
Under review as a conference paper at ICOMP 2024

EXPLORING APPLICATIONS OF STATE SPACE MODELS
AND ADVANCED TRAINING TECHNIQUES IN SEQUEN-
TIAL RECOMMENDATIONS: A COMPARATIVE STUDY
ON EFFICIENCY AND PERFORMANCE

Baderko Makar∗
makarbaderko@gmail.com

Kulibaba Stepan∗

kulibabast@gmail.com

Obozov Mark∗

obozovmark9@gmail.com
Nikolay Kutuzov
kutuzov.nv@phystech.edu

Alexander Gasnikov
gasnikov@yandex.ru

ABSTRACT

Recommender systems aim to estimate the dynamically changing user preferences
and sequential dependencies between historical user behaviour and metadata. Al-
though transformer-based models have proven to be effective in sequential recom-
mendations, their state growth is proportional to the length of the sequence that is
being processed, which makes them expensive in terms of memory and inference
costs. Our research focused on three promising directions in sequential recom-
mendations: enhancing speed through the use of State Space Models (SSM), as
they can achieve SOTA results in the sequential recommendations domain with
lower latency, memory, and inference costs, as proposed by Liu et al. (2024); im-
proving the quality of recommendations with Large Language Models (LLMs) via
Monolithic Preference Optimization without Reference Model (ORPO); and im-
plementing adaptive batch- and step-size algorithms to reduce costs and accelerate
training processes.

1 INTRODUCTION

Modern digital products are heavily dependent on the performance of the recommender systems, that
are frequently utilized to predict future interactions of customers based on their historical behaviour.

While recurrent neural networks (RNNs) and convolutional neural networks (CNNs) led the way
in the use of neural networks in sequential recommendation, they suffer from the forgetting issue
Kirkpatrick et al. (2017). Recently, researches were able to introduce the Transformer-based models
into the field Li et al. (2023).

Due to the quadratic computational cost, these attention-based approaches typically suffer from the
inference inefficiency problem despite their impressive performance.

SSM models have been adopted as a replacement for RNNs and CNNs, with Liu et al. (2024)
being an example. We develop this idea further, while introducing a novel state-of-the-art sequential
recommender model Hydra4Rec, based on the architecture proposed in ?.

∗These authors contributed equally to this work.

1

Under review as a conference paper at ICOMP 2024

1.1 RELATED STUDY

1.1.1 SEQUENTIAL RECOMMENDATION TASK DEFINITION

Consider the user set U = {u1, u2, ..., uN}, item set V = {v1, v2, ..., vK} and Su =
{v1, v2, ..., vnu} as the chronologically ordered interaction sequence for user u ∈ U , where nu

is the the length of the sequence. Given Su the task is to predict the next interacted item, vnu+1.

1.1.2 TRANSFORMERS

Recently, transformer models have been shown to be effective in sequential recommendation tasks
as the backbone of larger models Kang & McAuley (2018) and as individual LLMs Li et al. (2023),
Yue et al. (2023). Despite their success, attention-based methods face inference inefficiencies due to
the quadratic computational complexity inherent in attention operators and their rapid state growth,
which is proportional to the sequence length. Also, without special mechanisms Liu et al. (2023),
transformers can’t handle long contexts and, consequently, long user histories.

1.1.3 STATE SPACE MODELS

State Space Model (SSM) is a recent framework for sequence modelling defined by linear ordinary
differential equations:

h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t)

Where A,B,C are learnable matrices, h(t) is the latent space, x(t) is the input sequence and y(t)
is the output sequence. To compute sequence-to-sequence transformations efficiently, the matrix A
must be structured, so structured SSMs have been introduced Gu et al. (2022). A general form of a
structured SSM is defined by the equations:

ht = Aht−1 +Bxt

yt = Cht

Where A ∈ R(N,N), B ∈ R(N,1), C ∈ R(N,1). They map a 1-dimensional sequence x ∈ RT → y ∈
RT through an implicit latent state h ∈ R(T,N). To operate directly on sequences, the discretisation
rule (fA, fB) is applied to continuous parameters (∆, Å, B̊), by A = fA(∆, Å) and B = fB(∆, B̊),
where ∆ is the parameterised step size.

1.1.4 MAMBA BLOCK

In order to adaptively focus on relevant information while filtering out noise, the Mamba block Gu
& Dao (2024) introduces an extension to structured SSMs by adding a data-dependent selection
mechanism. An important feature of Selective SSMs is their ability to be computed efficiently on
the GPU using kernel fusion, parallel scanning and recomputation mechanisms.

In contrast to transformers’ O(n2 · d), SSMs provide O(n · d2) complexity, which makes them a
more efficient alternative, especially when operating on long sequences (Dao & Gu (2024)) .

1.1.5 MAMBA APPLICATIONS TO SEQUENTIAL RECOMMENDATIONS

Several applications of Mambas selective SSMs to recommender systems have been introduced. Liu
et al. (2024), Wang et al. (2024). As Mamba has already shown efficient results in different areas
Zhu et al. (2024) Erol et al. (2024) Chen et al. (2024), we propose a more complex exploration of
Mamba applications to recommender systems.

2

Under review as a conference paper at ICOMP 2024

1.2 HYDRA

Hydra fully utilize the matrix mixer framework, to explore a novel bidirectional sequence mixer.
To achieve linear complexity, special class of quasiseparable matrices is considered. A matrix M is
quasiseparable if every label element mij satisfies:

mij =

−→
cTi
−−→
A×

i:j

−→
bj , if i > j

δi, if i = j
←−
cTj
←−−
A×

j:i

←−
bi , if i < j

, (1)

where each δi is a scalar, i,i ∈ RN×1, and i ∈ RN×N ?. Quasiseparable matrices can be used as ma-
trix mixers, this framework is named as Hydra, achieving O(L) complexity. Based on an important
property of quasiseparable matrices - quasiseparable matrices can be expressed as a combination of
two semiseparable matrices - a subquadratic matrix multiplication algorithm was developed. Then,
as a semiseparable matrix structure includes SSMs Dao & Gu (2024), any SSM could be combined
with the Hydra framework, resulting in a new efficient bidirectional SSM architecture.

1.2.1 UNIVERSAL GRADIENT METHOD FOR STOCHASTIC OPTIMIZATION

The release of the Universal Stochastic Gradient Method (USGM) by Rodomanov et al. (2024)
represents a noteworthy development in the field of stochastic optimization, that is the backbone of
machine learning.

The classical Stochastic Gradient Descent (SGD) by Robbins (1951) is one of the earliest techniques
in the field of stochastic optimization. Its novelty at the time of publication helped it gain popularity.
However, because hyperparameter values are only defined prior to the start of the training phase,
SGD achieves poor convergence rates in real-world applications.

A number of SGD-based adaptive strategies, including Adam by Kingma & Ba (2017) and Adagrad
by Duchi et al. (2011), have been put forth to address the issue. Although they are more efficient
than SGD, because they modify the step size according to the aggregate of the previous gradients,
when applied to non-convex optimization problems, they might still experience difficulty achieving
convergence.

The USGM develops the idea of adaptiveness further, as the algorithm can adapt to the curvature
of the loss function, thus providing more accurate gradient estimates even in highly noisy envi-
ronments. Classic optimization algorithms are typically designed to handle either smooth or non-
smooth problems. USGM, however, is an algorithm capable of addressing both classes of problems
and adapting to oracle noise with unknown variance. The algorithm can adjust to Hölder-Lipschitz
coefficients without requiring precise calculation of those. The only hyperparameters used by the
algorithm are the upper bound on the diameter of the search hypersphere, the initial learning rate
and batch size, what makes it a more practical choice for real-world applications.

Notation

The same mathematical notation as in the original USGM paper will be used.

The loss function is defined as f and the parameters of our model are defined as x.

To characterize the smoothness of f the Hölder constant is introduced for each ν ∈ [0, 1]:

Lν := sup
x,y∈Domf,x̸=y,

g(x)∈∂f(x),g(y)∈∂f(y)

∥g(x)− g(y)∥∗
∥x− y∥ν

, (1.1)

where g(x) and g(y) are the stochastic approximations of subgradients of our loss function f at
points x and y respectively.

The dual norm is defined in the standard way:

∥s∥∗ := max
∥x∥=1

⟨s, x⟩ = ⟨s,B−1s⟩1/2, s ∈ Rn. (1.2)

3

Under review as a conference paper at ICOMP 2024

Of course, for certain values of the exponent ν ∈ [0, 1], it may happen that Lν = +∞. However,
we assume that there exists (at least one) exponent for which the corresponding Hölder constant is
finite.

For any t ∈ R, by [t]+ := max{t, 0}, its positive part is denoted. For random variables X and ξ,
by Eξ[X] and E[X], the expectation of X w.r.t. ξ, and the full expectation of X , respectively are
denoted.

Algorithm 1 Universal Stochastic Gradient Method

1: Initialize: x0 ∈ dom f , D > 0, H0 := 0, g0 ∼ ĝ(x0).
2: for k = 0, 1, . . . do
3: xk+1 = argminx∈dom f{⟨gk, x⟩+ Hk

2 ∥x− xk∥2}.
4: gk+1 ∼ ĝ(xk+1).

5: Hk+1 := Hk +
[β̂k+1− 1

2Hkr
2
k+1]+

D2+ 1
2 r

2
k+1

,

6: where rk+1 = ∥xk+1 − xk∥, β̂k+1 = ⟨gk+1 − gk, xk+1 − xk⟩.
7: end for

The authors of the paper also define the upper bound for the stochastic approximation of the sym-
metrized Bregman distance for points xk and xk+1 (β̂k+1) as follows:

β̂k+1 = ⟨f ′(xk+1)− f ′(xk) + ∆k+1, xk+1 − xk⟩ ≤ Lνr
1+ν
k+1 + σk+1rk+1, (1.3)

where f ′(xk) := Eξk [gk] ∈ ∂f(xk), ∆k+1 := δk+1 − δk with δk := gk − f ′(xk) being the error of
the stochastic gradient (such that E∥δk∥2 ≤ σ2), and σk+1 := ∥∆k+1∥.

2 ODDS RATIO PREFERENCE OPTIMIZATION

Odds Ratio Preference Optimization (ORPO), Hong et al. (2024) - is novel preference optimization
framework that consolidates an odds ratio-based penalty.

The odds of generating the output sequence y given an input sequence x are defined by:

logPθ(y|x) =
1

m

m∑
t=1

logPθ(yt|x, y < t) (2)

oddsθ(y|x) =
Pθ(y|x)

1− Pθ(y|x)
(3)

The odds ratio of the chosen response yw over the rejected response yl, ORθ(yw, yl), indicates how
much more likely it is for the model θ to generate yw than yl given input x.

ORθ(yw, yl) =
oddsθ(yw|x)
oddsθ(yl|x)

(4)

2.1 OBJECTIVE FUNCTION OF ORPO

The objective function of ORPO consists of two components: 1) supervised fine-tuning (SFT) loss
(LSFT); 2) relative ratio loss (LOR).

LORPO = E(x,yw,yl) [LSFT + λ · LOR] (5)

LSFT follows the conventional causal language modelling negative log-likelihood (NLL) loss func-
tion to maximise the probability of generating the reference tokens. The LOR in the equation max-
imises the odds ratio between the likelihood of generating the unfavourable response yw and the
favourable response yl.

4

Under review as a conference paper at ICOMP 2024

LOR = − log σ

(
log

oddsθ(yw|x)
oddsθ(yl|x)

)
(6)

Together, LSFT and LOR weighted with λ tailor the pre-trained language model to adapt to the
specific subset of the desired domain and disfavor generations in the rejected response sets.

2.2 GRADIENT OF ORPO

The gradient of LRatio further justifies the use of the odds ratio loss. It consists of two terms: one
that penalises wrong predictions and one that contrasts between selected and rejected answers, for
d = (x, yl, yw) ∼ D.

∇θLOR = δ(d) · h(d) (7)

δ(d) =

[
1 +

oddsθP (yw|x)
oddsθP (yl|x)

]−1

(8)

h(d) =
∇θ logPθ(yw|x)
1− Pθ(yw|x)

− ∇θ logPθ(yl|x)
1− Pθ(yl|x)

(9)

If the probabilities of the favoured responses are relatively higher than the disfavoured responses,
δ(d) in the equation will converge to 0. This indicates that the δ(d) will play the role of a penalty
term, speeding up the parameter updates when the model is more likely to generate the disfavoured
responses.

Meanwhile, h(d) implies a weighted contrast of the two gradients from the chosen and rejected
responses. Specifically, 1 − P (y|x) in the denominators amplifies the gradients when the corre-
sponding side of the likelihood P (y|x) is low. As the likelihood increases, the model adapts more
quickly to the distribution of selected responses.

3 OUR RESULTS

3.1 2MAMBA4REC

To compare the Mamba2 model more fairly with its predecessor (Mamba1) we used the model
architecture from the Mamba4Rec article by Liu et al. (2024), replacing the Mamba block with the
Mamba2 block introduced by Dao & Gu (2024).

3.2 MAMREC

We implemented the standard GPT4Rec architecture from Li et al. (2023) while replacing the GPT-
2 model Radford et al. (2019) with a Mamba2 Dao & Gu (2024) model in order to achieve better
performance.

3.3 HYDRA LAYER

To apply the sequence-to-sequence potential of the Hydra block Hwang et al. (2024), we provide a
custom Hydra layer that combines the Hydra block with a standard feed-forward network. The main
part of our standard architecture consists of Hydra layers. We have found that Hydra layers work
more effectively than standard Mamba layers in several cases. Then we use the same PFFN that was
introduced in Mamba4Rec Liu et al. (2024)

PFFN(H) = GELU(HW (1) + h(1))W (2) + b(2)

Where W (1) ∈ RD×4D, W (2) ∈ RD×4D, b(1) ∈ RD are parameters of two dense layers and we use
GELU activation.

5

Under review as a conference paper at ICOMP 2024

3.3.1 PREDICTION LAYER

Prediction layer is adopted from SASRec and Mamba4Rec, last item embedding is used to generate
the final prediction scores:

ŷ = Softmax(hET) ∈ R|V |

where h ∈ RD is the last item embedding from the Hydra layer and ŷ ∈ R|V | represents the
probability distribution over the next item in the item set V .

3.4 BENCHMARKS

We tested our models on 3 benchmarks: Amazon Reviews ’23 Beauty and Personal care, Amazon
Reviews ’23 Video Games and MovieLens-1M.

All experiments were conducted using the same initial hyperparameters for better interpretability.

The number listed in parentheses after the number of parameters of each models is the number of
parameters after deducting the size of all embedding layers if present.

3.4.1 LATENCY

For the LLMs, the measure tokens-per-second was selected, whilst the average time to generate
suggestions for a single user was chosen to compare the others.

Since all of the latency values that we are dealing with are relatively small, it is important to ascer-
tain the measurement’s margin of error in order to comprehend the experimental results that were
produced.

Consequently, the bootstrap sampling method was applied. 30 samples comprising 1500 users ran-
domly chosen from the original dataset were used to individually measure the latency values. Fol-
lowing the removal of outliers, the distribution of the latencies was examined, and the confidence
intervals were computed.

The latency measurements were performed on one Nvidia A100-80GB graphics card.

3.4.2 INTERPRETATION OF RESULTS

It is evident that Hydra shows metrics that are similar, sometimes better to those of Mamba, but its
latency is four to five times lower. Simultaneously, models such as LlamaRec exhibit superior per-
formance; however, their substantial parameter count may constrain their applicability in real-world
situations. Metrics-wise and latency-wise, SSM-based models outperform the baseline SASRec
model on average.

According to the study, SSMs can outperform LLMs while still operating at a greater speed, since
they require less number of parameters.

Table 1: Amazon Reviews ’23 Beauty and Personal care

Model HT@10 NDCG@10 MRR@10 Latency # Parameters

SASRec 0.048 0.028 0.022 0.117 14M (100k)
Mamba4Rec 0.048 0.030 0.025 0.0075 14M (80k)
MamRec 0.031 0.020 0.017 2.51 130M
GPT4Rec 0.030 0.025 0.015 2.32 117M
2Mamba4Rec 0.048 0.031 0.028 0.0110 14M (80k)
LlamaRec 0.093 0.040 0.040 - 7B
Hydra4Rec 0.070 0.043 0.035 0.0042 840k

6

Under review as a conference paper at ICOMP 2024

Table 2: Amazon Reviews ’23 Video Games

Model HT@10 NDCG@10 MRR@10 Latency # Parameters

SASRec 0.119 0.073 0.059 0.129 1.8M (100k)
Mamba4Rec 0.107 0.062 0.048 0.0088 1.8M (80k)
MamRec 0.083 0.033 0.025 2.51 130M
GPT4Rec 0.080 0.042 0.026 2.32 117M
2Mamba4Rec 0.118 0.061 0.048 0.0103 1.8M (80k)
LlamaRec 0.150 0.098 0.064 - 7B
Hydra4Rec 0.112 0.059 0.044 0.0037 750k

Table 3: MovieLens-1M

Model HT@10 NDCG@10 MRR@10 Latency # Parameters

SASRec 0.224 0.117 0.084 0.128 320k (100k)
Mamba4Rec 0.303 0.178 0.139 0.0020 300k (80k)
MamRec 0.201 0.072 0.064 2.51 130M
GPT4Rec 0.212 0.074 0.060 3.23 117M
2Mamba4Rec 0.340 0.193 0.148 0.0034 300k (80k)
Hydra4Rec 0.308 0.179 0.140 0.0005 290k
LlamaRec 0.148 0.067 - - 7B

3.5 APPLICATION OF ORPO TO RECOMMENDER SYSTEMS

To improve quality and incorporate human preference into the LLM, we used the ORPO technique
described above. Main motivation is ability to slightly improve quality of the large model, showing
the potential of preference optimization techniques in recommeder systems.

3.5.1 BASELINE

As a baseline, we considered the standard LlamaRec pipeline with Llama 7B LLM. Both retrieval
and LLM were fine-tuned as described in the LlamaRec paper prior to the ORPO procedure.

3.5.2 DATA

We used the standard LlamaRec format. To construct the text input, we prepend an instruction to
describe the task, followed by both history and candidate items, represented by their titles. Our
prompt template is: ” Instruction: Given the user’s history in chronological order, recommend an
item from the candidate pool with its index letter; Input: User history: history ; Candidate pool:
candidates ; Answer: label ” where history, candidates and label are replaced by history item titles,
candidate item titles and the labeled of each data item. For inference, the label position is left empty
for the model to provide predictions.

We then created a pair data set, where each pair consists of a winner and a loser. It consists of
2 parts. The first part was created from the last 2 items from the user history, where the winner
is the item with the higher rating and the loser the opposite. To create the second part, we used
negative sampling training LightFM model and took the last user’s movie as the winner and the
worst recommendation of LightFM as the loser.

3.5.3 EXPERIMENTAL SETUP

For the ORPO procedure we used lr = 8e-6, ORPO uses very low learning rates compared to tradi-
tional SFT or even DPO. This value of 8e-6 comes from the original paper. beta = 0.1 An appendix
from the original paper shows how it’s been selected with an ablation study. We use paged adamw
optimizer with gradient accumulation steps = 4. We train for 1 training epoch and evaluate each 0.2

7

Under review as a conference paper at ICOMP 2024

steps, also we set warmup steps to 10. We use linear scheduler type. Other parameters are dependant
on capabilities of your resources. Training was proceed on 1 A100 80GB videocard.

3.5.4 ORPO RESULTS

Figure 1: Video-Games Figure 2: ML-1m

ORPO procedure provide slight impact on LLM perfomace not affecting original latency. See Figure
2 and 3.

3.6 ADAPTIVE BATCHING

3.6.1 ALGORITHM

We were able to apply the concept of adaptive batching to the aforementioned algorithm (USGM)
and enhance its performance in training SSMs in the sequential recommendations domain. The
approach presented in this section is novel, since adaptive batching techniques have never been
applied to the Rodomanov et al. (2024).

In stochastic optimization, the variance of the gradient estimates reduces as the batch size increases.
Specifically, the variance decreases proportionally to 1

B . Concurrently, the standard deviation (σ)
of the gradient estimates decreases at the rate of 1√

B
. From here 1.3 , we can derive the equation

2.1 Thus, the variance and standard deviation of the gradient estimations decrease as the batch size
increases. But as the batch size increases, the impact of this reduction decreases. Additional bigger
increases in batch size result in insignificant decreases in variance, as accuracy gains have landed on
a plateau. Therefore, increasing the batch size further at this stage is not effective, since it will not
provide any improvements in accuracy, but will require additional computational resources.

β̂k+1 ≤ Lνr
1+ν
k+1 +

σk+1rk+1√
B

, (2.1)

Further into the paper we will consider this upper estimate an equality to indirectly calculate the
values of Lνr

1+ν
k+1 and σk+1rk+1, since we know the exact value of β̂k+1 on each iteration of the

algorithm.

As the coefficient β̂k+1 is computed on every iteration of the algorithm and the batch size is known,
we can use the Weighted Least Squares method (with loss defined by the equation 2.2) in linearized
axes (1√

B
as the X axis and the β̂k+1 as the Y axis) to compute the values of Lνr

1+ν
k+1 and σk+1rk+1,

the intercept and the slope of the linearized function respectively.

L =

K∑
k=0

(F (c1, c2, Bk)− β̂k+1)
2 · (1− α)K−k, (2.2)

8

Under review as a conference paper at ICOMP 2024

where F is the sought function F = c1 + c2√
B
≈ β̂k+1, c1 and c2 are the values of Lνr

1+ν
k+1 and

σk+1rk+1 respectively, predicted by the WLS algorithm. The value of alpha was empirically set to
α = 0.01, s.t. the first points almost diminish.

In the proposed algorithm, we will increase the batch size on each iteration (Bk := Bk−1 + B0) if
c1 ̸= c2

sqrt(B) and recalculate the values of c1 and c2 using WLS (L →
c1,c2

min).

When we reach the plateau (c1 = c2√
B

), we fix the current batch size until the end of the epoch. We
consider this batch size perfect w.r.t the current conditions and label it as B∗

i .

Figure 3: Training results

When the epoch ends, we lower the batch size (Bi :=
Bi−1k

λ), since the perfect batch size (B∗
i)

could have changed since the last epoch. However, if it’s bigger than Bi−1k

λ , the algorithm will
increase it during the next iterations. By doing so, we give the algorithm the ability to not continue
training with excessive resource if the calculated batch size turns out to be too big in the current
circumstances or to increase it even more if needed.

Since Bk := Bk−1 + B0, Bk = mkB0 : ∀k (mk ∈ Z). That means we can use the original
Dataloader class from PyTorch (Paszke et al. (2019)) wihout any modifications and take mk batches
of initial size (B0) on each iteration.

Experiments have shown that the use of values of beta and the batch size only from the current
epoch in WLS almost do not change the desired Batch size (Bi) in comparison with using all of
the previous values recorded during the training procedure. This proves that the values of c1 and c2
are, indeed, true for all parts of the loss landscape as we can see during the training procedure. This
fact goes along well with the proposed theoretical assumptions, as these coefficients in part consist
of values, that are constant for the whole function (the Hölder-Lipschitz constant Lν) and therefore
should not change when we adjust the values of model’s parameters x during optimization.

Since the number of iterations of the algorithm with adaptive batching and of those, with which it
was compared, differs, since the equality Niterations =

Dataset sise
Batch size = const is not true for the proposed

algorithm, a scaled measure, which is proportional to the epoch number is used as the X axis in the
comparison plot, displayed in the Figure 3.

The experiments conducted using the 2Mamba4Rec pipeline, introduced in this paper, on the
MovieLens-100k dataset have shown promising results regarding the innovative adaptive batch-
ing algorithm, applied to the USGM optimization algorithm by Rodomanov et al. (2024), when
compared with the well-known Adam optimizer by Kingma & Ba (2017).

9

Under review as a conference paper at ICOMP 2024

4 DISCUSSION

Limitations. ORPO and LLM related procedures require a lot of computational resources, espe-
cially for larger models. LLM inference itself also requires optimization, but this does not make
them unusable in real tasks. SSM based models might have poor CPU performance due to their
structure and implementation. Furthermore, optimizer that we proposed has poor robustness among
its hyperparameters.
Potential impact. We believe that ideas and obtained results from our work can inspire the commu-
nity to continue the research in the field of recommender systems.
Broader impact. The goal of this paper is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.

ACKNOWLEDGMENTS

The paper was written from July 1 to July 24 as a part of the Sirius ”Big Challenges” project pro-
gramme in the ”Big Data, Artificial Intelligence, Financial Technologies, and Machine Learning”
category. We express our appreciation to MIPT, the Moscow Institute of Physics and Technology,
for providing the computational resources required to finish this study.

REFERENCES

Guo Chen, Yifei Huang, Jilan Xu, Baoqi Pei, Zhe Chen, Zhiqi Li, Jiahao Wang, Kunchang Li, Tong
Lu, and Limin Wang. Video mamba suite: State space model as a versatile alternative for video
understanding, 2024. URL https://arxiv.org/abs/2403.09626.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality, 2024. URL https://arxiv.org/abs/2405.21060.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 07 2011.

Mehmet Hamza Erol, Arda Senocak, Jiu Feng, and Joon Son Chung. Audio mamba: Bidirectional
state space model for audio representation learning, 2024. URL https://arxiv.org/abs/
2406.03344.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022. URL https://arxiv.org/abs/2111.00396.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model, 2024. URL https://arxiv.org/abs/2403.07691.

Sukjun Hwang, Aakash Lahoti, Tri Dao, and Albert Gu. Hydra: Bidirectional state space models
through generalized matrix mixers, 2024. URL https://arxiv.org/abs/2407.09941.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation, 2018. URL
https://arxiv.org/abs/1808.09781.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):
3521–3526, March 2017. ISSN 1091-6490. doi: 10.1073/pnas.1611835114. URL http:
//dx.doi.org/10.1073/pnas.1611835114.

10

https://arxiv.org/abs/2403.09626
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2406.03344
https://arxiv.org/abs/2406.03344
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2403.07691
https://arxiv.org/abs/2407.09941
https://arxiv.org/abs/1808.09781
https://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114

Under review as a conference paper at ICOMP 2024

Jinming Li, Wentao Zhang, Tian Wang, Guanglei Xiong, Alan Lu, and Gerard Medioni. Gpt4rec:
A generative framework for personalized recommendation and user interests interpretation, 2023.
URL https://arxiv.org/abs/2304.03879.

Chengkai Liu, Jianghao Lin, Jianling Wang, Hanzhou Liu, and James Caverlee. Mamba4rec:
Towards efficient sequential recommendation with selective state space models, 2024. URL
https://arxiv.org/abs/2403.03900.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context, 2023. URL https://arxiv.org/abs/2310.01889.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019. URL https://arxiv.org/abs/1912.01703.

Alec Radford, Jeff Wu, Rewon Child, D. Luan, Dario Amodei, and
Ilya Sutskever. Language models are unsupervised multitask learn-
ers, 2019. URL https://www.semanticscholar.org/paper/
Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/
9405cc0d6169988371b2755e573cc28650d14dfe.

Herbert E. Robbins. A stochastic approximation method. Annals of Mathematical Statistics, 22:
400–407, 1951. URL https://api.semanticscholar.org/CorpusID:16945044.

Anton Rodomanov, Ali Kavis, Yongtao Wu, Kimon Antonakopoulos, and Volkan Cevher. Univer-
sal gradient methods for stochastic convex optimization, 2024. URL https://arxiv.org/
abs/2402.03210.

Yuda Wang, Xuxin He, and Shengxin Zhu. Echomamba4rec: Harmonizing bidirectional state space
models with spectral filtering for advanced sequential recommendation, 2024. URL https:
//arxiv.org/abs/2406.02638.

Zhenrui Yue, Sara Rabhi, Gabriel de Souza Pereira Moreira, Dong Wang, and Even Oldridge.
Llamarec: Two-stage recommendation using large language models for ranking, 2023. URL
https://arxiv.org/abs/2311.02089.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model, 2024. URL
https://arxiv.org/abs/2401.09417.

A APPENDIX A. DATASETS

A table regarding the information about the datasets using in the paper is provided for scale. 4

Table 4: Datasets

Datasets Users Items Reviews

Beauty and P.C. 750,835 211,452 6,860,059
MovieLens-1M 6,041 3,417 999,611
Video Games 98,907 26,355 857,505

B APPENDIX B. BENCHMARKS PLOTS

For a better understanding of our results, we propose plots with latency and the HIT@10 metric.
Note that for better visualization, a logarithmic scale for latency is used.

11

https://arxiv.org/abs/2304.03879
https://arxiv.org/abs/2403.03900
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/1912.01703
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://api.semanticscholar.org/CorpusID:16945044
https://arxiv.org/abs/2402.03210
https://arxiv.org/abs/2402.03210
https://arxiv.org/abs/2406.02638
https://arxiv.org/abs/2406.02638
https://arxiv.org/abs/2311.02089
https://arxiv.org/abs/2401.09417

Under review as a conference paper at ICOMP 2024

(a) Comparison of performance of different models on the Beauty dataset.

(b) Comparison of performance of different models on the MovieLens-1M dataset.

(c) Comparison of performance of different models on the VideoGames dataset.

12

	Introduction
	Related study
	Sequential recommendation task definition
	Transformers
	State Space Models
	Mamba block
	Mamba applications to sequential recommendations

	Hydra
	Universal Gradient Method for Stochastic Optimization

	Odds Ratio Preference Optimization
	Objective Function of ORPO
	Gradient of ORPO

	Our results
	2Mamba4Rec
	MamRec
	Hydra layer
	Prediction layer

	Benchmarks
	Latency
	Interpretation of results

	Application of ORPO to recommender systems
	Baseline
	Data
	Experimental setup
	ORPO results

	Adaptive Batching
	Algorithm

	Discussion
	Appendix A. Datasets
	Appendix B. Benchmarks plots

