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Figure 1: Minimum excess risk a(t) for the example in Section

A Additional graph of «(t) from Section

Figure (1] displays a graph of «(t) for the example in Section

B Auxiliary lemmas

Lemma B.1. Define
1—1r2/4

r\/m—ﬂ/él.

Suppose that T is the uniform measure on S, For all d > 2 and all r > 0,

h(r) =

—log (B, (60)) S dlog (h(r A 1)).

Proof. In order to compute 7(B,(6p)), we must first compute the surface area of the set A = {z: |z| =
1, ||z —v/s|| < r}. Let Beta(a,b) be the Beta function and let I,.(a,b) be the regularized incomplete Beta

function. If r < v/2, then the set A is a spherical cap with radius R = r/1 — r2/4 and height H = r2/2,

which has surface area: d/2 pd—1

T4/ 2 R4 d—1
A(A) = TRT B —1/2]).
SMA) = Tz men H)/Rz( 2’ />

If r > /2, letting H' = 2 — r2/2, it follows that A has surface area:

/2 Rd-1 d—1

We focus on the case where 7 < /2, it then follows that

1 d—11
(B (6o)) = 3 “Ig(2RrR—H)/R? (2, 2) :

Now, define

9(r) = H2R —h)/R* = T@/Z /e

Note that ¢ is decreasing toward 0 as r — 0. One can show that for d > 2, we have that

d—1 1\ _ 2y7 (d N\ ' .,
Loy (=2 2) > ¢ /2-1/2,
9(”( 2 ’2>_d1<2 ) 9(r)
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Therefore, for

) 2/ <d _ 1>1/2g(74)d/2—1/2.
Taking the negated log gives that
—logm(By(6h)) < dlog(1/g(r)).
The result follows from the fact that h(r) = 1/g(r). O

Lemma B.2. Let g, be Tukey’s biweight function. Then, the VC dimension of the class of functions given
by {9.(XT0—Y): 0 € R} isd+ 1.

Proof. First, note that the class of real-valued linear functions on R?, denoted by .7, satisfies VC(.#) = d+1.
We can then write (X0 —Y)2 = ((XT0-Y)V (Y — XT0))2. Now, the subgraphs of {(XT6 —Y)V (Y —
XT70): 0 € R} are the union of the subgraphs of {Y — X 76: 0 € R?} and {X "6 — Y: 6 € R%}, which is
simply the set of subgraphs of linear functions. Thus, VC({(XT0 - Y)V (Y — XT0): 0 € R%}) = d + 1.
Next, note that g, can be written as

which is a monotonic function on R*. It follows from the permanence properties of VC-dimension, e.g., see
Lemma 7.12 of (Sen} 2018)), that

VC({ge(XT0-Y): 0 €cRY}) = VC(F) =d+ 1. O

Lemma B.3. Let X,Y be as in Section @ Then, for allt > \/d/n we have that

sup t §26_"t2/32.
fesd—1

Proof. Let Z = (Z1,...,2Z,), where Z is defined in Section [3| and let Z’ ~ N (v,I) be independent of Z.
Define

Zloga +(Xi,0)) —E,loga(Y(X,0))| >
n
i=1

= % Zlog 0((Z;,0)) —Eloga((Z',0)).

Note that gg are all 1/y/n-Lipschitz functions of Z. It follows that supycga—1 go is also a 1/y/n-Lipschitz
function of Z. A log—Sobolev inequality on finite-dimensional Gaussian space gives that

Pr < sup go(Z) > E sup go(2) +t> <e
fesd-1 fesd—1

We can further write

1 d
E sup go(Z2) =E sup go(Z) — sup go(0) + sup gp(0) < —=E IIZIIZ\/7~
pcsd—1 peSd—1 pesd—1 pcsd—1 \/ﬁ n

As a result, for t > y/d/n we have that

sup
0esd—1

Zloga (X;,0)) —E,logo(Y(X,6)) >t> < 2em/32,
n
=1
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Proof of Theorem[3.1 The conditions required for Theorem [2.I|have been checked in Section[3] and so we can
apply Lemma In this case, we have that tg = 4/d/n and so it suffices to have n > 8d/«(t). Furthermore,
in this case, ¢, ¢y are universal constants, and so the equation becomes n 2> (log(1/7) V d)/a(t)?. The
next step is to bound

—logm(B, 1) /5(v/avs) (00))-
An application of Lemma with r = a(t)/8(V/d V s) gives the result. O

Proof of Theorem[[.1 Let # = {6£(0,-,-)/k*: § € R4}. It follows from Lemma that VC(%#) =d+1
and that for any f € .# we have that ||f|] < 1. Thus, an application of Talagrand’s inequality (Talagrand
1994, Theorem 1.1), see also (Sen, 2018, Theorem 7.11), or (Kosorok, 2008, Theorem 9.3) implies that there
is some universal ¢ > 0 such that for all n > 1 and for all ¢ > 0, it holds that

Pr (gsu]é)d R, (0) — R(A)| > t) < edlos(en/d)=T2ni? /i (B.1)
€

Thus, Condition 3] is satisfied with to = 0, ¢; = (cn/d)? and ¢, = 72/k*. The remaining conditions of
Theorem [2.I] were checked in Section [4] thus, we can apply Lemma [6.1] The condition on n reduces to the
following

log(1/7) v d(log(=25) V' 1)
n2kK .
~ a(t)?
Then, Lemma of (Ramsay et al., [2024) (stated below for convienence) gives that

160 — nl|” kp(d V ||vl])
—logW(Ba(t)/sﬁ(\/g\/”v”)(ﬁo)) < 7p2 +dlog | ————* |.

a(t)

Combining this inequality with equation [6.7] yields the condition

_ Tog(L/) v [0 = alF /? + dlog (2240 .
=" alt) |

Proof of Theorem[5.1 The conditions of Theorem 2.1 were checked in Section [} thus, we can apply Lemma
Note that tg = C'y/d/n, which implies that the bounds in Lemma hold for n > d/a(t)?. Next, the
inequality equation [6.7| reduces to n > log(1/7)/a(t)?. It remains to bound — logm(B;(fy)) for each prior.
For 7 uniform on the unit sphere, applying Lemma yields that equation reduces to

log(1/7) v d (log h(t'(1 — £2/4)/16))

AR MA(1— 12/4)

In Rademacher prior PCA, we take  to be uniform on {£1}¢. For such a prior, we have that each vector
can be observed with probability 2¢. Computing B,.(6y) requires counting the number of vectors within
r of 6. The quantity |r?/2] gives the maximum Hamming distance between z € B,(fy) and 6. Let
Z ~ Binomial(d,1/2) and KL(p, q) be the Kullback—Leibler divergence of Binomial(1,p) with respect to
Binomial(1,q). Following |Ash| (1990), we have that there exists a universal constant ¢ > 0 such that

1
W(Ba(t)/BL(eo)) = 7T(Bt4/16d3/2 (90)) Z Pr (Z S Cts/dS) Z ﬁe_dKL(tS/d4’1/2).

This results in

—log m(Bya j1643/2(00)) S dKL(t*/d*,1/2) log d.
In this case, we have that
KL(t%/d*, 1/2) - dlogd

P2 e e)
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Combining this with the bound 5 > Cd/a(t) yields

(KL(t3/d*,1/2) - dlogd) V d
AA[t2/2](d — [t2/2])

p=C

In the sparse PCA case, we have that 72 is the number of 1s in the vector. Each vector in E may occur
2 2 2
with probability 1/(%). Furthermore, it is easy to show that a(t)/8L > M*T)). This implies that

4 2 2 2
Lg] 2 atr.d, with ag - q = CEAE=T))”  We have that

2

Ly i W . (72 A (d72)>2at,7,d+TzA(d—Tz>
= () T de '

<
[\J‘M

L

7(Ba)/sr(to)) =

This results in
—log m(Baty/sr(00)) S (atraV ) logd < 7% logd.

This bound yields the following condition on £ for sparse PCA:

5> log(1/7) vV 7%logd . 0
AlE2/2](272 = [£2/2]2)
Proof of Theorem[5.4 The conditions of Theorem [2:I] have been checked in Section [ and applying Lemma
[6-1] yields the following bound on n
S log(1/7) Vv dlogk
TN - (1= 2/2)R)

It now remains to bound —logm(Byt)/skr(00)), which follows from applying Lemma As a result,
equation [6.7] reduces to

log(1/7) V dlog h((1 — (1 — £2/2)")/8k)

NI— (1— 2/2)F) -

BZ
We restate the following result from (Ramsay et al., |2024)) for convenience.
Lemma B.4 (Ramsay et al. (2024)). If 7 = N (n, p>I) with p > 1/4, then for all E C R¢, all d > 2 and all
R < p it holds that
d(E,n)*

~logn(Br(E)) § <5~ + dlog (% v d) . (B.2)
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