
Table 1: Additional ablation studies on Matterport3D
Dataset Matterport3D (1.0m)

method PSNR↑ WS-PSNR↑ SSIM↑ LPIPS↓
w/o appearance 5.44 5.24 0.001 0.707
w/o geometry 26.25 25.25 0.839 0.263

full 28.10 27.10 0.876 0.195

A More Results of Qualitative Comparisons1

Qualitative comparisons with baseline methods on Replica and Matterport3D can be seen in Fig. 12

and Fig. 2, respectively.3

OmniSyn IBRNet NeuRay PanoGRF Ground Truth

Figure 1: Qualitative comparisons with baseline methods on Replica.
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OmniSyn IBRNet NeuRay PanoGRF Ground Truth

Figure 2: Qualitative comparisons with baseline methods on Matterport3D.

Table 2: Ablation studies for depth estimation on Matterport3D
setting L1 ↓ L2 ↓ RMSE↓ WS-L1↓ WS-L2↓ WS-RMSE↓

MVS only 0.1731 0.5048 0.5831 0.1984 0.2806 0.4731
Mono only 0.2452 0.3175 0.4731 0.2445 0.2729 0.4522

full 0.1441 0.2047 0.3877 0.1502 0.1624 0.3546

Table 3: The impact of different backbones for depth estimation on Matterport3D
setting(backbone) L1 ↓ L2 ↓ RMSE↓ WS-L1↓ WS-L2↓ WS-RMSE↓ parameters(M)

MVS(resnet-18) 0.1731 0.5048 0.5831 0.1984 0.2806 0.4731 29.75
MVS(resnet-34) 0.1654 0.4820 0.5676 0.1844 0.2577 0.4493 39.39
MVS(resnet-50) 0.1598 0.4725 0.5630 0.1822 0.2446 0.4442 47.10

MVS(resnet-101) 0.1642 0.4994 0.5717 0.1835 0.2519 0.4441 65.22

MVS(resnet-18)+Mono 0.1441 0.2047 0.3877 0.1502 0.1624 0.3546 58.95
MVS(resnet-34)+Mono 0.1549 0.2231 0.4120 0.1684 0.1878 0.3844 68.59
MVS(resnet-50)+Mono 0.1519 0.2379 0.4188 0.1675 0.1955 0.3887 76.30

MVS(resnet-101)+Mono 0.1735 0.2673 0.4452 0.1831 0.2129 0.4023 94.42
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Table 4: The impact of different numbers of depth candidates Nmono for depth estimation on
Matterport3D

Nmono L1 ↓ L2 ↓ RMSE↓ WS-L1↓ WS-L2↓ WS-RMSE↓
1 0.1586 0.2498 0.4317 0.1745 0.1971 0.3937
3 0.1432 0.1993 0.3865 0.1529 0.1649 0.3580
5 0.1441 0.2047 0.3877 0.1502 0.1624 0.3546
7 0.1496 0.2252 0.4104 0.1640 0.1896 0.3832
9 0.1645 0.2912 0.4511 0.1752 0.2215 0.4059
16 0.1596 0.2379 0.4188 0.1675 0.1955 0.3887
32 0.1735 0.2673 0.4452 0.1831 0.2129 0.4023
48 0.1689 0.2618 0.4333 0.1776 0.2047 0.3941
64 0.1604 0.2432 0.4162 0.1669 0.2004 0.3853

Table 5: The impact of different values of σ for depth estimation on Matterport3D
σ L1 ↓ L2 ↓ RMSE↓ WS-L1↓ WS-L2↓ WS-RMSE↓

0.1 0.1544 0.2515 0.4261 0.1672 0.1915 0.3830
0.5 0.1441 0.2047 0.3877 0.1502 0.1624 0.3546
1.0 0.1689 0.2686 0.4424 0.1803 0.2124 0.4029
1.5 0.1426 0.2457 0.4254 0.1563 0.1759 0.3723

B Spherical Projection4

Equirectangular-to-spherical The transformation from the equirectangular image coordinate5

system to the polar coordinate system is defined as:6

ϕ = v/H ∗ π
θ = u/W ∗ 2π − 0.5π,

(1)

where ϕ, θ represent the latitude and longitude of the sphere, u, v represent the rows and columns of7

the panorama, H and W represent the height and width of the panorama respectively.8

Spherical-to-cartesian The transformation from the polar coordinate system to the 3D Cartesian9

coordinate system is:10

x = sin(ϕ) ∗ cos(θ)
y = cos(ϕ)

z = sin(ϕ) ∗ sin(θ).
(2)

Cartesian-to-spherical The camera cartesian coordinate (x, y, z) is transformed into the polar11

coordinate (θ, ϕ, t) (t ∈ R+ denotes its spherical depth in view Ij) by:12

t =
√
x2 + y2 + z2

θ = arctan(
z

x
)

ϕ = arccos(
y

t
).

(3)

Table 6: Quantitative comparison with Cross Attention Renderer [1] on Matterport3D and Replica
Dataset Matterport3D (1.0m) Replica(1.0m)

method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
CAR [1] 22.87 0.7679 0.3108 23.60 0.8594 0.2515
PanoGRF 27.78 0.8158 0.2444 29.87 0.9046 0.1604
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Table 7: Comparisons with NeuRay [7] given multi-view inputs on Matterport3D
Dataset Matterport3D (1.0m)

method PSNR↑ WS-PSNR↑ SSIM↑ LPIPS↓
NeuRay [7] 27.82 26.74 0.8614 0.2312
PanoGRF 28.99 27.91 0.8762 0.2071

NeuRay PanoGRF Ground Truth

Figure 3: Qualitative comparisons between PanoGRF and NeuRay on Matterport3D with multi-view
panoramic inputs.

Spherical-to-equirectangular The spherical polar coordinate (θ, ϕ, t) is turned into the equirectan-13

gular image coordinate (u, v) by the inverse process of Eq. 1.14

C More Ablation Studies for 360◦ View Synthesis15

We conducted ablation studies on Matterport3D, and the results are shown in Table. 1. In the16

"w/o appearance feature" ablation study, we replaced the appearance feature vector with a zero17

vector to disable the appearance feature while keeping other modules unchanged. We found that the18

model without appearance features loses its ability to infer the color of novel views entirely, as the19

generalizable renderer heavily relies on appearance cues from input views. In the "w/o geometry20

feature" ablation study, we replaced the geometry feature vector with a zero vector to disable the21

geometry feature while keeping other modules unchanged. We observed that although the model can22

still infer normal results, its performance is significantly worse than the original (full) model.23

D Comparisons with NeuRay [7] Given Multi-view Inputs24

Our method is not limited to two panoramas. For instance, when rendering a test view in the renderer25

module, we use N input panoramas as reference images, and the renderer does not need to be26

modified. In the 360◦ spherical depth estimator module, for each reference image, we use the other27

N − 1 input panoramas as source images. We average the multiple cost-volumes obtained during28

360◦ multi-view matching process between the reference image and each source image. The rest is29

unchanged. In this way, our method can be applied to the multi-view panoramic inputs.30

To further verify the effectiveness of our method, we conducted comparative experiments with31

NeuRay using multiple panoramic image as inputs. We placed the four input viewpoints at the32
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NeuRay PanoGRF Ground Truth

Figure 4: Qualitative comparisons with NeuRay beyond the camera baseline on Matterport3D. We
synthesized novel views at positions 0.25 meters above the middle point between two input viewpoints.
The input viewpoints are 1.0 meters apart. Our method can achieve better results than NeuRay beyond
the camera baseline.

NeuRay PanoGRF Ground Truth

Figure 5: Failure case. The carpet area behind the bed was not visible in the input viewpoints,
but it becomes visible in higher viewpoints. NeuRay and PanoGRF tend to produce different and
blurry results compared to the ground truth because they lack generative power. Combining existing
diffusion generative models could potentially address this issue. We leave this as future work.

corners of a horizontal square and tested the rendering performance at the center viewpoint and other33

viewpoints located at -0.4, -0.2, -0.1, -0.05, 0.05, 0.1, 0.2, and 0.4 meters in the vertical direction from34

the center viewpoint. The diagonal length of the square is 1.0 meters. Table. 7 and Fig. 3 present the35

quantitative and qualitative comparison results between PanoGRF and NeuRay. As shown, PanoGRF36

still largely outperforms NeuRay with multiple panoramic inputs.37

This experiment is added during the rebuttal period. Due to the limited time, we trained PanoGRF38

only for 20k iterations and NeuRay for 80k iterations. The learning decay strategies are similar to the39

setting of two views.40

E Comparisons with NeuRay [7] beyond Camera Baseline and Failure Case41

We conducted an additional experiment where novel views were generated at positions 0.25 and 0.542

meters above the middle point between two input viewpoints. The input viewpoints are 2.0 meters43

apart. We compared the quantitative and qualitative results of our method with NeuRay’s as shown in44

Table. 8 and Fig. 4. PanoGRF consistently surpassed NeuRay’s performance, indicating its capacity45

to yield superior results beyond the camera baseline.46

We also present the failure case of PanoGRF under such condition in Fig. 5. In some viewpoints, a47

previously occluded area may be visible and since this area has not been seen in either of the two48
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Table 8: Comparisons with NeuRay [7] beyond Camera Baseline on Matterport3D
Dataset Matterport3D (1.0m)

distance method PSNR↑ WS-PSNR↑ SSIM↑ LPIPS↓
0.25m NeuRay 20.66 20.05 0.714 0.409
0.25m PanoGRF 21.98 21.30 0.763 0.348
0.5m NeuRay 20.39 19.94 0.876 0.195
0.5m PanoGRF 21.99 21.42 0.769 0.349

existing viewpoints, the synthesis of this area is not effective. The area, which has not been seen in49

either of the existing viewpoints may be able to be filled in by combining with the existing diffusion50

generative approach. This is the next direction we plan to investigate.51

F Experiments for Mono-guided Spherical Depth Estimator52

F.1 Ablation Studies for Mono-guided Spherical Depth Estimator53

To further validate the effectiveness of the key components, namely 360◦ multi-view stereos and 360◦54

monocular depth, we conducted ablation studies specifically focused on spherical depth estimation.55

For evaluation purposes, we selected three commonly used metrics: L1, L2, and RMSE. Additionally,56

we also used WS-L1, WS-L2, and WS-RMSE as metrics, which incorporate weighted latitudes of57

equirectangular images to simulate WS-PSNR [11]. This approach aims to mitigate the impact of58

equirectangular projection distortion. We selected the first 1000 panorama pairs from Matterport3D59

as our test data, with a camera baseline of 1 meter. For the evaluation, we considered depth values60

within the range of [0.1, 10] as valid.61

The quantitative results of our ablation studies are presented in Table 2, while the qualitative results62

can be observed in Fig. 6. The experiments clearly demonstrate the importance of each module63

in achieving accurate depth estimation. Removing either the 360◦ multi-view stereo or the 360◦64

monocular depth significantly reduces the depth accuracy. Using only 360◦ monocular depth does65

not guarantee multi-view consistency, resulting in potential discrepancies between the predicted scale66

and the ground truth in certain regions. The occlusion problem poses a challenge for using only 360◦67

MVS, particularly at the boundaries of objects. Consequently, the depth predictions in these regions68

are inaccurate and lack detail.69

F.2 Different Backbones for 360◦ Multi-view Stereo70

Introducing 360◦ monocular depth to 360◦ multi-view stereo does result in an increase in the number71

of model parameters. However, it is important to note that the improvement in depth accuracy is not72

attributed to the increase in parameters. In our experiments, we increased the model size of 360◦73

MVSNet by using larger backbones, specifically ResNet [3].74

From Table. 3, we found that L2 and RMSE of 360◦ MVSNet(ResNet-101) are still far inferior75

to those of 360◦ MVSNet(ResNet-18) together with the 360◦ monocular depth network [4]. This76

observation suggests that simply increasing the model size does not effectively address the view77

inconsistency problem in the wide-baseline setting. On the other hand, the introduction of 360◦78

monocular depth provides a qualitative improvement to the accuracy of 360◦ multi-view stereo. By79

incorporating monocular depth information, the model gains additional cues that help mitigate the80

view inconsistency issue and improve depth estimation performance. Furthermore, when larger81

backbones were used as replacements, it was found that the performances of 360◦ MVS+Mono82

deteriorated. This could be attributed to the excessive model parameters leading to overfitting.83

F.3 Different Hyperparameters for Mono-guided Spherical Depth Estimator84

We conducted evaluations to assess the impact of different values for σ (standard deviation) and85

Nmono (number of monocular depth candidates) on mono-guided spherical depth sampling. The86

results are presented in Table 4 and Table 5.87
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RGB Mono only MVS only full Ground Truth

Figure 6: Qualitative results of ablation studies for depth estimation on Matterport3D. Mono only and
MVS only respectively refer to the results obtained when using only 360◦ monocular depth and 360◦

multi-view stereo.
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Cross Attention Renderer PanoGRF Ground Truth

Figure 7: Qualitative comparisons with Cross Attention Renderer on Replica
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Cross Attention Renderer PanoGRF Ground Truth

Figure 8: Qualitative comparisons with Cross Attention Renderer on Matterport3D
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Table 9: The quantitative results of fine-tuning of the general renderers. The best results are in bold.
baseline 1.0m 0.2m

method setting PSNR↑ WS-PSNR↑ SSIM↑ LPIPS↓ PSNR↑ WS-PSNR↑ SSIM↑ LPIPS↓
NeuRay gen 27.751 27.253 0.8470 0.2565 34.318 33.376 0.9409 0.1158

PanoGRF gen 28.818 28.487 0.8778 0.1996 35.817 35.056 0.9554 0.0959

NeuRay(+Consist) ft 26.755 26.250 0.8181 0.2820 33.354 32.359 0.9240 0.1304
PanoGRF ft 24.341 23.941 0.8175 0.2834 35.828 35.138 0.9578 0.0912

PanoGRF (+Depth) ft 27.399 27.202 0.8556 0.2446 33.691 33.066 0.9333 0.1342

The reliability of 360° monocular depth estimation is not perfect. Therefore, our paper employs88

uniform sampling to compensate for the remaining depth candidates. In the ablation experiments, we89

consistently maintain Nmono +Nuni = 64, where Nuni represents the sample number of uniform90

distribution. We discovered that the configuration yields the best results with regard to the metrics of91

WS-L1, WS-L2, and WS-RMSE.92

G Comparisons with Cross Attention Renderer [1]93

The Cross Attention Renderer (CAR) 1 is a method that operates on a wide-baseline perspective pair.94

We divided the two panoramas into cube maps and utilized the corresponding sides of the cube maps95

as inputs for CAR. Specifically, we rendered the corresponding side of the cube maps at the middle96

viewpoint. For example, we input the left side of the cube maps and generate the left side of the cube97

maps at the intermediate viewpoint as the output. We repeated this process for all six corresponding98

pairs of cube maps. In contrast, our method directly takes two panoramas as input and performs ray99

casting based on perspective projection. We then render the results for each side of the cube maps at100

the intermediate viewpoint, preserving the panoramic nature of the input.101

We conducted quantitative comparative experiments on Matterport3D and Replica. The qualitative102

comparisons with CAR on Replica and Matterport3D can be seen in Fig. 7 and Fig. 8. The results103

clearly demonstrate that PanoGRF significantly outperforms CAR in terms of rendering quality. CAR104

suffers from limitations associated with its input field-of-view (FoV), particularly in edge regions that105

are only visible from a single perspective view. CAR relies on a pure stereo-matching method for106

geometric estimation, which leads to suboptimal rendering performance, as evidenced by the results107

presented in Table. 6. In contrast, PanoGRF is specifically designed to handle full FoV inputs, and it108

mitigates the issue of view inconsistency by incorporating the 360◦ monocular depth network.109

H Fine-tuning of PanoGRF110

We conducted per-scene fine-tuning for NeuRay [7] and PanoGRF on the first test scene of Matter-111

port3D with baselines of 1.0 and 0.2 meters, respectively. The general renderers were fine-tuned112

for 10k iterations, and the quantitative results are presented in Table.9. Under the baseline of 1.0113

meters, the general renderer of PanoGRF, denoted as PanoGRF-gen, achieved the best performance.114

NeuRay-ft, the fine-tuned renderer of NeuRay, underwent fine-tuning using RGB loss and depth115

consistency loss, following the methodology described in their original paper [7]. PanoGRF-ft was116

fine-tuned with only RGB loss. However, the results of NeuRay-ft and PanoGRF-ft were inferior to117

NeuRay-gen and PanoGRF-gen, respectively. This suggests that fine-tuning under a wide-baseline118

setting does not improve the performance of general renderers. It is likely that fine-tuning with a119

wide baseline leads to overfitting. Even with the introduction of a depth uncertainty loss [9] by120

supervising the renderer depth of PanoGRF with predicted spherical depths during the fine-tuning121

process, the results of PanoGRF-ft remained inferior to those of the general renderer of PanoGRF.122

On the other hand, the performance of PanoGRF-ft under the baseline of 0.2 meters was slightly123

better than that of PanoGRF-gen. However, adding the depth loss [9] was still unable to improve124

PanoGRF-gen when fine-tuning. Inaccurate predicted depths in certain regions may be the cause,125

misleading the estimation of NeRF’s geometry and thereby reducing the rendering performance.126

1Cross Attention Renderer: https://github.com/yilundu/cross_attention_renderer
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Additionally, NeuRay-ft was still inferior to NeuRay-gen under the narrow baseline. This may be127

attributed to the limited field-of-view, which can result in the aggregation of incorrect features. When128

projecting 3D sample points onto other source perspective views (cube-maps), these points may fall129

outside the image borders of the source perspective view or be located behind the source perspective130

camera.131

I Quantitative Comparisons with Baseline Methods for Narrow-baseline132

Panoramas133

Table 10: Quantitative comparisons with baseline methods on Matterport3D under the baseline of 0.2
and 0.5 meters. The best results are in bold.

baseline 0.2m 0.5m

method PSNR↑ WS-PSNR↑ SSIM↑ LPIPS↓ PSNR↑ WS-PSNR↑ SSIM↑ LPIPS↓
S-NeRF 20.79 19.52 0.6967 0.3756 17.95 16.81 0.6278 0.4856

OmniSyn 28.95 28.26 0.9132 0.1804 26.59 26.07 0.8897 0.2005
IBRNet 30.53 29.63 0.9271 0.1363 28.22 27.26 0.8844 0.1987
NeuRay 33.54 32.33 0.9485 0.1074 30.88 29.81 0.9196 0.1536

PanoGRF 34.29 33.27 0.9515 0.0977 31.41 30.46 0.9238 0.1318

We compared PanoGRF with baseline methods under the baseline of 0.2 and 0.5 meters on Mat-134

terport3D. As shown in Table. 10, the quantitative results demonstrate that PanoGRF consistently135

outperforms all the baseline methods under the baseline of 0.2 and 0.5 meters. These findings indicate136

that our method is applicable to both wide-baseline and narrow-baseline panoramas. In comparison137

to generalizable methods designed for perspective views, our method is particularly well-suited for138

synthesizing panoramic views by leveraging the aggregated features based on spherical projection.139

J More Details of PanoGRF140

J.1 Renderer141

J.1.1 Training142

PanoGRF employs the Adam optimizer [5] with an initial learning rate of 4.0e-4. The pre-training143

process of PanoGRF was conducted on an A100 GPU for 100k iterations, which required approxi-144

mately two days. The learning rate is halved every 20k iterations, and a batch size of 512 was used145

during training.146

J.1.2 Architecture147

We adopted a coarse-to-fine sampling approach, similar to NeRF [8], and sampled 64 points in both148

phases. We followed a similar architecture as NeuRay [7] to build our renderers. The coarse and fine149

renderers share the same image encoder, geometry feature extractor, and visibility encoder. But they150

have different distribution decoders and aggregation networks F , similar to NeuRay. During training,151

the weights of the 360◦ spherical depth estimator are fixed due to GPU memory limitations. Our152

image encoder, visibility encoder, distribution decoder, and aggregation network are implemented153

similarly to NeuRay, except for the padding mode. In the convolution layers of the image encoder154

and visibility encoder, we employ circular padding horizontally and zero padding vertically instead155

of direct zero padding. This is done to adapt to equirectangular image inputs and simulate Circular156

CNNs [10]. The circular padding helps account for the continuity of pixels at the leftmost and157

rightmost edges of equirectangular images, which are neighbors, while the top and bottom edges158

are not. The distribution network consists of 5 sub-networks, each with 3 fully connected layers.159

The appearance feature extractor is a ResNet [3] which contains 13 residual blocks and outputs the160

appearance feature map with 32 channels. The architecture details of the geometry feature extractor161

are shown in Fig. 9. The image encoder in the geometry feature extractor contains 14 residual blocks.162

The spherical depth input for the geometry feature extractor is first downsampled to 1/4 of its original163

resolution and then fed into the extractor to reduce GPU occupancy.164
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Figure 9: Architecture of geometry feature extractor.

J.2 Spherical Depth Estimator165

J.2.1 Training166

We initially train the 360◦ monocular depth network and then freeze its weights when training the167

remaining components of 360◦ MVSNet. The Adam optimizer is employed with a fixed learning rate168

of 0.0001. Both the 360◦ monocular depth network and 360◦ MVSNet are trained for 100k iterations,169

which required approximately one day on a single V100 GPU. The batch size is set to 2.170

J.2.2 Architecture171

The 360◦ monocular depth network [4] and 360◦ MVSNet utilize ResNet-18 as the feature extractor.172

The 3D CNN regularization network is composed of 3 downsampling and 3 upsampling blocks,173

similar to [6]. The depth decoder consists of 2 convolution blocks. The feature map obtained from174

the middle layer in the 360◦ monocular depth network is concatenated with the regularized spherical175

cost volume and then decoded into 360◦ depth by the depth decoder. In the multi-view matching176

process, we compute the similarity by subtracting the feature vectors.177

K Datasets178

For Matterport3D, we split the training and testing set following SynSin [13]. The first 10 scenes of179

the test set are used for evaluation. In the case of the Replica dataset, we render a total of 18 scenes180

for evaluation. Additionally, we utilize the Residential dataset provided in [2], which comprises three181

scenes. For this dataset, we select the first and last panorama as the input views.182

L Training Details of Baseline Methods183

We trained NeuRay [7] and IBRNet [12] for 400k and 250k iterations, respectively. Spherical NeRF184

(S-NeRF) [8] underwent training for 2000 epochs, equivalent to approximately 256k iterations with185

the batch size of 4096. For OmniSyn [6], the in-painting network was trained for 50k iterations,186

which took approximately 3 days on a TitanRTX GPU. The depth estimator of OmniSyn was trained187

for 100k iterations. Due to limitations in GPU memory, OmniSyn was trained at a resolution of188

256× 256, and its output was resized to 512× 1024 for evaluation purposes. CAR [1] was trained189

for 300k iterations.190
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