
A Proofs474

In this section, we provide proofs for the theoretical results appeared in Section 4. We will restate475

each of the results and then append their corresponding proof.476

Lemma A.1 (Cost Simulation Lemma and Upper Bound). Let the F-induced IPM be defined as477

dF (T̂ (s, a), T (s, a)) := sup
f2F

|E
s0⇠T̂ (s,a)[f(s

0)]� Es0⇠T (s,a)[f(s
0)]| (8)

Then, the difference between the expected policy cost computed using T and T̂ is bounded above:478
X

s,a

(⇢⇡
T
(s, a)� ⇢

⇡

T̂
(s, a))c(s, a)  ��

X

s,a

⇢
⇡

T̂
(s, a)dF (T̂ (s, a), T (s, a)) (9)

Proof. Using the telescoping lemma [29, 32], we have that479

1

1� �

X

s,a

(⇢⇡
T
(s, a)� ⇢

⇡

T̂
(s, a))c(s, a)

=�

X

s,a

⇢
⇡

T̂
(s, a)

h
Es0⇠T (s,a)V

⇡

T
(s0)� E

s0⇠T̂ (s,a)V
⇡

T̂
(s0)

i

Then, by Assumption 4.1, we have that480

�

X

s,a

⇢
⇡

T̂
(s, a)

h
Es0⇠T (s,a)V

⇡

T
(s0)� E

s0⇠T̂ (s,a)V
⇡

T̂
(s0)

i

�

X

s,a

⇢
⇡

T̂
(s, a) sup

f2�F

���E
s0⇠T̂ (s,a)[f(s

0)]� Es0⇠T (s,a)[f(s
0)]
���

�

X

s,a

⇢
⇡

T̂
(s, a)�dF (T̂ (s, a), T (s, a))

Putting everything together, we have that481
X

s,a

(⇢⇡
T
(s, a)� ⇢

⇡

T̂
(s, a))c(s, a)

��

X

s,a

⇢
⇡

T̂
(s, a)dF (T̂ (s, a), T (s, a))

482

Theorem A.2 (Tabular Case High-Probability Feasibility Guarantee). Assume F = {f : kfk1  1}483

and that Assumption 4.1 holds. Define u(s, a) :=
q

|S|
8n(s,a) ln

4|S||A|
�

, where n(s, a) is the count of484

(s, a) in D and � 2 (0, 1]. Then, with probability 1 � �, a policy that is feasible for Eq (5) is also485

feasible for Eq (2).486

Proof. In order for a policy that is feasible for Eq (5) is also feasible for Eq (2), we need to have487

1

1� �

X

s,a

⇢
⇡

T
(s, a)c(s, a)

 1

1� �

X

s,a

⇢
⇡

T̂
(s, a)(c(s, a) + ��u(s, a))  C.

By the lemma above, this is equivalent to having u(s, a) � dF (T̂ (s, a), T (s, a)), 8s, a. Since, we488

assume F = {f : kfk1  1}, this implies489

dF (T̂ (s, a), T (s, a))

=dTV(T̂ (s, a), T (s, a))

=
1

2

���T̂ (s, a), T (s, a)
���
1

12

where the last step follows because T̂ (s, a) and T (s, a) are multinomial distributions, which are490

countable. Then, we need491

u(s, a) � 1

2
max
s,a

���T̂ (s, a), T (s, a)
���
1

(10)

By Hoeffding’s inequality and the l1 concentration bound for multinomial distribution, we have that,492

for any � > 0, we can set u(s, a) :=
q

|S|
8n(s,a) ln

4|S||A|
�

, then Eq (10) will hold with probability493

1� �, completing the proof.494

Corollary A.3 (High-Probability Zero-Training-Violations Guarantee). Assume the same set of495

assumptions as Theorem A.2 and that the training lasts for K episodes. Then, for any � 2 (0, 1],496

define u(s, a) :=
q

|S|
8n(s,a) ln

4K|S||A|
�

. Then, with probability 1� �, all intermediate solutions to497

Eq (5) are feasible for Eq (2).498

Proof. Since we want all K intermediate solutions to be feasible with probability 1 � �, the fault499

tolerance for any individual intermediate solution is �/K; this follows from an union bound argument.500

Therefore, we can adjust the concentration bound from Hoeffding’s inequality by a factor of K and501

obtain that by setting u(s, a) :=
q

|S|
8n(s,a) ln

4K|S||A|
�

, with probability 1� �, we can guarantee all502

intermediate solutions to Eq (5) are feasible for Eq (2).503

B CAP with Linear Programming504

This implementation of CAP is described in detail in the main text. Here, we describe the exponential505

search mechanism we use to initialize  for the very first training episode. Starting with a high506

value for  (e.g., 10), we use it to construct a new constrained optimization problem of form Eq (5)507

and attempt to solve it. If the problem is infeasible, then we halve the value of  and repeat the508

process. We stop at the first value of  for which the problem is feasible, and this value is taken as509

the initialized  value.510

C CAP with Constrained Cross Entropy Method511

In Algorithm 2, we provide the pseudocode for CAP implemented using constrained cross entropy512

method. Here, we reiterate the algorithm description from the main text for completeness. At a513

high level, CCEM first samples N action sequences (Line 4) and computes their values and costs514

(Line 5). Then, if there were more than E samples that satisfy the constraint, then the E samples515

with highest rewards are selected (Line 10); otherwise, the E samples with lowest costs are selected516

(Line 8). These selected elite samples are used to update the sampling distribution (Line 12). This517

process continues for I iterations, and the eventual distribution mean is selected as the optimal action518

sequence (Line 14).519

D Gridworld Experimental Detail520

The gridworld environment is of size 8⇥8. The action space consists of the four directional primitives:521

Up, Down, Left, Right. For each action, there is a 20% chance that slippage occurs and the agent522

moves in a random direction, introducing stochastic transitions to the environment. The reward and523

the cost functions are randomly generated Bernoulli distributions drawn according to a Beta(1,3)524

prior. Each state has uniform probability of being selected as the initial state for each episode. The525

discount rate is 0.99. The cost threshold is kept at 0.1 for all trials. Training lasts 30 episodes, and526

we use Gurobi [39] as the LP solver in our implementation.527

For the gridworld experiments, we also pursue a more aggressive way of updating . After observing528

Jc(⇡t) for episode t, we set  := (Jc(⇡t)�C)+P
s,a ⇢

⇡
t T̂ (s,a)n(s,a)

; this amounts to a proportional PID controller.529

13

Algorithm 2: CAP with Constrained Cross Entropy Method

1: Inputs: Transition model estimate T̂✓, experience buffer D, cost limit C
2: CCEM Hyperparameters: Population size N , elite population size E, max iteration I ,

planning horizon H , initial sampling distribution N (µ0,⌃0)
3: for i = 1, . . . , I do
4: Sample N action sequences A1 := {a1

t
}H
t=1, . . . , A

N := {aN
t
}H
t=1 ⇠ N (µi�1,⌃i�1)

5: Evaluate the action sequences using Eq (7) by simulating trajectories in T̂✓

6: Construct feasible set X := {An|J̃c(An)  C, n 2 [N]}
7: if |X | < E then
8: Construct elite set E := { The E sequences out of all {An}N

n=1 with lowest costs }
9: else

10: Construct elite set E := {The E sequences in X with highest rewards }
11: end if
12: Compute µi,⌃i using Maximum Likelihood over E
13: end for
14: Outputs: Optimal action sequence {a⇤1, ..., a⇤H} := µI

Gridworld

Figure 4: Tabular gridworld results with standard deviations.

D.1 Additional results530

In Figure 4, we illustrate the full version of Figure 1 with one standard deviation error bars added in.531

In Table 2, we also show these results in table format. As shown, CAP ablations with fixed  values532

exhibit greater variance in their performances over 100 random seeds; this supports the claim in the533

main text that fixed  values are more sensitive to the randomness in the environment distribution.534

E High-Dimensional Environments Experimental Detail535

E.1 Environments536

• Velocity Constrained HalfCheetah: The state space is 17-dimensional and the action537

space is 6-dimensional. We use the original environment reward, v � 1
10a

T
a, v is the538

forward velocity. The cost is |v| [28], meaning that there is a direct trade-off between cost539

and reward. The cost limit is set to 152, half of the average speed of an unconstrained PPO540

expert agent [28].541

Method Gridworld
Kappa  Return Cost (Limit 0.1) Violations

CAP Adaptive 0.494 ± 0.061 0.098 ± 0.006 0.0 ± 0.0
CAP 0.1 0.454 ± 0.074 0.089 ± 0.0055 0.7 ± 2.48
CAP 0.05 0.468 ± 0.071 0.091 ± 0.0093 2.22 ± 5.05
CAP 0.01 0.468 ± 0.069 0.0938 ± 0.0104 6.0 ± 8.01
CAP 0.0 0.50 ± 0.064 0.0965 ± 0.0079 10.23 ± 10.08

Table 2: CAP ablations results on Gridworld.

14

Figure 5: Step 100k/200k CAP and model-free baselines results on HalfCheetah (top) and Car-
Racing (bottom).

HalfCheetah Car-Racing
Method Kappa  Return Cost (Limit 152) Cost Violation Return Cost (Limit 0) Cost Violation
CAP Adaptive 1456.3 144.3 1.7 21.7 0.4 93.3
CAP 10.0 -36.5 5.4 0.0 1.0 0.4 52.0
CAP 1.0 1092.9 111.5 0.0 6.2 0.4 30.3
CAP 0.1 1774.4 179.9 70.0 35.4 2.3 149.0
CAP 0.0 1588.0 198.1 80.0 26.9 9.3 184.0
CEM N/A 2330.7 344.0 78.7 40.3 202.1 194.3

Table 3: CAP ablations results on HalfCheetah and Car-Racing.

• Constrained Car-Racing: The state space is a top down image of the car and the surround-542

ing track. We downscale the image to 64 by 64 by 3. For model-free baselines, we also543

stack the last 4 frames, as common in reinforcement learning on image based environments.544

The action space is three dimensional, controlling steering, acceleration and braking. Each545

value is continuous and bounded. We use an action repeat of 2 to produce a better signal to546

the model [10]. We keep the original reward, which incentivizes the agent to drive through547

as many tiles as possible. We use a binary cost that is 1 if the car skids. Skidding is a part548

of the original environment; a wheel skids if it’s force exceeds the friction limit, which is549

different on grass and road surfaces.550

E.2 Uncertainty Estimators551

State-based environments: We model the environment transition function using an neural en-552

semble of size N , where network’s output neurons parameterize a Gaussian distribution T̂ =553

N (µ(st, at),⌃(st, at) [9]. We set u(s, a) = maxN
i=1

��⌃i

✓
(s, a)

��
F to be the maximum Frobenius554

norm of the ensemble standard deviation outputs, as done for offline RL in [29].555

Image-based environments: We implement PlaNet [10], which models the environment transition556

function using a latent dynamics model with deterministic and stochastic transition states; we refer557

interested readers to the original paper for details. PlaNet does not provide an uncertainty estimate558

because it only utilizes a single transition model. To obtain an uncertainty estimate, we train a559

bootstrap ensemble of one-step hidden-state dynamics model as in [34]. Each one-step model in560

the ensemble predicts, from each deterministic state h, the next stochastic state. We formulate our561

uncertainty estimator as u(h, a) = V ar(µi(h, a)|i = [1..K]), the variance of ensemble predictions562

{µi}Ki=1. As in [34], to keep the scale of this uncertainty estimator similar to that of state-based563

uncertainty estimator, we multiply it by 10000.564

E.3 Network Architecture565

We use a neural network C to approximate the environment’s true cost function. When the cost is566

continuous, the network’s output neurons parameterize a Gaussian distribution and we construct our567

15

conservative cost function as C(s, a) + u(s, a). When the cost is binary, the network outputs a logit568

and we construct our conservative cost function as [C(s, a) + u(s, a) > 0].569

To apply model free algorithms on imaged-based environments, we used a shared CNN module570

to encode the image input. The network consists of 5 convolutional layers followed by a ReLU571

non-linearity.572

4x4 conv, 8, stride 2573

3x3 conv, 16, stride 2574

3x3 conv, 32, stride 2575

3x3 conv, 64, stride 2576

3x3 conv, 128, stride 1577

E.4 Hyperparameters578

In Table 4, we include the hyperparameters we used for state-based and image-based experiments,579

respectively.
Hyperparameter State-based Image-based
Ensemble size K 5 5
Optimizer Adam Adam
Optimizer  Adam Adam
Learning rate 0.001 0.001
Learning rate  0.1 0.01
Initial  1.0 0.1
Reward discount factor � 0.99 0.99
Cost discount factor �cost *0.99 *0.99
Batch size 256 50
Exploration steps 1000 5000
Experience buffer size 1000000 1000000
Uncertainty multiplier 1 100000
CEM Hyperparameters
Planning horizon H 30 12
Max iteration I 5 10
Population size N 500 1000
Elite population size E 50 100

Table 4: CAP hyperparameters

* We set cost discount factor to 1.0 when the cost is binary, so total cost per episode is directly
interpretable.580

E.5 Additional results581

In Figure 5, we illustrate the training curves of CAP and model free baselines in HalfCheetah and582

Car-Racing. For clarity, we focus on the first 100K/200K steps. The results are also presented in583

Table 1. In HalfCheetah, all model free methods have 0 cost violations in the first 100K steps, this584

is because they have not learnt a running gait that can violate the speed costraint. On the other585

hand, CAP is able to quickly a gait and keep cost below the limit, with less than two violations586

per 100 episodes. In CarRacing, all methods have high cost violations because the cost limit is 0.587

An initial random policy will violate the cost constraint and exploration will always risk violation.588

Even still, we see that CAP dominates FOCOPS, obtaining better episode return with lower cost and589

total violations. CAP has more cost violations than PPO-Lagrangian, but we see that this is because590

PPO-Lagrangian degrades to a trivial policy that maintains a stationary position, obtaining negative591

return with minimal risk of cost violations.592

E.6 Compute resources593

We use a single GTX 2080 Ti with 32 cores to run our experiments, each run takes about 10 hours in594

clock time.595

16

