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A OS-W2S Label Engine Details1

Predefined Size and Absolute position Attributes. Captions are generated based on six instance2

attributes: category, color, size, geometry, relative position, and absolute position. Among these3

attributes, the size (defined as the ratio of the instance’s area to the image area) and absolute position4

(defined as the exact location of the instance within the image) are often subjectively determined.5

Moreover, the instances occupy only a very small portion of the image, which poses a challenge for6

the VLM to accurately determine the absolute positions of instances within the original images.7

To address this issue, we apply predetermined rules to extract the size and absolute position attributes8

during the data pre-processing stage, explicitly providing this prior knowledge to the VLM during9

interaction. Specifically, we define size thresholds as [0.0005, 0.001, 0.01, 0.2], corresponding to10

bounding box area ratios relative to the image area, and categorize instances into [’tiny’, ’small’,11

’medium’, ’big’, ’large’]. Additionally, we segment the image into 25 regions using horizontal labels12

[’Far Left’, ’Left’, ’Center’, ’Right’, ’Far Right’] and vertical labels [’Top’, ’Upper Middle’, ’Middle’,13

’Lower Middle’, ’Bottom’] to systematically define absolute position attributes.14

Foreground-extraction algorithm. Aerial images typically contain numerous small, densely packed15

objects, making it difficult for a VLM to attend to the target instance when fed with the raw image.16

Benefiting from the precise bounding-box annotations available in our collected dataset, we are17

able to crop the corresponding foreground region for each instance, thereby effectively guiding the18

VLM’s attention. However, to accurately characterise an instance’s relative spatial attributes, it is also19

essential for the VLM to consider relationships between the instance, its surrounding context, and20

neighbouring objects. To address this, we design a foreground-extraction algorithm (Algorithm 1)21

that isolates salient regions while retaining sufficient context. This instance-level zoom-in strategy22

not only guides the VLM’s attention more effectively but also leads to substantial improvements in23

caption quality.24

Matching Caption-Instance Pairs. The captions generated by the VLM correspond specifically to25

single instances. Our objective is to clearly associate each caption with its corresponding instances26

based on the descriptive attributes included within each caption, as detailed in Algorithm 2. Specifi-27

cally, since less detailed descriptions are more likely to match multiple instances, for each caption,28

we compare only the attributes explicitly mentioned in the caption with those of all instances present29

in the image. An instance is considered matched to a caption if the attributes share identical wording30

or their feature similarity exceeds a predetermined threshold; otherwise, no match is established.31

B MI-OAD Dataset Details32

Base/Novel Categories split. To ensure that the RSW2S dataset can effectively evaluate zero-shot33

transfer, we split the categories into 75 base categories and 25 novel categories. The class division is34

based on clustering the semantic embeddings of the classes and selecting one class from each pair of35

leaf nodes in the clustering tree [18]. The category splits are as follows:36
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Algorithm 1 Foreground Region Extraction

Require: Bounding box set B = {b1, b2, . . . , bN}, image size (w, h)
Ensure: Foreground region set R

1: Step 1: Scale Bounding Boxes
2: for i = 1 to N do
3: Compute the area Ai of bounding box bi
4: Determine scaling factor si based on Ai

5: Update the bounding box bi to its extended version, ensuring it remains within the image
boundaries

6: end for
7: Step 2: Merge Overlapping Boxes
8: for each unmerged box bi do
9: Let r ← bi

10: while there exists an unmerged box bj that overlaps with r do
11: r ← MERGE(r, bj)
12: Mark bj as merged
13: end while
14: Add r to the foreground region set R
15: end for
16: return R

Algorithm 2 Caption-Instance Pair Matching

1: Input:
2: - captions: A list of captions, each containing textual descriptions and associated attributes

(e.g., category, size, color, geometry, position).
3: - instances: A list of object instances, each identified by an ID and associated attributes (e.g.,

category, size, color, geometry, position).
4: Output:
5: - caption_instance_pairs: A list of pairs (caption, instance), where each caption is

matched with corresponding object instances.
6: Step 1: Initialization
7: - Create an empty list caption_instance_pairs to store the matched caption-instance pairs.
8: Step 2: Matching Process
9: for each caption in captions do

10: Extract relevant attributes (e.g., category, size, color) from the caption.
11: Initialize an empty list matched_instances to store matching instances.
12: for each instance in instances do
13: Extract relevant attributes (e.g., category, size, color) from the instance.
14: Compare attributes between caption and instance.
15: if the attributes match sufficiently then
16: Add instance to matched_instances.
17: end if
18: end for
19: Add the pair (caption,matched_instances) to caption_instance_pairs.
20: end for
21: Step 3: Output
22: - Return caption_instance_pairs.
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• Base: ’aircraft’, ’aircraft-hangar’, ’airplane’, ’baseball-diamond’, ’baseball-field’, ’bicy-37

cle’, ’bridge’, ’building’, ’car’, ’cargo-car’, ’cargo-plane’, ’cargo-truck’, ’cement-mixer’,38

’chimney’, ’construction-site’, ’container’, ’container-crane’, ’container-ship’, ’crane-truck’,39

’dam’, ’damaged-building’, ’dump-truck’, ’engineering-vehicle’, ’expressway-service-area’,40

’expressway-toll-station’, ’facility’, ’ferry’, ’fishing-vessel’, ’fixed-wing-aircraft’, ’flat-41

car’, ’front-loader-or-bulldozer’, ’golf-field’, ’ground-grader’, ’harbor’, ’haul-truck’, ’heli-42

pad’, ’hut-or-tent’, ’large-vehicle’, ’locomotive’, ’oil-tanker’, ’overpass’, ’passenger-car’,43

’passenger-vehicle’, ’people’, ’plane’, ’pylon’, ’railway-vehicle’, ’roundabout’, ’sailboat’,44

’shed’, ’ship’, ’shipping-container’, ’small-aircraft’, ’small-car’, ’small-vehicle’, ’soccer-45

ball-field’, ’stadium’, ’storage-tank’, ’straddle-carrier’, ’tank-car’, ’tennis-court’, ’tower’,46

’tower-crane’, ’trailer’, ’train-station’, ’truck’, ’truck-tractor’, ’truck-tractor-with-flatbed-47

trailer’, ’truck-tractor-with-liquid-tank’, ’tugboat’, ’utility-truck’, ’van’, ’vehicle’, ’vehicle-48

lot’, ’yacht’49

• Novel: ’airport’, ’awning-tricycle’, ’barge’, ’basketball-court’, ’bus’, ’crossroad’, ’excava-50

tor’, ’ground-track-field’, ’helicopter’, ’maritime-vessel’, ’mobile-crane’, ’motor’, ’motor-51

boat’, ’parking-lot’, ’pedestrian’, ’pickup-truck’, ’playground’, ’reach-stacker’, ’scraper-or-52

tractor’, ’shipping-container-lot’, ’swimming-pool’, ’t-junction’, ’tricycle’, ’truck-tractor-53

with-box-trailer’, ’windmill’54

MI-OAD Dataset Scale. As shown in Table 1, we curated eight representative aerial detection55

datasets, and subsequently leveraged the OS-W2S Label Engine to enrich these datasets with compre-56

hensive textual annotations, which collectively constitute the MI-OAD dataset. Specifically, MI-OAD57

comprises 163,023 images and 2,389,973 (2M) image–caption pairs. As summarized in Table 2,58

MI-OAD is approximately 40 times larger than existing remote sensing grounding datasets and offers59

substantially higher annotation quality.60

Table 1: Overview of the collected aerial-detection datasets. Image and instance counts are reported
after cropping to a uniform resolution.

Dataset Images Instances Categories

DIOR [5] 23,463 192,518 20
DOTA v2.0 [12] 19,871 495,754 18

HRRSD [20] 44,002 96,387 13
NWPU_VHR_10 [10] 1,244 6,778 10

RSOD [13] 3,644 22,221 4
SODA-A [8] 31,798 1,008,346 9

VisDrone [21] 29,040 740,419 10
xView [4] 9,961 732,960 60

Table 2: Comparison with existing remote-sensing grounding datasets.
Dataset Categories Images Image–Caption Pairs

RSVG-H [11] – 4,239 7,933
DIOR-RSVG [19] 20 17,402 38,320

OPT-RSVG [6] 14 25,452 48,952
MI-OAD (ours) 100 163,023 2M

C More Experimental Results61

In this section, we conduct additional experiments to comprehensively demonstrate the advantages62

of the proposed MI-OAD dataset. We show that the MI-OAD dataset is not only suitable for open-63

set aerial object detection but also provides substantial benefits for open-vocabulary detection and64

remote-sensing visual grounding tasks.65
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C.1 Training Details.66

C.1.1 Baselines and experimental setup.67

To demonstrate the effectiveness of MI-OAD, we conduct experiments on two representative tasks:68

(i) open-set aerial object detection and (ii) remote-sensing visual grounding (RSVG).69

For open-set aerial object detection, we evaluate two representative open-set detectors—Grounding70

DINO [7] and YOLO-World [1]—on MI-OAD at three semantic granularities: vocabulary, phrase,71

and sentence. This constitutes the first comprehensive benchmark for open-set aerial object detection.72

We adopt the MMDetection implementation of Grounding DINO and the official v1.0 release of73

YOLO-World. Unless otherwise specified, all experiments are executed on 32 NVIDIA RTX 409074

GPUs with a batch size of four per GPU. Grounding DINO is trained for 12 epochs, whereas75

YOLO-World is trained for 40 epochs; all other hyper-parameters remain at their default values.76

For remote-sensing visual grounding (RSVG), we use Grounding DINO as the baseline and evaluate77

it on two standard benchmarks: DIOR-RSVG and OPT-RSVG. We first report performance without78

MI-OAD pre-training, and subsequently examine the model pre-trained on MI-OAD and fine-tuned79

separately on each benchmark. All experiments are conducted on eight NVIDIA RTX 4090 GPUs for80

12 epochs with a batch size of four per GPU, while keeping all other hyper-parameters at their default81

settings. During evaluation, we retain only the bounding box with the highest confidence score and82

report standard metrics (Pr@{0.5, 0.6, 0.7, 0.8, 0.9}, mean IoU, and cmu IoU). We also compare the83

resulting scores with those of current state-of-the-art methods, including MGVLF [19] and LPVA [6],84

to quantify the gains afforded by MI-OAD pre-training.85

C.1.2 Prompt Construction Strategy86

Prompt construction plays a crucial role in both training and inference phases. To enhance model87

robustness, we apply a randomized category sampling strategy during training. Specifically, for each88

detection sample, we define categories present in the image as positive classes (Cpos) and consider89

the remaining categories as negative (Cneg). We include all positive classes and randomly select90

between 1 and |Cneg| negative classes to form the textual prompt associated with each sample.91

However, since MI-OAD integrates eight distinct detection datasets, category conflicts across datasets92

may arise. For instance, an image containing an object labeled as airplane should consider airplane93

as a positive class; however, related categories such as aircraft could incorrectly appear among94

negative classes. To prevent such conflicts, we restrict negative class sampling strictly to categories95

from the same original dataset, as these annotations are manually verified and thus consistent. For96

grounding samples, we adopt a consistent approach by simply replacing the positive class labels with97

the corresponding image captions.98

During inference, detection samples utilize prompts consisting of all categories from their respective99

source datasets, while grounding samples use prompts composed solely of their corresponding100

captions. For the RSVG tasks, prompts used during both training and inference exclusively consist101

of the captions corresponding to their respective images, independent of the previously described102

category sampling strategy.103

C.2 Performance on Open-Set Aerial Detection104

As detailed in Section 4, experiments on the MI-OAD validation set demonstrate that the proposed105

dataset substantially enhances performance in open-set aerial object detection. To establish a rigorous106

benchmark for this task, we further evaluate Grounding DINO and YOLO-World on the manually107

verified MI-OAD test set. The results are summarised in Table 3. Because the detection annotations108

have already been manually verified, the MI-OAD test set focuses exclusively on grounding tasks109

with phrase- and sentence-level inputs.110

C.3 Performance on Remote-Sensing Visual Grounding111

We further to explore the potential of MI-OAD for remote-sensing visual grounding (RSVG). Table 4112

and Table 5 report Grounding DINO’s performance on the OPT-RSVG and DIOR-RSVG test sets113

under two training paradigms: (i) training on each benchmark only, (ii) MI-OAD pre-training followed114

by task-specific fine-tuning.115
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Table 3: Performance on the MI-OAD test set across two open-set tasks: phrase-level grounding and
sentence-level grounding.

Method Phrase Grounding Sentence Grounding

AP50 R@1 R@10 R@100 AP50 R@1 R@10 R@100

Zero-shot transfer, novel classes (with domain adaptation)

YOLO-World 19.5 18.6 42.3 55.0 16.4 19.7 43.7 55.4
Grounding DINO 33.2 24.4 60.3 81.1 37.6 35.4 68.8 82.7

Fine-tuned

YOLO-World 52.7 34.2 70.8 87.8 47.9 36.0 71.4 86.6
Grounding DINO 58.3 35.7 75.3 92.2 57.3 44.0 78.0 89.7

Table 4: Comparison with state-of-the-art methods on the OPT-RSVG test set (English version).

Method Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 meanIoU cmuIoU

One-stage

ZSGNet (ICCV’19) [9] 48.64 47.32 43.85 27.69 6.33 43.01 47.71
FAOA (ICCV’19) [15] 68.13 64.30 57.15 41.83 15.33 58.79 65.20
ReSC (ECCV’20) [16] 69.12 64.63 58.20 43.01 14.85 60.18 65.84
LBYL-Net (CVPR’21) [3] 70.22 65.39 58.65 37.54 9.46 60.57 70.28

Transformer-based

TransVG (CVPR’21) [2] 69.96 64.17 54.68 38.01 12.75 59.80 69.31
QRNet (CVPR’22) [17] 72.03 65.94 56.90 40.70 13.35 60.82 75.39
VLTGV (ResNet-50) (CVPR’22) [14] 71.84 66.54 57.79 41.63 14.62 60.78 70.69
VLTGV (ResNet-101) (CVPR’22) [14] 73.50 68.13 59.93 43.45 15.31 62.48 73.86
MGVLF (TGRS’23) [19] 72.19 66.86 58.02 42.51 15.30 61.51 71.80
LPVA (TGRS’24) [6] 78.03 73.32 62.22 49.60 25.61 66.20 76.30

Grounding DINO (OPT-RSVG Train) 75.73 72.62 66.30 53.29 28.63 65.66 71.12

Pretrained on MI-OAD, fine-tuned on OPT-RSVG

Grounding DINO 82.62 80.83 76.59 65.26 38.13 72.61 77.00
Gain over GD (OPT-RSVG Train) +6.9 +8.2 +10.3 +11.9 +9.5 +6.9 +5.9
Gain over LPVA (SOTA) +4.6 +7.5 +14.4 +15.7 +12.5 +6.4 +0.7

Pre-training on MI-OAD boosts Grounding DINO’s Pr@0.9 from 28.6 % to 38.1 % and mean IoU116

from 65.7 % to 72.6 % on OPT-RSVG, surpassing the previous best LPVA by up to 15.7 % (Pr@0.8)117

and 6.4 % in mean IoU, and establishing state-of-the-art performance on OPT-RSVG. On DIOR-118

RSVG, the same pre-training raises Pr@0.9 from 44.2 % to 49.3 % and mean IoU from 70.0 % to119

74.5 %, outperforming LPVA by 9.7 % and 2.2 %, respectively.120

These results confirm that MI-OAD significantly strengthens the model’s grounding ability, partic-121

ularly at high-IoU thresholds where precise localisation is critical. The larger pre-training corpus122

consistently yields higher precision and mean IoU scores, revealing a clear scaling-law trend: as123

the amount of pre-training data increases, the model’s robustness and generalization improve. This124

observation underscores the importance of both our OS-W2S Label Engine and the diverse MI-OAD125

dataset for advancing remote-sensing visual grounding.126

D Qualitative Analysis of Open-Set Aerial Detection Results127

In this section, we demonstrate and analyze the effectiveness of our proposed dataset from three128

perspectives. First, we compare and visualize the detection results of Grounding DINO with and129

without domain adaptation using our MI-OAD P-Set dataset. Second, to simulate realistic application130

scenarios, we evaluate the model’s open-set aerial detection capability trained on the MI-OAD dataset131

using self-defined prompts that do not originate from annotation files. Finally, we visualize the132
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Table 5: Comparison with state-of-the-art methods on the DIOR-RSVG test set (English version).

Method Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 meanIoU cmuIoU

One-stage

ZSGNet (ICCV’19) [9] 51.67 48.13 42.30 32.41 10.15 44.12 51.65
FAOA (ICCV’19) [15] 67.21 64.18 59.23 50.87 34.44 59.76 63.14
ReSC (ECCV’20) [16] 72.71 68.92 63.01 53.70 33.37 64.24 68.10
LBYL-Net (CVPR’21) [3] 73.78 69.22 65.56 47.89 15.69 65.92 76.37

Transformer-based

TransVG (CVPR’21) [2] 72.41 67.38 60.05 49.10 27.84 63.56 76.27
QRNet (CVPR’22) [17] 75.84 70.82 62.27 49.63 25.69 66.80 83.02
VLTGV (R-50) (CVPR’22) [14] 69.41 65.16 58.44 46.56 24.37 59.96 71.97
VLTGV (R-101) (CVPR’22) [14] 75.79 72.22 66.33 55.17 33.11 66.32 77.85
MGVLF (TGRS’23) [19] 75.98 72.06 65.23 54.89 35.65 67.48 78.63
LPVA (TGRS’24) [6] 82.27 77.44 72.25 60.98 39.55 72.35 85.11

Grounding DINO (DIOR-RSVG Train) 77.85 75.69 71.14 62.65 44.19 69.96 79.36

Pretrained on MI-OAD, fine-tuned on DIOR-RSVG

Grounding DINO 82.46 80.92 77.43 69.20 49.26 74.51 81.69
Gain over GD (DIOR-RSVG Train) +4.61 +5.23 +6.29 +6.55 +5.07 +4.55 +2.33
Gain over LPVA (SOTA) +0.19 +3.48 +5.18 +8.22 +9.71 +2.16 -3.42

model’s performance on the MI-OAD V-Set by employing prompts at three input levels: vocabulary-133

level, phrase-level, and sentence-level.134

D.1 Comparison of Grounding DINO with and without Domain Adaptation135

Fig. 1 visualizes the detection results of Grounding DINO before and after domain adaptation136

training on our MI-OAD P-Set dataset. As observed in the results of the first and second columns,137

Grounding DINO, originally designed for natural images, yields suboptimal performance when138

directly applied to aerial imagery domains. However, after domain adaptation using our proposed139

dataset, the detection results significantly improve. From the third column, we observe that while140

Grounding DINO can localize objects in common urban scenarios, it exhibits clear false positives141

and misses detections—for example, incorrectly detecting a green taxi with the prompt "white car"142

and missing smaller white cars in the distance. Following training on our dataset, the model notably143

improves its ability to detect smaller instances and accurately recognize instance attributes.144

D.2 Evaluation of Open-Set Aerial Detection Using Self-Defined Prompts145

To further demonstrate the practical efficacy of our dataset, we simulate realistic scenarios by146

employing self-defined prompts (rather than those derived from annotated files) to evaluate the147

open-set aerial detection capability of Grounding DINO after domain adaptation using our proposed148

datasets.149

Fig. 2 visualizes detection results from the model in urban and harbor scenarios. Notably, in the150

second column of the first row, the model successfully detects objects described by implicitly defined151

prompts, where object categories are not explicitly mentioned but described solely through attributes.152

This capability can be attributed to the attribute-based captions in our dataset and Grounding DINO’s153

sentence-level image-text alignment approach. Additional examples also highlight the model’s154

sensitivity to relative and absolute positional information.155

As illustrated in Fig. 3, we further evaluate the model’s open-set aerial detection performance156

using different levels of prompts, ranging from single words to phrases, and ultimately sentences.157

To intuitively illustrate the influence of different prompt complexities on model performance, we158

conducted tests on the same image. The first column in the first row of Fig.3 demonstrates the model’s159

strong generalization capability, accurately detecting objects corresponding to prompts including160

novel classes, such as “a green taxi on the street." Moreover, the model shows strong sensitivity to161

relative positional attributes, as highlighted in the third column of the first row, where two white162
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Prompt: ship
Prompt: a harbor at the 

middle of the image
Prompt: white car

Grounding DINO

w/o 

domain adaptive

Grounding DINO

w /

domain adaptive

Figure 1: Visualization of detection results comparing GroundingDINO without and with domain
adaptation using our proposed MI-OAD P-Set dataset.

cars near a green taxi are accurately identified based on the prompt “right of the green taxi," further163

indicating the model’s spatial understanding capability. Additionally, as shown in the third row, the164

model achieves highly precise detection results for small targets.165

D.3 Visualization of Detection Results at Vocabulary, Phrase, and Sentence Levels166

We also visualize the model’s open-set detection capability on the MI-OAD V-Set using prompts167

derived from annotations. Specifically, we illustrate the detection performance at three different168

prompt complexity levels: vocabulary-level, as shown in Fig.4; phrase-level, as shown in Fig.5; and169

sentence-level, as shown in Fig. 6.170
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Prompt: a big white van 

next a silver car, at the far 

left of the image

Prompt: A white wheeled 

transport commonly used 

for travel on roads, 

located at the bottom of 

the image

Prompt: a harbor at the 

lower middle of the 

image.

Prompt: a ship located in 

the top, far right of the 

image

Figure 2: Qualitative visualization of open-set aerial detection performance with self-defined prompts
(Part 1)

Prompt: a green taxi on the street
Prompt: a white car at the bottom 

of the image

Prompt: a white car is to the 

right of the green taxi

Prompt: a yellow motor 

on the road

Prompt: a people 

wearing a yellow hat

Prompt: a van near the 

utility pole

Figure 3: Qualitative visualization of open-set aerial detection performance with self-defined prompts
(Part 2)
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GT Pred GT Pred

Figure 4: Visualization of open-set aerial detection results at the vocabulary-level using annotation-
derived prompts.

GT Pred GT Pred

Figure 5: Visualization of open-set aerial detection results at the phrase-level using annotation-derived
prompts.

9



GT Pred GT Pred

Figure 6: Visualization of open-set aerial detection results at the sentence-level using annotation-
derived prompts.
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VLM Prompts 
Prompt1:  
Hello InterVL, 
I need your assistance in annotating aerial images. We will proceed in three steps: 
1. **Initial Captioning**: I will provide an image of an aerial target. Please generate a caption 
describing its attributes including {gt_size} and {gt_category}. 
2. **Caption Refinement with Context**: Next, I'll provide an image showing the target within its 
surroundings. Please refine the caption by adding information about the target's relative location 
within its environment. 
3. **Caption Enhancement with Absolute Location**: Finally, I'll provide the region of the image 
where the target is located (For example: 'top, left of the image.'). Based on this information and the 
caption from Step 2, please add an absolute location attribute. 
 
**Important**: The red box in the provied images is only for your reference to identify the target. 
**Do not mention the red box or any red box-related information in final caption.** 
 
Now, let's start with **Step 1**: 
 
 
 
Prompt2: 
caption1_template = { 
    "caption": f"[A brief sentence describing the target using the provided Category and Size. 
Include **Color** and **Geometry** only if you are certain about them.]", 
    "Category": f"{gt_category}", 
    "Size": f"{gt_size}", 
    "Color": "[Include if certain]", 
    "Geometry": "[Include if certain]" 
} 
<image> 
**Step 1**: You are provided with an aerial image of a target. The red box highlights the target. 
 
- Generate a caption describing the target. 
- **Must** using the provided **Category:** "{gt_category}" and **Size:** "{gt_size}" in 
caption. 
- Include **Color** and **Geometry** only if you are certain about them. 
- Do **not** mention the red box or any red box-related information in final caption. 
- Keep the caption under 20 words. 
- Only include information you can confidently determine from the image. Avoid speculative or 
aesthetic descriptions. 
 
**Must format your answer as a JSON object with the following structure and strictly adhere to the 
JSON format:** 
{caption1_template} 



 
 
 
Prompt3: 
caption2_template = { 
    "caption": f"[Refined caption including the target's attributes and relative location.]", 
    "relative_location": "[The target's relative location within its surroundings.]" 
} 
<image> 
**Step 2**: You are provided with a cropped section of an aerial image showing the target within 
its surroundings. The red box highlights the target (for your reference, do not mention it). 
 
- Based on the caption from Step 1: "{self_caption}", refine the description by incorporating 
**relative location** information about the target with respect to its surrounding environment or 
nearby objects. 
- Maintain the original attributes (**Category**, **Size**, **Color**, **Geometry**).  
- Do **not** mention the red box or any red box-related information in final caption. 
- Do **not** describe the target's location relative to the image position (e.g., 'top left of the image'). 
- Keep the caption under 40 words. 
- Only include information you can confidently determine from the image. Avoid speculative or 
aesthetic descriptions. 
 
**Must format your answer as a JSON object with the following structure and strictly adhere to the 
JSON format:** 
{caption2_template} 
 
 
 
Prompt4: 
caption3_template = { 
    "caption": "[The caption by incorporating the absolute location.]", 
    "absolute_location": f"{box_pos}" 
} 
**Step 3**: You are provided the region of the image where the target is located. 
 
- Review the caption from Step 2: "{relative_caption}", enhance the caption by incorporating the 
provided **absolute location** information. 
**absolute Location**: "{box_pos}" 
 
- Keep the caption under 60 words. 
- Only include information you can confidently determine from the image. Avoid speculative or 
aesthetic descriptions. 
 
**You must format your answer as a JSON object with the following structure and strictly adhere 



to the JSON format:** 
{caption3_template} 
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