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Figure 1: Minimum excess risk α(t) for the example in Section 3

A Additional graph of α(t) from Section 3

Figure 1 displays a graph of α(t) for the example in Section 3.

B Auxiliary lemmas

Lemma B.1. Define

h(r) = 1 − r2/4
r
√

1 − r2/4 − r2/4
.

Suppose that π is the uniform measure on Sd−1. For all d > 2 and all r > 0,

− log π(Br(θ0)) ≲ d log (h(r ∧ 1)) .

Proof. In order to compute π(Br(θ0)), we must first compute the surface area of the set A = {x : ∥x∥ =
1, ∥x− v/s∥ ≤ r}. Let Beta(a, b) be the Beta function and let Ix(a, b) be the regularized incomplete Beta
function. If r <

√
2, then the set A is a spherical cap with radius R = r

√
1 − r2/4 and height H = r2/2,

which has surface area:
SA(A) = πd/2Rd−1

Γ(d/2) · IH(2R−H)/R2

(
d− 1

2 , 1/2
)
.

If r >
√

2, letting H ′ = 2 − r2/2, it follows that A has surface area:

SA(A) = πd/2Rd−1

Γ(d/2)

(
1 − IH′(2R−H′)/R2

(
d− 1

2 , 1/2
))

.

We focus on the case where r <
√

2, it then follows that

π(Br(θ0)) = 1
2 · IH(2R−H)/R2

(
d− 1

2 ,
1
2

)
.

Now, define

g(r) = H(2R− h)/R2 =
r
√

1 − r2/4 − r2/4
1 − r2/4 .

Note that g is decreasing toward 0 as r → 0. One can show that for d > 2, we have that

Ig(r)

(
d− 1

2 ,
1
2

)
≥ 2

√
π

d− 1

(
d

2 − 1
)−1/2

g(r)d/2−1/2.
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Therefore, for

π(Br(θ0)) ≥ 1
2 · 2

√
π

d− 1

(
d

2 − 1
)−1/2

g(r)d/2−1/2.

Taking the negated log gives that

− log π(Br(θ0)) ≲ d log(1/g(r)).

The result follows from the fact that h(r) = 1/g(r).

Lemma B.2. Let gκ be Tukey’s biweight function. Then, the VC dimension of the class of functions given
by {gκ(X⊤θ − Y ) : θ ∈ Rd} is d+ 1.

Proof. First, note that the class of real-valued linear functions on Rd, denoted by F , satisfies VC(F ) = d+1.
We can then write (X⊤θ − Y )2 = ((X⊤θ − Y ) ∨ (Y −X⊤θ))2. Now, the subgraphs of {(X⊤θ − Y ) ∨ (Y −
X⊤θ) : θ ∈ Rd} are the union of the subgraphs of {Y − X⊤θ : θ ∈ Rd} and {X⊤θ − Y : θ ∈ Rd}, which is
simply the set of subgraphs of linear functions. Thus, VC({(X⊤θ − Y ) ∨ (Y − X⊤θ) : θ ∈ Rd}) = d + 1.
Next, note that gκ can be written as

gκ(θ) = κ2

6

(
1 −

[
1 − (X⊤θ − Y )2

κ2

]3)
∧ κ2

6 ,

which is a monotonic function on R+. It follows from the permanence properties of VC-dimension, e.g., see
Lemma 7.12 of (Sen, 2018), that

VC({gκ(X⊤θ − Y ) : θ ∈ Rd}) = VC(F ) = d+ 1.

Lemma B.3. Let X,Y be as in Section 3. Then, for all t ≥
√
d/n we have that

Pr
(

sup
θ∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

log σ(Xi⟨Xi, θ⟩) − Eµ log σ(Y ⟨X, θ⟩)

∣∣∣∣∣ ≥ t

)
≤ 2e−nt2/32.

Proof. Let Z = (Z1, . . . , Zn), where Z is defined in Section 3 and let Z ′ ∼ N (v, I) be independent of Z.
Define

gθ(Z) = 1
n

n∑
i=1

log σ(⟨Zi, θ⟩) − E log σ(⟨Z ′, θ⟩).

Note that gθ are all 1/
√
n-Lipschitz functions of Z. It follows that supθ∈Sd−1 gθ is also a 1/

√
n-Lipschitz

function of Z. A log–Sobolev inequality on finite-dimensional Gaussian space gives that

Pr
(

sup
θ∈Sd−1

gθ(Z) ≥ E sup
θ∈Sd−1

gθ(Z) + t

)
≤ e−nt2 .

We can further write

E sup
θ∈Sd−1

gθ(Z) = E sup
θ∈Sd−1

gθ(Z) − sup
θ∈Sd−1

gθ(0) + sup
θ∈Sd−1

gθ(0) ≤ 1√
n
E ∥Z∥ =

√
d

n
.

As a result, for t ≥
√
d/n we have that

Pr
(

sup
θ∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

log σ(Yi⟨Xi, θ⟩) − Eµ log σ(Y ⟨X, θ⟩)

∣∣∣∣∣ ≥ t

)
≤ 2e−nt2/32.
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Proof of Theorem 3.1. The conditions required for Theorem 2.1 have been checked in Section 3, and so we can
apply Lemma 6.1. In this case, we have that t0 = 4

√
d/n and so it suffices to have n ≥ 8d/α(t). Furthermore,

in this case, c1, c2 are universal constants, and so the equation 6.7 becomes n ≳ (log(1/γ) ∨ d)/α(t)2. The
next step is to bound

− log π(Bα(t)/8(
√
d∨s)(θ0)).

An application of Lemma B.1 with r = α(t)/8(
√
d ∨ s) gives the result.

Proof of Theorem 4.1. Let F = {6ℓ(θ, ·, ·)/κ2 : θ ∈ Rd}. It follows from Lemma B.2 that VC(F ) = d + 1
and that for any f ∈ F we have that ∥f∥ ≤ 1. Thus, an application of Talagrand’s inequality (Talagrand,
1994, Theorem 1.1), see also (Sen, 2018, Theorem 7.11), or (Kosorok, 2008, Theorem 9.3) implies that there
is some universal c > 0 such that for all n ≥ 1 and for all t > 0, it holds that

Pr
(

sup
θ∈Rd

|R̂n(θ) −R(θ)| > t

)
≤ ed log(cn/d)−72nt2/κ4

. (B.1)

Thus, Condition 3 is satisfied with t0 = 0, c1 = (cn/d)d and c2 = 72/κ4. The remaining conditions of
Theorem 2.1 were checked in Section 4, thus, we can apply Lemma 6.1. The condition on n reduces to the
following

n ≳ κ2
log(1/γ) ∨ d(log( κ

cα(t) ) ∨ 1)
α(t)2 .

Then, Lemma B.4 of (Ramsay et al., 2024) (stated below for convienence) gives that

− log π(Bα(t)/8κ(
√
d∨∥v∥)(θ0)) ≲ ∥θ0 − η∥2

ρ2 + d log
(
κρ(d ∨ ∥v∥)

α(t)

)
.

Combining this inequality with equation 6.7 yields the condition

β ≳ κ
log(1/γ) ∨

[
∥θ0 − η∥2

/ρ2 + d log
(
κρ(d∨∥v∥)

α(t)

)]
α(t) .

Proof of Theorem 5.1. The conditions of Theorem 2.1 were checked in Section 5, thus, we can apply Lemma
6.1. Note that t0 = C

√
d/n, which implies that the bounds in Lemma 6.1 hold for n ≳ d/α(t)2. Next, the

inequality equation 6.7 reduces to n ≳ log(1/γ)/α(t)2. It remains to bound − log π(Bt(θ0)) for each prior.
For π uniform on the unit sphere, applying Lemma B.1 yields that equation 6.7 reduces to

β ≳
log(1/γ) ∨ d

(
log h(t4(1 − t2/4)/16)

)
λt4(1 − t2/4) .

In Rademacher prior PCA, we take π to be uniform on {±1}d. For such a prior, we have that each vector
can be observed with probability 2d. Computing Br(θ0) requires counting the number of vectors within
r of θ0. The quantity ⌊r2/2⌋ gives the maximum Hamming distance between x ∈ Br(θ0) and θ0. Let
Z ∼ Binomial(d, 1/2) and KL(p, q) be the Kullback–Leibler divergence of Binomial(1, p) with respect to
Binomial(1, q). Following Ash (1990), we have that there exists a universal constant c > 0 such that

π(Bα(t)/8L(θ0)) = π(Bt4/16d3/2(θ0)) ≥ Pr
(
Z ≤ ct8/d3) ≳ 1√

d
e−dKL(t8/d4,1/2).

This results in
− log π(Bt4/16d3/2(θ0)) ≲ dKL(t8/d4, 1/2) log d.

In this case, we have that

β ≥ C
KL(t8/d4, 1/2) · d log d
4λ⌈t2/2⌉(d− ⌈t2/2⌉) .
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Combining this with the bound β ≥ Cd/α(t) yields

β ≥ C
(KL(t8/d4, 1/2) · d log d) ∨ d

4λ⌈t2/2⌉(d− ⌈t2/2⌉) .

In the sparse PCA case, we have that τ2 is the number of 1s in the vector. Each vector in E may occur
with probability 1/

(
d
τ2

)
. Furthermore, it is easy to show that α(t)/8L ≳ t2(τ2∧(d−τ2))

τ3 . This implies that
⌊ r

2

2 ⌋ ≳ at,τ,d, with at,τ,d = t4(τ2∧(d−τ2))2

τ6 . We have that

π(Bα(t)/8L(θ0)) =
⌊ r2

2 ⌋∑
i=0

(
τ2

i

)(
d−τ2

i

)(
d
τ2

) ≥

(
τ2

at,τ,d

)(
d−τ2

at,τ,d

)(
d
τ2

) ≥
(
τ2 ∧ (d− τ2)

de

)2at,τ,d+τ2∧(d−τ2)

.

This results in
− log π(Bα(t)/8L(θ0)) ≲ (at,τ,d ∨ τ2) log d ≲ τ2 log d.

This bound yields the following condition on β for sparse PCA:

β ≳
log(1/γ) ∨ τ2 log d

λ⌈t2/2⌉(2τ2 − ⌈t2/2⌉2) .

Proof of Theorem 5.2. The conditions of Theorem 2.1 have been checked in Section 5 and applying Lemma
6.1 yields the following bound on n

n ≳
log(1/γ) ∨ d log k

λ2(1 − (1 − t2/2)k)2 .

It now remains to bound − log π(Bα(t)/8kλ(θ0)), which follows from applying Lemma B.1. As a result,
equation 6.7 reduces to

β ≳
log(1/γ) ∨ d log h((1 − (1 − t2/2)k)/8k)

λ(1 − (1 − t2/2)k) .

We restate the following result from (Ramsay et al., 2024) for convenience.
Lemma B.4 (Ramsay et al. (2024)). If π = N (η, ρ2I) with ρ ≥ 1/4, then for all E ⊂ Rd, all d > 2 and all
R ≤ ρ it holds that

− log π(BR(E)) ≲ d(E, η)2

ρ2 + d log
( ρ
R

∨ d
)
. (B.2)

17


	Additional graph of (t) from Section 3
	Auxiliary lemmas

