
A PROOF OF THEORETICAL RESULTS
A.1 Proof of Theorem 3.4

T������ 3.4. The value of the optimal identical Blue team policy
q⇤�nite obtained from the �nite population game is within n of the
value of the optimal identical Blue team policy q⇤ obtained from the
equivalent zero-sum coordinator game. Formally, for all joint states
x#1 and y#2 ,

min
k#2

�# ,q⇤

�nite,k
#2

(x#1 , y#2 ) �min
k#2

�# ,q⇤,k#2
(x#1 , y#2 )  n, (8)

where n = O(1/
p
# ) and # = min{#1,#2}.

We have the following de�nition of the lower game value for
the �nite-population ZS-MFTG:

�# ⇤
(x#1 , y#2 ) = max

q#1 2�#1
min

k#2 2 #2
�# ,q#1 ,k#2

(x#1 , y#2 ) . (A.1)

Note that the maximization for the Blue team is being performed
over the set of all team policies �#1 , including identical as well
non-identical team policies. If we restrict ourselves to the set of
identical team policies � ✓ �#1 it follows immediately that

�# ⇤
(x#1 , y#2 ) � max

q#1 2�
min

k#2 2 #2
�# ,q#1 ,k#2

(x#1 , y#2 ). (A.2)

Suppose that q⇤�nite is the optimal identical Blue team policy ob-
tained from the �nite population game. It follows from (A.1) that
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(x#1 , y#2 ) � min

k#2 2 #2
�# ,q⇤

�nite,k
#2

(x#1 , y#2 ) . (A.3)

Furthermore, let q⇤ 2 � be the optimal identical Blue team pol-
icy obtained from the equivalent zero-sum (in�nite-population)
coordinator game and

min
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�nite,k
#2
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k#2 2 #2
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(A.4)

Using Theorem 3.3, and using (A.4), yields
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where # = min{#1,#2}. Upon rearranging terms, we �nally have,

min
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where n = O(1/
p
# ) .

A.2 Proof of Proposition 5.1
P���������� 5.1. With initial conditions `C=0 = [1, 0, 0]T and

aC=0 = [0, 1, 0]T, all mean-�eld optimal trajectories satisfy `⇤C = a⇤C =
[
1
3 ,

1
3 ,

1
3 ]

T for all C � 2, and `⇤1 = [0, 1 � [,[]T where [ 2 [
1
3 ,

2
3 ] and

a⇤1 = [0, 23 ,
1
3 ]

T. Furthermore, the unique game value is given by �
1
3 .

For the constrained RPS game under the stated initial condition,
we cannot obtain the target distribution

⇥ 1
3

1
3

1
3
⇤ T after a single

time step but this may be possible for C � 2. To this end, consider the
following candidate trajectory respecting the transition dynamics:

`T
0 =

⇥
1 0 0

⇤
,

`T
1 =

⇥
1 � G1 G1 0

⇤
,

`T
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⇥
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⇤
,

`T
C =

⇥ 1
3

1
3

1
3
⇤
, 8C > 2.

aT
0 =

⇥
0 1 0

⇤
,

aT
1 =

⇥
0 1 � ~1 ~1

⇤
,

aT
2 =

⇥
~3 1 � ~1 � ~2 ~1 + ~2 � ~3

⇤
,

aT
C =

⇥ 1
3

1
3

1
3
⇤
, 8C > 2.

In order to respect the simplex structure for `C and aC , we have the
following constraints at all times:

0  G1, G2, G3  1, G2  1 � G1, G3  G1 .

Similarly,

0  ~1,~2,~3  1, ~2  1 � ~1, ~3  ~1 .

For the distribution at C = 2 to be
⇥ 1
3

1
3

1
3
⇤ T for both teams, we

get the additional constraints

G3 = ~3 =
1
3
,

G1 + G2 � G3 = ~1 + ~2 � ~3 =
1
3
,

) G1 + G2 = ~1 + ~2 =
2
3
,

which implies that

G1,~1 
2
3
,

since G2,~2 � 0. The constraints now take the form

1
3
 G1 

2
3
, (A.5)

and similarly,
1
3
 ~1 

2
3
. (A.6)

The objective function for cRPS is given by

�# ,q,k �
`0,a0

�
= Eq,k

h )’
C=1

`T
C�aC

���`0,a0i, (A.7)

which leads to the optimization problem

max
qC

min
k C

�#1,#2,qC ,k C
(`0,a0) = `T

1�a1 . (A.8)

Substituting `T
1 = [1 � G1, G1, 0] and aT

1 = [0, 1 � ~1,~1] results in
the following expression for the maximizing Blue team:

max
qC

�#1,#2,qC ,k C
(`0,a0) = G1 + 2~1 � 3G1~1 � 1

= G1 (1 � 3~1) + (2~1 � 1) .



Since this equation is linear in G1, the solution to the maximiza-
tion problem subject to the constraint (A.5) is

G1 =
1
3
, ~1 >

1
3
, (A.9)

G1 =
2
3
, ~1 <

1
3
, (A.10)

G1 2 [
1
3
,
2
3
], ~1 =

1
3
. (A.11)

Following the same approach for the minimizing Red team, we
get the following objective,

min
k C

�#1,#2,qC ,k C
(`0,a0) = G1 + 2~1 � 3G1~1 � 1

= ~1 (2 � 3G1) + (G1 � 1),

subject to the constraint (A.6), with the solution being:

~1 =
1
3
, G1 <

2
3
, (A.12)

~1 =
2
3
, G1 >

2
3
, (A.13)

~1 2 [
1
3
,
2
3
], G1 =

2
3
. (A.14)

Constraint (A.5) ensures that (A.13) cannot hold, while constraint
(A.6) similarly prevents (A.10) from holding.

Consider now the case when ~1 > 1
3 . From (A.9) it follows that

G1 = 1
3 . Conversely, if the Blue team commits to a distribution with

G1 = 1
3 , the Red team’s best response given by (A.12) gives ~1 = 1

3 ,
resulting in an incentive for the Red team to deviate from ~1 > 1

3 .
Thus, (A.9) does not constitute an optimal solution. Following a
similar argument, it can be shown that (A.14) is not an optimal
solution either, as illustrated below.

Assume that G1 = 2
3 . From (A.14), ~1 2 [

1
3 ,

2
3 ]. Now, if the Red

team announces that it will deploy the distribution ~1 2 [
1
3 ,

2
3 ],

the Blue team’s response for G1 follows from (A.9) and (A.11). We
have already established that (A.9) is not an optimal solution. This
implies that G1 2 [

1
3 ,

2
3 ] can be a possible response to the Red

team. However it violates (A.14), where G1 = 2
3 follows from strict

equality. Thus, (A.14) does not constitute an optimal solution as
the Blue team has an incentive to deviate.

Now, suppose the Blue team announces a distribution where
G1 2 [

1
3 ,

2
3 ]. In this case, the Red team’s optimal response, derived

from (A.12) and (A.11), is ~1 = 1
3 . Conversely, if the Red team

announces that its distribution will be ~1 = 1
3 , the Blue team will

still follow G1 2 [
1
3 ,

2
3 ]. Since neither team has an incentive to

deviate from these distributions, they form an optimal trajectory.
Thus, the solution to the bilinear optimization problem for two-time
step convergence takes the form:

`⇤1 =
266664
1 � G1
G1
0

377775
and a⇤1 =

2666664

0
2
3
1
3

3777775
, (A.15)

such that G1 2 [
1
3 ,

2
3 ], leading to a game value of � 1

3 . This estab-
lishes the distribution at C = 1 and con�rms the existence of a
two-time step optimal trajectory, thereby proving the �rst part of
the proposition.

Now note the following:

(1) The original objective function (A.7) can be expressed in a
bilinear form (similar to the expressions for `0, `1, `2 using
G1, G2, G3). This makes it concave in the �rst argument and
convex in the second argument.

(2) The mean-�elds ` and a lie on a simplex and are hence,
compact and convex.

Thus, by the generalized version of von Neumann’s minimax theo-
rem [21], we conclude that the game value is unique, proving the
second part of the proposition 1.

B RPS AND cRPS SETUP
B.1 State Space
We have three states in this representation of the game: rock, paper
and scissors. We denote this state space as S = {R,P,S}. The
empirical distribution of the Blue team is denoted by ` 2 P(S) and
that of the Red team is denoted by a 2 P(S). Since we have three
states for each team, both EDs lie in a three-dimensional simplex
denoted by P(S).

B.2 Action Space
B.2.1 RPS. At each state, we de�ne three actions denoted by A =
{CW, CCW, Stay}. These actions represent the ability of the agents to
move from one state to the other in the following fashion:

(1) CW denotes a clockwise cyclic action from one state to the
other, i.e., from R ! P, P ! S, S ! R.

(2) CCW denotes a counterclockwise cyclic movement, i.e., from
R ! S, S ! P, P ! R.

(3) Stay denotes the idle action (remain in the same state as
before).

B.2.2 cRPS. At each state we have two actions denoted by A =
{CW, Stay}. These actions represent the ability of the agents to move
from one state to the other in the following fashion:

(1) CW denotes a clockwise cyclic action from one state to the
other, i.e., from R ! P, P ! S, S ! R.

(2) Stay denotes the idle action (remain in the same state as
before).

Thus, we cannot directly jump from R to S within a single step, but
must go via P. Mathematically, S does not lie in the reachable set of
R. The reachable set R(B) for each state B at a given time step under
this modi�ed action space is as follows

R(R) = {R, P}, R(P) = {P, S}, R(S) = {S, R}.

B.3 Dynamics and Transition Probabilities
For both RPS and cRPS, we consider deterministic transitionsT (B,0, B0),
which implies that given a state-action pair (B,0), the agent reaches
a unique next state B0 with certainty (no distribution over the reach-
able states). Thus, for state R and action Stay, the transition function
T : S ⇥A ⇥ S ! {0, 1} is given as:

T (R, Stay, R) = 1, T (R, Stay, P) = 0, T (R, Stay, S) = 0.

1Note: The optimal in�nite horizon trajectory itself need not be unique (we have
shown that G1 can take a range of values).



This implies that an agent in the state R upon taking the Stay action
remains in state R. Similarly,

T (R, CW, R) = 0, T (R, CW, P) = 1, T (R, CW, S) = 0.

represent the method to transition from R to P .

B.4 Reward Structure
In a two player RPS game, the reward matrix for Player 1 is de�ned
as:

� =
266664

0 �1 1
1 0 �1

�1 1 0

377775
.

We extend this two-player framework to the multi-agent team game
formulation. De�ne the pairwise reward for an agent at state G 2 S

within the Blue team and at state ~ 2 S from the Red team as

A (G,~) ¨ �G~,

where �G~ represents the element from the reward matrix � cor-
responding to the states G (row player) and ~ (column player). In
lieu of the zero-sum structure, the reward for the agent at ~ with
respect to G becomes �A (G,~). Thus, for each player G8 2 S and 8 =
1, 2, . . . ,#1 in the Blue team and ~ 9 2 S and 9 = 1, 2, . . . ,#2 in the
Red team, the reward for the Blue team can be de�ned as

'Blue (x, y) =
1
#1

#1’
8=1

h 1
#2

#2’
9=1

A (G8 ,~ 9 )
i

|                 {z                 }
reward for agent 8

.

Rewriting the term inside the square brackets as

1
#2

#2’
9=1

A (G8 ,~ 9 ) =
1
#2

’
~2S

#2’
9=1

A (G8 ,~)1~ 9=~

= �G8B0

#2’
9=1

1
#2

1~ 9=B0 +�G8B1

#2’
9=1

1
#2

1~ 9=B1

+�G8B2

#2’
9=1

1
#2

1~ 9=B2

= �G8B0a (B0) +�G8B1a (B1) +�G8B2a (B2)

= �(G8 )a, (B.16)

where �(G8 ) is the row of the reward matrix corresponding to state
G8 . Using (B.16), the total Blue reward can be expressed as

'Blue (x, y) =
1
#1

#1’
8=1

�(G8 )a

=
⇣ 1
#1

’
G2S

#1’
8=1

�(G8 )1G8=G
⌘
a

=
⇣
�(B0)` (B0) +�(B1)` (B1) +�(B2)` (B2)

⌘
a

= `T�a .

B.5 Implementation Details and
Hyperparameters

The state distributions are represented as arrays that are concate-
nated together to form the global observation. This becomes the
input to the critic network which consists of a single hidden layer
of 64 neurons and two tanh activation functions. The output is a
single value that is equal to the estimated value function. On the
other hand, the actor-network consists of a single MLP layer of
64 neurons that is concatenated with the local agent observation.
Additionally, the logits are converted to a probability distribution
through a softmax layer. The dimension scales with |A|. Both the
actor and critic networks are initialized using orthogonal initializa-
tion [7].

The single-stage RPS game is trained for 5,000 time steps with
the actor and critic learning rates set to 0.0005 and 0.001, respec-
tively, which remain constant throughout training. The networks
are updated using the ADAM optimizer [8] every 50 time steps for
10 epochs and a PPO clip value of 0.1. The entropy is decayed from
0.01 to 0.001 geometrically. We use an episode length of 1 after
which the rewards are bootstrapped.

Moreover, sincewe have a single “team” bu�er and the input/output
dimensions are small, we do not use a mini-batch based update.
For cRPS we use an episode length of 10 after which the rewards
are bootstrapped. cRPS is trained using 200,000 time steps (=20,000
episodes) and is updated every 100 time steps. The algorithm was
trained on a single NVIDIAGeForce RTX 3070 GPU and the training
times are given in Tables 1 and 2.

C BATTLEFIELD SETUP
C.1 State and Action Space
We consider a large-scale two-team (Blue and Red) ZS-MFTG on
an = ⇥ = grid world. The state of the 8C⌘ Blue agent is de�ned as
the pair G8 = (?G8 , B

G
8 ) where ?

G
8 2 Sposition denotes the position

of the agent in the grid world and BG8 2 Sstatus = {0, 1} de�nes
the status of the agent: 0 being inactive and 1 being active. Sim-
ilarly, we de�ne the state of the Red agent as ~8 = (?~8 , B

~
8 ). The

state spaces for the Blue and Red teams are denoted by X = Y =
Sposition ⇥Sstatus, respectively. The mean-�elds of the Blue (`) and
Red (a) teams are distributions over the joint position and status
space, i.e., `,a 2 P(Sposition ⇥Sstatus). The action spaces are given
by U = V = {Up, Down, Left, Right, Stay} for both teams, repre-
senting discrete movements in the grid world. The learned identical
team policy assigns actions based on an agent’s local position and
status, as well as the observed mean-�elds of both teams. In the fol-
lowing subsections, we elaborate on the weakly coupled transition
dynamics and reward structure introduced in the game, followed
by a detailed discussion of the training procedure and network
architecture for MF-MAPPO in this example.

C.2 Interaction Between Agents
The transitions between states for agents belonging to both teams
are characterized by their dynamics. These dynamics are proba-
bilistic and depend on interactions among agents and are weakly
coupled through their mean-�eld distributions. The weak coupling
dynamics is keeping in line with the assumption in [4].



An agent at a given grid cell can be deactivated by the opponent
team with a nonzero probability if the empirical mean-�eld of the
opponent team at the grid cell supersedes that of the agent’s own
team. Similarly, a deactivated agent can be revived if the empirical
mean-�eld of the agent’s team is greater than the opponent’s. This
is referred to as numerical advantage.

The total transition probability from a state (?, B) to (?0, B0) by
taking an action 0 is given by the product of transitioning from
(?0 | (?, B),0, `,a) and (B0 | (?, B),0, `,a). For simplicity, we consider
that the position transition does not depend on the mean-�eld and
the status transition does not depend on the action taken. For agent
8 belonging to the Blue team, the expression is formulated as

P
�
G 08 | G8 ,08 , `,a

�
= P

�
(?G

0

8 , BG
0

8 ) | (?G8 , B
G
8 ),08 , `,a

�
= P

�
?G

0

8 | (?G8 , B
G
8 ),08

�
P
�
BG

0

8 | (?G8 , B
G
8 ), `,a

�
.

Here, P
�
?G

0

8 | (?G8 , B
G
8 ),08

�
is given by

P
�
?G

0

8 | (?G8 , B
G
8 ),08

�
=

(
1, BG8 = 1 and no boundary
0, otherwise.

Calculating P
�
BG

0

8 | (?G8 , B
G
8 ), `,a

�
yields

P
�
1 | (?G8 , 1), `,a

�
= 1 � UG

�
a (?G8 ) � ` (?G8 )

�
,

P
�
0 | (?G8 , 1), `,a

�
= UG

�
a (?G8 ) � ` (?G8 )

�
,

and

P
�
1 | (?G8 , 0), `,a

�
= VG

�
` (?G8 ) � a (?G8 )

�
,

P
�
0 | (?G8 , 0), `,a

�
= 1 � VG

�
` (?G8 ) � a (?G8 )

�
,

where UG and VG are parameters that control the amount of activa-
tion and deactivation and

�
a (?G8 ) � ` (?G8 )

�
and

�
` (?G8 ) �a (?G8 )

�
are

the numerical advantages of the Red (over Blue) and Blue (over red)
teams at position ?G respectively. The values are clipped between
0 and 1. The Red team, being the defending team, is given a slight
advantage in terms of higher deactivation power. This enables the
possibility of capturing Blue team agents. However, to avoid degen-
eracy, the Red team agents are not allowed to penetrate the target ,
that is,

P
�
(?~

0

8 = Target) | (?~8 , B
~
8 ), E8

�
= 0 ?~8 < Target.

For our experiments, we assume UG = 15, U~ = 5, and VG = V~ = 0.

C.3 Reward Structure
The team rewards only depend on the mean-�elds of the two teams.
For the battle�eld scenario, the Blue team agents receive a positive
reward corresponding to the fraction of agents that reach the target
alive. This is a one-time reward that depends on the change in
the fraction of the population of the agents at the target, i.e., if
`C |target = `C+1 |target, then the team does not receive any positive
reward. Each agent in the team receives an identical “team reward.”
The reward function is mathematically formulated as

'Blue,C+1 (`,a) = ^ �`C+1 |target,

where,

�`C+1 |target = `C+1 (?
G = Target, BG = 1) � `C (?

G = Target, BG = 1) .

We have chosen ^ = 100 in our simulations (heavier emphasis
on reaching the target). The Red team’s reward is the negative of
the Blue team since we have a zero-sum game. Each team aims to
maximize its own expected reward.

C.4 Implementation and Hyperparameters
The state distribution for a grid world of size = ⇥ = is represented
as a three-dimensional array of size (2,=,=) for each team. The
�rst layer depicts the mean-�eld of the agents over an = ⇥ = grid
that are alive and active, while the second layer gives information
about the team’s deactivated population. Each team’s distribution
is then concatenated together to form the global observation. This
becomes the common information that is the input to the critic
network which in our case is of size (4,=,=) as we have two teams.
Both neural networks consist of two main parts: a convolutional
block and a fully connected block.

For the critic, the �rst CNN layer is the input layer that takes
the 4 channels and outputs 32 channels, with a kernel size of 3x3,
stride of 1, and padding of 1. Followed by ReLU activation, we have
a hidden layer that takes 32 channels and outputs 64 channels, with
the same kernel size, stride, and padding. Lastly, after another ReLU
activation, we have the output layer that takes 64 channels and
outputs 64 channels, again with the same kernel size, stride, and
padding. After another ReLU layer, the output of the CNN is passed
through an MLP. Namely, a fully connected (dense) layer takes the
�attened output of the convolutional block and reduces it to 128
units. Between the input and the output layers, we have a single
tanh activation function.

On the other hand, the input to the actor-network is split into
two CNN blocks: one to process the common information and one
to process the local information. The local information channel, is
an array of size (1,=,=) that locates the position of the agent with
value +1 if it is active and -1 if it has been deactivated. This local
information is passed through a single CNN layer that outputs 16
channels with a kernel size of 3x3, stride of 1, and padding of 1
while the common information is passed through two such layers
with the output of 32 channels. Both outputs are then followed
by a ReLU activation function and the latent representation of the
common information combined with the local agent observation is
then passed through an MLP architecture.

A fully connected (dense) layer takes the �attened output of the
convolutional block and reduces it to 512 units. We have a single
hidden layer that reduces the dimension further to 128 and then
the output logits. The layers are separated by the tanh activation
functions. Finally, the logits are converted to a probability distri-
bution through a so�max layer. Both the actor and critic networks
are initialized using orthogonal initialization [7]. The architectures
of the shared-team actor and minimally-informed critic networks
for this example are shown in Figures C.1 and C.2 respectively.

All maps are trained using a single NVIDIA GeForce RTX 3070
GPU. The actor and critic learning rates are set to 0.0005 and 0.001
and both decay geometrically by a factor of 0.999. The networks
are updated using the ADAM optimizer [8] with two mini-batches
for 10 epochs and a PPO clip value of 0.1. The entropy coe�cient
is initialized to 0.01 and decays with a factor of 0.995.



Figure C.1: MF-MAPPO: Shared-team actor for battle�eld

Figure C.2: MF-MAPPO: Minimally-informed critic for bat-
tle�eld

Maps 1 and 2 which are 4 ⇥ 4 grid worlds are trained for 5 ⇥ 106
and 4.5⇥ 106 time steps, respectively, and in both cases, the episode
length is 20 time steps and the update frequency is every 500 time
steps. The total training period is about one day. On the other hand,
Map 3 being 8 ⇥ 8 in dimension, has an episode length of 64, is
trained for 9⇥106 time steps and its network is updated every 1,000
time steps. The total training period is approximately three days.

D ADDITIONAL RESULTS
In this section, we present additional simulation results from the
zero-sum battle�eld game.

D.1 Validation Cases for MF-MAPPO
The following subsection qualitatively discusses the battle�eld
game for di�erent map layouts. For these results, both teams are
deploying policies trained using MF-MAPPO.

Map A. The �rst map is a simple 4 ⇥ 4 grid world with a single
target that we use to validate our algorithm. The target is partially
blocked by an obstacle, see Figure D.3. For the initial condition in
Figure D.3, the Blue team is initially split into two equal groups.
The Blue team decides to merge the two sub-groups of agents into a
single group. With this formation, the Red team has zero numerical
advantage over the Blue team when they encounter in (g), resulting
in all Blue agents safely arriving at the target. In comparison, if
the two Blue subgroups do not merge but move toward the target
one at a time, it will lead to 50% of the Blue team population being

deactivated (�rst subgroup), followed by the remaining 50% (second
subgroup). This demonstrates how the observation of mean-�eld
distributions guides rational decision-making.

Figure D.3: Red is concentrated; Blue is evenly split.

Map B. This map is identical to the one presented in Section
5.3. In the �rst scenario (Figure D.4), 70% of the Blue agents start
at cell [2, 2], and 30% at cell [1, 1], while the Red team is evenly
split between cells [0, 1] and [3, 3]. Half of the Red team at [0, 1]
successfully blocks the 30% Blue agent group from entering the
left corridor due to its numerical advantage, which forces the Blue
agents to opt for the right corridor. At the same time, the larger
Blue group with 70% of the population utilized their numerical
advantage over the half Red team at the top right and deactivated
all the Red agents as shown in (c) and reached the target at time
step (d). This allowed the smaller 30% group to follow through the
same corridor without losing agents.

Figure D.4: Red is evenly split; 30% Blue are at [1, 1] and 70%
are at [2, 2].

In the second scenario (Figure D.5), with the Red team evenly
distributed at the corners, 30% of the Blue agents start at cell [2,
2] and 70% at cell [3, 1]. The Red team’s numerical advantage at
[3, 3] forces the Blue agents to move around and regroup (Figures
D.5(b)-D.5(f)). Once united, the Blue team’s numerical advantage
forces the Red subgroup at [0,1] to disperse to avoid deactivation,
allowing Blue to reach the target.

Figure D.5: Red is evenly split; 70% Blue are at [3, 1] and 30%
are at [2, 2].



Map C. Subsection 5.3 presented scenarios featuring structured
initial con�gurations for both teams over an 8 ⇥ 8 grid. It is im-
portant to emphasize, however, that the algorithm is trained on
a diverse set of initial conditions for a given map, ranging from
agents concentrated within a few selected cells to agents distributed
randomly across the grid world. The following examples demon-
strate that the teams are able to accomplish their objectives even
in scenarios where agents are dispersed across the environment
rather than clustered into just 1-2 subgroups.

In Figure D.6, the Blue team is initialized randomly, and local
subgroups of agents emerge and coordinate to reach the target.
This behavior is particularly pronounced near the upper target,
where a greater numerical advantage facilitates successful coalition
formation (Figures D.6(c)–(e)).

Figure D.6: Blue team is randomly spread around the map.

Turning to the randomly distributed Red team agents in Fig-
ure D.7, it is observed that they concentrate near the two target
entrances and successfully neutralize most Blue team subgroups.

Figure D.7: Red team is randomly spread around the map.

D.2 Comparison with Baseline
Initial Condition 1. We focus on the same initial conditions as

in Figure 9, but now pit the Blue team against the MF-MAPPO
defenders instead of the DDPG-MFTG defenders (Figures 9(c) and
D.8). The results align with those in Figure 8, where MF-MAPPO
Blue agents e�ectively leverage their numerical advantage, enabling
a larger number of agents to reach the target.

Figure D.8: MF-MAPPO Red vs. DDPG-MFTG Blue.

Initial Condition 2. In Figures D.9 and 10(c), the defenders deac-
tivate the Blue agents under both algorithms. However, similar to
the results in Figure 10, MF-MAPPO agents actively learn to block
the targets.

Figure D.9: MF-MAPPO Blue vs. DDPG-MFTG Red.

Initial Condition 3. We present a �nal initial condition for the
4 ⇥ 4 Battle�eld game (Figure D.10, where, using similar arguments
as in the previous two cases, we can establish the superiority of
MF-MAPPO agents over the baseline DDPG-MFTG, whether MF-
MAPPO serves as the attacker or the defender.

Figure D.10: a. MF-MAPPO Blue vs. DDPG-MFTG Red; b.
DDPG-MFTG Blue vs. DDPG-MFTG Red; c. MF-MAPPO Red
vs. DDPG-MFTG Blue; d. MF-MAPPO Red vs. MF-MAPPO
Blue.


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Zero-Sum Mean-Field Team Game
	3.2 Large-Population Optimization
	3.3 Infinite-Population Solution

	4 Mean-Field Multi-Agent Proximal Policy Optimization
	4.1 Minimally-Informed Critic
	4.2 Shared-Team Actor
	4.3 Scalability of MF-MAPPO

	5 Numerical Experiments
	5.1 Rock-Paper-Scissors (RPS)
	5.2 Constrained Rock-Paper-Scissors (cRPS)
	5.3 Battlefield Game

	6 Conclusion
	Acknowledgments
	References
	A Proof of Theoretical Results
	A.1 Proof of Theorem 3.4
	A.2 Proof of Proposition 5.1

	B RPS and cRPS Setup
	B.1 State Space
	B.2 Action Space
	B.3 Dynamics and Transition Probabilities
	B.4 Reward Structure
	B.5 Implementation Details and Hyperparameters

	C Battlefield Setup
	C.1 State and Action Space
	C.2 Interaction Between Agents
	C.3 Reward Structure
	C.4 Implementation and Hyperparameters

	D Additional Results
	D.1 Validation Cases for MF-MAPPO
	D.2 Comparison with Baseline


