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Step-Forward Cross-Validation Validation Methods Comparison

Four validation methods were compared: sorted SFCV, unsorted SFCV, cross-validation
with random splits, and cross-validation with scaffold splits.

Recent advances in machine learning for materials science have inspired the
adaptation of validation methods for drug discovery.

Sorted SFCV selected test compounds with progressively lower logP values, aligning
with real-world drug optimization processes.

Traditional random split cross-validation often fails to generalize well for
out-of-distribution data.

Scaffold-based splits and random splits did not show consistent trends in selecting test
compounds, often leading to suboptimal evaluation of model performance.

We propose a k-fold n-step forward cross-validation (SFCV) approach to
improve model performance on predicting small molecule bioactivity,

enhancing the real-world applicability of these models. . e -
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Figure 1: Workflow for 10-fold step-forward cross-validation (SFCV). The Di dataset block can u ST PO i . Pt '
be sorted via a calculated or experimental molecular property. Here, we used logP. o At || G DR 5 G || AR g
"' ». ..'.'_:"'.'-7:.. =,- , . "..' { | '.:'f..’ el ‘.ii
e ol e e
=S ™7~ e
Training Batch 5 ; h
Testing Batch 5 . E e
2 ..v"-._?:;‘i' st A, 3 5
.-' :I:. < .i,--:: '::.:. ";:0;3.“, ::;':‘ :E;E':
.’ . .-... .
. AL 0 | A MiEEEEEE - EEEEEERERR. R 3332 T A T AEE T O = )
. P oy = '
MAPK14 4 e W% 2 ta
i W i i B
VEGFR2 ¥ ;‘r - % 7:' ‘!;.\, .-."_i 2 5
: ;
pIC50 values pIC50 values pIC50 values s s R T e T '
(@) (b) ©

Figure 3: Comparison of logP and Molecular Weight for physico-chemical space for compounds selected as training
and test sets across various iterations for the hERG target prediction task for (a) sorted SFCV, (b) unsorted SFCV, (c)
cross-validation with random splits, and (d) cross-validation with scaffold splits for the (first) nine iterations for Random
Forest models. SFCV: Step-Forward Cross-Validation

Figure 2: (a) Distribution of biological activity (pIC50 values) for the three protein target datasets.
(b,c) Distribution of pIC50 values in the training set and test set of the 5th iteration for sorted SFCV
(b) and unsorted SFCV (c). SFCV: Step-Forward Cross-Validation
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Sorted SFCV demonstrated a higher ability to identify
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Figure 6: (a) Number of compounds dissimilar to training data (Tc<0.55), (b-d) Number of discovery compounds (plC50<5.2) in the test
set predicted within an error range of 0.5 log unit (b), and discovery compounds dissimilar to training data (Tc<0.55) (c), and discovery
compounds dissimilar to training data (Tc<0.55) correcting predicted within an error range of 0.5 log unit (d), as shown for the hERG
target prediction task across four validation methods of sorted SFCV, unsorted SFCV, cross-validation with random splits, and
cross-validation with scaffold splits (for each of the first nine test folds). Tc: Tanimoto Similarity; SFCV: Step-Forward Cross-Validation.
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Figure 4: (a) The total number of compounds dissimilar to training data (Tc<0.55).
(b) The total number of discovery compounds (plC50<5.2) in the test set and the
colored stacks show how many predictions are within a 0.5 log fold unit error
range. (c) The number of discovery compounds dissimilar to training data
(Tc<0.55) and the colored stacks show how many predictions are within a 0.5 log
fold unit error range. Results refer to the hERG target prediction task across four
validation methods: sorted SFCV, unsorted SFCV, cross-validation with random
splits, and cross-validation with scaffold splits (combined for all test folds). Tc:
Tanimoto Similarity; SFCV: Step-Forward Cross-Validation.

Discovery vyield, defined as the fraction of discovery compounds accurately predicted within an error
range of 0.5 log units, was more consistent in sorted SFCV. Novelty error, the mean absolute error for
structurally novel compounds, remained low and consistent in sorted SFCV. This indicates that sorted
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* | , M SFCV minimizes overfitting and improves generalization to novel chemical spaces.
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Figure 5: Parity plots for hERG target prediction for (a) sorted SFCV, (b)
unsorted SFCYV, (c) cross-validation with random splits, and (d) cross-validation
with scaffold splits for the first five iterations for Random Forest models. SFCV:
Step-Forward Cross-Validation
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Figure 7: Discovery yield for models validated using (a) sorted SFCV,
(b) unsorted SFCV, (c) cross-validation with random splits, and (d)
cross-validation with scaffold splits for all three protein targets when

using a Random Forest model. SFCV: Step-Forward Cross-Validation.

Figure 8: Novelty error for models validated using (a) sorted SFCV,
(b) unsorted SFCV, (c) cross-validation with random splits, and (d)
cross-validation with scaffold splits for all three protein targets when

using

Random
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Conclusions: Sorted SFCV provides a systematic approach to validating predictive models in drug discovery, simulating real-world optimization processes.
It enhances the ability to predict structurally novel compounds with desirable bioactivity. We recommend incorporating sorted SFCV and evaluating discovery
yield and novelty error to better align model testing with the needs of drug discovery pipelines.




