
UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

A Computational Time

Table 5: Test inference time comparison for snapshot and event based methods on DTDG datasets,
we report the average result from 5 runs. Top three models are coloured by First, Second, Third.

Method UCI Enron Contacts Social Evo. MOOC

ev
en

t

TGN [15] 1.07 1.71 137.57 24.04 50.04
DyGFormer [28] 155.58 57.72 15423.99 349.22 OOM
NAT [17] 3.82 8.39 596.22 148.43 299.00
GraphMixer [37] 32.88 13.85 3542.88 132.39 OOM
EdgeBank∞ [16] 0.52 0.24 45.33 2.07 5.17
EdgeBanktw [16] 0.52 0.25 50.77 2.45 6.12

sn
ap

sh
ot HTGN (UTG) [12] 0.61 0.87 76.64 14.59 28.64

GCLSTM (UTG) [13] 0.35 0.46 40.83 9.27 19.78
EGCNo (UTG) [14] 0.43 0.45 40.62 7.35 15.49
GCN (UTG) [1] 0.50 0.31 56.88 6.40 13.30

Table 5 shows the inference time for all methods on DTDG datasets. Table 6 shows the inference
time for all methods on CTDG datasets. OOM means out of memory and OOT means out of time.
We observe that snapshot-based models are at least one order of magnitude faster than event-based
models such as NAT, DyGFormer and GraphMixer. In addition, the best performing model on most
datasets, DyGFormer, is also consistently the slowest method.

B Evaluation Settings

Figure 4: Different setting for evaluation of future link prediction include between deployed,
streaming and live-update setting. UTG framework is designed for the streaming setting.

Deployed setting The deployed setting is often used as the evaluation setting for snapshot-based
methods [12, 14]. In this setting, no information from the test set is passed to the model, and the node
embeddings from the last training snapshot are used for predictions in all test snapshots.

Streaming setting event-based models often evaluate with the streaming setting [15, 17, 26, 28]. In
this setting, information from the previously observed batches of events can be used to update the
model however no information from the test set can be used to train the model.

Live-update Setting You et al. [18] proposed the live-update setting where the model weights are
constantly updated to newly observed snapshots while predicting the next snapshot. To predict links

13



UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

Table 6: Test inference time comparison for snapshot and event based methods on CTDG datasets,
results reported from 5 runs. Top three models are coloured by First, Second, Third.

Method tgbl-wiki tgbl-review Reddit

ev
en

t

TGN [15] 39.24 1137.69 286.79
DyGFormer [28] 7196.52 26477.51 OOT
NAT [17] 340.51 8925.21 1159.19
GraphMixer [37] 1655.44 4167.63 7166.24
EdgeBank∞ [16] 20.06 140.25 26.91
EdgeBanktw [16] 20.67 143.49 27.08

sn
ap

sh
ot HTGN (UTG) [12] 28.96 718.17 117.05

GCLSTM (UTG) [13] 20.54 436.30 82.88
EGCNo (UTG) [14] 20.15 433.23 84.85
GCN (UTG) [1] 18.25 384.51 78.78

in Gt+1, first the observed snapshot Gt−1 are split into a training set and a validation set. The model
is trained on Gtrain

t−1 while using Gval
t−1 for early stopping. Lastly, the trained model receives Gt and

predicts for Gt+1.

Figure 4 illustrates the difference between these three settings. In this work, we focus on the streaming
setting as it closely resembles the common use case where even after a model is trained, it is expected
to incorporate new information from the data stream for accurate predictions.

C Temporal Graph Learning Methods
C.1 Snapshot-based Methods

snapshot-based methods receives a sequence of graph snapshots as input, representing the temporal
graph at specific time intervals (hours, days, etc.). Therefore, DTDG methods are designed to process
entire snapshot at once (often with a graph learning model) and then utilize mechanisms to learn
temporal dependencies between snapshots. Example methods are as follows:

• HTGN. Many DTDG methods focus on learning structural and temporal dependencies in an Eu-
clidean space thus omitting the complex and hierarchical properties which arises in real world net-
works. To address this, Yang et al. [12] proposed a Hyperbolic Temporal Graph Network (HTGN)
which utilizes the exponential capacity and hierarchical awareness of hyperbolic geometric. More
specifically, HTGN incorporates hyperbolic graph neural network and hyperbolic gated recurrent
neural network to capture the structural and temporal dependencies of a temporal graph, implicitly
preserving hierarchical information. In addition, the hyperbolic temporal contextual self-attention
module is used to attend to historical states while the hyberbolic temporal consistency module
ensures model stability and generalization.

• GCLSTM. To learn over a sequences of graph snapshots, Chen et al. [13] proposed a novel end-to-
end ML model named Graph Convolution Network embedded Long Short-Term Memory (GC-
LSTM) for the dynamic link prediction task. In this work, the LSTM act as the main framework to
learn temporal dependencies between all snapshots if a temporal graph while GCN is applied on
each snapshot to capture the structural dependencies between nodes. Two GCNs are used to learn
the hidden state and the cell state for the LSTM and the decoder is a MLP mapping the feature at
the current time back to the graph space. The design of GC-LSTM allows it to handle both link
additions and link removals.

• EGCN. Existing approaches often require the knowledge of a node during the entire time span of a
temporal graph while real world networks often changes its node set. To address this challenge,
Pareja et al. [14] proposed the EvolveGCN (EGCN) model which captures the dynamic of the
graph sequence by using an RNN to update the weight of a GCN. In this way, The RNN regulates
the GCN model parameter directly and effectively performing model adaptation. This allows node
changes because the learning is performed on the model itself, rather than specific sequence of
node embeddings. Note that the GCN parameters are not trained and only computed from the RNN.

14



UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

Empirically, the model achieves good performance for link prediction, edge classification and node
classification on DTDGs.

• PyG-Temporal. PyTorch Geometric Temporal (PyG-Temporal) is an open-source Python library
which combines state-of-the-art methods for neural spatiotemporal signal processing [22]. Many
existing methods such as EGCN, GCLSTM and more are implemented directly in PyG-Temporal
for research. PyG-Temporal is designed with a simple and consistent API following existing
geometric deep learning library such as Pytorch Geometric [40]. Originally, PyG-Temporal are
designed for node level regression tasks on datasets available exclusively within the framework.
In this work, we apply PyG-Temporal models for the link prediction tasks on publicly available
datasets.

C.2 Event-based Methods

Continuous Time Dynamic Graph (CTDG) methods receive a continuous stream of edges as input
and make predictions over any possible timestamps. CTDG methods incorporate newly observed
information into its predictions by updating its internal representation of the world. For efficiency,
the stream of edges are divided into fixed size batches while predictions are made for each batch
sequentially. To incorporate the latest information, edges from each batch becomes available to
the model once the predictions are made. Different from DTDG, CTDG has no inherent notion of
graph snapshots, models often track internal representations of a node over time and sample temporal
neighborhoods surrounding the node of interest for prediction.

• TGAT. Xu et al. [41] argued that models for temporal graphs should be able to quickly generate
embeddings in an inductive fashion when new nodes are encountered. The key component of the
proposed Temporal Graph Attention (TGAT) layer is to combine the self-attention mechanism
with a novel functional time encoding technique derived from Bochner’s theorem from classical
harmonic analysis. In this way, a TGAT layer can efficiently learn from temporal neighborhood
features as well as temporal dependencies. The functional time encoding provides a continuous
functional mapping from the time domain to a vector space. The hidden vector of time then replaces
positional encoding used in the self-attention mechanism.

• TGN. Rossi et al.. [15] introduce Temporal Graph Network (TGN), a versatile and efficient
framework for dynamic graphs, represented as stream of timestamped events. TGN leverage a
combination of memory modules and graph-based operators to improve computational efficiency.
Essentially, TGN is a framework that subsumes several previous models as specific instances.
When making predictions for a new batch, TGN first update the memory with messages coming
from previous batches to allow the model to incorporate novel information from observed batches.

• CAWN. Causal Anonymous Walks (CAWs) [26] are proposed for representing temporal networks
inductively to learn the laws governing the link evolution on networks such as the triadic closure
law. CAWs, derived from temporal random walks, act as automatic retrievals of temporal network
motifs, avoiding the need for their manual selection and counting. An anonymization strategy
was also proposed to replace node identities with hitting counts from sampled walks, maintaining
inductiveness and motif correlation. CAWN is a neural network model proposed to encode CAWs,
paired with a CAW sampling strategy that ensures constant memory and time costs for online
training and inference.

• TCL. TCL [42] effectively learns dynamic node representations by capturing both temporal and
topological information. It features three main components: a graph-topology-aware transformer
adapted from the vanilla Transformer, a two-stream encoder that independently extracts temporal
neighborhood representations of interacting nodes and models their interdependencies using a
co-attentional transformer, and an optimization strategy inspired by contrastive learning. This
strategy maximizes mutual information between predictive representations of future interaction
nodes, enhancing robustness to noise.

• NAT. In modeling temporal networks, the neighborhood of nodes provides essential structural
information for interaction prediction. It is often challenging to extract this information efficiently.
Luo et al. [17] propose the Neighborhood-Aware Temporal (NAT) network model that introduces a
dictionary-type neighborhood representation for each node. NAT records a down-sampled set of
neighboring nodes as keys, enabling fast construction of structural features for joint neighborhoods.
A specialized data structure called N-cache is designed to facilitate parallel access and updates on
GPUs.

15



UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

• EdgeBank. EdgeBank [16] is a non-learnable heuristic baseline which simply memorizes previ-
ously observed edges. The surprisingly strong performance of EdgeBank in existing evaluation
inspired the authors to also propose novel, more challenging and realistic evaluation protocals for
dynamic link prediction.

• DyGFormer DyGFormer. Yu et al. [28] introduces a transformer-based architecture for dynamic
graph learning. DyGFormer focuses on learning from nodes historical first-hop interactions and
employs a neighbor co-occurrence encoding scheme to capture correlations between source and
destination nodes through their historical sequences. A patching technique was also proposed
to divide each sequence into patches for the transformer, enabling effective utilization of longer
histories. DyGLib was also presented as a library for standardizing training pipelines, extensible
coding interfaces, and thorough evaluation protocols to ensure reproducible dynamic graph learning
research.

D Computing Resources
For our experiments, we utilized one of the following GPUs. The first option was NVIDIA A100
GPUs (40GB memory) paired with 4 CPU nodes. These nodes featured CPUs such as the AMD
Rome 7532 @ 2.40 GHz with 256MB cache L3, AMD Rome 7502 @2.50 GHz with 128MB cache
L3, or AMD Milan 7413 @ 2.65 GHz with 128MB cache L3, each equipped with 100GB memory.
The second option was using NVIDIA V100SXM2 GPUs (16GB memory) alongside 4 CPU nodes,
which housed Intel Gold 6148 Skylake CPUs @ 2.4 GHz, each with 100GB memory. Our last choice
was to run experiments using NVIDIA P100 Pascal GPUs (12GB HBM2 memory) with 4 CPU nodes
from Intel E5-2683 v4 Broadwell @ 2.1GHz with 100GB memory. Each experiment had a five-day
time limit and was repeated five times, with results reported as averages and standard deviations.
Notably, aside from methods adopted from the PyTorch Geometric library, several other models
(assessed using their original source code or the DyGLib repository) encountered out-of-memory or
out-of-time errors when applied to larger datasets.

E Model Configurations
For all methods and datasets, we employed the Adam optimizer with a two different learning rates
namely 0.001 and 0.0002, and the configuration with the higher average performance was selected
for reporting the results. Each experiment was repeated five times and the average and standard
deviations were reported.

The train, validation, and test splits for tgbl-wiki and tgbl-review are provided by the TGB
benchmark. For other datasets (namely, UCI, Enron, Contacts, Social Evo., MOOC, and Reddit),
we used a chronological split of the data with 70%, 15%, and 15% for the training, validation, and
test set, respectively, which is inline with previous studies [15–17, 25]. We set the batch size equal
to 64 for NAT, and for all other models (i.e., TGN, DyGFormer, GraphMixer, EdgeBank, HTGN,
GCLSTM, EGCNo, and GCN) the batch size was 200. For the experiments on CTDGs, we set the
number of epoch equal to 40 and implemented an early stopping approach with a patience of 20
epochs and tolerance of 10−5. For the experiments on DTDGs, the number of epochs was set to
200 with a similar early stopping approach. Dropout was set to 0.1. We set the number of attention
heads equal to 2 for the models with an attention module, and node embedding size was fixed at 100.
For TGN, the time embedding size was 100 and the memory dimension was specified as 172, with
a message dimension of 100. For NAT, we set the bias=1e-5, and replacement probability=0.7.
All other parameters were set according to the suggested values by Luo and Li [17]. The special
hyperparameters of the DyGFormer and GraphMixer are set according to the recommendations
presented by Yu et al. [28].

16

https://github.com/yule-BUAA/DyGLib

