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Abstract

Value decomposition has long been a fundamental technique in multi-agent reinforce-1
ment learning (RL) and dynamic programming. Specifically, the value function of2
a global state (s1, s2, . . . , sN ) is often approximated as the sum of local functions:3
V (s1, s2, . . . , sN ) ≈

∑N
i=1 Vi(si). This approach has found various applications in4

modern RL systems. However, the theoretical justification for why this decomposition5
works so effectively remains underexplored. In this paper, we uncover the underly-6
ing mathematical structure that enables value decomposition. We demonstrate that a7
Markov decision process (MDP) permits value decomposition if and only if its transi-8
tion matrix is not “entangled”—a concept analogous to quantum entanglement in quan-9
tum physics. Drawing inspiration from how physicists measure quantum entanglement,10
we introduce how to measure the “Markov entanglement” and show that this measure11
can be used to bound the decomposition error in general multi-agent MDPs. Using the12
concept of Markov entanglement, we proved that a widely-used class of policies, the13
index policy, is weakly-entangled and enjoys a sublinear O(

√
N) scale of decompo-14

sition error for N -agent systems. Finally, we show how Markov entanglement can be15
efficiently estimated in practice, providing practitioners with an empirical proxy for the16
quality of value decomposition.17

1 Introduction18

Learning the value function given certain policy, or policy evaluation, is one of the most fundamental19
tasks in RL. Significant attention has been paid to single-agent policy evaluation (Sutton & Barto,20
2018; Bertsekas & Tsitsiklis, 1996; Tsitsiklis & Van Roy, 1996). However, when it comes to multi-21
agent reinforcement learning (MARL), single-agent methodologies typically suffer from the curse22
of dimensionality: the state space of the system scales exponentially with the number of agents. To23
tackle this problem, one common technique is value decomposition,24

V (s1, s2, . . . , sN ) ≈
N∑
i=1

Vi(si) ,

where Vi is some local function that can be learned independently by each agent. It quickly fol-25
lows that this decomposition greatly reduces the computation complexity from exponential to linear26
dependency on the number of agents N .27

The remaining question is whether this decomposition is effective. This is non-trivial due to the28
coupling of agents—individual agent’s action and transition depend on other agents. In the past29
several decades, both positive and negative results have been reported. Back to the last century,30
Whittle (1988); Weber & Weiss (1990) apply Lagrange relaxations to decompose the global value31
and obtain the well-known Whittle index policy. The Lagrange decomposition idea has also been32
proved successful in many other important multi-agent tasks such as network revenue management33
(Adelman, 2007; Zhang & Adelman, 2009), resource allocation (Kadota et al., 2016; Balseiro et al.,34
2023), and online matching (Brown & Zhang, 2022; Shar & Jiang, 2023; Kanoria & Qian, 2024).35
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However, Lagrange decomposition relies on the knowledge of system dynamics and Adelman &36
Mersereau (2008) show its decomposition error can be arbitrarily bad for general multi-agent MDPs.37
In more recent days, practitioners apply online (deep) reinforcement learning to train a local value38
function for each individual agent. This practice gives birth to state-of-the-art dispatching policies39
in ride-hailing platforms and has been well recognized by the operations research community, such40
as DiDi Chuxing (Qin et al. (2020), Daniel H. Wagner Prize, 2020) and Lyft (Azagirre et al. (2024),41
Franz Edelman Laureates, 2024). Intervention policies based on a similar value decomposition idea42
also demonstrate substantial empirical advantages and have been deployed by a behavioral health43
platform in Kenya (Baek et al. (2023), Pierskalla Award, 2024). In broader MARL literature, value44
decomposition serves as one key component of centralized training and decentralized execution45
(CTDE) paradigm, achieving strong empirical performance (Sunehag et al., 2018; Mahajan et al.,46
2019; Rashid et al., 2020). However, recent research has started reflecting on the invalidity and47
potential flaw of value decomposition in practice (Hong et al., 2022; Dou et al., 2022).48

Despite all these empirical success and failures, there remains little theoretical understanding of49
whether and how we can decompose the value function in multi-agent MDPs.50

1.1 This paper51

In this paper, we will uncover the underlying mathematical structure that enables/disables value52
decomposition. Our new theoretical framework quantifies the inter-dependence of agents in multi-53
agent MDPs and systematically characterizes the effectiveness of value decomposition. For simplic-54
ity, we will demonstrate the main results through two-agent MDPs indexed by agent A and B. We55
later extend our results to general N -agent MDPs in Appendix J.56

We start with a trivial example where two agents are independent, i.e. each following independent57
MDPs. It’s clear that the global value function can be decomposed as the sum of value functions of58
local MDPs. As two agents are independent, it holds Pπ(s′A, s

′
B | sA, sB) = Pπ(s′A | sA)·Pπ(s′B |59

sB), or in matrix form,60
P π

AB = P π
A ⊗ P π

B ,

where ⊗ is the tensor product or Kronecker product of matrices. The important question is whether61
we can extend beyond this trivial case of independent subsystems.62

A Sufficient and Necessary Condition We introduce a new condition called “Markov Entangle-63
ment” to describe the intrinsic structure of transition dynamics in multi-agent MDPs.64

Definition 1 (Markov Entanglement). Consider a two-agent MDP with transition P π
AB . If

there exists

P π
AB =

K∑
j=1

xjP
(j)
A ⊗ P

(j)
B ,

then P π
AB is separable; otherwise entangled.

65

Compared with the preceding example of independent subsystems, Markov entanglement offers an66
intuitive interpretation: a two-agent MDP is separable if it can be expressed as a linear combination67
of independent subsystems. We then demonstrate,68

separable P π
AB ⇐⇒ decomposable V π

AB ,

where V π
AB is decomposable if there exist local value functions VA,VB such that V π

AB(sA, sB) =69
VA(sA) + VB(sB) for all (sA, sB). This result sharply unravels the secret structure of system70
dynamics governing value decomposition. As a sufficient condition, our finding strictly generalizes71
the previous independent subsystem example, extending it to scenarios involving interacting and72
coupled agents. As a necessary condition, we prove that exact value decomposition under any73
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reward requires the system dynamics to be separable. Taken together, this result provides a complete74
characterization of when exact value function decomposition is possible in multi-agent MDPs.75

More interestingly, our Markov entanglement condition turns out be a mathematical counterpart of76
quantum entanglement in quantum physics, whose definition is provided below.77

Definition 2 (Quantum Entanglement). Consider a two-party quantum state ρAB . If there
exists

ρAB =

K∑
j=1

xjρ
(j)
A ⊗ ρ

(j)
B , x ≥ 0 ,

then ρAB is separable; otherwise entangled.
78

The quantum state is represented by a density matrix, a positive semidefinite matrix with unit trace,79
analogous to transition matrix in the Markov world. The concept of quantum entanglement describes80
the inter-dependence of particles in a quantum system, while Markov entanglement describes that81
of agents in a Markov system.82

Decomposition Error in General Multi-agent MDPs General multi-agent MDPs can exhibit83
arbitrary complexity, with agents intricately entangled. This raises a critical question: can value de-84
composition serve as a meaningful approximation in such scenarios? To address this, we introduce85
a mathematical quantification to measure the Markov entanglement in general multi-agent MDPs,86

E(P π
AB) := min

P∈PSEP

d(P π
AB ,P ) , (1)

where PSEP is the set of all separable transition matrices and d(·, ·) is some distance measure. In87
other words, the degree of Markov entanglement is determined by its distance to the closest separable88
transition matrix. This concept also has a counterpart in quantum entanglement measurement.89

E(ρAB) := min
ρ∈ρSEP

d(ρAB , ρ) ,

where ρSEP is the set of all separable quantum states. In quantum physics, various distance mea-90
sures have been designed for density matrices and capture different physical interpretations (Nielsen91
& Chuang, 2010). In the Markov world, we analogously design distance measures for transition92
matrices and relate them to the value decomposition error,93 ∥∥∥decomposition error of V π

AB

∥∥∥ = O
(
E(P π

AB)
)
.

where ∥·∥ depends on the distance we use to measure Markov entanglement. We explore diverse94
distance measures including the well-known total variation distance and its stationary distribution95
weighted variant. We also design a novel agent-wise distance incorporating the multi-agent struc-96
ture, which may be of independent interest to the MARL community. We further demonstrate how97
different distance measures give birth to the decomposition error in different norms.98

Applications of Markov Entanglement Finally, we leverage our Markov entanglement theory to99
analyze several structured multi-agent MDPs. We prove that a widely-used class of index policies is100
asymptotically separable, exhibiting a decomposition error that scales as O(

√
N) with the number101

of agents N . This result theoretically justifies the practical effectiveness of value decomposition102
for index-based policies. Our proof builds on innovations that integrate Markov entanglement with103
mean-field analysis. We also show that Markov entanglement admits an efficient empirical estima-104
tion, thus helping practitioners determine when value decomposition is feasible.105

1.2 Other related work106

In the first section, we have reviewed typical empirical works on value decomposition. Here, we107
complement that discussion with related literature on theoretical insights.108
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Prior theoretical research has extensively investigated the decomposition of optimal value functions109
in multi-agent settings. A prominent area involves decomposition via Lagrange relaxation. The per-110
agent decomposition error is proven to decay asymptotically to zero (Weber & Weiss, 1990; 1991;111
Verloop, 2016) and enjoys a quadratic or exponential rate (Gast et al., 2023; 2024; Brown & Zhang,112
2022; Zhang & Frazier, 2021; 2022). Other work generalizes to Weakly-Coupled MDPs (WCMDPs)113
(Balseiro et al., 2021; Brown & Zhang, 2025; Gast et al., 2022). Despite these advancements,114
characterizing decomposition error for general multi-agent MDPs remains unknown. In contrast,115
our Markov entanglement theory analyzes value decomposition for general multi-agent MDPs under116
arbitrary policies, including optimal ones.117

Another line of theoretical work has concentrated on policy optimization via value decomposition.118
Despite reported empirical successes, rigorous theoretical analysis remains challenging. Baek et al.119
(2023) derived an approximation ratio for a specific index policy on a two-state RMAB. Wang et al.120
(2021); Dou et al. (2022) analyzed the convergence of the CTDE paradigm under strong exploration121
assumptions, while also highlighting scenarios of divergence. In contrast, our work instead focuses122
on policy evaluation rather than optimization. This enables us to derive clear and interpretable123
bounds on the decomposition error for general finite-state multi-agent MDPs that only require the124
existence of a stationary distribution.125

Notations We abbreviate subscripts (s) := (s1:N ) := (s1, s2, . . . , sN ). Particularly, for two-agent126
case, when the context is clear, we abbreviate (s) := (sAB) := (sA, sB). Let [N ] = {1, 2, . . . , N}127
and Z+ be the set of positive integers.128

2 Model129

We consider a standard two-agent MDP MAB(S,A,P , rA, rB , γ) with joint state space S = SA×130
SB and joint action space A = AA × AB where A,B represent two agents. For simplicity, let131
|SA| = |SB | = |S| and |AA| = |AB | = |A|. For agents at global state s = (sA, sB) with132
action a = (aA, aB) taken, the system will transit to s′ = (s′A, s

′
B) according to transition kernel133

s′ ∼ P (· | s,a) and each agent i ∈ {A,B} will receive its local reward ri(si, ai). The global134
reward rAB is defined as the summation of local rewards rAB(s,a) := rA(sA, aA) + rB(sB , aB),135
or in vector form rAB ∈ R|S|2|A|2 := rA ⊗ e + e ⊗ rB , where ⊗ is the tensor product and136
e = 1 ∈ R|S||A| is the vector of all ones.1 We further assume the local rewards are bounded, i.e. for137
agent i ∈ {A,B}, |ri(si, ai)| ≤ rimax for all (si, ai).138

Given any global policy π : S → ∆(A), the global Q-value under policy π is defined as the dis-139
counted summation of global rewards Qπ

AB(s,a) = E
[∑∞

t=0 γ
trAB(s

t,at) | π, (s0,a0) = (s,a)
]

140
where γ ∈ [0, 1) is the discount factor. The value function is then defined as V π

AB(s) =141
Ea∼π(·|s) [Q

π
AB(s,a)]. We denote P π

AB ∈ R|S|2|A|2×|S|2|A|2 as the transition matrix induced by142
π where Pπ

AB (s′,a′ | s,a) = P (s′ | s,a) · π (a′ | s′). Then by the Bellman Equation, we have143
Qπ

AB = (I − γP π
AB)

−1
rAB . Our objective is to decompose this global Q-value Qπ

AB as the sum-144
mation of some local functions QA and QB , i.e. Qπ

AB(s,a) = QA(sA, aA) + QB(sB , aB), or in145
vector form,146

Qπ
AB = QA ⊗ e+ e⊗QB . (2)

Notice we formally introduce our research question using Q-value instead of V-value function as in147
the introduction. Q-value decomposition is a stronger result that implies V-value function decompo-148
sition. It also turns out that Q-value further incorporates action information enabling more general149
theoretical analysis. More discussions can be found in Appendix B.150

2.1 Local (Q-)value functions151

Recent literature offers several algorithms for learning local (Q-)values. In this paper, we use a152
meta-algorithm framework in 1 to summarize their underlying principles.153

1In Appendix L.4, we extend our results to multi-agent MDP model where the global cannot be decomposed.
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Meta Algorithm 1: Leaning Local Q-value Functions
Require: Global policy π; horizon length T .

1: Execute π for T epochs and obtain D =
{
(stAB , a

t
AB , r

t
AB , s

t+1
AB , at+1

AB )
}T−1

t=1
.

2: Each agent i ∈ {A,B} fits Qπ
i using local observations Di =

{
(sti, a

t
i, r

t
i , s

t+1
i , at+1

i )
}T−1

t=1
.

This meta-algorithm framework is simple and intuitive: each agent independently fits its local Q-154
values based on its local observations. Notably, the framework requires no prior knowledge of the155
MDP, and learning can be performed in a fully decentralized manner. Furthermore, we use term156
meta in that we do not pose restrictions on how agents estimate their local Q-values. For tabular157
case, one can plug in Temporal Difference (TD) learning (Sutton & Barto, 2018) or its variants. For158
large-scale problems, one can apply linear function approximations (Baek et al., 2023; Han et al.,159
2022; Bertsekas & Tsitsiklis, 1996) or more sophisticated neural networks (Qin et al., 2020; Sunehag160
et al., 2018; Mahajan et al., 2019).161

Despite the flexibility in fitting local value functions, it is helpful to call out a particular approach:162
TD learning for local Q-values in the tabular case, as it facilitates the analysis and reveals the struc-163
ture of value decomposition in the next section.164

Local TD learning. Although each agent’s environment is not Markovian in a local sense (it is, more165
precisely, partially observed Markovian), one can still define its “marginalized” local transition ma-166
trix under the stationary distribution. Mathematically, for agent A, we denote P π

A ∈ R|S||A|×|S||A|167
as its local transition where168

Pπ
A(s

′
A, a

′
A | sA, aA) =

∑
s′B ,a′

B

∑
sB ,aB

Pπ
AB (s′AB , a

′
AB | sAB , aAB)µ

π
AB(sB , aB | sA, aA) . (3)

Here, µπ
AB ∈ ∆(S) denotes the global stationary distribution under policy π (for convenience, we169

assume π induces a unichain, i.e. µπ
AB is unique and strictly positive).2 Given this "marginalized"170

local transition, the local Q-values obtained by Meta Algorithm 1 using tabular TD learning converge171
to the solution of the following “marginalized” Bellman equation:172

Qπ
A = (I − γP π

A)
−1

rA .

By symmetry, we can derive analogous results for agent B, obtaining its transition matrix P π
B and173

local Q-values Qπ
B . Next, we show how Qπ

A and Qπ
B contribute to the exact value decomposition.174

3 Exact value decomposition175

To begin, recall the key condition we identify in the introduction: Markov Entanglement in Defi-176
nition 1. Our first theorem shows that an MDP with no Markov entanglement is indeed sufficient177
for the exact value decomposition. More importantly, local TD learning (or Meta Algorithm 1 more178
generally) is guaranteed to recover such decomposition, i.e. Qπ

AB = Qπ
A ⊗ e+ e⊗Qπ

B .179

Theorem 1. Consider a two-agent MDP MAB and policy π : S → ∆(A). If two agents are180
separable, then the Eq. (2) holds181

Qπ
AB = Qπ

A ⊗ e+ e⊗Qπ
B .

This theorem shows that even when the system is not independent, as long as it can be represented as182
a linear combination of independent subsystems, the global Q-value admits an exact decomposition.183
In Appendix D, we provide an MDP instance where agents are coupled but not entangled.184

2For µπ
AB(sB , aB | sA, aA) to be well-defined, we require µπ

AB(sA, aA) > 0. If µπ
AB(sA, aA) = 0, then action

aA is never taken in state sA under policy π, and we exclude such pairs by restricting the feasible action set A(sA). All
theoretical results apply to the remaining valid state-action pairs.
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3.1 Necessary condition for the exact value decomposition185

We then investigate whether Markov entanglement is necessary for the exact Q-value decomposition.186
The answer is in general no, since one can construct trivial counterexamples such as rA = rB = 0187
or γ = 0, where the decomposition trivially holds. On the other hand, we focus on a stronger and188
more general concept of the exact value decomposition that holds under any reward kernel given189
γ > 0. Formally, we present the following theorem.190

Theorem 2. Consider a two-agent Markov MDP MAB with discount factor γ > 0 and π : S →191
∆(A). Suppose there exists local functions Qi : ri → R|S||A| for i ∈ {A,B} such that Qπ

AB =192
QA(rA)⊗ e+ e⊗QB(rB) holds for any pair of reward rA, rB , then A,B must be separable.193

Combined with Theorem 1, we conclude Markov entanglement serves as a sufficient and necessary194
condition for the exact value decomposition. We also emphasize that Theorem 2 considers general195
local functions Qi. This generality accommodates all methods for fitting local Qi, such as deep196
neural networks, provided that the training relies solely on the local observations of agent i.197

4 Value decomposition error in general two-agent MDPs198

In general, the system transition P π
AB can be arbitrarily entangled. In these scenarios, we investigate199

when value decomposition Qπ
A ⊗ e+ e⊗Qπ

B is an effective approximation of Qπ
AB . As mentioned200

in the introduction, we define the measure of Markov entanglement in Eq. (1) as certain distance201
between P π

AB and its closet separable transition matrix. We will examine several distance measures202
for transition matrices and relate them to the decomposition error.203

4.1 Entry-wise error bound204

Total variation distance One widely used metric for transition matrices is Total Variation (TV)205
distance. Specifically, for two transition matrices P ,P ′ ∈ R|S|2|A|2×|S|2|A|2 , define206

∥P − P ′∥TV := max
(s,a)∈S×A

DTV(P (·, · | s,a),P ′(·, · | s,a)) , (4)

where DTV is the total variation distance between probability measures.207

Agent-wise distance We further introduce a more refined distance specially designed for multi-208
agent MDPs. Formally, the Agent-wise Total Variation (ATV) distance between two transition ma-209
trices P ,P ′ ∈ R|S|2|A|2×|S|2|A|2 w.r.t agent A is defined as210

∥P − P ′∥ATVA
:= max

(s,a)∈S×A
DTV

 ∑
s′B ,a′

B

P (·, · | s,a),
∑

s′B ,a′
B

P ′(·, · | s,a)

 . (5)

The ATV distance w.r.t agent B can be defined similarly. Intuitively, compared to TV, ATV fo-211
cuses on an individual agent and measures the difference between its local transitions. One can212
also verify ATV is tighter distance, i.e. ∥P − P ′∥ATVA

≤ ∥P − P ′∥TV. We can plug ATV213
into Eq. (1) and obtain the measure of Markov entanglement w.r.t ATV distance Ei(P

π
AB) :=214

minP∈PSEP
∥P π

AB − P ∥ATVi
for i ∈ {A,B}. In fact, one can also verify215

EA(P
π
AB) = min

PA

max
(s,a)∈S×A

DTV

(
P π

AB(·, · | s,a),PA(·, · | sA, aA)
)
, (6)

The following theorem connects these measures to the value decomposition error.216

Theorem 3. Consider a two-agent Markov system MAB and policy π : S → ∆(A) with the mea-217
sure of Markov entanglement EA(P

π
AB), EB(P

π
AB) defined in Eq. (6), then the decomposition error218

is entry-wise bounded by the measure of Markov entanglement,219 ∥∥∥Qπ
AB − (Qπ

A ⊗ e+ e⊗Qπ
B)
∥∥∥
∞

≤
4γ
(
EA(P

π
AB)r

A
max + EB(P

π
AB)r

B
max

)
(1− γ)2

.
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4.2 Error weighted by stationary distribution220

Entry-wise error bound is a very strong result for Q-value decomposition. This comes with the221
entry-wise TV bounds in both TV and ATV distance. An alterative choice is to consider an error222
weighted by the stationary distribution. Formally, consider223 ∥∥∥Qπ

AB−(Qπ
A ⊗ e+ e⊗Qπ

B)
∥∥∥
µπ
AB

:=
∑
s,a

µπ
AB(s,a)

∣∣∣Qπ
AB(s,a)−(Qπ

A(sA, aA)+Qπ
B(sB , aB))

∣∣∣ .
A stationary distribution weighted error bound is common in policy evaluation literature (Cai et al.,224
2019; Tsitsiklis & Van Roy, 1996; Bhandari et al., 2021).225

Distance weighted by stationary distribution To analyze this µπ
AB-weight decomposition error,226

we analogously propose the µπ
AB-weighted distance measure of Markov entanglement. Specifically,227

we have the following µπ
AB-weighted version of Eq. (6).228

EA(P
π
AB) = min

PA

∑
s,a

µπ
AB(s,a)DTV

(
P π

AB(·, · | s,a),PA(·, · | sA, aA)
)
. (7)

Eq. (7) substitutes the µπ
AB-weighted average for the maximum operator in Eq. (6). Finally, we have229

the following variant of Theorem 3.230

Theorem 4. Under the same setup as Theorem 3 with µπ
AB-weighted measure of Markov entangle-231

ment EA(P
π
AB), EB(P

π
AB) defined in Eq. (7), the µπ

AB-weighted decomposition error is bounded,232 ∥∥∥Qπ
AB − (Qπ

A ⊗ e+ e⊗Qπ
B)
∥∥∥
µπ
AB

≤
4γ
(
EA(P

π
AB)r

A
max + EB(P

π
AB)r

B
max

)
(1− γ)2

.

Finally it’s straightforward to extend our results to multi-agent MDPs, detailed in Appendix J.233

5 Applications of Markov Entanglement234

In this section, we apply Markov entanglement and demonstrate a widely-used class of index policies235
is asymptotically separable. To begin, we introduce the model of Restless Multi-Armed Bandit236
(RMAB, Whittle (1988)). In an N -agent RMAB, each agent follows a homogeneous two-action237
MDP with action 1 meaning activate and 0 idle. A central decision maker will activate M ≤ N238
agents at each timestep and leave other agents idle. In other words, agents transit independently but239
are coupled under constraint

∑N
i=1 ai = M . In RMAB, arguably the most classical and widely-used240

policy is the index policy, which we formally define as241

Definition 3 (Index Policy). There exists a priority index νs for each local state s. The decision242
maker will always activate agents in the descending order of the priority until the budget constraint243
M is met. Ties are resolved fairly via uniform random sampling of agents at the same state.244

The index policy traces back to the well-known Gittins Index (Weber, 1992), Whittle Index (Whittle,245
1988; Weber & Weiss, 1990; Gast et al., 2023), and fluid-based index policies (Verloop, 2016; Gast246
et al., 2024). Qin et al. (2020); Azagirre et al. (2024); Baek et al. (2023); Nakhleh et al. (2021); Wang247
et al. (2023); Avrachenkov & Borkar (2022) apply data-driven method to optimize index policies248
and report great empirical success in industrial implementations. Understanding the mystery behind249
such success calls for a theory for general index policies. We then present our main theorem.250

Theorem 5. Consider an N -agent restless multi-armed bandit. For any index policy satisfying mild251
technical conditions, there exists constant C independent of N , such that for any agent i ∈ [N ], its252
µπ
1:N -weighted measure of Markov entanglement is bounded, Ei(P

π
1:N ) ≤ C/

√
N .253

Theorem 5 requires two standard technical conditions for index policies: non-degenerate and uni-254
form global attractor property, detailed in Appendix K. Theorem 5 justifies index polices are asymp-255
totically separable. Combined with an N -agent version of Theorem 4, we obtain the sublinear256
decomposition error for index policies257 ∥∥∥∥∥Qπ

1:N (s,a)−
N∑
i=1

Qπ
i (si, ai)

∥∥∥∥∥
µπ
1:N

≤ O(
√
N) .
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This sublinear error result explains why the value decomposition in Qin et al. (2020); Azagirre et al.258
(2024); Baek et al. (2023) manages to effectively approximate the global value function in large-259
scale practical applications.260

5.1 Efficient verification of value decomposition261

For practitioners, verifying the feasibility of value decomposition is challenging due to the exponen-262
tial computational complexity of estimating the global Q-value. As a solution, Markov entanglement263
offers an efficient way to empirically test whether value decomposition can be safely applied. Con-264
sider the µπ

AB-weighted measure of Markov entanglement in Eq. (7), we have265

EA(P
π
AB) ≈

1

2
min
PA

1

T

T∑
t=1

∑
s′A,a′

A

∣∣P π
AB(s

′
A, a

′
A | st,at)− PA(s

′
A, a

′
A | stA, atA)

∣∣ (8)

In other words, we can apply a Monte-Carlo estimation for EA(P
π
AB). Notice Eq. (8) is convex for266

PA, which enables efficient solutions. As a result, Eq. (8) provides an efficient estimation of Markov267
entanglement via simulation and can be easily extend to N -agent MDPs.268

Numerical experiments. Finally, we empirically study the value decomposition for the index policy269
on a circulant RMAB benchmark (Avrachenkov & Borkar, 2022; Zhang & Frazier, 2022; Biswas270
et al., 2021; Fu et al., 2019) that has 4 different states each local agent. As a result, the global state271
space scales as large as 41800 > 101000 for N = 1800 agents. The specific transitions and rewards272
are introduced in Appendix M. For each RMAB instance, we sample a trajectory of length T = 5N273
and use the collected data to i) solve Eq. (8) to estimate the measure of Markov entanglement; ii)274
train local Q-value decomposition. It quickly follows from the results in Figure 1:275

Figure 1: Circulant RMAB under an index policy. Left: empirical estimation of Markov entangle-
ment multiplied by the number of agents, NE1(P

π
1:N ). Right: µ-weighted decomposition error.

The estimated Markov entanglement decays as O(1/
√
N) in the left panel, consistent with theoreti-276

cal predictions. This also implies a low decomposition error scaling of O(
√
N), as seen in the right277

panel. Furthermore, the simulated trajectory has a length of T = 5N while the global state space has278
size |S|N , making both entanglement estimation and local Q-value decomposition sample-efficient.279

280
6 Conclusion281

This paper established the mathematical foundation of value decomposition in MARL. Drawing282
inspiration from quantum physics, we propose the idea of Markov entanglement and prove that283
it serves as a sufficient and necessary condition for the exact value decomposition. We further284
characterize the decomposition error in general multi-agent MDPs through the measure of Markov285
entanglement. As application examples, we prove widely-used index policies are asymptotically286
separable and suggest practitioners using Markov entanglement as a proxy for estimating the effec-287
tiveness of value decomposition.288
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A Linear algebra with tensor product417

We briefly introduce the basic properties of tensor product or Kronecker product. Let A ∈418
Rm1×n1 ,B ∈ Rm2×n2 , then419

A⊗B =


a11B a12B . . . a1n1B
a21B a22B . . . a2n1

B
. . . . . . . . . . . .

am11B am12B . . . am1n1
B

 ∈ Rm1m2×n1n2 .

Tensor product satisfies the following basic properties,420

• 1. Bilinearity For any matrix A,B,C and constant k, it holds k(A ⊗ B) = (kA) ⊗ B =421
A⊗ (kB), (A+B)⊗C = A⊗C +B ⊗C, and A⊗ (B +C) = A⊗B +A⊗C.422

• 2. Mixed-product Property For any matrix A,B,C,D, if AC and BD form valid matrix423
product, then (A⊗B)(C ⊗D) = (AC)⊗ (BD).424

B Decompose value functions425

Compared to the decomposition of Q-value, the value function further requires the reward to be426
state-dependent. To illustrate, notice by Bellman equation,427

V π
AB = (I − γP π

AB)
−1rπAB ,

where we abuse notation and denote Pπ
AB(s

′ | s) =
∑

a π(a | s)P (s′ | s,a) and reward rπAB(s) =428 ∑
a π(a | s)rAB(s,a). A key subtlety arises because rπAB may not be decomposable—even when429

rAB is decomposable—unless the reward rAB is state-dependent. Consequently, we cannot directly430
apply the "absorbing" equation as in the proof of Theorem 1.431

On the other hand, Q-value decomposition bypasses the state-dependence assumption and provides432
a stronger condition that directly implies value function decomposition. As a result, while learning433
local value functions may seem more intuitive, we recommend learning local Q-values instead and434
using them to approximate the global value function.435

C Proof of Sufficiency436

Theorem 1 admits a simple proof based on the several basic properties of tensor product. First of437
all, given P π

AB =
∑K

j=1 xjP
(j)
A ⊗ P

(j)
B , we have438

Pπ
AB (s′A, s

′
B , a

′
A, a

′
B | sA, sB , aA, aB) =

K∑
j=1

xjP
(j)
A (s′A, a

′
A | sA, aA)P (j)

B (s′B , s
′
B | sB , aB) .

Recall P π
A in Eq. (3), it’s evident that439

Pπ
A(s

′
A, a

′
A | sA, aA) =

∑
s′B ,a′

B

∑
sB ,aB

K∑
j=1

xjP
(j)
A (s′A, a

′
A | sA, aA)P (j)

B (s′B , s
′
B | sB , aB)µπ

AB(sB , aB | sA, aA)

=

K∑
j=1

xjP
(j)
A (s′A, a

′
A | sA, aA)

∑
sB ,aB

µπ
AB(sB , aB | sA, aA)

∑
s′B ,a′

B

P
(j)
B (s′B , s

′
B | sB , aB)

=

K∑
j=1

xiP
(j)
A (s′A, a

′
A | sA, aA) ,
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where the second last equation holds by rearranging the summation. This leads to P π
A =440 ∑K

i=1 xiP
(i)
A . It remains to show Eq. (2), and notice that441

(I − γP π
AB)

−1
(rA ⊗ e) =

∞∑
t=0

γt

 K∑
j=1

xjP
(j)
A ⊗ P

(j)
B

t

(rA ⊗ e)

(i)
=

∞∑
t=0

γt

 K∑
j=1

xjP
(j)
A

t

rA

⊗ e

=
(
(I − γP π

A)
−1

rA

)
⊗ e = Qπ

A ⊗ e ,

where we refer to (i) as an “absorbing" technique based on the bilinearity and mixed-product prop-442
erty of tensor product3. Specifically, since Pe = e for any transition matrix P , we have for any443
t,444  K∑

j=1

xjP
(j)
A ⊗ P

(j)
B

t

(rA ⊗ e)

=

 K∑
j=1

xjP
(j)
A ⊗ P

(j)
B

t−1 K∑
j=1

xj

(
P

(j)
A rA

)
⊗
(
P

(j)
B e

)
=

 K∑
j=1

xjP
(j)
A ⊗ P

(j)
B

t−1 K∑
j=1

xjP
(j)
A rA

⊗ e

= . . . =

 K∑
j=1

xjP
(j)
A

t

rA

⊗ e .

Similar results can be derived for P π
B such that (I − γP π

AB)
−1

(e⊗ rB) = e ⊗ Qπ
B . Finally,445

combining the above results, we have446

Qπ
AB = (I − γP π

AB)
−1

rAB = (I − γP π
AB)

−1
(rA ⊗ e+ e⊗ rB) = Qπ

A ⊗ e+ e⊗Qπ
B .

D An illustrative example of coupling and Markov entanglement447

To elucidate the concept of Markov entanglement, we present an example of two-agent MDP where448
agents are coupled but not entangled. Consider a two-agent MDP MAB with |AA| = |AB | = 2 ,449
where action 1 means activate and 0 means idle. Each agent i ∈ {A,B} has its own local transition450
kernel Pi. We examine the following policy: at each time-step, we randomly activate one agent451
and keep another idle, i.e. π(a | s) = 1/2 if a = (0, 1) or a = (1, 0). Consequently, this452
policy couples the agents through the constraint aA + aB = 1 at each timestep. However, we453
will demonstrate that despite this coupling, there’s no entanglement. Specifically, we construct the454
following decomposition455

P π
AB =

1

2
P 0

A ⊗ P 1
B +

1

2
P 1

A ⊗ P 0
B , (9)

where P a
i refers to the transition matrix of agents i ∈ {A,B} taking action a ∈ {0, 1}. Intuitively,456

the right-hand side of Eq. (9) describes how at each time step, the global system randomly selects457
between two possible transitions: P 0

A ⊗ P 1
B or P 1

A ⊗ P 0
B . This example thus clearly demonstrates458

a coupled system can still be separable and thus admits an exact value decomposition.459

3We introduce several basic properties of tensor product in Appendix A.
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E Comparison with quantum entanglement460

It turns out that our Markov entanglement condition serves as a mathematical counterpart of quantum461
entanglement in quantum physics. We provide the formal definition of the latter for comparison.462

Definition 4 (Two-party Quantum Entanglement). Consider a two-party quantum system composed463
of two subsystems A and B. The joint state ρAB is separable if there exists K ∈ Z+, a probability464

measure {xj}j∈[K], and density matrices
{
ρ
(j)
A , ρ

(j)
B

}
j∈[K]

such that465

ρAB =

K∑
j=1

xjρ
(j)
A ⊗ ρ

(j)
B .

If there exists no such decomposition, ρAB is entangled.466

The density matrices are square matrices satisfying certain properties such as positive semi-467
definiteness and trace normalization, which can be viewed as the counterparts of transition matrices468
in the Markov world. Despite the similarities in mathematical form, quantum entanglement imposes469
an additional constraint requiring {xj}j∈[K] to be a probability measure, i.e. x ≥ 0. In contrast, our470
Markov entanglement defined in Definition 1 permits general linear coefficients {xj}j∈[K] as long471

as
∑k

j=1 xj = 1. This distinction raises the important question of whether negative coefficients are472
indeed necessary in characterizing Markov entanglement.473

To start with, we introduce the set of all separable transition matrices474

PSEP =

P ≥ 0

∣∣∣∣∣∣ P =

K∑
j=1

xjP
(j)
A ⊗ P

(j)
B ,

K∑
j=1

xj = 1

 ,

where K ∈ Z+ and
{
P

(j)
A ,P

(j)
B

}
j∈[K]

are transition matrices. P ≥ 0 calls for every element of475

PSEP to be a valid transition matrix. It’s clear that a transition matrix P π
AB is separable if and only if476

P π
AB ∈ PSEP. On the other hand, a direct analogy of quantum entanglement gives us the following477

set that further requires non-negative coefficients,478

P+
SEP =

P ≥ 0

∣∣∣∣∣∣ P =

K∑
j=1

xjP
(j)
A ⊗ P

(j)
B ,

K∑
j=1

xj = 1 , x ≥ 0

 .

Interestingly, it turns out P+
SEP ⊈ PSEP. In other words, there exist separable two-agent MDPs479

that can only be represented by linear combinations but not convex combinations of independent480
subsystems. Specifically, consider the following basis481

E00 =

(
1 0
1 0

)
, E01 =

(
1 0
0 1

)
, E10 =

(
0 1
1 0

)
, E11 =

(
0 1
0 1

)
And the corresponding transition matrix we provide is482

P =


0.5 0 0 0.5
0.5 0 0 0.5
0.5 0 0 0.5
0 0.5 0.5 0

 =
1

2
E00 ⊗E00 +

1

2
E10 ⊗E11 +

1

2
E11 ⊗E10 −

1

2
E10 ⊗E10

One can also verify P can not be represented by the convex combination of tensor products of483
these basis. This result justifies the necessity of negative coefficients in x and highlights a structural484
difference between Markov entanglement and quantum entanglement485
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F Proof of Theorem 2486

We provide the full proof of Theorem 2 in this section.487

Step 1: Characterize the Orthogonal Complement. To start with, we consider the smallest488
subspace containing all transition matrices ΩP := span(P) where P are the set of all transition489
matrices in Rm×m. We then study the dimension of ΩP .490

Lemma 1. The dimension of ΩP is dim(ΩP) = m2 −m+ 1.491

Proof. Let Zij ∈ Rm×m such that492

Zij(a, b) =

{
1 (a = i ∧ b = j) ∨ (a = b)
0 o.w.

.

One basis for all transition matrices is given by {Zij}i,j∈[m] whose cardinarlity is m2−m+1.493

Let ΩP⊗2 := span(P1 ⊗ P2) be the minimal subspace containing all separable transition matrices.494
It quickly follows that495

dim(ΩP⊗2) = (dim(ΩP))
2 .

We then construct the orthogonal complement of ΩP⊗2 under Frobenius inner product. Let496
{εj}j∈[m−1] be a set of vector in Rm such that εj = (1, 0, . . . , 0,−1, 0, . . . , 0)⊤ with the first497
element 1 and j + 1-th element −1. Notice that498

Tr
(
eε⊤j P

)
= Tr

(
ε⊤j Pe

)
= 0 ,

for all εj . Consider the following subspace499

Ω′ =


m−1∑
j=1

(
εje

⊤)⊗W 1
j +

m−1∑
j=1

W 2
j ⊗

(
εje

⊤) | W 1
1:j ,W

2
1:j ∈ Rm×m

 .

We then show Ω′ is exactly the orthogonal complement of ΩP⊗2 . First, notice that500

dim(Ω′) = 2(m− 1)m2 − (m− 1)2 .

and thus dim(Ω′) + dim(ΩP⊗2) = m4. Moreover, one can verify for any X ∈ ΩP⊗2 and Y ∈ Ω′,501
Tr(X⊤Y ) = 0. As a result, it holds502

Ω′ = Ω⊥
P⊗2 .

Step 2: Connection to “Inverse" The decomposition of Q-value ultimately concerns with the503
properties of (I − γP π

AB)
−1. The following lemma bridges this gap.504

Lemma 2. Given any transition matrix P and γ > 0, P is separable if and only if (1 − γ)(I −505
γP )−1 is separable.506

Proof. (⇒) One can verify that (I − γP )e = (1 − γ)e, which implies (1 − γ)(I − γP )−1 is a507
transition matrix. Moreover, (1−γ)(I−γP )−1 = (1−γ)

∑∞
i=0(γP )i falls in ΩP⊗2 as P ∈ ΩP⊗2 .508

(⇐) This side is more involved. Denote U := (1 − γ)(I − γP )−1. Then if the spectral radius509
ρ(I −U) < 1, then510

U−1 = (I − (I −U))
−1

=

∞∑
i=0

(I −U)i ∈ ΩP⊗2 .
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This implies U−1 = 1
1−γ (I−γP ) ∈ ΩP⊗2 and thus P ∈ ΩP⊗2 , finishing the proof. It then suffices511

to show ρ(I −U) < 1. Notice that512

λi(I −U) = 1− λi(U) = 1− 1− γ

λ(I − γP )
= 1− 1− γ

1− γλi(P )
.

Let λi(P ) = a+ bi and taking modulus for both side513

|λi(I −U)| =
∣∣∣∣γ − γλi(P )

1− γλi(P )

∣∣∣∣
=

|γ − γλi(P )|
|1− γλi(P )|

=

√
γ2(1− a)2 + γ2b2

(1− γa)2 + γ2b2

=

√
1 +

(1− γ)(2aγ − γ − 1)

(1− γa)2 + γ2b2

≤

√
1− (1− γ)2

(1− γa)2 + γ2b2
< 1 .

We conclude the proof given ρ(I −U) = maxi |λi(I −U)| < 1.514

Step 3: Put it together By Lemma 2, if P π
AB is entangled, then (1 − γ)(I − γP π

AB)
−1 is also515

entangled. Then there exists Y ∈ Ω′ ̸= 0 such that Tr(Y ⊤(I − γP π
AB)

−1) ̸= 0. We apply singular516
value decomposition to all W 1

1:j ,W
2
1:j and conclude there exists some j and u,v ∈ Rm such that517

either Tr(
(
eε⊤j

)
⊗
(
vu⊤) (I − γP π

AB)
−1) ̸= 0 or Tr(

(
vu⊤) ⊗ (eε⊤j ) (I − γP π

AB)
−1) ̸= 0. We518

assume the former without loss of generality, it holds519

(ε⊤j ⊗ u⊤)(I − γP π
AB)

−1(e⊗ v) ̸= 0 .

Now set rA = 0 and rB = v. Since Qπ
AB is decomposable, there exists some local function520

QA, QB such that521

(I − γP π
AB)

−1(e⊗ v) = QA(0)⊗ e+ e⊗QB(v) .

Left multiply by (ε⊤j ⊗ u⊤), we have522

(ε⊤j ⊗ u⊤)(I − γP π
AB)

−1(e⊗ v) = (ε⊤j ⊗ u⊤)(QA(0)⊗ e) ̸= 0 ,

Then set rA = 0 and rB = −v, we can similarly derive523

−(ε⊤j ⊗ u⊤)(I − γP π
AB)

−1(e⊗ v) = (ε⊤j ⊗ u⊤)(QA(0)⊗ e) ̸= 0 ,

This gives use (ε⊤j ⊗ u⊤)(QA(0)⊗ e) = 0, which is a contradiction.524

G Decomposition via general functions525

Entangled P precludes the local decomposition with local value functions, but may admit decom-526
positions with more general functions.527

There exist other possible ways for value decomposition. For example, Sunehag et al. (2018);528
Dou et al. (2022) consider Qπ

AB(s,a) = LA(sA, aA, rAB) + LB(sB , aB , rAB) where LA, LB529
are learned jointly via minimizing the global Bellman error4; Rashid et al. (2020); Mahajan et al.530

4In Appendix G, we provide an example of entangled MDP that allows for an exact value decomposition where LA

depends on both rA and rB .
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(2019); Son et al. (2019); Wang et al. (2020) consider general monotonic operations beyond addi-531
tive decompositions. These methods introduce possibly richer representations at the cost of more532
sophisticated implementations and less interpretability, which is beyond the scope of this paper.533

Consider P = 1
4

(
ee⊤

)
⊗
(
ee⊤

)
+δ
(
ϵe⊤
)
⊗
(
eϵ⊤
)
, where e = [1, 1], ϵ = [1−1]. Clearly such P is534

entangled. We also have P k = 1
4

(
ee⊤

)
⊗
(
ee⊤

)
for k ≥ 2. Then (I−γP )−1 = I+ γ+γ2

4

(
ee⊤

)
⊗535 (

ee⊤
)
+ δγ

(
ϵe⊤
)
⊗
(
eϵ⊤
)
. Then for any rA, rB , we have (I − γP )−1 (rA ⊗ e+ e⊗ rB) =536

rA ⊗ e+ hA

(
γ + γ2

)
/2e⊗ e+ rB ⊗ e+ hB

(
γ + γ2

)
/2e⊗ e+ 2δγ

(
ϵ⊤rB

)
ϵ⊗ e where hA =537

e⊤rA, hB = e⊤rB .538

H Proof of Theorem 3539

Additional Notations For (semi-)norm ∥ · ∥α and norm ∥ · ∥β , we define the α, β-norm for matrix540
A as541

∥A∥α,β = sup
∥x∥β=1

∥Ax∥α .

We further abbreviate ∥A∥α := ∥A∥α,α. Moreover, we define the operator |x| taking the absolute542
value of each element of vector or matrix x.543

To prove the theorem, we introduce the key technique of analyzing perturbation bounds of the tran-544
sition matrix, which is also used in Farias et al. (2023).545

Lemma 3 (Lemma 1 in Farias et al. (2023)). Let P ,P ′ ∈ Rn×n such that (I−P )−1 and (I−P ′)−1546
exist. Then it holds547

(I − P ′)−1 = (I − P )−1 + (I − P ′)−1(P ′ − P )(I − P )−1 .

We are then ready to prove the main theorem.548

Proof of Theorem 3. Let PA,PB be the optimal solution to Eq. (6) w.r.t agent A,B. For any subset549
of state-action pairs of agent A, F ⊆ SA ×AA, we have550 ∣∣∣∣∣∣

∑
s′A,a′

A∈F

(P π
A − PA)(s′A,a′

A|sA,aA)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

s′A,a′
A∈F

∑
s′B ,a′

B

∑
sB ,aB

(P π
AB − PA ⊗ PB)(s′,a′|s,a) µ

π
AB(sB , aB | sA, aA)

∣∣∣∣∣∣
≤
∑

sB ,aB

∣∣∣∣∣∣
∑

s′A,a′
A∈F

∑
s′B ,a′

B

(P π
AB − PA ⊗ PB)(s′,a′|s,a)

∣∣∣∣∣∣µπ
AB(sB , aB | sA, aA)

≤
∑

sB ,aB

EA(P
π
AB)µ

π
AB(sB , aB | sA, aA) = EA(P

π
AB)

where the last inequality follows from the definition of agent-wise total variation distance. Since the551
result holds for any F and (sA, aA) ∈ SA ×AA, we have552

∥P π
A − PA∥TV ≤ EA(P

π
AB) ,

and similar results hold for P π
B .553

Next we have554
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(I − γP π
AB)

−1
(rA ⊗ e)−

(
(I − γP π

A)
−1

rA

)
⊗ e

=(I − γP π
AB)

−1
(rA ⊗ e)− (I − γPA ⊗ PB)

−1
(rA ⊗ e)

+ (I − γPA ⊗ PB)
−1

(rA ⊗ e)−
(
(I − γP π

A)
−1

rA

)
⊗ e

(i)
= (I − γP π

AB)
−1(rA ⊗ e)− (I − γPA ⊗ PB)

−1
(rA ⊗ e)︸ ︷︷ ︸

(I)

+
(
(I − γPA)

−1
rA

)
⊗ e−

(
(I − γP π

A)
−1

rA

)
⊗ e︸ ︷︷ ︸

(II)

where (i) also follows the same “absorbing” technique in the proof of Theorem 1.555

For (I), apply Lemma 3, it holds556 ∥∥∥(I − γP π
AB)

−1(rA ⊗ e)− (I − γPA ⊗ PB)
−1

(rA ⊗ e)
∥∥∥
∞

=
∥∥∥(I − γP π

AB)
−1 (γP π

AB − γPA ⊗ PB) (I − γPA ⊗ PB)
−1

(rA ⊗ e)
∥∥∥
∞

≤
∥∥(I − γP π

AB)
−1
∥∥
∞

∥∥∥(γP π
AB − γPA ⊗ PB)

(
(I − γPA)

−1
rA

)
⊗ e
∥∥∥
∞

(i)

≤
∥∥(I − γP π

AB)
−1
∥∥
∞ 2γEA(P

π
AB)

∥∥∥(I − γPA)
−1

rA

∥∥∥
∞

≤2γEA(P
π
AB)r

A
max

1− γ

∥∥(I − γP π
AB)

−1
∥∥
∞ ≤ 2γEA(P

π
AB)r

A
max

(1− γ)2
,

where (i) follows by the definition of agent-wise total variation distance when ∥rA∥∞ ̸= 0, and also557
trivially hold when ∥rA∥∞ = 0. Similarly, for (II) we have558 ∥∥∥((I − γPA)

−1
rA

)
⊗ e−

(
(I − γP π

A)
−1

rA

)
⊗ e
∥∥∥
∞

=
∥∥∥((I − γPA)

−1 − (I − γP π
A)

−1
)
rA

∥∥∥
∞

=
∥∥∥(I − γP π

A)
−1

(γP π
A − γPA) (I − γPA)

−1
rA

∥∥∥
∞

≤2γEA(P
π
AB)r

A
max

(1− γ)2
.

Then we have559 ∥∥∥(I − γP π
AB)

−1
(rA ⊗ e)−

(
(I − γP π

A)
−1

rA

)
⊗ e
∥∥∥
∞

≤ 4γEA(P
π
AB)r

A
max

(1− γ)2
.

We can derive similar results for agent B, i.e.,560 ∥∥∥(I − γP π
AB)

−1
(e⊗ rB)− e⊗

(
(I − γP π

B)
−1

rB

)∥∥∥
∞

≤ 4γEB(P
π
AB)r

B
max

(1− γ)2
.

Put it all together we have561 ∥∥∥Qπ
AB − (Qπ

A ⊗ e+ e⊗Qπ
B)
∥∥∥
∞

≤ 4γ(EA(P
π
AB)r

A
max + EB(P

π
AB)r

B
max)

(1− γ)2
.

562
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I Proof of Theorem 4563

We first introduce the µ-weighted ATV distance Formally, we introduce the following norm.564

Definition 5 (µ-norm). Given a transition matrix P ∈ R|S||A|×|S||A| with occupancy measure5565
µ ∈ R|S||A|, for any vector x ∈ R|S||A| the µ-norm is defined as566

∥x∥µ :=
∑

(s,a)∈S×A

µ(s, a) |x(s, a)| = µ⊤ |x| . (10)

One can verify that µ-norm satisfies triangle inequality and is a valid norm when µ(s, a) > 0 for all567
(s, a). Otherwise µ-norm is a semi-norm in general. We then introduce the distance568

Definition 6 (µ-weighted Agent-wise Total Variation Distance). Given probability distribution569
µ ∈ R|S|2|A|2 , the µ-weighted total variation distance between two transition matrices P ,P ′ ∈570
R|S|2|A|2×|S|2|A|2 w.r.t agent A is defined as571

∥P − P ′∥µ−ATVA
=

1

2
sup

∥x∥∞=1

∥ (P − P ′) (x⊗ e)∥µ .

The µ-weighted ATV distance w.r.t agent B can be defined similarly. We claim that the µ-weighted572
ATV is also a counterpart of ATV distance in Definition 5. This follows from the constrained573
optimization formulation of ATV574

∥P − P ′∥ATVA
=

1

2
sup

∥x∥∞=1

∥ (P − P ′) (x⊗ e)∥∞ . (11)

Thus µ-ATV substitutes µ-norm for the original ℓ∞-norm. We plug µ-weighted ATV into Eq. (1)575
and obtain the corresponding measure of Markov entanglement E(P π

AB) and EA(P
π
AB). Similar to576

ATV in Eq. (6), this µ-weighted version of EA(P
π
AB) admits the following formulation577

EA(P
π
AB) ≤ min

PA

∑
s,a

ρπAB(s,a)DTV

(
P π

AB(·, · | s,a),PA(·, · | sA, aA)
)
. (12)

This recovers Eq. (7) that substitutes the µ-weighted average for the maximum operator in Eq. (6).578
Thus intuitively, E(P π

AB) w.r.t µ-weighted ATV distance measures how closely agent A can be579
approximated as an independent subsystem under the stationary distribution.580

We provide the proof for two agents here, one can easily generalize the proof to multi-agent sce-581
narios. Compared to the proof of Theorem 3, this proof follows similar framework and differs in582
several details.583

The first one is the following lemma for the “localized” stationary distribution584

Lemma 4. P π
A has stationary distribution µπ

A with585

∀(sA, aA) , µπ
A(sA, aA) =

∑
sB ,aB

µπ
AB(sA, sB , aA, aB) .

In other words, the local stationary distribution of each agent is exactly the marginal distribution of586
global µπ

AB .587

5Since µ ∈ R|S||A| is the stationary distribution of P ∈ R|S||A|×|S||A|, we use “stationary distribution" and “occu-
pancy measure" exchangeably when the context is clear.
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Proof of Lemma 4. We proof by verify the definition of stationary distribution. For any (s′A, a
′
A), it588

holds589

∑
sA,aA

( ∑
sB ,aB

µπ
AB(sA, sB , aA, aB)

)
Pπ(s′A, a

′
A | sA, aA)

=
∑

sA,aA

∑
sB ,aB

µπ
AB(sA, sB , aA, aB)

∑
s′B ,a′

B

∑
s′′B ,a′′

B

Pπ (s′A, s
′
B , a

′
A, a

′
B | sA, s′′B , aA, a′′B)µπ

AB(s
′′
B , a

′′
B | sA, aA)

=
∑

sA,aA

∑
sB ,aB

µπ
AB(sB , aB | sA, aA)

∑
s′B ,a′

B

∑
s′′B ,a′′

B

Pπ (s′A, s
′
B , a

′
A, a

′
B | sA, s′′B , aA, a′′B)µπ

AB(sA, s
′′
B , aA, a

′′
B)

=
∑

sA,aA

∑
s′B ,a′

B

∑
s′′B ,a′′

B

Pπ (s′A, s
′
B , a

′
A, a

′
B | sA, s′′B , aA, a′′B)µπ

AB(sA, s
′′
B , aA, a

′′
B)

=
∑

s′B ,a′
B

µπ
AB(s

′
A, s

′
B , a

′
A, a

′
B) .

where the last equation follows from the definition of µπ
AB . Hence we conclude that590 ∑

sB ,aB
µπ
AB(sA, sB , aA, aB) is a stationary distribution of P π

A .591

We are then ready to prove Theorem 4. We first note that similar to ATV distance in Eq. (6), the592
optimal solution to EA(P

π
AB) w.r.t µπ

AB-weighted ATV distance also only depends on PA. Thus,593
let PA,PB be the optimal solutions to EA(P

π
AB), EB(P

π
AB) respectively.594

Let x ∈ R|SA||AA| with ∥x∥∞ = 1. Following the same technique in the proof of Theorem 4, we595
have596

µπ⊤

A |(P π
A − PA)x|

=
∑

sA,aA

µπ
A(sA, aA)

∣∣∣∣∣∣
∑

s′A,a′
A

(P π
A − PA)(s′A,a′

A|sA,aA) x(s
′
A, a

′
A)

∣∣∣∣∣∣
=
∑

sA,aA

µπ
A(sA, aA)

∣∣∣∣∣∣
∑

s′A,a′
A

x(s′A, a
′
A)

∑
s′B ,a′

B

∑
sB ,aB

(P π
AB − PA ⊗ PB)(s′,a′|s,a) µ

π
AB(sB , aB | sA, aA)

∣∣∣∣∣∣
≤
∑
s,a

∣∣∣∣∣∣
∑

s′A,a′
A

x(s′A, a
′
A)

∑
s′B ,a′

B

(P π
AB − PA ⊗ PB)(s′,a′|s,a)

∣∣∣∣∣∣µπ
AB(s,a) ≤ 2EA(P

π
AB)

where the second last inequality follows from Lemma 4. We then conclude597

∥P π
A − PA∥µ,∞ ≤ 2EA(P

π
AB) ,

and similar results hold for P π
B . We then apply the decomposition598

(I − γP π
AB)

−1
(rA ⊗ e)−

(
(I − γP π

A)
−1

rA

)
⊗ e

=(I − γP π
AB)

−1(rA ⊗ e)− (I − γPA ⊗ PB)
−1

(rA ⊗ e)︸ ︷︷ ︸
(I)

+
(
(I − γPA)

−1
rA

)
⊗ e−

(
(I − γP π

A)
−1

rA

)
⊗ e︸ ︷︷ ︸

(II)
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For (I), we have599 ∥∥∥(I − γP π
AB)

−1(rA ⊗ e)− (I − γPA ⊗ PB)
−1

(rA ⊗ e)
∥∥∥
µπ
AB

=
∥∥∥(I − γP π

AB)
−1 (γP π

AB − γPA ⊗ PB) (I − γPA ⊗ PB)
−1

(rA ⊗ e)
∥∥∥
µπ
AB

(i)

≤ 1

1− γ

∥∥∥((γP π
AB − γPA ⊗ PB) (I − γPA)

−1
rA

)
⊗ e
∥∥∥
µπ
AB

≤2γE(π)

1− γ

∥∥∥(I − γPA)
−1

rA

∥∥∥
∞

≤ 2γE(π)rmax

(1− γ)2
,

where (i) follows from the fact that for any x600

∥Px∥µ = µ⊤|Px| ≤ µ⊤P |x| = µ⊤|x| = ∥x∥µ .

For (II) one can use Lemma 4 to verify601 ∥∥∥((I − γPA)
−1

rA

)
⊗ e−

(
(I − γP π

A)
−1

rA

)
⊗ e
∥∥∥
µπ
AB

=
∥∥∥(I − γPA)

−1
rA − (I − γP π

A)
−1

rA

∥∥∥
µπ
A

And similar results to (I) holds. We then conclude the proof of Theorem 4.602

J Results for multi-agent MDPs603

In quantum physics, the concept of quantum entanglement of two-party system can be well extended604
to multi-party system. In this section, we demonstrate a similar extension of two-agent Markov605
entanglement to multi-agent settings. We begin with the model of multi-agent MDPs.606

Consider an N -agent MDP M1:N (S,A,P , r1:N , γ) with joint state space S = ×N
i=1Si and joint607

action space A = ×N
i=1Ai. For simplicity, we assume |Si| = |S| and |Ai| = |A| for each agent i.608

For agents at global state s = (s1, s2, . . . , sN ) with action a = (a1, a2, . . . , aN ) taken, the system609
will transit to s′ = (s′1, s

′
2, . . . , s

′
N ) according to transition kernel s′ ∼ P (· | s,a) and each agent610

i ∈ [N ] will receive its local reward ri(si, ai). The global reward r1:N is defined as the summation611
of local rewards r1:N (s,a) :=

∑N
i=1 ri(si, ai), or in vector form,612

r1:N ∈ R|S|N |A|N :=

N∑
i=1

(e⊗)i−1ri(⊗e)N−i .

We further assume the local rewards are bounded, i.e. for agent i ∈ [N ], |ri(si, ai)| ≤613
rimax for all (si, ai). Given any global policy π : S → ∆(A), we denote P π

1:N ∈614
R|S|N |A|N×|S|N |A|N as the transition matrix induced by π where Pπ

1:N (s′1:N , a′1:N | s1:N , a1:N ) :=615
P (s′1:n | s1:N , a1:N )π (a′1:N | s′1:N ) . Then the global Q-value is defined by Bellman Equation616
Qπ

1:N = (I−γP π
1:N )−1r1:N . The local Q-values follow the similar framework to Meta Algorithm 1617

where each agent i ∈ [N ] fits Qπ
i using its local observations. We then sum up local Q-values to618

approximate the global Q-value, i.e.619

Qπ
1:N (s,a) ≈

N∑
i=1

Qπ
i (si, ai) .

To illustrate the extension, we first provide the definition of multi-party quantum entanglement here620
for reference.621
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Definition 7 (Multi-party Quantum Entanglement). Consider a multi-party quantum system com-622
posed of N subsystems, indexed by [N ]. The joint state ρ1:N is separable if there exists K ∈ Z+,623

probability distribution {xi}i∈[K], and density matrices
{
ρ
(j)
1:N

}
j∈[K]

such that624

ρ1:N =

K∑
j=1

xjρ
(j)
1 ⊗ ρ

(j)
2 ⊗ · · · ⊗ ρ

(j)
N .

If there exists no such decomposition, ρ1:N is called entangled.625

Analogically, we define the Multi-agent Markov Entanglement,626

Definition 8 (Multi-agent Markov Entanglement). Consider a N -agent Markov system M1:N and627
policy π : S → ∆(A), the agents are separable under policy π if there exists K ∈ Z+, measure628

{xj}j∈[K] satisfying
∑K

j=1 xj = 1, and transition matrices
{
P

(j)
1:N

}
j∈[K]

such that629

P π
1:N =

K∑
j=1

xjP
(j)
1 ⊗ P

(j)
2 ⊗ · · · ⊗ P

(j)
N .

If there exists no such decomposition, the agents are entangled under policy π.630

For clarity, we use superscript si to denote the i-th element in state space and subscript si to represent631
the state at i-th arm. Furthermore, we denote S−i := S \ si and s := s1:N := {s1, s2, . . . , sN} is632
the profile of N -arms.633

Given any global policy π, for any agent i ∈ [N ],634

Pπ
i (s

′
i, a

′
i | si, ai) =

∑
s′−i,a

′
−i

∑
s−i,a−i

Pπ
1:N (s′1:N , a′1:N | s1:N , a1:N ) ρπ1:N (s−i, a−i | si, ai) .

Definition 9 (Measure of Multi-agent Markov Entanglement). Consider a N -agent Markov system635
M1:N with joint state space S = ×N

i=1Si and action space A = ×N
i=1Ai. Given any policy636

π : S → ∆(A), the measure of Markov entanglement of N agents is637

E(P π
1:N ) = min

P∈PSEP

d(P π
1:N ,P ) , (13)

where d(·, ·) is some distance measure.638

The following theorem generalizes the results of value-decomposition for two-agent Markov sys-639
tems in Theorem 3 to multi-agent Markov systems.640

Theorem 6. Consider a N -agent MDP M1:N with joint state space S = ×N
i=1Si and action space641

A = ×N
i=1Ai. Given any policy π : S → ∆(A) with the measure of Markov entanglement Ei(π)642

w.r.t ATV distance, it holds for any agent i,643

∥P π
i − Pi∥∞ ≤ 2iE(π) .

where Pi is the optimal solution of Eq. (13). Furthermore, the decomposition error is entry-wise644
bounded by the measure of Markov entanglement,645 ∥∥∥∥∥Qπ

1:N (s,a)−
N∑
i=1

Qπ
i (si, ai)

∥∥∥∥∥
∞

≤
4γ
(∑N

i=1 Ei(P
π
1:N )rimax

)
(1− γ)2

.

The proof mainly follows the following lemma, which generalizes the key technique used in Theo-646
rem 1.647
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Lemma 5. For any agent i, it holds648  K∑
j=1

xjP
(j)
1 ⊗ P

(j)
2 ⊗ · · · ⊗ P

(j)
N

·
(
(e⊗)i−1ri(⊗e)N−i

)
= (e⊗)i−1

 K∑
j=1

xjP
(j)
i ri

 (⊗e)N−i .

(14)

The lemma follows from the property of tensor product. We can also extend Theorem 4 to multi-649
agent MDPs.650

Theorem 7. Consider a N -agent MDP M1:N with joint state space S = ×N
i=1Si and action space651

A = ×N
i=1Ai. Given any policy π : S → ∆(A) with the measure of Markov entanglement Ei(P

π
1:N )652

w.r.t the µπ
1:N -weighted agent-wise total variation distance, it holds for any agent i,653

∥P π
i − Pi∥µπ

i ,∞
≤ 2Ei(P

π
1:N ) .

where Pi is the optimal solution of Eq. (13) and µπ
i is the stationary distribution of the projected654

transition P π
i . Furthermore, the µπ

1:N -weighted decomposition error is bounded by the measure of655
Markov entanglement,656 ∥∥∥∥∥Qπ

1:N (s,a)−
N∑
i=1

Qπ
i (si, ai)

∥∥∥∥∥
µπ
1:N

≤
4γ
(∑N

i=1 Ei(P
π
1:N )rimax

)
(1− γ)2

.

K Proof of Theorem 5657

We first provide an overview of the proof and introduce the technical assumptions.658

To begin, we consider the system configuration m ∈ ∆|S| where ms = 1
N ♯{Agents in state s}659

is the proportion of agents in state s. When N → ∞, the transition between configurations will660
become deterministic under index policy and m will approach its mean-field limit m∗. Furthermore,661
in the mean-field, each agent’s local transition will only depend its local state. As a result, the system662
will de-couple and become separable as N → ∞.663

To formalize this intuition, we introduce the following lemma that connects Markov entanglement664
measure with the mean-field analysis665

Lemma 6. The measure of Markov entanglement w.r.t µπ
1:N -weighted ATV distance is bounded by666

the deviation of mean-field configuration,667

Ei(π) ≤ |S|2 · E [∥m−m∗∥∞] ,

where the expectation is taking over the stationary distribution m ∼ µπ
1:N .668

We thus focus on the deviation from m to m∗. We extend the concentration analysis from Gast669
et al. (2023; 2024) to derive a new stability bound for the RHS. Specifically, we finishing the proof670
via demonstrating the deviation decays at the rate O(1/

√
N).671

One caveat here is that we have to restrict chaotic behaviors in the mean-field limit. We thus intro-672
duce two technical assumptions.673

We first define the transition of configuration under index policy π as ϕπ : ∆|S| → ∆|S| such that674

ϕπ(m) = E [m[t+ 1] | m[t] = m, π] .

For t > 0, we denote Φt := (ϕπ)t apply the transition mapping for t rounds.675

Assumption A (Uniform Global Attractor Property (UGAP)). There exists a uniform global attrac-676
tor m∗ of ϕπ(·), i.e. for all ε > 0, there exists T (ε) such that for all t ≥ T (ε) and all m ∈ ∆|S|,677
one has ∥Φt(m)−m∗∥∞ < ε.678
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The UGAP assumption ensures the uniqueness of m∗ and guarantees fast convergence from any679
initial m to m∗.680

Assumption B (Non-degenerate RMAB). There exists state s ∈ S such that 0 < π∗(s, 0) < 1,681
where π∗ is the policy under m∗.682

The non-degenerate assumption further restricts cyclic behavior in the mean-field limit.683

Non-degenerate and UGAP are two standard technical assumptions for the index policy, which re-684
strict chaotic behavior in asymptotic regime and will be further introduced in subsequent sections.685
We note here these two assumptions are also used in almost all theoretical work on index policies686
Weber & Weiss (1990); Verloop (2016); Gast et al. (2023; 2024).687

Proof of Theorem 5. In the subsequent proof, we let ν1 > ν2 > ν3 > · · · > ν|S|. This does not lose688
generality in that we can always exchange state index. The proof consists of several steps689

Step 1: Find m∗ Recall the transition mapping for configurations ϕπ : ∆|S| → ∆|S|,690

ϕπ(m) = E [m[t+ 1] | m[t] = m, π] .

Notice that the definition of ϕπ does not depend on N . We adapt from Lemma B.1 in Gast et al.691
(2023) defined specially for Whittle Index,692

Lemma 7 (Piecewise Affine). Given any index policy π, ϕπ is a piecewise affine continuous function693
with |S| affine pieces.694

When the context is clear, we abbreviate ϕπ as ϕ. For any m ∈ ∆|S|, define s(m) ∈ [|S|] be695
the state such that

∑s(m)−1
i=1 mi ≤ α <

∑s(m)
i=1 mi. Lemma 7 characterizes for any m ∈ Zi :=696 {

m ∈ ∆|S| | s(m) = i
}

, there exists Ks(m), bs(m) such that697

ϕ(m) = Ks(m)m+ bs(m) .

By Brouwer fixed point theorem, there exists a fixed point m∗ such that ϕ(m∗) = m∗. The UGAP698
condition guarantees the uniqueness of m∗. Our choice of π∗ is the corresponding policy under699
m∗.700

Step 2: Connecting policy entanglement with the deviation of stationary distribution Com-701
bine Proposition 8 with the RMAB model, we have702

Lemma 8. The measure of Markov entanglement w.r.t µπ
1:N -weighted ATV distance is bounded by703

the deviation of mean-field configuration,704

Ei(π) ≤ |S|2 · E [∥m−m∗∥∞] ,

where the expectation is taking over the stationary distribution m ∼ µπ
1:N .705

Proof. Given the homogeneity of agents, we first demonstrate for any two agent i, j, it holds706 ∑
s1:N

µπ(s1:N ) |π(ai = a | s1:N )− π∗(ai = a | si)| =
∑
s1:N

µπ(s1:N ) |π(aj = a | s1:N )− π∗(aj = a | si)| .

To see this, we first notice by the definition of index policy707

|π(ai = a | si = s,m)− π∗(a | s)| = |π(aj = a | sj = s,m)− π∗(a | s)| .

It then suffices to prove
∑

si=s,s1:N=m µ(s1:N ) =
∑

sj=s,s1:N=m µ(s1:N ). If708 ∑
si=s,s1:N=m µ(s1:N ) ≤

∑
sj=s,s1:N=m µ(s1:N ), we can exchange the agent index of i and j. This709
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will result in the same stationary distribution and
∑

si=s,s1:N=m µ(s1:N ) ≥
∑

sj=s,s1:N=m µ(s1:N )710
and thus the equation. We then rewrite the bound in Proposition 8,711

E(π) ≤ 1

2
sup
i

∑
s1:N

µπ(s1:N )
∑
ai

|π(ai | s1:N )− π∗(ai | si)|

= sup
i

∑
s1:N

µπ(s1:N ) |π(ai = 1 | s1:N )− π∗(ai = 1 | si)|

=
1

N

∑
s1:N

µπ(s1:N )

N∑
i=1

|π(ai = 1 | s1:N )− π∗(ai = 1 | si)|

=
∑
m

µπ(m)
∑
s∈S

ms |π(a = 1 | s,m)− π∗(a = 1 | s)|

For any configuration m and state s, we have712

ms |π(a = 1 | s,m)− π∗(a = 1 | s)|

=ms

∣∣∣∣π∗(a = 1 | s)m∗
sN + ks

m∗
sN + ℓs

− π∗(a = 1 | s)
∣∣∣∣

=
m∗

sN + ℓs
N

∣∣∣∣ks − ℓsπ
∗(a = 1 | s)

m∗
sN + ℓs

∣∣∣∣
≤|S|∥m−m∗∥∞ ,

where |ks| ≤ (|S| − 1)∥m−m∗∥∞N representing the additional fraction of state s to be activated713
due to the deviation from m∗ and |ℓs| ≤ ∥m − m∗∥∞N representing the deviation of ms from714
m∗

s . The results then hold by taking summation over s and expectation over m.715

716

Step 3: Concentrations and local stability To bound E [∥m−m∗∥∞], we start with several717
technical lemmas from previous RMAB literature. We use the same notation Φt = ϕ(Φt−1).718

Lemma 9 (One-step Concentration, Lemma 1 in Gast et al. (2024)). Let ϵ[1] = m[1]− ϕ(m[0]), it719
holds720

E [∥ϵ[1]∥1 | m[0]] ≤
√

|S|
N

.

Lemma 10 (Multi-step Concentration, Lemma C.4 in Gast et al. (2023)). There exists a positive721
constant K such that for all t ∈ N and δ > 0,722

Pr
[
∥m[t]− Φt(m)∥∞ ≥ (1 +K +K2 + · · ·+Kt)δ | m[0] = m

]
≤ t|S|e−2Nδ2

Lemma 11 (Local Stability, Lemma C.5 in Gast et al. (2023)). Under non-degenerate and UGAP:723

(i) Ks(m∗) is a stable matrix, i.e. its spectral radius is strictly less than 1.724

(ii) For any ϵ, there exists T (ϵ) > 0 such that for all m ∈ ∆|S|,
∥∥ΦT (ϵ)(m)−m∗

∥∥
∞ < ϵ.725

The first result implies there exists some matrix norm ∥·∥β such that
∥∥Ks(m∗)

∥∥
β

< 1. By the726

equivalence of norms, there exists constant C1
β , C

2
β > 0 such that for all x ∈ R|S|727

C1
β∥x∥β ≤ ∥x∥∞ ≤ C2

β∥x∥β .

Combine the second result of Lemma 11 and non-degenerate condition, we can construct a neigh-728
borhood N of m∗ such that N = B(m∗, ϵ) ∩ ∆|S| ∈ Zs(m∗) where ϵ > 0 and B(m∗, ϵ) =729
{m | ∥m−m∗∥∞ < ϵ} is an open ball. We next show that m[0] under stationary distribution730

25



Under review for RLC 2025, to be published in RLJ 2025

will concentrate in N with high probability. Let T̃ = T (ϵ/2) such that for all m ∈ ∆|S|,731
∥ΦT̃ (m)−m∗∥∞ < ϵ/2. It holds732

Pr [m[0] ̸= N ] = Pr [∥m[0]−m∗∥∞ ≥ ϵ]

(i)
= Pr

[∥∥∥m[T̃ ]−m∗
∥∥∥
∞

≥ ϵ | m[0] = m
]

≤ Pr
[∥∥∥m[T̃ ]− ΦT̃ (m)

∥∥∥
∞

≥ ϵ

2
| m[0] = m

]
+ Pr

[
∥ΦT̃ (m)−m∗∥∞ ≥ ϵ

2

]
= Pr

[∥∥∥m[T̃ ]− ΦT̃ (m)
∥∥∥
∞

≥ ϵ

2
| m[0] = m

]
≤ T̃ |S|e−2uN

where (i) follows from the stationarity m[T̃ ] and m[0] are i.i.d and the constant u =733 (
ϵ

2(1+K+K2+···+KT̃ )

)2
does not depend on N .734

Step 4: Put it together Finally, we are ready to bound E [∥m−m∗∥∞]. Notice for all m[0] ∈ N ,735
we have736

m[1]−m∗ = ϕ(m[0]) + ϵ[1]−m∗

= Ks(m∗) (m[0]−m∗) + ϵ[1] .

Taking ∥·∥β on both side,737

∥m[1]−m∗∥β ≤
∥∥Ks(m∗) (m[0]−m∗)

∥∥
β
+ ∥ϵ[1]∥β

≤
∥∥Ks(m∗)

∥∥
β
∥m[0]−m∗∥β + ∥ϵ[1]∥β .

Taking expectation on both side,738

E
[
∥m[1]−m∗∥β

]
=E

[
∥ϕ(m[0])−m∗∥β · 1 {m[0] ∈ N}

]
+ E

[
∥ϕ(m[0])−m∗∥β · 1 {m[0] /∈ N}

]
+ E

[
∥ϵ[1]∥β

]
≤
∥∥Ks(m∗)

∥∥
β
E
[
∥m[0]−m∗∥β · 1 {m[0] ∈ N}

]
+ Pr [m[0] /∈ N ] sup

m[0]

∥ϕ(m[0])−m∗∥β + E
[
∥ϵ[1]∥β

]
≤
∥∥Ks(m∗)

∥∥
β
E
[
∥m[0]−m∗∥β

]
+ Pr [m[0] /∈ N ] sup

m[0]

∥ϕ(m[0])−m∗∥β + E
[
∥ϵ[1]∥β

]
.

By stationarity, one have E
[
∥m[1]−m∗∥β

]
= E

[
∥m[0]−m∗∥β

]
. This refines the above in-739

equality,740

E [∥m[0]−m∗∥∞] ≤
C2

β

1−
∥∥Ks(m∗)

∥∥
β

(
sup
m[0]

Pr [m[0] /∈ N ] ∥ϕ(m[0])−m∗∥β + E
[
∥ϵ[1]∥β

])

≤
C2

β

C1
β(1−

∥∥Ks(m∗)

∥∥
β
)
(Pr [m[0] /∈ N ] + E [∥ϵ[1]∥∞])

≤
C2

β

C1
β(1−

∥∥Ks(m∗)

∥∥
β
)

(
T̃ |S|e−2uN +

√
|S|√
N

)
.

We combine Lemma 8 and conclude the proof of Theorem 5.741

L Extensions of Markov entanglement742

L.1 (Weakly-)coupled MDPs743

Weakly-coupled MDPs (WCMDP) are a rich class of multi-agent model that capture many real-744
world applications such as supply chain management, queuing network and resource allocations745
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Adelman & Mersereau (2008); Brown & Zhang (2023); Shar & Jiang (2023). Compared to general746
multi-agent MDP, WCMDP further ensures each agent follow its local transition while the agents’747
actions are coupled with each other. Formally,748

Definition 10 (Weakly-coupled MDPs). An N -agent MDP M1:N (S,A,P , r1:N , γ) is a weakly-749
coupled MDP if750

• Each agent has local transition kernel Pi such that ∀s,a, s′, P (s′ | s,a) =
∏N

i=1 Pi(s
′
i | si, ai).751

• At global state s, agents’ joint actions a are subject to m coupling constraints
∑N

i=1 d(si, ai) ≤752
b ∈ Rm.753

We then demonstrate that this weakly-coupled structure can further refine the analysis of Markov754
entanglement measure.755

Proposition 8. Consider a N -agent weakly-coupled MDP M1:N (S,A,P , r1:N , γ). Given any756
policy π : S → ∆(A) with measure of Markov entanglement Ei(P

π
1:N ) w.r.t the µπ

1:N -weighted757
agent-wise total variation distance, it holds for i ∈ [N ],758

Ei(P
π
1:N ) ≤ min

π′

1

2

∑
s

µπ
1:N (s)

∑
ai

|π(ai | s)− π′(ai | si)| ,

where π′ : Si → Ai is any local policy for agent i.759

Proof of Proposition 8. We demonstrate the proof for two-agent WCMDP and the generalization760
to multi-agent WCMDP is straightforward. Consider P π′

A be the transition of agent A under local761
policy π′. We focus on agent A762

EA(P
π
AB)

≤1

2

∑
s,a

µπ
AB(s,a)

∑
s′A,a′

A

∣∣∣Pπ
AB(s

′
A, a

′
A | s,a)− Pπ′

A (s′A, a
′
A | sA, aA)

∣∣∣
=
1

2

∑
s,a

µπ
AB(s,a)

∑
s′A,a′

A

∣∣∣∣∣∣
∑
s′B

Pπ
AB(s

′, aA | s,a)− Pπ′

A (s′A | sA, aA)π′(a′A | s′A)

∣∣∣∣∣∣
(i)
=
1

2

∑
s,a

µπ
AB(s,a)

∑
s′A,a′

A

∣∣∣∣∣∣
∑
s′B

Pπ
AB(s

′, aA | s,a)−
∑
s′B

P (s′ | s,a)π′(a′A | s′A)

∣∣∣∣∣∣
=
1

2

∑
s,a

µπ
AB(s,a)

∑
s′A,a′

A

∣∣∣∣∣∣
∑
s′B

P (s′ | s,a) (π(a′A | s′)− π′(a′A | s′A))

∣∣∣∣∣∣
≤1

2

∑
s,a

µπ
AB(s,a)

∑
s′

P (s′ | s,a)
∑
a′
A

|π(a′A | s′)− π′(a′A | s′A)|

(ii)
=

1

2

∑
s′

µπ
AB(s

′)
∑
a′
A

|π(a′A | s′)− π′(a′A | s′A)| .

where (i) follows from the transition structure of weakly coupled MDP P (s′ | s,a) = P (s′A |763
sA, aA) · P (s′B | sB , aB); and (ii) comes from the fact that Pπ(s′ | s) =

∑
a π(a | s)P (s′ | s,a)764

and
∑

s µ
π(s)Pπ(s′ | s) = µπ(s′).765

Proposition 8 establishes an upper bound for Markov entanglement in WCMDP. Intuitively, this766
bound characterizes how agent i can be viewed as making independent decisions. It takes advantage767
of the weakly-coupled structure and shaves off the transition in Markov entanglement measure.768
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L.2 Coupled MDPs with exogenous information769

In many practical scenarios, the agents’ transitions and actions are coupled by a shared exogenous770
signal. For example, in ride-hailing platforms, the specific dispatch is related to the exogenous order771
at the current moment Qin et al. (2020); Han et al. (2022); Azagirre et al. (2024); in warehouse772
routing, the scheduling of robots is also related to the exogenous task revealed so far Chan et al.773
(2024).774

We will then enrich our framework by incorporating these exogenous information. At each timestep775
t, there will an exogenous information zt revealed to the decision maker. zt is assumed to evolve776
following a Markov chain independent of the action and transition of agents. We assume zt ∈ Z777
and Z is finite.778

Given the current state s and exogenous information z, the policy is given by π : S × Z → ∆(Ã),779
where Ã refers to the set of feasible actions. We then have the global transition depending on780
exogenous information z,781

Pπ
ABz(s

′,a′, z′ | s,a, z) = P (s′ | s,a, z) · π(a′ | s′, z′) · P (z′ | z) .

and global Q-value Qπ
ABz ∈ R|S|N |A|N |Z|,782

Qπ
AB(s,a, z) = E

[ ∞∑
t=0

N∑
i=1

r(si,t, ai,t, zt) | s0 = s,a0 = a, z0 = z

]
.

We assume the system is unichain and the stationary distribution is µπ
ABz . Then we can derive the783

local transition under new algorithm by784

PAz(s
′
A, a

′
A, z

′ | sA, aA, z) =
∑

sB ,aB

µπ
ABz(sB , aB | sA, aA, z)

∑
s′B ,a′

B

Pπ
ABz(s

′,a′, z′ | s,a, z) ,

Given the local transition, we have the local value Qπ
Az = (I − γPAz)

−1(rAz) via Bellman Equa-785
tion.786

Combined with exogenous information, we consider the following value decomposition787

Qπ
AB(s,a, z) = Qπ

A(sA, aA, z) +Qπ
B(sB , aB , z) .

We start by introducing agent-wise Markov entanglement defined for each agent788

P π
ABz =

K∑
j=1

xjP
(j)
Az ⊗ P

(j)
B . (15)

Proposition 9. If the system is agent-wise separable for all agents, then789

Qπ
ABz = Qπ

Az ⊗ e|S||A| + e|S||A| ⊗Qπ
Bz .
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Proof. The proof is basically the same as Theorem 1. One can first quickly show that PAz =790 ∑K
j=1 xjP

(j)
Az . And then it holds791  K∑

j=1

xjP
(j)
Az ⊗ P

(j)
B

t (
rA ⊗ e|z| ⊗ e|S||A|

)

=

 K∑
j=1

xjP
(j)
Az ⊗ P

(j)
B

t−1 K∑
j=1

xj

(
P

(j)
Az (rA ⊗ e|z|)

)
⊗
(
P

(j)
B e

)
=

 K∑
j=1

xjP
(j)
Az ⊗ P

(j)
B

t−1 K∑
j=1

xjP
(j)
Az (rA ⊗ e|z|)

⊗ e

= . . . =

 K∑
j=1

xjP
(j)
Az

t

(rA ⊗ e|z|)

⊗ e .

792

We then provide the measure of Markov entanglement with exogenous information w.r.t agent-wise793
total variation distance.794

EA(P
π
AB ,Z) := min

1

2

∥∥∥∥∥∥P π
ABz −

K∑
j=1

xjP
(j)
Az ⊗ P

(j)
B

∥∥∥∥∥∥
ATV1

= min
PAz

max
s,a,z

1

2

∑
s′A,a′

A,z′

|Pπ
ABz(s

′
A, a

′
A, z

′ | s,a, z)− PAz(s
′
A, a

′
A, z

′ | sA, aA, z)| .

(16)

Similar to Theorem 3, we can connect this measure of Markov entanglement with the value decom-795
position error.796

Theorem 10. Consider a N -agent Markov system M1:N . Given any policy π : S → ∆(A) with the797
measure of Markov entanglement Ei(P

π
1:N ,Z) w.r.t the agent-wise total variation distance, it holds798

for any agent i,799 ∥∥∥∥∥∥P π
iz −

K∑
j=1

xjP
(j)
iz

∥∥∥∥∥∥
∞

≤ 2Ei(P
π
1:N ,Z) .

Furthermore, the decomposition error is entry-wise bounded by the measure of Markov entangle-800
ment,801 ∥∥∥∥∥Qπ

1:N (s,a, z)−
N∑
i=1

Qπ
iz(si, ai, z)

∥∥∥∥∥
∞

≤
4γ
(∑N

i=1 Ei(P
π
1:N ,Z)rimax

)
(1− γ)2

.

In practice, exogenous information is often discussed in the context of (weakly-)coupled MDPs,802
where each agent independent evolves by Pi(si+1 | si, ai, z). Interestingly, we can derive a similar803
result to Proposition 8 that shaves off the transition in entanglement analysis.804

Proposition 11. Consider a N -agent Weakly Coupled Markov system M1:N . Given any policy805
π : S → ∆(A) and its measure of Markov entanglement Ei(P

π
1:N ,Z) w.r.t the µπ

1:N -weighted agent-806
wise total variation distance, it holds807

Ei(P
π
1:N ,Z) ≤ 1

2

∑
s1:N ,z

µπ(s1:N , z)
∑
ai

|π(ai | s1:N , z)− π′(ai | si, z)| ,

for any policies π′.808
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Proof. We provide the proof for two-agent MDP, which can be easily generalized to N -agent case.809

EA(P
π
AB ,Z)

≤1

2

∑
s,a,z

µ(s,a, z)
∑

s′A,a′
A,z′

|Pπ
ABz(s

′
A, a

′
A, z

′ | s,a, z)− PAz(s
′
A, a

′
A, z

′ | sA, aA, z)|

=
1

2

∑
s,a,z

µ(s,a, z)
∑

s′A,a′
A,z′

∣∣∣∣∣∣
∑
s′B

Pπ
ABz(s

′, aA, z
′ | s,a, z)− PAz(s

′
A, z

′ | sA, aA, z)π′(a′A | s′A, z′)

∣∣∣∣∣∣
=
1

2

∑
s,a,z

µ(s,a, z)
∑

s′A,a′
A,z′

∣∣∣∣∣∣
∑
s′B

Pπ
ABz(s

′, aA, z
′ | s,a, z)−

∑
s′B

P (s′, z′ | s,a, z)π′(a′A | s′A, z′)

∣∣∣∣∣∣
=
1

2

∑
s,a,z

µ(s,a, z)
∑

s′A,a′
A,z′

∣∣∣∣∣∣
∑
s′B

P (s′, z′ | s,a, z) (π(a′A | s′, z′)− π′(a′A | s′A, z′))

∣∣∣∣∣∣
≤1

2

∑
s,a,z

µ(s,a, z)
∑
s′,z′

P (s′, z′ | s,a, z)
∑
a′
A

|π(a′A | s′, z′)− π′(a′A | s′A, z′)|

=
1

2

∑
s′,z′

µ(s′, z′)
∑
a′
A

|π(a′A | s′, z′)− π′(a′A | s′A, z′)| .

810

L.3 Factored MDPs811

Another common class of multi-agent MDPs is Factored MDPs (FMDPs, Guestrin et al. (2001;812
2003); Osband & Roy (2014)), which explicitly model the structured dependencies in state tran-813
sitions. For instance, in a server cluster, the state transition of each server depends only on its814
neighboring servers. Formally, we define815

Definition 11 (Factored MDPs). An N -agent MDP M1:N (S,A,P , r1:N , γ) is a factored MDP if816
each agent i has neighbor set Zi ∈ [N ] such that its transition is affected by all its neighbors, i.e.817
P (s′i | s,a) = P (s′i | sZi , aZi).818

The neighbor set |Zi| is often assumed to be much smaller compared to the number of agents N .819
This helps to encode exponentially large system very compactly. We show this idea can also be cap-820
tured in Markov entanglement. Consider the measure of Markov entanglement w.r.t ATV distance821
in Eq. (6),822

EA(P
π
AB) = min

PA

max
(s,a)∈S×A

DTV

(
P π

AB(·, · | s,a),PA(·, · | sA, aA)
)

= min
PA

max
(s,a)∈S×A

DTV

(
P π

AB(·, · | sZA
, aZA

),PA(·, · | sA, aA)
)
.

Thus we conclude the agent-wise Markov entanglement will only depend on its neighbor set.823

L.4 Fully cooperative Markov games824

In fully cooperative settings, only a global reward will be reviewed to all agents. Unlike the modeling825
in section 2, this global reward may not necessarily be decomposed as the summation of local826
rewards. In this case, we propose meta algorithm 2 as an extension of meta algorithm 1.827

This algorithm follows similar framework of meta algorithm 1 and differs at we now learn the828
closet local reward decomposition from data. When the reward is completely decomposable, meta829
algorithm 2 recovers meta algorithm 1. Thus intuitively, the more accurate we can decompose the830
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Meta Algorithm 2: Q-value Decomposition with Shared Reward
Require: Global policy π; horizon length T .

1: Execute π for T epochs and obtain D =
{
(stAB , a

t
AB , r

t
AB , s

t+1
AB , at+1

AB )
}T−1

t=1
.

2: Each agent i ∈ {A,B} fits Qπ
i using local observations Di =

{
(sti, a

t
i, ri, s

t+1
i , at+1

i )
}T−1

t=1
where the local reward (rA, rB) is learned via solving

min
rA,rB

T∑
t=1

(
rtAB(s,a)− (rA(s

t
A, a

t
A) + rB(s

t
B , a

t
B))
)2

.

global reward, the less decomposition error we have. Formally, we define the measure of reward831
entanglement832

e(rAB) := min
rA,rB

∥rAB − (rA ⊗ e+ e⊗ rB)∥µπ
AB

. (17)

This measure characterizes how accurate we can decompose the global reward under stationary833
distribution. We then obtain an extension of Theorem 4834

Proposition 12. Consider a fully cooperative two-agent Markov system MAB . Given any policy835
π : S → ∆(A) with the measure of Markov entanglement EA(P

π
AB), EB(P

π
AB) w.r.t the µπ

AB-836
weighted agent-wise total variation distance and the measure of reward entanglement e(rAB), it837
holds838 ∥∥∥Qπ

AB − (Qπ
A ⊗ e+ e⊗Qπ

B)
∥∥∥
µπ
AB

≤ e(rAB)

1− γ
+

4γ
(
EA(P

π
AB)r

A
max + EB(P

π
AB)r

B
max

)
(1− γ)2

,

where rAmax, r
B
max is the bound of optimal solution of Eq. (17).839

Although Proposition 1 offers a theoretical guarantee for general two-agent fully cooperative840
Markov games, its utility is greatest in systems with low reward and transition entanglement. Fully841
cooperative settings remain inherently challenging–for instance, even the asymptotically optimal842
Whittle Index may achieve only a 1

N -approximation ratio for RMABs with global rewards Raman843
et al. (2024). In practice, most research Sunehag et al. (2018); Rashid et al. (2020) relies on sophis-844
ticated deep neural networks to learn decompositions in such settings. We thus defer a more refined845
analysis of fully cooperative scenarios to future work.846

M Simulation environments847

In this section, we empirically study the value decomposition for index policies. Our simulations848
build on a circulant RMAB benchmark, which is widely used in the literature Avrachenkov & Borkar849
(2022); Zhang & Frazier (2022); Biswas et al. (2021); Fu et al. (2019).850

Circulant RMAB A circulant RMAB has four states indexed by {0, 1, 2, 3}. Transition kernels851
Pa = p(s, 0, s′)s,s′∈S for action a = 0 and a = 1 are given by852

P0 =


1/2 0 0 1/2
1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2

 , P1 =


1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2
1/2 0 0 1/2

 .

The reward solely depends on the state and is unaffected by the action:853

r(0, a) = −1, r(1, a) = 0, r(2, a) = 0, r(3, a) = 1; ∀a ∈ {0, 1}.

We set the discount factor to γ = 0.5 and require N/5 arms to be pulled per period. Initially, there854
are N/6 arms in state 0, N/3 arms in state 1 and N/2 arms in state 2, the same as Zhang & Frazier855
(2022). We then test an index policy with priority: state 2 > state 1 > state 0 > state 3.856

31



Under review for RLC 2025, to be published in RLJ 2025

M.1 Monte-Carlo estimation of Markov entanglement857

For each RMAB instance, we simulate a trajectory of length T = 6N and collect data for the later858
5N epochs. Notice RMAB is a special instance of WCMDP, we thus apply the result in Proposition 8859

Ei(P
π
1:N ) ≤ 1

2
min
π′

∑
s

µπ
1:N (s)

∑
ai

|π(ai | s)− π′(ai | si)|

≈ 1

2
min
π′

1

T

T∑
t=1

∑
ai

|π(ai | s)− π′(ai | si)| (18)

Notice Eq. (18) is convex for π′ and π′ only takes support of size |S||A| = 8. we thus apply efficient860
convex optimization solvers. We replicate this experiment for 10 independent runs to obtain the861
mean estimation and standard error in the left panel of Figure 1.862

M.2 Learning local Q-values863

For each RMAB instance, we simulate a trajectory of length T = 6N , reserving the later T = 5N864
epochs as the training phase for each agent to fit local Q-value functions. During testing, we estimate865
the µ-weighted decomposition error using 50 simulations sampled from the stationary distribution.866

The ground-truth Qπ
1:N is approximated via Monte Carlo learning Sutton & Barto (2018), with867

each estimate derived from 30-step simulations averaged over 3N independent runs. Due to the868
high computational cost of Monte Carlo methods—especially for very large RMABs—we limit the869
training phase to 10 independent runs and use the mean local Q-value as an approximation. Error870
bars represent the standard error for both Monte Carlo estimates and µ-weighted decomposition871
errors.872

In addition to µ-weighted error, we also introduce a concept of relative error, defined as873 ∥∥∥Qπ
1:N (s,a)−

∑N
i=1 Q

π
i (si, ai)

∥∥∥
µπ
1:N

/ ∥Qπ
1:N∥µπ

1:N
. This relative error reflects the approximate874

ratio of our value decomposition. We present our simulation results below.875

Figure 2: Value Decomposition error in circulant RMAB under an index policy. Left: µ-weighted
decomposition error. Right: Relative error, ∥decomposition error∥µ / ∥Qπ

1:N∥µ

It immediately follows that the µ-weighted error grows at a sublinear rate O(
√
N) and the relative876

error decays at rate O(1/
√
N). This justifies our theoretical guarantees in Theorem 5. Furthermore,877

we notice the relative error is no larger than 3% over all data points. As a result, the meta algo-878
rithm 1 is able to provide a very close approximation especially for large-scale MDPs even with879
small amount of training data T = 5N while the global state space has size |S|N .880
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M.3 Sample Complexity and Computation881

While each RMAB instance has an exponentially large state space |S|N , we show that our empir-882
ical estimation of Markov entanglement—along with the decomposition error—converges quickly.883
Specifically, we illustrate these errors for an RMAB instance with with 900 agents in Figure 3. As

Figure 3: Different errors in RMAB with 900 agents: empirical estimation of Markov entanglement
(blue); µπ

1:N -weighted decomposition error (green); the true measure of Markov estimated with
T = 10N samples (red dashed line).

884
exhibits in Figure 3, both errors decay and converges within T = 3N samples. Furthermore, the885
empirical estimation of Markov entanglement converges in T < N samples, demonstrating its ef-886
ficiency. Finally, we use standard convex optimization solvers to compute Markov entanglement,887
which can be run efficiently on a single CPU.888
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