, so it will still make progress in expectation; this prevents the halting
effect from nearest rounding on model weight updates. We note that in modern hardware, stochastic
rounding can be implemented without any expensive multiplication or division arithmetic (De Sa
et al.,2017)). Thus using stochastic rounding for model weight updates adds minimal overhead when
training modern deep learning models; we discuss explicitly how to achieve this in Appendix [B.T]

Kahan Summation The Kahan summation
algorithm uses an auxiliary variable to track
numerical errors and to compensate the accu-  1: Auxiliary value ¢y < 0 at initialization
mulation results. In the context of pure 16- Input: Model updates —aV f, ;) (w;) at iter. t
bit training, we use a 16-bit auxiliary vari- U1 ¢ —aV o (wy)

able ¢, € R? to track the error in model Yirl < U1 — C; > Compensate updates
weights. To ensure pure 16-bit data paths, Si41 — Wi + Y1 > Accumulate updates
we keep nearest rounding for all operators in Ciy1 + (S441 — wi) — Y11 > Measure errors
compute graphs, including those during Ka- Wil — Sip1

han accumulation in Algorithm [I] At itera- Return: w,

tion ¢, we first compensate the current model
update u;4; by subtracting the previous error ¢;. We then compute the new model weights by
adding the compensated updates vy, to the current weights w;. We reversely subtract previous
model weights w; and the compensated updates y;1; to acquire the new numerical error ¢;; in
the updated weights w; 1. For small updates u; which would cause no change in the weights after
nearest rounding, this reverse subtraction records the canceled updates in the error ¢;4;. Across it-
erations, small updates can be accumulated in ¢;; until ¢, grow large enough to affect the model
weights; this allows convergence to continue when it would otherwise halt due to nearest-rounding
effects. In spite of the additional auxiliary value, pure 16-bit training with Kahan summation for
model weight updates can still have advantages in terms of throughput and memory consumption
compared to 32-bit and mixed precision training; we refer to Appendix [B.2]for details.

Algorithm 1 SGD updates with Kahan summation

4 EXPERIMENTS IN DEEP LEARNING

Our theory in Section[3|reveals that nearest rounding on model weight updates is the primary source
of numerical error during training. This motivates us to suggest using stochastic rounding and Kahan
summation in pure 16-bit training for improved model accuracy. To first validate our theory, in this
section we start by demonstrating that by ablating nearest rounding on model weight updates from
the standard 16-bit training algorithm, the model accuracy gap compared to 32-bit precision training
can be closed on deep learning models. Next, we show empirically that with either stochastic round-
ing or Kahan summation on model weight updates, pure 16-bit training can match the accuracy of
32-bit precision training across representative deep learning applications.

Experiment Setup To validate the accuracy bottleneck, we consider three representative models:
ResNet-18 (He et al., 2016) on the CIFAR10 image classification (Krizhevsky et al., |2009), BERT-
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Table 1: Model accuracy bottleneck for the standard pure 16-bit training algorithm. This
algorithm shows validation accuracy gap compared to 32-bit training. In an ablation of this algo-
rithm, we use 32-bit model weights and turn off nearest rounding only on model weight updates.
This eliminates the gap, suggesting that nearest rounding on model weight updates is the accuracy
bottleneck.

Model Dateset (Metric) 32-bit Standard 16-bit  Standard 16-bit & 32-bit weights
ResNet-18  CIFARI10 (Acc%) 95.45+0.07  94.23 £0.12 95.40 £+ 0.05

DLRM Kaggle (AUC%)  80.27 +0.01 78.49 + 0.08 80.26 £+ 0.01

BERT-Base MNLI (Acc%) 84.26 £ 0.08 77.53 £ 0.07 84.34 £+ 0.04
—¥— 32-bit —*— Standard 16-bit Standard 16-bit w/ 32-bit weights
ResNet-18-CIFAR10 DLRM-Kaggle - BERT-MNLI

100 e — S0 — i -
] * / - > ' J
£ ) Zs0 —o%
§ \J :r‘)‘ rd= Fé ‘
< 90 - v <

| 60
43K 86K 102K 204K 6K 12K
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Figure 3: Training accuracy gap imposed by the standard pure 16-bit training. The standard
algorithm fails to match the training accuracy of 32-bit training, especially in the middle-to-late
stage. We close this accuracy gap by ablating nearest rounding for weight updates from the standard
algorithm. This indicates that nearest rounding for model weight update is the accuracy bottleneck.

Base (Devlin et al., 2018)) on the MNLI natural language inference (Wang et al.,2018a)), and DLRM
model (Naumov et al., 2019) on the Kaggle Advertising Challenge (CriteoLabs, 2014). To exten-
sively evaluate pure 16-bit training with stochastic rounding and Kahan summation, we additionally
consider larger datasets and more applications: ResNet-50 on the ImageNet (Deng et al., [2009),
BERT-Base on the Wikil03 language mode (Merity et al.l 2016), DLRM model on the Criteo
Terabyte dataset (CriteoLabs| 2018), and Deepspeech2 (Amodei et al., |2016) on the LibriSpeech
datasets (Panayotov et al., |2015). As there is no publicly available accelerator with the software
and hardware support necessary for our study, we simulate pure 16-bit training using the QPyTorch
simulator (Zhang et al., [2019). QPyTorch models PyTorch kernels such as matrix multiplication as
compute graph operators, and effectively simulates FMAC units with 32-bit accumulator For all
training algorithms, we use the same hyperparameters as their original papers or code repositories.
We report statistically meaningful results with averaged metrics and standard deviations across runs
with 3 random seeds. We refer to Appendices [Cland [D|for experiment details and extended results.

The Model Accuracy Bottleneck To validate our insights from Section 3| we first show empiri-
cally that nearest rounding on the model weights is the primary model accuracy bottleneck on several
deep learning models. To do this, we keep the model weights in 32-bit precision and turn off nearest
rounding on the model weight updates while keeping nearest rounding for all other operators in the
compute graph. Figure [3|shows that the standard pure 16-bit training algorithm with nearest round-
ing on all operators has up to 16% training accuracy gap compared to 32-bit training. Although this
gap can be small in the early training phase, it grows larger in later stages. In contrast, by ablating
nearest rounding on model weight updates, the standard algorithm can fully match the training ac-
curacy attained by 32-bit training. We notice in Table [I| that this ablation can also close the 1.2%
to 6.7% validation accuracy gap when comparing the standard pure 16-bit training to 32-bit train-
ing. These observations validate our insights from Section [3.1] and motivate the use of stochastic
rounding and Kahan summation on model weight updates.

*We subsample 25% of the Wiki103 and 100 hours of Librispeech training set because of the training time.
4Following the convention in mixed precision training (Micikevicius et al.,|2017), our simulator uses fused
operators for computationally inexpensive activation and normalization layers.
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Table 2: Pure 16-bit training can match 32-bit training on model accuracy. With stochastic
rounding or Kahan summation for model weight updates, pure 16-bit training can attain 0.1% lower
to 0.2% higher absolute value for validation accuracy metrics across applications.

Model Dateset (Metric) 32-bit 16-bit Stochastic ~ 16-bit Kahan  Standard 16-bit

ResNet-18 CIFARI10 (Acc%)  95.45 £ 0.07 95.33 £0.08 95.36 £ 0.07  94.23 £0.12
ResNet-50 ImageNet (Acc%)  75.70 £ 0.05 75.45 £ 0.03 75.61+£0.14 67.10£0.24
Kaggle (AUC%) 80.27 £0.01 80.18 £ 0.02 80.26 £ 0.01 78.49 £ 0.08
Terabyte (AUC%)  80.32 4= 0.00 80.25 £ 0.00 80.32+£0.00  78.79 £ 0.02

MNLI (Acc%) 84.26 £ 0.08 84.35 £ 0.12 84.454+0.03  77.53 £0.07

Wikil03 (PPL) 5.50 £ 0.50 5.84 £0.53 5.45+0.51 56.88 £1.77
DeepSpeech2  Librispeech (WER)  62.71 + 0.07 62.85 £ 0.07 62.87£0.18  69.42+0.22
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Figure 5: Training accuracy for pure 16-bit training. With stochastic rounding or Kahan sum-
mation enabled for model weight updates, pure 16-bit training matches 32-bit precision training in
terms of training accuracy with negligible differences across the applications in our experiments.

High-accuracy Pure 16-bit Training Next, we validate empirically that enabling stochastic
rounding or Kahan summation for model weight updates allows pure 16-bit training to attain match-
ing model accuracy as 32-bit training. In Table[2] we first show that by using stochastic rounding for
model weight updates, pure 16-bit training matches the validation accuracy of 32-bit training with at
most 0.1% difference on the CIFAR10, Kaggle, Terabyte, MNLI and Librispeech datasets, a major-
ity of the applications in our experiments. For applications where stochastic rounding still shows a
non-negiglable accuracy gap with more than 0.1% discrepancy, we show that Kahan summation for
model weight updates can enable pure 16-bit training to match the model accuracy of 32-bit train-
ing algorithms. We show that Kahan summation for model weight updates can boost pure 16-bit
training to higher validation accuracy than using stochastic rounding. More concretely, the Kahan
summation for model weight updates shows 0.2% higher top-1 accuracy and 0.1% higher AUC re-
spectively for ResNet-50 on ImageNet and for recommendation on Terabyte than using stochastic
rounding. Consequently as shown in Table[2] by using Kahan summation for model weight updates,
pure 16-bit training match the model accuracy attained by 32-bit precision training across all the
applications in our experiments. This validates that stochastic rounding and Kahan summation can
enable pure 16-bit training algorithms to match the model accuracy of 32-bit training.

Memory efficiency and model accuracy trade-off Addi-
tionally, we show that stochastic rounding and Kahan sum-
mation can be combined for pure 16-bit training, which
exposes a memory efficiency and model accuracy trade-
off for practitioners to exploit. As an example, in Fig-
ure ] we demonstrate this trade-off by incrementally replac- 0 s 50
ing stochastic rounding with Kahan summation on various Weight memory cost (relative)
model weights in the DLRM model on the Kaggle dataset.
As we apply Kahan summation to more model weights,
the weight memory cost increases by up to 2x. As this
cost increases we also observe up to 0.04% improvement
in AUC. This exploits a memory efficiency and model ac-
curacy trade-off that users should consider when deciding
which technique to leverage.

80.251

O
)
< 80.20;

Figure 4: Efficiency and accuracy
trade-off. With stochastic rounding
and Kahan summation on different
parts of the DLRM-Kaggle, it attains
higher model accuracy at the cost of
more weight memory.
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5 RELATED WORK

There is a plethora of research work on low-precision training for deep learning models. On cer-
tain specific models such as convolutional or recurrent neural networks, training with fixed point or
floating point precisions lower than 16-bit has been shown to be feasible when using customized
techniques (Wang et al.l 2018b; |[Zhou et al.| [2016; [Hubara et al.| [2017; (Courbariaux et al., 2014
Ott et al., 2016} Sun et al., |2019). Instead of proposing new techniques for specific model types
using lower than 16-bit precision, we focus on finding the minimal set of simple techniques re-
quired by generic mode training on future general-purpose deep learning accelerators requiring only
modern 16-bit compute units. Such emerging accelerators have the potential to unlock substantially
improved hardware efficiency compare to those still requiring 32-bit compute units.

Recent work shows that in low precision training, stochastic gradient descent with stochastic round-
ing for model weight updates only degrades worst-case upper bounds on convergence minimally;
this shows stochastic rounding is an effective technique to attain strong model accuracy in low pre-
cision training (Li et al.,[2017; [Hou et al., |2018). Our analysis is orthogonal and complementary to
these upper bounds. Specifically, we prove a lower bound on convergence when using standard near-
est rounding for model weight updates. This lower bound shows that nearest rounding for weight
updates can substantially degrade the convergence even in the most optimistic case no matter how
learning rates are tuned. We use this lower bound together with the previous upper bounds to in-
form future accelerator designers that only supporting nearest rounding is not enough to maximize
model accuracy; to alleviate this problem, stochastic rounding for model weight updates is one of
the minimal supports required in future training accelerators.

6 CONCLUSION

In this paper we study pure 16-bit training algorithms that require only 16-bit compute units. We
show that nearest rounding on model weight updates is the primary cause of convergence and model
accuracy degradation in standard pure 16-bit training. To alleviate this issue, we apply two existing
techniques: stochastic rounding and Kahan summation. With these techniques, we demonstrate that
pure 16-bit training can match the model accuracy of 32-bit precision training across many deep
learning models. Our study suggests that it is feasible to design high-accuracy deep learning accel-
erators using only 16-bit compute units if stochastic rounding and Kahan algorithm are supported.
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A THEORY PROOF
In this section, we present the proof for Theorem |1|and Theorem

A.1 PROOF OF THEOREM
Proof. We first prove that when

Jw —w'| < min [w}],
J

€
al +¢€
the model updates across all the dimensions will be canceled in a single stochastic gradient descent

step on the least-squares regression model. We then prove the lower bound for ||w,; — w*|| after
using stochastic gradient descent across many iterations.

We assume that floating-point representation has the property that for any representable number
u € R, all other representable numbers v € R have |Q(u) — u| < €|u|. Also in our bounded
input data assumption (A2), we know that the data magnitude is bounded such that ||z;||> < L.
Additionally we also assume the overparameterization setting where x;w* = y; (Al) with w* =

arg min,,cpa f(w).

On the condition to cancel updates for all the dimensions For the least-squares regression
model, the sample gradient at model weight w is

Vfi(w) = :Bl(wf'w —y;) = wl(m?w — m;‘rw*) = :cZ:l:;‘F(w —w").

forindex i € {1,2,...,n}. When the model weight update gets canceled by nearest rounding Q, we
have

Q (w—aVf(w)) =w. 2)
To make this hold, it suffices to show that, for all indices j € {1,...,d},

‘[w —aV fi(w)]; — wj‘ < €lwj|.
with w; being the j-th dimension of w. This is equivalent to show that
a’[wim?(wfw*)]j’ < €|wy]. 3)

In order to prove Equation (3)), we first observe that by Cauchy-Schwarz inequality,

@ ‘ [wzw? (w — w*)]j‘ -« ‘[wlb’ . !az?(w — w*)
< allz]| - |z - w —w?| “)
<al-||lw-—w"|.

We also observe that
lw;| = ‘[w —w']; +w;-“ > |wy| - ‘[w —w*]j’ > mjin’wﬂ — JJlw — w*|. ®)

with w7 being the j-th dimension of w*.

Equation (@) and Equation (5 shows that, to cancel weight updates, namely satisfying Equation (2)),
it suffices to prove that

al - |Jw —w*|| < emin ’wﬂ —€|lw — w*|. (6)
j

When we have

lw —w™[| < -min [w]]|,
J

€
al +e€
Equation (6) is satisfied. This proves that the weight updates will be canceled with

Q (w - aVfi(w)) = w.
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Lower bound on convergence Case I: the model is initialized far away from the optimum w*
with [|wo — w*|| > 77 - miny |w ’

To prove the lower bound

e(1—al)

w; — w*|| >
oo — w7 = S

min . )

forany ¢t € {1, 2, ...}, we discuss two possible situations.

In the ﬁrst situation, if for any ¢, w; never steps into the quantization noise ball with center w* and
radius 7 - min; |w;‘ ’ Then the the bound in Equation (7)) directly holds.

In the second situation, we assume model weights step into the quantization noise ball at a certain
iteration ¢ + 1 for the first time. Thus at iteration ¢ we have that

[wi1 = w| = [lw —w" = aV fo (w)]

> Jlw = w*[| = af|V fou) (wi)]|

= [lwe —w*|| — ol (w, —w)|

> [lw; — w|| — allai|*]|w, — w”|

> (1 - aL)|w, - w'].
Because w; is still outside of the quantization noise ball at iteration ¢, we have |Jw; — w*| >
Sl - ming |w;‘ | Thus we have
e(l—al)

w —w*|| >
fwiss — w2 <

mll’l |U} ’ (8)

Case II: the model is initialized in the quantization noise ball with ||wo — w*|| <

ocL+e
Because inside the quantization noise ball, the model weights halt, we have that
. . e(l—al . N
[we — w*|| = min <(ozL+e) : Inlel wo —w ||> : )

A.2 PROOF OF THEOREM

Proof. Under the overparameterization assumption y; = = w* (A1) and bounded data assumption
|lz;||* < L (A2), we first observe that the error from the activation quantization is bounded by
T T T
‘Q(wi wy — ;) — (@] we — yz)} <e |$z wy — yi|
=€ !w;-f(wt — w*)’

eVL||lw; — w*|.

Note that here, we are assuming no numerical errors happen inside the dot product because we
suppose it is computed by a single FMAC with a higher-precision accumulator. It follows that

IN

i — (z]wy — yz)wzH <& - ’Q(with —yi) — (z] wy — yz)|

< eL||lw; — w*||.

|Q(z] w; — yi)x (10)

The second quantization is redundant in the least-squares regression case, because the already quan-
tized activation will be leveraged as the activation gradient. And the additional activation gradient
quantization would not take any effect to introduce new numerical error. For the third quantization,
we observe that its error in the j-th coordinate will be bounded by

|Q 33 Wy — Yi)Ti)j — (Q(-’Uith - yz)ivz)g| Se |(Q(93ith — Yi)Ti);

)
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which implies that

1Q(Q(x] wy — yi)x;) — (Q(x] wi — yi)ws)|

= Z QQ(zFw; — yi)x:); — (Q(xTw; — yi)wi)j’2

n

< Z e |(Q(xTw, — yi)xi)j|2

j=1

=¢€ HQ(w;fwt - yz)wzH
<e Ha;lacZT(wt — w*)H + (9(62)
< eL||lwy —w*|| + 0(62).

where the second last inequality is a consequence of Equation (10)). If we disregard the €2 term, we
have that

1Q(Q(x] wy — yi)w;) — (x] wy — yi)ai|| < 2eL|jwy — w*|.
This means that we can write our gradient update step as

Wiyl = Wy — ama(t)mZ(t)(wt —w") +ny,

where o (t) is an index from the dataset sampled uniformly at random, and 73; is an error term
bounded by ||n:|| < 2ceL||w; — w*|. This gives

wt+1 — w* = (I — a$a‘(t)$g(t)) (wt — w*) + e,

Taking the norm and the expected value gives

2
EHwH_l - w*”Q = E{(wt — w*)T (I — aa)o(t):rz(t)) (wt — w*)

+2m (I - aoqal) (wi—w') + lm]?].

If we let X denote the expected value

Y= % ; :cimiT,
then .
E [(33“333:) (azztacz;) ] =E {Hwa(t)HQ:cg(t)wZ(t)} =< LY.

Because of this, we have that
Elwis1 — w*|? < E[(wt —w*)T (I - 203 + 6*LE) (w; — w")
+ 207 (I = o) (wy — w*) + |ne][*]

Since we assumed aLL < 1, with an additional application of Cauchy-Schwarz, we can simplify this
to

Elwe i1 —w*|? < B [(w; —w")” (I - aX) (w, — w") +2|m[lw, —w* || + |me]|”]
If we let 1 denote the smallest eigenvalue of 3, then this can be bounded by
Elwey —w|? < E[(1 - ap)|we — w”|* + 2]nelllwe — w*|| + [ne]*] -
Substituting our bound on 1) gives
E|w; 1 —w*||* <E (1= ap)||w, — w*||? + daeL||w; — w*||? + 40’ L2 || wy — w*||2] .
Disregarding the €2 term, we have

Elwerr —w'|? < E[(1 - ap)[lwe — || + daeL|we — w*|*] |
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which simplifies to
El|wy1 — w*||* < (1 — ap + 4ael)E [|jw, — w*|*] .

In other words, as long as e, < p (i.e. € is small relative to the inverse of the condition number
x = L/ of the problem, we will still converge at a linear rate. More explicitly,

E [[lwr — w[?] < (1 - ap + dacL)’ - [luo —w"|.

Or,
E [[[w; — w*|]?] < exp(—aut (1 — 4ek)) - [|wo — w*||?.

B HIGH-ACCURACY PURE 16-BIT TRAINING

In this section, we present the algorithm for SGD and AdamW (Loshchilov & Hutter, 2017) when
combined with stochastic rounding or Kahan summation on the model weight updates in Algo-
rithms 2] to 3}, these four algorithms describe the optimizers in our experiments. In these algorithms,
all the scalars and tensors such as model weights and optimizer states are in BFloat16 precision. On
top of these values, all floating point arithmetic operators takes BFloat16 inputs and uses nearest
rounding for the output unless noticerd otherwise. For SGD and AdamW with stochastic round-
ing on the model weight updates, we define operator & as a subtraction with BFloat16 inputs and
stochastic rounding for the output. Across our experiments using these optimizers, to calculate mini-
batch gradient V f ;) (w;), forward and backward compute operators consumes BFloat16 input and
perform nearest rounding for the output.

To demonstrate the hardware efficiency of Pure 16-bit training algorithms in Algorithms2|to 5] we
discuss the hardware overhead of using stochastic rounding and Kahan summation for model weight
updates in Appendices[B.1]and [B.2]respectively.

B.1 SYSTEM EFFICIENCY OF STOCHASTIC ROUNDING

In modern hardware, training with stochastic rounding for model weight updates can be imple-
mented efficiently. It has been demonstrated that stochastic rounding can be implemented without
any expensive multiplication or division arithmetic |De Sa et al.| (2017)). Instead, it only requires
1) generating random bit sequences with a shift register, 2) adding random sequence to the lower
mantissa bits and 3) truncating; these operations are inexpensive relative to other optimizer oper-
ations regardless of the model size. Secondly, we note that the minimal technique in our study
only requires stochastic rounding for model weight updates while even cheaper nearest rounding
remains for forward, backward and optimizer operations other than weight updates. Because of the
above two reasons, using stochastic rounding for model weight updates only adds minimal overhead
compared to standard 16-bit training fully with nearest rounding.

B.2 SYSTEM EFFICIENCY OF KAHAN SUMMATION

Despite the fact that 16-bit Kahan accumulation requires an additional 16-bit auxiliary value, it
can still demonstates advantages over 32-bit and mixed precision training in terms of throughput
and memory consumption. In more details, optimizers in both 32-bit and mixed precision training
operate on 32-bit weights (for mixed precision, the weights here refer to the master copy) and 32-bit
optimizer states such as momentum. On the other hand, in 16-bit training with Kahan summation,
the optimizers leverage fully 16-bit weights, optimizer states and auxiliary variables.

Regarding the throughput, optimizers in 32-bit and mixed precision training require compute units
with 32-bit multiply, while optimizers in 16-bit training with Kahan summation can leverage units
with 16-bit multiply. Given that 2) modern MAC units with 16-bit multiply can be implemented with
1.5X throughput compared to those with 32-bit multiply [10] and 3) Kahan summation only intro-
duce 3 additional add/subtract operations which are inexpensive relative to multiply (e.g. Adam has
9 major multiply operations), optimizers in 16-bit training with Kahan summation can demonstrate
meaningful speedup.

Regarding the memory efficiency, using Adam optimizer as an example, 16-bit training with Kahan
summation saves 33% and 43% memory for weights plus optimizer states respectively over 32-bit
training and mixed precision training (mixed precision training has both 16-bit and 32-bit weights in
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memory). We note that these benefits here are especially pronounced for training large SOTA models
with billions of model weights using optimizers with sophisticated optimizer states (Shoeybi et al.,
2019; |Rajbhandari et al.| 2019).

Algorithm 2 SGD with Stochastic Rounding

1: INPUT: learning rate 7;, momentum j, weight decay d, gradient V f,(;) (w) at iteration t
2: whilet < T do

3: gi+1 — Vfg(t) (wt) —+ d * wy

4: My < XMy + Gyl

5: Wip1 < W O (nt * mt_,_l)

6: t—1t+1

7: end while

8

: RETURN: wr

Algorithm 3 SGD with Kahan Summation

INPUT: learning rate 7;, momentum /, weight decay d, gradient V f, ) (w) at iteration t
cop+ 0
while ¢ < T do
git1 < Vo (we) +dxw;
My < ¥ My + Gep1
U1 < — (N * My11)
Yir1 < U1 — Ct
St41 — Wi + Yey1
Cr1 ¢ (8141 — Wi) — Yri1
10: Wi < Stt1
11: t—t+1
12: end while
13: RETURN: wr

PRI RN

°

Algorithm 4 AdamW with Stochastic Rounding

1: INPUT: learning rate 7;, beta (1, 32), weight decay d, gradient V f, () (w;) at iteration t
2: C1,0 < 1,6270 —1

3. whilet < T do

4: git+1 <— Vf(wt, CEt)

5: mt+1<—ﬁ1*mt—|—(1—51)*gt

6 i1 Prrvg+ (1 — B2) * gf
7. Clit1 & Ciex B
8 Co,i41 + Cat * B2

9: ’ﬁ’lt+1 < mH_l/(l — Cl,t+1)
10: ﬁt+1 — \/’Ut+1/(1 7A627t+1)A
11: Wi41 <—th(nt*mt+1/(vt+1—|—e)+nt*d*wt)

12: t+—t+1
13: end while
14: RETURN: wr

C EXPERIMENT DETAILS

In this section, we first discuss the details in the experiment setup. We first discuss the hyperparame-
ter values we use in Appendix[C.I] We then present the infrastructure details used in our experiments

in Appendix [C.2]
C.1 HYPERPARAMETERS

For each model in our expriment, we use the hyperparameter values acquired from the original paper
or code repository. In the rest of this section, we discuss the detailed hyperparameter values for all
the seven deep learning applications in our experiments.
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Algorithm 5 AdamW with Kahan Summation

1: INPUT: learning rate 7;, betas (51, #2), weight decay d, gradient V f, ;) (w;) at iteration t
2: C1,0 < 1,6270 +—1

3: ¢+ 0

4: whilet < T do

5: gi < Vf(wt,wt)

6: mt+1<—61*mt+(1—ﬁ1)*gt

7: vt+1<—ﬂ2*vt+(1—52)*g?

8: Clit1 ¢ Ci1e %P1

9: Cot41 < Co,t * B2
10: Tht+1 — mt+1/(1 — Cl,t+1)
11: ’LAJt+1 — \/’Ut+1/(1 _62,t+1)
12: U1 < — (nt * mt_;,_l/ (,ﬁt+1 + 6) + g * d * wt)
13: Y1 ¢ Ugpl — Ct
14: St41 & Wy + Y
15: Cir1  (St41 — Wi) — Yeq1
16: Wil < St+1

17: t+—t+1
18: end while
19: RETURN: wr

ResNet-lS-CIFARI(ﬂ We train the model for 350 epochs using the SGD optimizer with mini-
batch size, weight decay, and momentum values of 128, 5 x 10~4, and 0.9 respectively. The learning
rate starts from 0.1 and We manually divide it by 10 at epochs 150 and 250. We summarize these
hyperparameters in Table 3]

Table 3: Training hyperparameter for ResNet-18-CIFAR10

Heyparameter Value
Optimizer SGD
Batchsize 128

Training epochs 350

0-150 epochs: 0.1
Learning rate 150-250 epochs: 0.01
250-350 epochs: 0.001
weight decay 5x107*
momentum 0.9

ResNet-SO-ImageNelE] We train the model for 90 epochs using the SGD optimizer with mini-batch
size, weight decay, and momentum values of 256, 1 x 10~%, and 0.9 respectively. The learning
rate starts from 0.1 and we manually divide it by 10 after each 30 epochs. We summarize these
hyperparameters in Table 4]

BERT-MN L]E] We fine-tune the model for 3 epochs using the AdamW optimizer with mini-batch
size and first order momentum values of 256, 0.9 respectively. The learning rate starts from 2 x 107>
and linearly decays to O during the training. Note in pure 16-bit training algorithms, we use 32 =
0.997 for pure 16-bit training algorithms. This is because 0.999 is considered as 1 in BFloatl6
format; we use the 0.997 which is a BFloat16 representable value that is the closest to 0.999 and is
smaller than 1. We summarize these hyperparameters in Table 5]

Shttps://github.com/kuangliu/pytorch-cifar

®https://github.com/pytorch/examples/tree/master/imagenet

7https ://github.com/huggingface/transformers

81’11:tps ://github.com/pytorch/fairseg/blob/master/examples/roberta/
README.pretraining.md
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Table 4: Training hyperparameter for ResNet-50-ImageNet

Heyparameter Value
Optimizer SGD
Batchsize 256

Training epochs 90

0-30 epochs: 0.1
Learning rate 30-60 epochs: 0.01
60-90 epochs: 0.001
Weight decay 1x1074
Momentum 0.9

Table 5: Training hyperparameter for BERT-MNLI

Heyparameter Value
Model type Base
Optimizer AdamW
Batchsize 64
Training epochs 3
Learning rate 2x107°
Decay rate for 1st moment 5, (32-bit and 16-bit) 0.9
Decay rate for 2nd moment 32 (32-bit) 0.999
Decay rate for 2nd moment 2 (16-bit) 0.997

BERT-WikilOﬂ We pre-train the model for 31250 iterations using the AdamW optimizer with
mini-batch size, weight decay, first order momentum, and second order momentum values of 512,
0.01, 0.9, and 0.98 respectively; compared to the original training steps, we scale down the training
steps proportionally because we subsampled the datasets. The first 8% of training is used for learning
rate warm-up and the peak learning rate value is 1 x 10~*. Throughout the rest of the training
(remaining 92%), learning rate decays to 0 linearly. We summarize these hyperparameters in Table[6}

Table 6: Training hyperparameter for BERT-wikil03

Heyparameter Value
Model type Base
Sub-sample rate 25%
Optimizer AdamW
Batchsize 512
Peak learning rate 1x107*
Total iterations 31250
Warmup iterations 2500
Weight decay 0.01
Decay rate for 1st moment [, 0.9
Decay rate for 2nd moment [ 0.98

DLRM-Kaggleﬂ We fine-tune the model for 1 epoch using the SGD optimizer with mini-batch

size of 128. The learning rate has constant value of 0.1 for the whole training. We summarize these
hyperparameters in Table[7}

%https://github.com/facebookresearch/dlrm
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Table 7: Training hyperparameter for DLRM-Criteo Kaggle

Heyparameter Value
Sparse feature size 16

Bottom MLP 13-512-256-64-16
Top MLP 512-256-1
Optimizer SGD
Batchsize 128

Training epochs 1
Learning rate 0.1
Loss function BCE

DLRM-Terabyte For this model, we obtain hyperparameters from NVIDIAFE] DLRM repository
while we use the Facebookﬂ implementation. The reason is that we want to keep the implementation
the same as DLRM-Kaggle experiment; however, the NVIDIA hyperparameters presents the state-
of-the-art time-to-accuracy metric. We fine-tune the model for 1 epoch using the SGD optimizer
with mini-batch size of 32768. The first 5% of training is used for learning rate warm-up and the
peak learning rate value is 28. The learning rate decay starts at the middle (50% of iterations) of the
training, and throughout the rest of the training (remaining 50%), learning rate decays to O linearly.
We summarize these hyperparameters in Table

Table 8: Training hyperparameter for DLRM-Criteo Terabyte

Heyparameter Value
Sparse feature size 16
Bottom MLP 512-256-128
Top MLP 1024-1024-512-256-2
Optimizer SGD
Batchsize 32768
Training epochs 1
Learning rate 28
Warmup iterations 6400
Learning rate decay start Step 64000
Learning rate decay steps 80000
Loss function BCE

DLRM-KaggleE] We train the model for 60 epochs using the SGD optimizer with mini-batch
size, weight decay, and first order momentum values of 64, 1 x 102, and 0.9 respectively. The
learning rate starts from 3 x 10~* and is reduced by 1% after each epoch. We summarize these
hyperparameters in Table [0}

C.2 INFRASTRUCTURE DETAILS

We use AWS p3.16xlarge instances for the large applications including BERT-Wikil03,
DeepSpeech2-LibriSpeech and ResNet-50-ImageNet. For the rest of the applications, we train on
p3.2xlarge. The AWS p3.2xlarge instance has one NVIDIA’s Tesla V100 GPU, and p3.16xlarge has
8 of them. For all the experiments, we use Python version 3.8.1, PyTorch version 1.5, and CUDA
version 10.2.

10https ://github.com/NVIDIA/DeeplLearningExamples/blob/master/PyTorch/
Recommendation/DLRM/dlrm/scripts/main.py
"mttps://github.com/SeanNaren/deepspeech.pytorch/releases/tag/v2.0
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Table 9: Training hyperparameter for Deepspeech2-Librispeech

Heyparameter Value
RNN type LSTM
Sub-sampled rate 10%
Optimizer SGD
Batchsize 64
Training epochs 60
Learning rate 3x107*
Momentum 0.9
Weight decay 1x107°
Max-norm 400

D EXTENDED EMPIRICAL RESULTS

In this section, we discuss additional results complementary to those in Section[d] In Appendix [D.T}
we discuss the validation accuracy curves in our ablation study in Section 4| where we validate the
model accuracy bottlenecks. In Appendix [D.2] we present the validation accuracy curves for pure
16-bit training algorithms with stochastic rounding or Kahan summation for model weight updates.
Finally in Appendix[D.3] we present additional results on the following four aspects: 1) The percent-
age of model weight updates which are canceled during training for a representative deep learning
model; 2) The model accuracy attained with lower than 16-bit precision format when stochastic
rounding or Kahan summation is enabled for model weight updates; 3) The model accuracy at-
tained by pure 16-bit training when we combine stochastic rounding and Kahan summation on all
the model weights; 4) the model accuracy of pure 16-bit training using Float16 instead of BFloat16
with stochastic rounding or Kahan summation enabled.

D.1 THE MODEL ACCURACY BOTTLENECK

In Figure[7| we present the validation accuracy curves in our ablation study to validate the accuracy
bottleneck. We can observe that the standard pure 16-bit training algorithm demonstrates lower
validation accuracy metric values compared to 32-bit training across the applications. In the ablation,
we save the model weights in 32-bit, turn off nearest rounding on model weight updates and keep
nearest rounding for all the other compute operators. This ablation isolates the influence of nearest
rounding on model weight updates. We can see that this ablated algorithm can match the validation
accuracy attained by 32-bit precision training. These results together with the ones in Section [4]
shows that nearest rounding on model weight udpates is the primary cause for model accuracy gap
in training deep learning models.

In our experiments, 32-bit and standard 16-bit training start from the same initialization with the
same model accuracy. For the natural language inference task in Figure[I] the gap at the beginning
of the curves is due to aggressive smoothing for the clarify in visualization. In Figure [6] we can
observe that the unsmoothed curves for 32-bit training and standard 16-bit training indeed start from
the same training accuracy level at the beginning.

D.2 HIGH-ACCURACY PURE 16-BIT TRAINING

In Figure[8] we present the validation accuracy curves attained by pure 16-bit training with stochastic
rounding or Kahan summation for model weight updates. First we observe that with nearest round-
ing for all compute operations, the standard pure 16-bit training algorithm demonstrate validation
accuracy gap compared to 32-bit training across training stages. In the contrast, we can observe that
by using stochastic rounding or Kahan summation for model weight updates, pure 16-bit training
achieves validation accuracy curves matching that of 32-bit training.

D.3 OTHER EXPERIMENT RESULTS

Nearest rounding cancels weight updates In this experiment, we show that a large portion of the
model weight updates can be canceled due to nearest rounding on weight updates for a representa-
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Figure 6: Unsmoothed training accuracy at different number of training iterations for BERT-MNLI.
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Figure 7: Validation accuracy gap imposed by the standard pure 16-bit training. The standard
algorithm fail to match the validation accuracy from 32-bit precision training. By ablating nearest
rounding for model weight update from the standard method, we can recover the accuracy gap. This
indicates the dominating impact of nearest rounding for model weight updates.
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Figure 8: Validation accuracy for pure 16-bit training. With stochastic rounding or Kahan sum-
mation enabled for model weight updates, pure 16-bit training matches 32-bit precision training in
terms of validation accuracy with negligible differences across the applications in our experiments.
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Figure 9: The percentage of weight updates that are non-zero but get canceled in the standard
pure 16-bit training. For both embedding and linear layers, the percentage increases in the mid-to-
late training stage for the DLRM model on the Kaggle and Terabyte datasets. The high percentage
of cancelation aligns with our insights on the impact of nearest rounding on model weight updates.

tive deep learning model; this aligns with our theoretical insights on the impact of weight updates
cancellation from the least-squares regression model. Specifically, we train DLRM model using the
standard 16-bit training. In this experiment, we record the percentage of weight updates that are
non-zero and get canceled by nearest rounding on model weight updates at each training iteration.
Because the DLRM model consists of two different layer types which are embeddings and linear
layers in MLPs, we present the results in Figure [9]on one embedding layer and one linear layer for
each of the dataset we use for the DLRM model; the behavior on these layers is representative for
many different embedding layers and linear layers in the DLRM model. As it is shown in Figure[9]
on both the Kaggle and the Terabyte datasets, the percentage of weight updates that are non-zero
but get canceled increases as the training progresses. For both the embedding and linear layers, the
percentage of canceled weight updates can be larger than 80% in the mid-to-late training stage. For
the Kaggle dataset, the increasing percentage of cancellation is due to the shrinking gradient magni-
tude because we use a constant learning rate on this dataset. On the other hand, we use a decaying
learning rate on the Terabyte dataset. Thus the increasing trend on the percentage of weight update
cancelation is a consequence of the compound effect from decaying gradient magnitude and decay-
ing learning rates. These observations align with our insights on the least-squares regression model
where we observe severe model weight updates cancelation in the mid-to-late training stage.

Going below 16-bit We train DLRM model on Criteo Kaggle dataset with precisions lower than
16-bit. For the lower precision representations, we keep 8 exponent bits as BFloat16 and only
lower the number of mantissa bits to ensure enough number dynamic range for stable training.
In Figure[I0} we demonstrate the model accuracy attained with 10, 12 and 14-bit precision. Besides
using 14-bit precision with Kahan summation for model weight updates, the other configuration all
demonstrate lower training AUC value compared to 32-bit training and pure 16-bit training with
stochastic rounding or Kahan summation. This implies that to go lower than 16-bit precision for
training generic deep learning model, additional techniques might be required.
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Figure 11: Pure 16-bit training using stochastic rounding and Kahan summation simultane-
ously. By using the Kahan summation and stochastic rounding simultaneously for model weight
updates, pure 16-bit training can also robustly attain matching model accuracy compared to 32-bit
precision training.
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Figure 10: Training accuracy with precisions lower than 16-bit. Besides 14-bit training with
Kahan summation for model weight updates, training with lower precision than 16-bit shows lower
training accuracy compared to either 16-bit or 32-bit training on DLRM-Kaggle.

Combining two techniques To test the robustness of the two numerical techniques for pure 16-
bit training, we discuss the model accuracy attained by applying stochastic rounding and Kahan
summation simultaneously on all the model weights. In Figure we can observe that stochastic
rounding and Kahan summation can work together robustly and attain validation accuracy matching
that of 32-bit training.

Using Float16 instead of BFloatl6 We also consider doing pure 16-bit training with Float16 pre-
cision. We apply stochastic rounding and Kahan summation for model weights in pure 16-bit train-
ing with Float16 precision. We consider the minimal algorithms without any loss scaling techniques
as in mixed precision training. As shown in Figure[I2] we can observe that pure 16-bit training with
Float16 precision (even with the stochastic rounding or Kahan summation technique) demonstrate
significant model accuracy degradation compared to 32-bit precision training. Because Float16 has
more mantissa bits but less exponent bits than BFloat16, the model accuracy gap is mostly due to
the small dynamic range of Float16 .
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Figure 12: Training accuracy gap imposed by pure 16-bit training with Float16 . Despite the
fact that we enabled stochastic rounding or Kahan summation for the model weight updates, pure
16-bit training with Float16 still demonstrate significant model accuracy gap compared to 32-bit
training. This is mostly due to the small dynamic range of the Float16 precision.
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