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From Word to Sentence: A Large-Scale Multi-Instance
Dataset for Open-Set Aerial Detection
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A OS-W2S Label Engine Details

Predefined Size and Absolute position Attributes. Captions are generated based on six instance
attributes: category, color, size, geometry, relative position, and absolute position. Among these
attributes, the size (defined as the ratio of the instance’s area to the image area) and absolute position
(defined as the exact location of the instance within the image) are often subjectively determined.
Moreover, the instances occupy only a very small portion of the image, which poses a challenge for
the VLM to accurately determine the absolute positions of instances within the original images.

To address this issue, we apply predetermined rules to extract the size and absolute position attributes
during the data pre-processing stage, explicitly providing this prior knowledge to the VLM during
interaction. Specifically, we define size thresholds as [0.0005, 0.001, 0.01, 0.2], corresponding to
bounding box area ratios relative to the image area, and categorize instances into [’tiny’, ’small’,
‘medium’, ’big’, ’large’]. Additionally, we segment the image into 25 regions using horizontal labels
[Far Left’, "Left’, ’Center’, "Right’, *Far Right’] and vertical labels [ Top’, *Upper Middle’, *Middle’,
’Lower Middle’, ’Bottom’] to systematically define absolute position attributes.

Foreground-extraction algorithm. Aerial images typically contain numerous small, densely packed
objects, making it difficult for a VLM to attend to the target instance when fed with the raw image.
Benefiting from the precise bounding-box annotations available in our collected dataset, we are
able to crop the corresponding foreground region for each instance, thereby effectively guiding the
VLM’s attention. However, to accurately characterise an instance’s relative spatial attributes, it is also
essential for the VLM to consider relationships between the instance, its surrounding context, and
neighbouring objects. To address this, we design a foreground-extraction algorithm (Algorithm [T])
that isolates salient regions while retaining sufficient context. This instance-level zoom-in strategy
not only guides the VLM’s attention more effectively but also leads to substantial improvements in
caption quality.

Matching Caption-Instance Pairs. The captions generated by the VLM correspond specifically to
single instances. Our objective is to clearly associate each caption with its corresponding instances
based on the descriptive attributes included within each caption, as detailed in Algorithm[2] Specifi-
cally, since less detailed descriptions are more likely to match multiple instances, for each caption,
we compare only the attributes explicitly mentioned in the caption with those of all instances present
in the image. An instance is considered matched to a caption if the attributes share identical wording
or their feature similarity exceeds a predetermined threshold; otherwise, no match is established.

B MI-OAD Dataset Details

Base/Novel Categories split. To ensure that the RSW2S dataset can effectively evaluate zero-shot
transfer, we split the categories into 75 base categories and 25 novel categories. The class division is
based on clustering the semantic embeddings of the classes and selecting one class from each pair of
leaf nodes in the clustering tree [[18]]. The category splits are as follows:
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gorithm 1 Foreground Region Extraction

Require: Bounding box set B = {b1,bo, ..., by}, image size (w, h)
Ensure: Foreground region set R
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: Step 1: Scale Bounding Boxes
: fori=1to N do
Compute the area A; of bounding box b;
Determine scaling factor s; based on A;
Update the bounding box b; to its extended version, ensuring it remains within the image
boundaries
end for
Step 2: Merge Overlapping Boxes
for each unmerged box b; do
Letr < bL
while there exists an unmerged box b; that overlaps with r do
r <= MERGE(r, b;)
Mark b; as merged
end while
Add r to the foreground region set R
end for
return R

Al

gorithm 2 Caption-Instance Pair Matching
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: Input:
- captions: A list of captions, each containing textual descriptions and associated attributes
(e.g., category, size, color, geometry, position).
: - instances: A list of object instances, each identified by an ID and associated attributes (e.g.,
category, size, color, geometry, position).
: Output:
- caption_instance_pairs: A list of pairs (caption,instance), where each caption is
matched with corresponding object instances.
: Step 1: Initialization
: - Create an empty list caption_instance_pairs to store the matched caption-instance pairs.
: Step 2: Matching Process
: for each caption in captions do
Extract relevant attributes (e.g., category, size, color) from the caption.
Initialize an empty list matched_instances to store matching instances.
for each instance in instances do
Extract relevant attributes (e.g., category, size, color) from the instance.
Compare attributes between caption and instance.
if the attributes match sufficiently then
Add instance to matched_instances.
end if
end for
Add the pair (caption, matched_instances) to caption_instance_pairs.
end for
: Step 3: Output
: - Return caption_instance_pairs.
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* Base: ’aircraft’, ’aircraft-hangar’, "airplane’, ’baseball-diamond’, "baseball-field’, *bicy-
cle’, ’bridge’, ’building’, ’car’, ’cargo-car’, ’cargo-plane’, ’cargo-truck’, ’cement-mixer’,
’chimney’, ’construction-site’, ’container’, ’container-crane’, ’container-ship’, ’crane-truck’,
’dam’, ’damaged-building’, ’dump-truck’, ’engineering-vehicle’, ’expressway-service-area’,
“expressway-toll-station’, ’facility’, *ferry’, ’fishing-vessel’, ’fixed-wing-aircraft’, *flat-
car’, "front-loader-or-bulldozer’, *golf-field’, ’ground-grader’, *harbor’, "haul-truck’, *heli-
pad’, ’hut-or-tent’, ’large-vehicle’, ’locomotive’, ’oil-tanker’, ’overpass’, ’passenger-car’,
"passenger-vehicle’, people’, *plane’, *pylon’, ‘railway-vehicle’, ‘roundabout’, ’sailboat’,
’shed’, ’ship’, ’shipping-container’, ’small-aircraft’, ’small-car’, *small-vehicle’, ’soccer-
ball-field’, ’stadium’, ’storage-tank’, ’straddle-carrier’, ’tank-car’, ’tennis-court’, "tower’,
’tower-crane’, ’trailer’, ’train-station’, ’truck’, ’truck-tractor’, ’truck-tractor-with-flatbed-
trailer’, ’truck-tractor-with-liquid-tank’, "tugboat’, "utility-truck’, *van’, ’vehicle’, "vehicle-
lot’, ’yacht’

* Novel: ’airport’, awning-tricycle’, *barge’, *basketball-court’, bus’, *crossroad’, ’excava-
tor’, ’ground-track-field’, "helicopter’, *'maritime-vessel’, *'mobile-crane’, 'motor’, motor-
boat’, ’parking-lot’, *pedestrian’, ’pickup-truck’, *playground’, ’reach-stacker’, ’scraper-or-
tractor’, ’shipping-container-lot’, ’swimming-pool’, ’t-junction’, ’tricycle’, ’truck-tractor-
with-box-trailer’, *windmill’

MI-OAD Dataset Scale. As shown in Table [T} we curated eight representative aerial detection
datasets, and subsequently leveraged the OS-W2S Label Engine to enrich these datasets with compre-
hensive textual annotations, which collectively constitute the MI-OAD dataset. Specifically, MI-OAD
comprises 163,023 images and 2,389,973 (2M) image—caption pairs. As summarized in Table [2}
MI-OAD is approximately 40 times larger than existing remote sensing grounding datasets and offers
substantially higher annotation quality.

Table 1: Overview of the collected aerial-detection datasets. Image and instance counts are reported
after cropping to a uniform resolution.

Dataset Images Instances Categories
DIOR [5] 23,463 192,518 20
DOTA v2.0 [12] 19,871 495,754 18
HRRSD [20] 44,002 96,387 13
NWPU_VHR_10 [10] 1,244 6,778 10
RSOD [13] 3,644 22,221 4
SODA-A [8]] 31,798 1,008,346 9
VisDrone [21] 29,040 740,419 10
xView [4] 9,961 732,960 60

Table 2: Comparison with existing remote-sensing grounding datasets.

Dataset Categories Images Image—Caption Pairs
RSVG-H [11] - 4,239 7,933
DIOR-RSVG [19] 20 17,402 38,320
OPT-RSVG [6] 14 25,452 48,952
MI-OAD (ours) 100 163,023 2M

C More Experimental Results

In this section, we conduct additional experiments to comprehensively demonstrate the advantages
of the proposed MI-OAD dataset. We show that the MI-OAD dataset is not only suitable for open-
set aerial object detection but also provides substantial benefits for open-vocabulary detection and
remote-sensing visual grounding tasks.
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C.1 Training Details.

C.1.1 Baselines and experimental setup.

To demonstrate the effectiveness of MI-OAD, we conduct experiments on two representative tasks:
(i) open-set aerial object detection and (ii) remote-sensing visual grounding (RSVG).

For open-set aerial object detection, we evaluate two representative open-set detectors—Grounding
DINO [7] and YOLO-World [1]—on MI-OAD at three semantic granularities: vocabulary, phrase,
and sentence. This constitutes the first comprehensive benchmark for open-set aerial object detection.
We adopt the MMDetection implementation of Grounding DINO and the official v1.0 release of
YOLO-World. Unless otherwise specified, all experiments are executed on 32 NVIDIA RTX 4090
GPUs with a batch size of four per GPU. Grounding DINO is trained for 12 epochs, whereas
YOLO-World is trained for 40 epochs; all other hyper-parameters remain at their default values.

For remote-sensing visual grounding (RSVG), we use Grounding DINO as the baseline and evaluate
it on two standard benchmarks: DIOR-RSVG and OPT-RSVG. We first report performance without
MI-OAD pre-training, and subsequently examine the model pre-trained on MI-OAD and fine-tuned
separately on each benchmark. All experiments are conducted on eight NVIDIA RTX 4090 GPUs for
12 epochs with a batch size of four per GPU, while keeping all other hyper-parameters at their default
settings. During evaluation, we retain only the bounding box with the highest confidence score and
report standard metrics (Pr@{0.5, 0.6, 0.7, 0.8, 0.9}, mean IoU, and cmu IoU). We also compare the
resulting scores with those of current state-of-the-art methods, including MGVLF [19] and LPVA [6]],
to quantify the gains afforded by MI-OAD pre-training.

C.1.2 Prompt Construction Strategy

Prompt construction plays a crucial role in both training and inference phases. To enhance model
robustness, we apply a randomized category sampling strategy during training. Specifically, for each
detection sample, we define categories present in the image as positive classes (C,,s) and consider
the remaining categories as negative (Cjcq). We include all positive classes and randomly select
between 1 and |C),,| negative classes to form the textual prompt associated with each sample.

However, since MI-OAD integrates eight distinct detection datasets, category conflicts across datasets
may arise. For instance, an image containing an object labeled as airplane should consider airplane
as a positive class; however, related categories such as aircraft could incorrectly appear among
negative classes. To prevent such conflicts, we restrict negative class sampling strictly to categories
from the same original dataset, as these annotations are manually verified and thus consistent. For
grounding samples, we adopt a consistent approach by simply replacing the positive class labels with
the corresponding image captions.

During inference, detection samples utilize prompts consisting of all categories from their respective
source datasets, while grounding samples use prompts composed solely of their corresponding
captions. For the RSVG tasks, prompts used during both training and inference exclusively consist
of the captions corresponding to their respective images, independent of the previously described
category sampling strategy.

C.2 Performance on Open-Set Aerial Detection

As detailed in Section 4, experiments on the MI-OAD validation set demonstrate that the proposed
dataset substantially enhances performance in open-set aerial object detection. To establish a rigorous
benchmark for this task, we further evaluate Grounding DINO and YOLO-World on the manually
verified MI-OAD test set. The results are summarised in Table Bl Because the detection annotations
have already been manually verified, the MI-OAD test set focuses exclusively on grounding tasks
with phrase- and sentence-level inputs.

C.3 Performance on Remote-Sensing Visual Grounding

We further to explore the potential of MI-OAD for remote-sensing visual grounding (RSVG). Table 4]
and Table [5| report Grounding DINO’s performance on the OPT-RSVG and DIOR-RSVG test sets
under two training paradigms: (i) training on each benchmark only, (ii) MI-OAD pre-training followed
by task-specific fine-tuning.
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Table 3: Performance on the MI-OAD test set across two open-set tasks: phrase-level grounding and
sentence-level grounding.

Phrase Grounding Sentence Grounding
APsp R@1 R@10 R@100 AP5y R@l R@10 R@100

Method

Zero-shot transfer, novel classes (with domain adaptation)

YOLO-World 195 18.6 423 55.0 164 197 437 554
Grounding DINO 332 244 603 81.1 37.6 354 688 82.7

Fine-tuned

YOLO-World  52.7 342 70.8 87.8 479 360 714 86.6
Grounding DINO 583 357 753 922 573 440 780 89.7

Table 4: Comparison with state-of-the-art methods on the OPT-RSVG test set (English version).

Method Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 meanloU cmuloU
One-stage
ZSGNet (ICCV’19) [9] 48.64 4732 4385 2769 @ 6.33 43.01 47.71
FAOA (ICCV’19) [15] 68.13 6430 57.15 4183 1533 58.79 65.20
ReSC (ECCV’20) [16] 69.12 64.63 5820 43.01 14.85 60.18 65.84
LBYL-Net (CVPR’21) [3]] 70.22  65.39 58.65 3754 946 60.57 70.28
Transformer-based
TransVG (CVPR’21) [2] 69.96 64.17 5468 38.01 1275 59.80 69.31
QRNet (CVPR’22) [17] 72.03 6594 5690 40.70 13.35 60.82 75.39

VLTGV (ResNet-50) (CVPR’22) [14] 71.84 66.54 57.79 41.63 14.62 60.78 70.69
VLTGV (ResNet-101) (CVPR’22) [14] 73.50 68.13 59.93 4345 1531 62.48 73.86
MGVLF (TGRS’23) [19] 72.19 66.86 58.02 4251 15.30 61.51 71.80
LPVA (TGRS’24) [6] 78.03 7332 6222 49.60 25.61 66.20 76.30

Grounding DINO (OPT-RSVG Train) 7573  72.62 6630 5329 28.63 65.66 71.12
Pretrained on MI-OAD, fine-tuned on OPT-RSVG

Grounding DINO 82.62 80.83 76.59 6526 38.13 72.61 77.00
Gain over GD (OPT-RSVG Train) +6.9 +8.2  +10.3 +11.9 495 +6.9 +5.9
Gain over LPVA (SOTA) +4.6 +7.5 +144 4157 +125 +6.4 +0.7

Pre-training on MI-OAD boosts Grounding DINO’s Pr@0.9 from 28.6 % to 38.1 % and mean IoU
from 65.7 % to 72.6 % on OPT-RSVG, surpassing the previous best LPVA by up to 15.7 % (Pr@0.8)
and 6.4 % in mean IoU, and establishing state-of-the-art performance on OPT-RSVG. On DIOR-
RSVG, the same pre-training raises Pr@0.9 from 44.2 % to 49.3 % and mean IoU from 70.0 % to
74.5 %, outperforming LPVA by 9.7 % and 2.2 %, respectively.

These results confirm that MI-OAD significantly strengthens the model’s grounding ability, partic-
ularly at high-IoU thresholds where precise localisation is critical. The larger pre-training corpus
consistently yields higher precision and mean IoU scores, revealing a clear scaling-law trend: as
the amount of pre-training data increases, the model’s robustness and generalization improve. This
observation underscores the importance of both our OS-W2S Label Engine and the diverse MI-OAD
dataset for advancing remote-sensing visual grounding.

D Qualitative Analysis of Open-Set Aerial Detection Results

In this section, we demonstrate and analyze the effectiveness of our proposed dataset from three
perspectives. First, we compare and visualize the detection results of Grounding DINO with and
without domain adaptation using our MI-OAD P-Set dataset. Second, to simulate realistic application
scenarios, we evaluate the model’s open-set aerial detection capability trained on the MI-OAD dataset
using self-defined prompts that do not originate from annotation files. Finally, we visualize the
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Table 5: Comparison with state-of-the-art methods on the DIOR-RSVG test set (English version).

Method Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 meanloU cmuloU
One-stage
ZSGNet (ICCV’19) [9] 51.67 48.13 4230 3241 10.15 44.12 51.65
FAOA (ICCV’19) [15] 6721 64.18 59.23 50.87 34.44 59.76 63.14
ReSC (ECCV’20) [16] 7271 6892 63.01 53.70 33.37 64.24 68.10
LBYL-Net (CVPR’21) [3] 73.78 69.22 65.56 47.89 15.69 65.92 76.37
Transformer-based
TransVG (CVPR’21) [2] 7241 6738 60.05 49.10 27.84 63.56 76.27
QRNet (CVPR’22) [17] 75.84 70.82 6227 49.63 25.69 66.80 83.02
VLTGV (R-50) (CVPR’22) [14] 69.41 65.16 5844 46.56 24.37 59.96 71.97
VLTGV (R-101) (CVPR’22) [14] 7579 7222 6633 55.17 33.11 66.32 77.85
MGVLF (TGRS’23) [19] 7598 7206 6523 5489 35.65 67.48 78.63
LPVA (TGRS’24) [6] 8227 7744 7225 6098 39.55 72.35 85.11

Grounding DINO (DIOR-RSVG Train) 77.85 75.69 71.14 62.65 44.19 69.96 79.36
Pretrained on MI-OAD, fine-tuned on DIOR-RSVG

Grounding DINO 82.46 80.92 7743 69.20 49.26 74.51 81.69
Gain over GD (DIOR-RSVG Train) +4.61 4523 +629 +6.55 +5.07 +4.55 +2.33
Gain over LPVA (SOTA) +0.19 +3.48 +5.18 +8.22 +9.71 +2.16 -3.42

model’s performance on the MI-OAD V-Set by employing prompts at three input levels: vocabulary-
level, phrase-level, and sentence-level.

D.1 Comparison of Grounding DINO with and without Domain Adaptation

Fig. [T] visualizes the detection results of Grounding DINO before and after domain adaptation
training on our MI-OAD P-Set dataset. As observed in the results of the first and second columns,
Grounding DINO, originally designed for natural images, yields suboptimal performance when
directly applied to aerial imagery domains. However, after domain adaptation using our proposed
dataset, the detection results significantly improve. From the third column, we observe that while
Grounding DINO can localize objects in common urban scenarios, it exhibits clear false positives
and misses detections—for example, incorrectly detecting a green taxi with the prompt "white car"
and missing smaller white cars in the distance. Following training on our dataset, the model notably
improves its ability to detect smaller instances and accurately recognize instance attributes.

D.2 Evaluation of Open-Set Aerial Detection Using Self-Defined Prompts

To further demonstrate the practical efficacy of our dataset, we simulate realistic scenarios by
employing self-defined prompts (rather than those derived from annotated files) to evaluate the
open-set aerial detection capability of Grounding DINO after domain adaptation using our proposed
datasets.

Fig. 2] visualizes detection results from the model in urban and harbor scenarios. Notably, in the
second column of the first row, the model successfully detects objects described by implicitly defined
prompts, where object categories are not explicitly mentioned but described solely through attributes.
This capability can be attributed to the attribute-based captions in our dataset and Grounding DINO’s
sentence-level image-text alignment approach. Additional examples also highlight the model’s
sensitivity to relative and absolute positional information.

As illustrated in Fig. 3] we further evaluate the model’s open-set aerial detection performance
using different levels of prompts, ranging from single words to phrases, and ultimately sentences.
To intuitively illustrate the influence of different prompt complexities on model performance, we
conducted tests on the same image. The first column in the first row of Fig[3|demonstrates the model’s
strong generalization capability, accurately detecting objects corresponding to prompts including
novel classes, such as “a green taxi on the street." Moreover, the model shows strong sensitivity to
relative positional attributes, as highlighted in the third column of the first row, where two white
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Figure 1: Visualization of detection results comparing GroundingDINO without and with domain
adaptation using our proposed MI-OAD P-Set dataset.

cars near a green taxi are accurately identified based on the prompt “right of the green taxi," further
indicating the model’s spatial understanding capability. Additionally, as shown in the third row, the
model achieves highly precise detection results for small targets.

D.3 Visualization of Detection Results at Vocabulary, Phrase, and Sentence Levels

We also visualize the model’s open-set detection capability on the MI-OAD V-Set using prompts
derived from annotations. Specifically, we illustrate the detection performance at three different
prompt complexity levels: vocabulary-level, as shown in Fig[4} phrase-level, as shown in Fig[3} and
sentence-level, as shown in Fig.



Prompt: a big white van
next a silver car, at the far
left of the image

Prompt: A white wheeled
transport commonly used
for travel on roads,
located at the bottom of
the image

‘ Prompt: a harbor at the
' * lower middle of the

image.

Prompt: a ship located in
the top, far right of the
image

Figure 2: Qualitative visualization of open-set aerial detection performance with self-defined prompts
(Part 1)

Prompt: a white car at the bottom Prompt: a white car is to the

Prompt: a green taxi on the street of the image right of the green taxi

Prompt: a yellow motor ' Prompt: a people ' Prompt: a van near the
on the road wearing a yellow hat utility pole

Figure 3: Qualitative visualization of open-set aerial detection performance with self-defined prompts
(Part 2)



Figure 4: Visualization of open-set aerial detection results at the vocabulary-level using annotation-
derived prompts.

Figure 5: Visualization of open-set aerial detection results at the phrase-level using annotation-derived
prompts.



Figure 6: Visualization of open-set aerial detection results at the sentence-level using annotation-
derived prompts.
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VLM Prompts
Promptl:
Hello InterVL,
I need your assistance in annotating aerial images. We will proceed in three steps:
1. **Initial Captioning**: I will provide an image of an aerial target. Please generate a caption
describing its attributes including {gt size} and {gt category}.
2. **Caption Refinement with Context**: Next, I'll provide an image showing the target within its
surroundings. Please refine the caption by adding information about the target's relative location
within its environment.
3. **Caption Enhancement with Absolute Location**: Finally, I'll provide the region of the image
where the target is located (For example: 'top, left of the image."). Based on this information and the
caption from Step 2, please add an absolute location attribute.

**Important**: The red box in the provied images is only for your reference to identify the target.

**Do not mention the red box or any red box-related information in final caption.**

Now, let's start with **Step 1*%*:

Prompt2:
captionl_template = {

"caption": f"[A brief sentence describing the target using the provided Category and Size.
Include **Color** and **Geometry** only if you are certain about them.]",

"Category": f"{gt category}",

"Size": f"{gt size}",

"Color": "[Include if certain]",

"Geometry": "[Include if certain]"
H
<image>

**Step 1**: You are provided with an aerial image of a target. The red box highlights the target.

- Generate a caption describing the target.

- **Must** using the provided **Category:** "{gt category}" and **Size:** "{gt size}" in
caption.

- Include **Color** and **Geometry** only if you are certain about them.

- Do **not** mention the red box or any red box-related information in final caption.

- Keep the caption under 20 words.

- Only include information you can confidently determine from the image. Avoid speculative or
aesthetic descriptions.

**Must format your answer as a JSON object with the following structure and strictly adhere to the
JSON format:**
{captionl_template}



Prompt3:

caption2_template = {
"caption": f"[Refined caption including the target's attributes and relative location.]",
"relative_location": "[The target's relative location within its surroundings.]"

}

<image>

**Step 2**: You are provided with a cropped section of an aerial image showing the target within

its surroundings. The red box highlights the target (for your reference, do not mention it).

- Based on the caption from Step 1: "{self caption}", refine the description by incorporating
**relative location™* information about the target with respect to its surrounding environment or
nearby objects.

- Maintain the original attributes (**Category**, **Size**, **Color**, **Geometry**).

- Do **not** mention the red box or any red box-related information in final caption.

- Do **not** describe the target's location relative to the image position (e.g., 'top left of the image"').
- Keep the caption under 40 words.

- Only include information you can confidently determine from the image. Avoid speculative or
aesthetic descriptions.

**Must format your answer as a JSON object with the following structure and strictly adhere to the
JSON format:**
{caption2_template}

Prompt4:

caption3_template = {
"caption": "[The caption by incorporating the absolute location.]",
"absolute location": " {box pos}"

}

**Step 3**: You are provided the region of the image where the target is located.

- Review the caption from Step 2: "{relative caption}", enhance the caption by incorporating the
provided **absolute location** information.

**absolute Location**: "{box_pos}"
- Keep the caption under 60 words.
- Only include information you can confidently determine from the image. Avoid speculative or

aesthetic descriptions.

**You must format your answer as a JSON object with the following structure and strictly adhere



to the JSON format:**
{caption3_template}



	supplementary material.pdf
	OS-W2S Label Engine Details
	MI-OAD Dataset Details
	More Experimental Results
	Training Details.
	Baselines and experimental setup.
	Prompt Construction Strategy

	Performance on Open-Set Aerial Detection
	Performance on Remote-Sensing Visual Grounding

	Qualitative Analysis of Open-Set Aerial Detection Results
	Comparison of Grounding DINO with and without Domain Adaptation
	Evaluation of Open-Set Aerial Detection Using Self-Defined Prompts
	Visualization of Detection Results at Vocabulary, Phrase, and Sentence Levels


	VLM Prompts.pdf

