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A APPENDIX

• PseudoCode (Sec. A.1)
• Ethics (Sec. A.2)
• Reproducibility (Sec. A.3)
• Details and Expanded Results for Super-pixel Graph Experiments(Sec. A.4)
• Stochastic Centering on the Empirical NTK of Graph Neural Networks (Sec. A.5)
• Size-Generalization Dataset Statistics (Sec. A.6)
• GOOD Dataset Statistics and Expanded Results (Sec. A.7)
• Alternative Anchoring Strategies on GOOD Datasets (Sec. A.8)
• Discussion of Post-hoc Calibration Strategies (Sec. A.9)
• Details of Generalization Gap Experiments (Sec. A.10)
• Expanded Pretraining Results (Sec. A.12)
• Runtimes (Sec. A.13)
• Mean and Variance of Node Feature Anchoring Distributions (Sec. A.14)
• Discussion on Anchoring Design Choices (Sec. A.15)
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A.1 PSEUDOCODE FOR G-�UQ

(a) Vanilla GNN (b) G-�UQ with Node Feature Anchoring

(c) G-�UQ with Hidden Rep Anchoring (d) G-�UQ with READOUT Anchoring

Figure 5: PseudoCode for G-�UQ. We provide simplified pseudo-code to demonstrate how anchor-
ing can be performed. We assume PyTorchGeometric style mini-batching. Changes with respect to
the vanilla GNN are shown in bold. Unchanged lines are grayed out.

Overview of G-�UQ models. Here, we present a conceptual overview of how G-�UQ induces
partially stochastic models. This figure is complementary to 5.
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A.2 ETHICS STATEMENT

This work proposes a method to improve uncertainty estimation in graph neural networks, which has
potential broader societal impacts. As graph learning models are increasingly deployed in real-world
applications like healthcare, finance, and transportation, it becomes crucial to ensure these models
make reliable predictions and know when they may be wrong. Unreliable models can lead to harmful
outcomes if deployed carelessly. By improving uncertainty quantification, our work contributes
towards trustworthy graph AI systems.

We also consider several additional safety-critical tasks, including generalization gap prediction for
graph classification (to the best of our knowledge, we are the first to report results on this task) and
OOD detection. We hope our work will encourage further study in these important areas.

However, there are some limitations. Our method requires (modest) additional computation during
training and inference, which increases resource usage. Although G-�UQ, unlike post-hoc methods,
does not need to be fit on a validation dataset, evaluation of its benefits also also relies on having
some out-of-distribution or shifted data available, which may not always be feasible. We have seen in
Table 1 that there are tasks for which G-�UQfails to improve accuracy and/or calibration of some
post-hoc methods, further emphasizing the need to perform appropriate model selection and the
risks if shifted validation data is not available. Finally, there are open questions around how much
enhancement in uncertainty calibration translates to real-world safety and performance gains.

Looking ahead, we believe improving uncertainty estimates is an important direction for graph neural
networks and deep learning more broadly. This will enable the development safe, reliable AI that
benefits society. We hope our work inspires more research in the graph domain that focuses on
uncertainty quantification and techniques that provide guarantees about model behavior, especially for
safety-critical applications. Continued progress will require interdisciplinary collaboration between
graph machine learning researchers and domain experts in areas where models are deployed.

A.3 REPRODUCIBILITY

For reproducing our experiments, we have made our code available at this anonymous repository. In
the remainder of this appendix (specifically App. A.6, A.7), and A.10), we also provide additional
details about the benchmarks and experimental setup.
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A.4 DETAILS ON SUPER-PIXEL EXPERIMENTS

We provide an example of the rotated images and corresponding super-pixel graphs in Fig. 6. (Note
that classes “6” and “9” may be confused under severe distribution shift, i.e. 90 degrees rotation or
more. Hence, to avoid harming class information, our experiments only consider distribution shift
from rotation up to 40 degrees.)

Figure 6: Rotated Super-pixel MNIST. Rotating images prior to creating super-pixels to leads to
some structural distortion (Ding et al., 2021). However, we can see that the class-discriminative
information is preserved, despite rotation. This allows for simulating different levels of graph structure
distribution shifts, while still ensuring that samples are valid.

Tables 4 and 5 provided expanded results on the rotated image super-pixel graph classification task,
discussed in Sec. 6.1.

In Table 7 we focus on the calibration results on this task for GPS variants alone. Across all levels
of distribution shift, the best method is our strategy for applying G-�UQ to a pretrained model–
demonstrating that this is not just a practical choice when it is infeasible to retrain a model, but can
lead to powerful performance by any measure. Second-best on all datasets is applying G-�UQ during
training, further highlighting the benefits of stochastic anchoring.

In addition to the structural distribution shifts we get by rotating the images before constructing
super-pixel graphs, we also simulate feature distribution shifts by adding Gaussian noise with different
standard deviations to the pixel value node features in the super-pixel graphs. In Table 8, we report
accuracy and calibration results for varying levels of distribution shift (represented by the size of the
standard deviation of the Gaussian noise). Across different levels of feature distribution shift, we
also see that G-�UQ results in superior calibration, while maintaining competitive or in many cases
superior accuracy.
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Table 4: RotMNIST-Accuracy. Here, we report expanded results (accuracy) on the Rotated MNIST
dataset, including a variant that combines G-�UQ with Deep Ens. Notably, we see that anchored
ensembles outperform basic ensembles in both accuracy and calibration. (Best results for models
using Deep Ens. and those not using it marked separately.)

MODEL G-�UQ? LPE? Avg. Test (") Acc. (10) (") Acc. (15) (") Acc. (25) (") Acc. (35) (") Acc. (40) (")

5 5 0.947 ±0.002 0.918 ±0.002 0.904 ±0.005 0.828 ±0.009 0.738 ±0.009 0.679 ±0.007

� 5 0.933 ±0.015 0.894 ±0.019 0.878 ±0.020 0.794 ±0.032 0.698 ±0.036 0.636 ±0.048

5 � 0.949 ±0.002 0.917 ±0.004 0.904 ±0.005 0.829 ±0.007 0.744 ±0.007 0.685 ±0.006
GatedGCN

� � 0.915 ±0.032 0.872 ±0.038 0.852 ±0.0414 0.776 ±0.039 0.680 ±0.037 0.631 ±0.033

5 � 0.970 ±0.001 0.948 ±0.001 0.938 ±0.001 0.873 ±0.006 0.770 ±0.013 0.688 ±0.009GPS
� � 0.969 ±0.001 0.946 ±0.003 0.937 ±0.003 0.869 ±0.003 0.769 ±0.012 0.679 ±0.014

GPS (Pretrained) � � 0.967 ±0.002 0.945 ±0.004 0.934 ±0.005 0.864 ±0.009 0.759 ±0.010 0.674 ±0.002

5 5 0.963 ±0.0002 0.943 ±0.001 0.933 ±0.001 0.874 ±0.002 0.794 ±0.002 0.731 ±0.002

� 5 0.949 ±0.008 0.922 ±0.008 0.907 ±0.011 0.828 ±0.020 0.733 ±0.032 0.662 ±0.046

5 � 0.965 ±0.001 0.943 ±0.001 0.933 ±0.001 0.873 ±0.001 0.792 ±0.004 0.736 ±0.003
GatedGCN-DENS

� � 0.954 ±0.005 0.930 ±0.010 0.917 ±0.011 0.850 ±0.023 0.759 ±0.025 0.696 ±0.032

5 � 0.980 ±0.000 0.969 ±0.000 0.961 ±0.000 0.913 ±0.000 0.834 ±0.000 0.750 ±0.000GPS-DENS
� � 0.978 ±0.001 0.963 ±0.000 0.953 ±0.001 0.905 ±0.000 0.822 ±0.002 0.736 ±0.003

Table 5: RotMNIST-Calibration. Here, we report expanded results (calibration) on the Rotated
MNIST dataset, including a variant that combines G-�UQ with Deep Ens. Notably, we see that
anchored ensembles outperform basic ensembles in both accuracy and calibration. (Best results for
models using Deep Ens. and those not using it marked separately.)

MODEL G-�UQ LPE? Avg.ECE (#) ECE (10) (#) ECE (15) (#) ECE (25) (#) ECE (35) (#) ECE (40) (#)

5 5 0.035 ±0.001 0.054 ±0.002 0.062 ±0.003 0.118 ±0.007 0.185 ±0.006 0.233 ±0.008GatedGCN-TS
5 � 0.033 ±0.002 0.053 ±0.002 0.061 ±0.004 0.116 ±0.005 0.179 ±0.006 0.225 ±0.005

5 5 0.038 ±0.001 0.059 ±0.001 0.068 ±0.340 0.126 ±0.008 0.195 ±0.012 0.245 ±0.011

� 5 0.018 ±0.008 0.029 ±0.013 0.033 ±0.164 0.069 ±0.033 0.117 ±0.048 0.162 ±0.067

5 � 0.036 ±0.003 0.059 ±0.002 0.068 ±0.340 0.125 ±0.006 0.191 ±0.007 0.240 ±0.008
GatedGCN

� � 0.022 ±0.007 0.028 ±0.014 0.034 ±0.169 0.062 ±0.022 0.109 ±0.019 0.141 ±0.019

GPS-TS 5 � 0.024 ±0.001 0.041 ±0.001 0.049 ±0.001 0.102 ±0.006 0.188 ±0.012 0.261 ±0.008

5 � 0.026 ±0.001 0.044 ±0.001 0.052 ±0.156 0.108 ±0.006 0.197 ±0.012 0.273 ±0.008GPS
� � 0.022 ±0.001 0.037 ±0.005 0.044 ±0.133 0.091 ±0.008 0.165 ±0.018 0.239 ±0.018

GPS (Pretrained) � � 0.021 ±0.001 0.032 ±0.003 0.039 ±0.116 0.083 ±0.002 0.153 ±0.007 0.217 ±0.012

5 5 0.026 ±0.000 0.038 ±0.001 0.042 ±0.001 0.084 ±0.002 0.135 ±0.001 0.185 ±0.003

� 5 0.014 ±0.003 0.018 ±0.005 0.021 ±0.005 0.036 ±0.012 0.069 ±0.032 0.114 ±0.056

5 � 0.024 ±0.001 0.038 ±0.001 0.043 ±0.002 0.083 ±0.001 0.139 ±0.004 0.181 ±0.002
GatedGCN-DENS

� � 0.017 ±0.002 0.024 ±0.005 0.027 ±0.008 0.030 ±0.004 0.036 ±0.012 0.059 ±0.033

5 � 0.016 ±0.001 0.026 ±0.002 0.030 ±0.000 0.066 ±0.000 0.123 ±0.000 0.195 ±0.000GPS-DENS
� � 0.014 ±0.000 0.023 ±0.002 0.027 ±0.003 0.055 ±0.004 0.103 ±0.006 0.164 ±0.006

Table 6: Accuracy of GPS Variants on RotatedMNIST. We focus on the accuracy results for GPS
variants on rotated MNIST dataset. Using G-�UQ (with or without pretraining) remains close in
accuracy to foregoing it, generally within the range of the standard deviation of the results.

MODEL G-�UQ? Avg. Test (") Acc. (10) (") Acc. (15) (") Acc. (25) (") Acc. (35) (") Acc. (40) (")
5 0.970 ±0.001 0.948 ±0.001 0.938 ±0.001 0.873 ±0.006 0.770 ±0.013 0.688 ±0.009GPS
� 0.969 ±0.001 0.946 ±0.003 0.937 ±0.003 0.869 ±0.003 0.769 ±0.012 0.679 ±0.014

GPS (Pretrained) � 0.967 ±0.002 0.945 ±0.004 0.934 ±0.005 0.864 ±0.009 0.759 ±0.010 0.674 ±0.002

Table 7: Calibration of GPS Variants on RotatedMNIST. We focus on the calibration results
for GPS variants on rotated MNIST dataset. Across the board, we see improvements from using
G-�UQ , with our strategy of applying it to a pretrained model doing best.

MODEL G-�UQ Avg.ECE (#) ECE (10) (#) ECE (15) (#) ECE (25) (#) ECE (35) (#) ECE (40) (#)

GPS-TS 5 0.024 ±0.001 0.041 ±0.001 0.049 ±0.001 0.102 ±0.006 0.188 ±0.012 0.261 ±0.008

5 0.026 ±0.001 0.044 ±0.001 0.052 ±0.156 0.108 ±0.006 0.197 ±0.012 0.273 ±0.008GPS
� 0.022 ±0.001 0.037 ±0.005 0.044 ±0.133 0.091 ±0.008 0.165 ±0.018 0.239 ±0.018

GPS (Pretrained) � 0.021 ±0.001 0.032 ±0.003 0.039 ±0.116 0.083 ±0.002 0.153 ±0.007 0.217 ±0.012
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Table 8: MNIST Feature Shifts. G-�UQ improves calibration and maintains competitive or even
improved accuracy across varying levels of feature distribution shift.

STD = 0.1 STD = 0.2 STD = 0.3 STD = 0.4

MODEL LPE? G-�UQ? Calibration Accuracy (") ECE (#) Accuracy (") ECE (#) Accuracy (") ECE (#) Accuracy (") ECE (#)

5 5 5 0.742±0.005 0.186±0.018 0.481±0.015 0.414±0.092 0.293±0.074 0.606±0.147 0.197±0.092 0.71±0.178

5 � 5 0.773±0.053 0.075±0.032 0.536±0.010 0.160±0.087 0.356±0.101 0.422±0.083 0.249±0.074 0.529±0.047

� 5 5 0.751±0.02 0.176±0.014 0.519±0.004 0.348±0.03 0.345±0.032 0.485±0.096 0.233±0.043 0.581±0.142
GatedGCN

� � 5 0.745±0.026 0.100±0.036 0.541±0.040 0.235±0.067 0.355±0.062 0.408±0.116 0.242±0.063 0.539±0.139
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A.5 STOCHASTIC CENTERING ON THE EMPIRICAL NTK OF GRAPH NEURAL NETWORKS

Using a simple grid-graph dataset and 4 layer GIN model, we compute the Fourier spectrum of the
NTK. As shown in Fig. 7, we find that shifts to the node features can induce systematic changes to
the spectrum.

Figure 7: Stochastic Centering with the empirical GNN NTK. We find that performing constant
shifts at intermediate layers introduces changes to a GNN’s NTK. We include a vanilla GNN NTK in
black for reference. Further, note the shape of the spectrum should not be compared across subplots
as each subplot was created with a different random initialization.
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A.6 SIZE-GENERALIZATION DATASET STATISTICS

The statistics for the size generalization experiments (see Sec. 5.1) are provided below in Table 9.

Table 9: Size Generalization Dataset Statistics: This table is directly reproduced from (Buffelli
et al., 2022), who in turn used statistics from (Yehudai et al., 2021; Bevilacqua et al., 2021).

NCI1 NCI109
ALL SMALLEST 50% LARGEST 10% ALL SMALLEST 50% LARGEST 10%

CLASS A 49.95% 62.30% 19.17% 49.62% 62.04% 21.37%
CLASS B 50.04% 37.69% 80.82% 50.37% 37.95% 78.62%
# OF GRAPHS 4110 2157 412 4127 2079 421
AVG GRAPH SIZE 29 20 61 29 20 61

PROTEINS DD
ALL SMALLEST 50% LARGEST 10% ALL SMALLEST 50% LARGEST 10%

CLASS A 59.56% 41.97% 90.17% 58.65% 35.47% 79.66%
CLASS B 40.43% 58.02% 9.82% 41.34% 64.52% 20.33%
# OF GRAPHS 1113 567 112 1178 592 118
AVG GRAPH SIZE 39 15 138 284 144 746

A.7 GOOD BENCHMARK EXPERIMENTAL DETAILS

For our experiments in Sec. 5.2, we utilize the in/out-of-distribution covariate and concept splits
provided by Gui et al. (2022). Furthermore, we use the suggested models and architectures provided
by their package. In brief, we use GIN models with virtual nodes (except for GOODMotif) for
training, and average scores over 3 seeds. When performing stochastic anchoring at a particular layer,
we double the hidden representation size for that layer. Subsequent layers retain the original size of
the vanilla model.

When performing stochastic anchoring, we use 10 fixed anchors randomly drawn from the in-
distribution validation dataset. We also train the G-�UQ for an additional 50 epochs to ensure that
models are able to converge. Please see our code repository for the full details.

We also include results on additional node classification benchmarks featuring distribution shift in
Table 12. In Table 14, we compare models without G-�UQ to the use of G-�UQ with randomly
sampled anchors at the first or second layer.
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Dataset Shift Train ID validation ID test OOD validation OOD test Train OOD validation ID validation ID test OOD test

Length

GOOD-SST2
covariate 24744 5301 5301 17206 17490
concept 27270 5843 5843 15142 15944

Color

GOOD-CMNIST
covariate 42000 7000 7000 7000 7000
concept 29400 6300 6300 14000 14000
no shift 42000 14000 14000 - -

Base Size

GOOD-Motif
covariate 18000 3000 3000 3000 3000 18000 3000 3000 3000 3000
concept 12600 2700 2700 6000 6000 12600 2700 2700 6000 6000

Word Degree

GOOD-Cora
covariate 9378 1979 1979 3003 3454 8213 1979 1979 3841 3781
concept 7273 1558 1558 3807 5597 7281 1560 1560 3706 5686

University

GOOD-WebKB
covariate 244 61 61 125 126
concept 282 60 60 106 109

Color

GOOD-CBAS
covariate 420 70 70 70 70
concept 140 140 140 140 140

Table 10: Number of Graphs/Nodes per dataset.

Dataset Model # Model layers Batch Size # Max Epochs # Iterations per epoch Initial LR Node Feature Dim

GOOD-SST2 GIN-Virtual 3 32 200/100 – 1e-3 768
GOOD-CMNIST GIN-Virtual 5 128 500 – 1e-3 3
GOOD-Motif GIN 3 32 200 – 1e-3 4
GOOD-Cora GCN 3 4096 100 10 1e-3 8710
GOOD-WebKB GCN 3 4096 100 10 1e-3/5e-3 1703
GOOD-CBAS GCN 3 1000 200 10 3e-3 8

Table 11: Model and hyperparameters for GOOD datasets.
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A.8 GOOD DATASET ADDITIONAL RESULTS

We also include results on additional node classification benchmarks featuring distribution shift in
Table 12. In Table 14, we compare models without G-�UQto the use of G-�UQwith randomly
sampled anchors at the first or second layer.

Table 12: Additional Node Classification Benchmarks. Here, we compare accuracy and calibration
error of G-�UQ and "no G-�UQ " (vanilla) models on 4 node classification benchmarks across
concept and covariate shifts. First, we note that across all our evaluations, without any posthoc
calibration, G-�UQ is superior to the vanilla model on nearly every benchmark for better or
same accuracy (8/8 benchmarks) and better calibration error (7/8), often with a significant gain in
calibration performance. However, due to the challenging nature of these shifts, achieving state-of-
the-art calibration performance often requires the use of post-hoc calibration methods – so we also
evaluate how these posthoc methods can be elevated when combined with G-�UQ (versus the vanilla
variant). When combined with popular posthoc methods, we highlight that performance improves
across the board, when combined with G-�UQ (including in WebKB and CBAS-Concept). For
example, on WebKB – across the 9 calibration methods considered, “G-�UQ + calibration method”
improves or maintains the calibration performance of the analogous “no G-�UQ + calibration
method” in 7/9 (concept) and 6/9 (covariate). In CBAS, calibration is improved or maintained as
the no-G-�UQ version on 5/9 (concept) and 9/9 (covariate). In all cases, this is achieved with
little or no compromise on classification accuracy (often improving over “no G-�UQ” variant). We
also emphasize that, across all the 8 evaluation sets (4 datasets x 2 shift types) in Table 10, the
best performance is almost always obtained with a GDUQ variant: (accuracy: 8/8) as well as best
calibration (6/8) or second best (2/8).

Shift: Concept Shift: Covariate

Accuracy (") ECE (#) Accuracy (") ECE (#)
Dataset Domain Calibration No G-� UQ G-� UQ No G-� UQ G-� UQ No G-� UQ G-� UQ No G-� UQ G-� UQ

5 0.253±0.003 0.281±0.009 0.67±0.061 0.593±0.025 0.122±0.029 0.115±0.041 0.599±0.091 0.525±0.033

CAGCN 0.253±0.005 0.268±0.008 0.452±0.14 0.473±0.12 0.122±0.018 0.092±0.161 0.355±0.227 0.396±0.161

Dirichlet 0.229±0.018 0.22±0.022 0.472±0.06 0.472±0.03 0.244±0.105 0.295±0.044 0.299±0.092 0.328±0.044

ETS 0.253±0.005 0.273±0.012 0.64±0.06 0.575±0.019 0.121±0.021 0.084±0.027 0.539±0.112 0.499±0.027

GATS 0.253±0.005 0.273±0.01 0.608±0.008 0.485±0.02 0.122±0.018 0.079±0.029 0.455±0.057 0.376±0.029

IRM 0.251±0.005 0.266±0.011 0.342±0.017 0.349±0.006 0.097±0.04 0.046±0.013 0.352±0.037 0.422±0.013

Orderinvariant 0.253±0.005 0.27±0.01 0.628±0.026 0.564±0.024 0.122±0.018 0.106±0.065 0.545±0.079 0.47±0.065

Spline 0.237±0.012 0.257±0.023 0.436±0.029 0.386±0.034 0.122±0.013 0.171±0.056 0.472±0.031 0.39±0.056

WebKB University

VS 0.253±0.005 0.275±0.011 0.67±0.009 0.588±0.011 0.122±0.018 0.095±0.014 0.602±0.044 0.507±0.014

5 0.581±0.003 0.595±0.003 0.307±0.009 0.13±0.011 0.47±0.002 0.518±0.014 0.348±0.032 0.141±0.008

CAGCN 0.581±0.003 0.597±0.002 0.135±0.009 0.128±0.025 0.47±0.002 0.522±0.025 0.256±0.08 0.231±0.025

Dirichlet 0.534±0.007 0.551±0.004 0.12±0.004 0.196±0.003 0.414±0.007 0.449±0.01 0.163±0.002 0.356±0.01

ETS 0.581±0.003 0.596±0.004 0.301±0.009 0.116±0.018 0.47±0.002 0.523±0.003 0.31±0.077 0.141±0.003

GATS 0.581±0.003 0.596±0.004 0.185±0.018 0.229±0.039 0.47±0.002 0.521±0.011 0.211±0.004 0.308±0.011

IRM 0.582±0.002 0.597±0.002 0.125±0.001 0.102±0.002 0.469±0.001 0.522±0.004 0.194±0.005 0.13±0.004

Orderinvariant 0.581±0.003 0.592±0.002 0.226±0.024 0.213±0.049 0.47±0.002 0.498±0.027 0.318±0.042 0.196±0.027

Spline 0.571±0.003 0.595±0.003 0.080±0.004 0.068±0.004 0.459±0.003 0.52±0.004 0.158±0.01 0.098±0.004

Cora Degree

VS 0.581±0.003 0.596±0.004 0.306±0.004 0.127±0.002 0.47±0.001 0.522±0.005 0.345±0.005 0.146±0.005

5 0.607±0.003 0.628±0.001 0.284±0.009 0.111±0.013 0.603±0.004 0.633±0.031 0.263±0.004 0.118±0.019

CAGCN 0.607±0.002 0.628±0.002 0.138±0.011 0.236±0.019 0.603±0.004 0.634±0.035 0.129±0.009 0.253±0.035

Dirichlet 0.579±0.007 0.588±0.006 0.105±0.011 0.168±0.005 0.562±0.007 0.578±0.007 0.095±0.006 0.269±0.007

ETS 0.607±0.002 0.628±0.002 0.282±0.002 0.11±0.003 0.603±0.004 0.634±0.013 0.243±0.023 0.106±0.013

GATS 0.607±0.002 0.628±0.002 0.166±0.009 0.261±0.028 0.603±0.004 0.635±0.037 0.16±0.015 0.293±0.037

IRM 0.608±0.001 0.63±0.002 0.115±0.002 0.088±0.003 0.602±0.003 0.635±0.004 0.106±0.002 0.098±0.004

Orderinvariant 0.607±0.002 0.624±0.002 0.174±0.024 0.201±0.061 0.603±0.004 0.621±0.076 0.154±0.022 0.202±0.076

Spline 0.598±0.005 0.629±0.002 0.073±0.002 0.062±0.005 0.591±0.002 0.635±0.004 0.063±0.006 0.053±0.004

Cora Word

VS 0.607±0.001 0.63±0.002 0.283±0.003 0.111±0.003 0.603±0.004 0.636±0.003 0.261±0.005 0.119±0.003

5 0.83±0.014 0.829±0.011 0.169±0.013 0.151±0.014 0.703±0.015 0.746±0.027 0.266±0.02 0.169±0.018

CAGCN 0.83±0.013 0.83±0.013 0.137±0.011 0.143±0.022 0.703±0.019 0.749±0.033 0.25±0.021 0.186±0.017

Dirichlet 0.801±0.02 0.806±0.008 0.161±0.012 0.17±0.01 0.671±0.018 0.771±0.03 0.241±0.029 0.217±0.017

ETS 0.83±0.013 0.827±0.014 0.146±0.013 0.164±0.007 0.703±0.019 0.76±0.037 0.28±0.023 0.176±0.019

GATS 0.83±0.013 0.83±0.021 0.16±0.009 0.173±0.021 0.703±0.019 0.751±0.016 0.236±0.039 0.16±0.015

IRM 0.829±0.013 0.839±0.015 0.142±0.009 0.133±0.006 0.72±0.019 0.803±0.04 0.207±0.035 0.158±0.017

Orderinvariant 0.83±0.013 0.803±0.008 0.174±0.006 0.173±0.009 0.703±0.019 0.766±0.045 0.261±0.017 0.194±0.031

Spline 0.82±0.016 0.824±0.011 0.159±0.009 0.16±0.014 0.683±0.019 0.786±0.038 0.225±0.034 0.179±0.035

CBAS Color

VS 0.829±0.012 0.840±0.011 0.166±0.011 0.146±0.012 0.717±0.019 0.809±0.008 0.242±0.019 0.182±0.014
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Table 13: Layerwise Anchoring for Node Classification Datasets with Intermediate Representa-
tion Distributions. Here, we provide preliminary results for performing layerwise anchoring when
performing node classification. We fit a gaussian distribution over the representations (similar to node
feature anchoring) and then sample anchors from this distribution. We fit a gaussian distribution over
the representations (similar to node feature anchoring) and then sample anchors from this distribution.
We see that these alternative strategies do provide benefits in some cases, but overall, our original
input node feature anchoring strategy is more performant.

Shift: Concept Shift: Covariate

Accuracy (") ECE (#) Accuracy (") ECE (#)
Dataset Domain Calibration No G-� UQ Random 1 Random 2 No G-� UQ Random 1 Random 2 No G-� UQ Random 1 Random 2 No G-� UQ Random 1 Random 2

Dirichlet 0.801±0.02 0.765±0.012 0.839±0.023 0.161±0.012 0.301±0.018 0.234±0.027 0.671±0.018 0.74±0.023 0.689±0.032 0.241±0.029 0.349±0.04 0.381±0.029

ETS 0.83±0.013 0.819±0.012 0.82±0.088 0.146±0.013 0.23±0.017 0.257±0.021 0.703±0.019 0.638±0.051 0.686±0.026 0.28±0.023 0.347±0.037 0.334±0.028

IRM 0.829±0.013 0.821±0.019 0.885±0.026 0.142±0.009 0.219±0.012 0.206±0.066 0.72±0.019 0.617±0.084 0.693±0.026 0.207±0.035 0.363±0.03 0.299±0.036

Orderinvariant 0.83±0.013 0.813±0.015 0.819±0.028 0.174±0.006 0.255±0.015 0.236±0.006 0.703±0.019 0.831±0.008 0.636±0.026 0.261±0.017 0.286±0.039 0.303±0.062

Spline 0.82±0.016 0.814±0.022 0.839±0.035 0.159±0.009 0.235±0.017 0.196±0.036 0.683±0.019 0.621±0.052 0.757±0.026 0.225±0.034 0.312±0.026 0.331±0.024

CBAS Color

VS 0.829±0.012 0.817±0.017 0.91±0.006 0.166±0.011 0.251±0.012 0.259±0.021 0.717±0.019 0.593±0.038 0.695±0.051 0.242±0.019 0.38±0.037 0.359±0.02

Dirichlet 0.534±0.007 0.483±0.014 0.423±0.007 0.12±0.004 0.355±0.004 0.347±0.004 0.414±0.007 0.466±0.073 0.425±0.005 0.163±0.002 0.315±0.042 0.345±0.007

ETS 0.581±0.003 0.562±0.01 0.496±0.002 0.301±0.009 0.297±0.009 0.289±0.006 0.47±0.002 0.498±0.119 0.34±0.076 0.31±0.077 0.511±0.005 0.329±0.008

IRM 0.582±0.002 0.567±0.011 0.492±0.003 0.125±0.001 0.072±0.003 0.116±0.006 0.469±0.001 0.499±0.117 0.508±0.005 0.194±0.005 0.094±0.009 0.105±0.006

Orderinvariant 0.581±0.003 0.566±0.004 0.495±0.002 0.226±0.024 0.151±0.015 0.14±0.008 0.47±0.002 0.499±0.107 0.108±0.034 0.318±0.042 0.506±0.005 0.093±0.009

Spline 0.571±0.003 0.561±0.011 0.493±0.005 0.080±0.004 0.11±0.01 0.119±0.005 0.459±0.003 0.499±0.12 0.508±0.006 0.158±0.01 0.105±0.03 0.127±0.012

Cora Degree

VS 0.581±0.003 0.571±0.002 0.279±0.009 0.306±0.004 0.493±0.008 0.272±0.009 0.47±0.001 0.511±0.091 0.51±0.002 0.345±0.005 0.347±0.051 0.323±0.007

Dirichlet 0.579±0.007 0.581±0.004 0.504±0.004 0.105±0.011 0.271±0.011 0.285±0.002 0.562±0.007 0.586±0.009 0.497±0.01 0.095±0.006 0.264±0.022 0.275±0.007

ETS 0.607±0.002 0.641±0.003 0.575±0.003 0.282±0.002 0.352±0.012 0.328±0.007 0.603±0.004 0.633±0.003 0.567±0.004 0.243±0.023 0.377±0.023 0.374±0.006

IRM 0.608±0.001 0.642±0.002 0.574±0.003 0.115±0.002 0.106±0.004 0.154±0.005 0.602±0.003 0.635±0.004 0.569±0.003 0.106±0.002 0.136±0.012 0.173±0.007

Orderinvariant 0.607±0.002 0.642±0.004 0.573±0.004 0.174±0.024 0.109±0.011 0.107±0.01 0.603±0.004 0.638±0.004 0.566±0.004 0.154±0.022 0.087±0.006 0.073±0.004

Spline 0.598±0.005 0.641±0.002 0.576±0.004 0.073±0.002 0.076±0.004 0.068±0.007 0.591±0.002 0.632±0.002 0.568±0.003 0.063±0.006 0.066±0.005 0.077±0.004

Cora Word

VS 0.607±0.001 0.639±0.003 0.583±0.005 0.283±0.003 0.345±0.007 0.335±0.012 0.603±0.004 0.637±0.004 0.579±0.004 0.261±0.005 0.396±0.028 0.384±0.005

Dirichlet 0.229±0.018 0.214±0.000 0.228±0.012 0.472±0.06 0.56±0.000 0.552±0.041 0.244±0.105 0.347±0.012 0.299±0.092 0.429±0.05

ETS 0.253±0.005 0.279±0.000 0.234±0.01 0.64±0.06 0.437±0.000 0.33±0.022 0.121±0.021 0.225±0.013 0.539±0.112 0.258±0.028

IRM 0.251±0.005 0.251±0.000 0.232±0.009 0.342±0.017 0.379±0.000 0.459±0.01 0.097±0.04 0.187±0.021 0.352±0.037 0.294±0.018

Orderinvariant 0.253±0.005 0.279±0.000 0.237±0.01 0.628±0.026 0.568±0.000 0.53±0.049 0.122±0.018 0.221±0.026 0.545±0.079 0.321±0.061

Spline 0.237±0.012 0.237±0.000 0.233±0.008 0.436±0.029 0.467±0.000 0.483±0.041 0.122±0.013 0.205±0.01 0.472±0.031 0.329±0.035

WebKB University

VS 0.253±0.005 0.279±0.000 0.234±0.01 0.67±0.009 0.49±0.000 0.344±0.02 0.122±0.018 0.201±0.011 0.602±0.044 0.256±0.014

Table 14: Layerwise Anchoring for Node Classification Datasets with Random Shuffling. Here,
we provide preliminary results for performing layerwise anchoring when performing node clas-
sification. We use random shuffling (similar to the proposed hidden layer strategy) to create the
interemediate representations. We see that these alternative strategies do provide benefits.

Shift: Concept Shift: Covariate

Accuracy (") ECE (#) Accuracy (") ECE (#)
Dataset Domain Calibration No G-� UQ Batch 1 Batch 2 No G-� UQ Batch 1 Batch 2 No G-� UQ Batch 1 Batch 2 No G-� UQ Batch 1 Batch 2

Dirichlet 0.801±0.02 0.757±0.045 0.58±0.046 0.161±0.012 0.309±0.059 0.431±0.033 0.671±0.018 0.548±0.035 0.629±0.019 0.241±0.029 0.48±0.03 0.407±0.01

ETS 0.83±0.013 0.699±0.036 0.637±0.014 0.146±0.013 0.265±0.013 0.258±0.015 0.703±0.019 0.562±0.087 0.507±0 0.28±0.023 0.37±0.021 0.333±0.02

IRM 0.829±0.013 0.711±0.031 0.724±0.029 0.142±0.009 0.284±0.032 0.291±0.02 0.72±0.019 0.59±0.079 0.657±0.037 0.207±0.035 0.336±0.032 0.268±0.037

Orderinvariant 0.83±0.013 0.788±0.007 0.574±0.051 0.174±0.006 0.268±0.023 0.208±0.055 0.703±0.019 0.61±0.011 0.5±0.019 0.261±0.017 0.334±0.035 0.249±0.037

Spline 0.82±0.016 0.695±0.039 0.652±0.022 0.159±0.009 0.279±0.018 0.236±0.013 0.683±0.019 0.49±0.124 0.6±0.032 0.225±0.034 0.364±0.034 0.308±0.054

CBAS Color

VS 0.829±0.012 0.73±0.043 0.693±0.051 0.166±0.011 0.264±0.009 0.197±0.033 0.717±0.019 0.429±0.083 0.607±0.042 0.242±0.019 0.478±0.042 0.312±0.014

Dirichlet 0.534±0.007 0.515±0.003 0.442±0.012 0.12±0.004 0.304±0.01 0.315±0.004 0.414±0.007 0.507±0.004 0.419±0.006 0.163±0.002 0.28±0.006 0.338±0.004

ETS 0.581±0.003 0.576±0.011 0.516±0.013 0.301±0.009 0.317±0.018 0.285±0.007 0.47±0.002 0.563±0.003 0.496±0.005 0.31±0.077 0.373±0.009 0.311±0.006

IRM 0.582±0.002 0.579±0.009 0.523±0.008 0.125±0.001 0.076±0.004 0.129±0.004 0.469±0.001 0.562±0.004 0.494±0.004 0.194±0.005 0.088±0.011 0.098±0.003

Orderinvariant 0.581±0.003 0.582±0.003 0.518±0.005 0.226±0.024 0.134±0.023 0.126±0.012 0.47±0.002 0.561±0.004 0.496±0.004 0.318±0.042 0.091±0.014 0.096±0.007

Spline 0.571±0.003 0.58±0.006 0.518±0.011 0.080±0.004 0.093±0.007 0.092±0.007 0.459±0.003 0.565±0.004 0.496±0.005 0.158±0.01 0.091±0.009 0.128±0.012

Cora Degree

VS 0.581±0.003 0.581±0.005 0.529±0.005 0.306±0.004 0.313±0.006 0.294±0.004 0.47±0.001 0.562±0.005 0.498±0.008 0.345±0.005 0.368±0.016 0.308±0.003

Dirichlet 0.579±0.007 0.575±0.004 0.491±0.013 0.105±0.011 0.28±0.007 0.282±0.012 0.562±0.007 0.586±0.009 0.507±0.006 0.095±0.006 0.264±0.022 0.249±0.007

ETS 0.607±0.002 0.636±0.003 0.562±0.006 0.282±0.002 0.359±0.02 0.311±0.006 0.603±0.004 0.633±0.003 0.561±0.005 0.243±0.023 0.377±0.023 0.365±0.005

IRM 0.608±0.001 0.632±0.004 0.562±0.006 0.115±0.002 0.124±0.006 0.16±0.005 0.602±0.003 0.635±0.004 0.557±0.006 0.106±0.002 0.136±0.012 0.176±0.007

Orderinvariant 0.607±0.002 0.639±0.003 0.561±0.006 0.174±0.024 0.111±0.008 0.095±0.006 0.603±0.004 0.638±0.004 0.56±0.004 0.154±0.022 0.087±0.006 0.076±0.006

Spline 0.598±0.005 0.633±0.004 0.561±0.007 0.073±0.002 0.077±0.005 0.069±0.004 0.591±0.002 0.632±0.002 0.56±0.006 0.063±0.006 0.066±0.005 0.08±0.004

Cora Word

VS 0.607±0.001 0.633±0.006 0.574±0.007 0.283±0.003 0.368±0.009 0.32±0.005 0.603±0.004 0.637±0.004 0.573±0.008 0.261±0.005 0.396±0.028 0.373±0.006

Dirichlet 0.229±0.018 0.231±0.015 0.234±0.007 0.472±0.06 0.562±0.014 0.534±0.022 0.244±0.105 0.242±0.166 0.298±0.077 0.299±0.092 0.468±0.092 0.483±0.055

ETS 0.253±0.005 0.277±0.007 0.234±0.003 0.64±0.06 0.421±0.017 0.327±0.015 0.121±0.021 0.128±0.017 0.101±0.033 0.539±0.112 0.437±0.032 0.293±0.01

IRM 0.251±0.005 0.265±0.019 0.232±0.014 0.342±0.017 0.377±0.015 0.438±0.015 0.097±0.04 0.118±0.033 0.093±0.034 0.352±0.037 0.482±0.02 0.435±0.016

Orderinvariant 0.253±0.005 0.268±0.01 0.231±0.01 0.628±0.026 0.513±0.071 0.431±0.025 0.122±0.018 0.122±0.018 0.1±0.029 0.545±0.079 0.475±0.049 0.38±0.069

Spline 0.237±0.012 0.242±0.01 0.228±0.014 0.436±0.029 0.415±0.042 0.484±0.035 0.122±0.013 0.129±0.024 0.097±0.013 0.472±0.031 0.478±0.033 0.425±0.013

WebKB University

VS 0.253±0.005 0.279±0.007 0.232±0.005 0.67±0.009 0.441±0.021 0.323±0.015 0.122±0.018 0.132±0.01 0.101±0.033 0.602±0.044 0.455±0.041 0.297±0.008
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Table 15: Alternative Anchoring Strategies. Here, we consider an alternative anchoring formulation
for graph classification. Namely, instead of shuffling features across the batch (denoted Batch
in the table), we perform READOUT anchoring by fitting a normal distribution over the hidden
representations. We then randomly sample from this distribution to create anchors. Conceptually,
this is similar to the node feature anchoring strategy. One potential direction of future work that is
permitted by this formulation is to optimize the parameters of this distribution given a signal from an
appropriate auxiliary task or loss. For example, we could perform an alternating optimization where
the GNN is trained to minimize the loss, and the mean and variance of the anchoring distribution
are optimized to minimize the expected calibration error on a separate calibration dataset. While
a rigorous formulation is left to future work, we emphasize that the potential for improving the
anchoring distribution, and thus controlling corresponding hypothesis diversity, is in fact a unique
benefit of G-�UQ.

Test Acc Test Cal OOD Acc OOD Cal

Shift Type Method MPNN Batch Random MPNN Batch Random MPNN Batch Random MPNN Batch Random

GoodMotif, basis, concept Dirichlet 0.995± 0.0007 0.994± 0.0002 0.996± 0.0009 0.040± 0.0037 0.036± 0.0016 0.035± 0.0058 0.924± 0.0069 0.923± 0.0117 0.942±0.0034 0.080± 0.0153 0.102± 0.0071 0.062 ± 0.0086
ETS 0.995± 0.0007 0.995± 0.0005 0.996± 0.0007 0.035± 0.0034 0.036± 0.0101 0.032± 0.0052 0.925± 0.0095 0.926± 0.009 0.935± 0.0068 0.095± 0.0098 0.096± 0.0128 0.087± 0.01451
IRM 0.9954± 0.0007 0.9957± 0.0009 0.9965 ± 0.0004 0.0198 ± 0.0089 0.0229± 0.0105 0.0225±0.0038 0.9251± 0.0096 0.9301± 0.0123 0.9462 ± 0.0024 0.0873± 0.0176 0.0966± 0.0103 0.0907± 0.0276
OrderInvariant 0.995± 0.0007 0.995± 0.0005 0.995± 0.0005 0.033± 0.0094 0.028± 0.0047 0.032± 0.0009 0.925± 0.0095 0.928± 0.0104 0.935± 0.0027 0.090± 0.0092 0.093± 0.0070 0.0754±0.0029
Spline 0.995± 0.0007 0.995± 0.0007 0.9962±0.0005 0.034± 0.0002 0.035± 0.0090 0.032± 0.0048 0.924± 0.0098 0.926± 0.0092 0.937± 0.0030 0.091± 0.0084 0.089± 0.0123 0.083± 0.0065
VS 0.995± 0.0007 0.995± 0.0005 0.996± 0.000 0.035± 0.0034 0.036± 0.0087 0.033± 0.0098 0.925± 0.0094 0.926± 0.0095 0.936± 0.0053 0.094± 0.0096 0.095± 0.0133 0.082± 0.009

GoodMotif,basis, covariate Dirichlet 0.999± 0.0003 0.999± 0.0004 0.999± 0.0002 0.017± 0.0054 0.017± 0.0019 0.014± 0.0004 0.685± 0.0504 0.650± 0.0450 0.698 ± 0.0139 0.336± 0.0667 0.371± 0.0474 0.320± 0.0140
ETS 0.9997±0.0004 0.999± 0.0005 0.999± 0.0002 0.0095±0.0091 0.017± 0.0064 0.017± 0.0056 0.690± 0.0434 0.649± 0.0476 0.686± 0.0226 0.313± 0.0413 0.3739 ± 0.0485 0.334± 0.0167
IRM 0.9997±0.0004 0.999± 0.0006 0.999± 0.0003 0.0085 ± 0.0032 0.010± 0.0032 0.014± 0.0042 0.690± 0.0434 0.647± 0.0472 0.692± 0.0226 0.315± 0.0505 0.354± 0.0450 0.328± 0.0211
OrderInvariant 0.9997±0.0004 0.999± 0.0005 0.999± 0.0003 0.014± 0.0028 0.020± 0.0090 0.013± 0.0081 0.690± 0.0434 0.649± 0.0450 0.689± 0.0170 0.320± 0.0501 0.358± 0.0410 0.328± 0.0218
Spline 0.9997±0.0004 0.999± 0.0005 0.999± 0.0003 0.016± 0.0049 0.017± 0.0053 0.017± 0.0052 0.690± 0.0434 0.649± 0.0476 0.6923±0.0199 0.324± 0.0548 0.3733±0.0507 0.327± 0.0105
VS 0.9998 ± 0.0001 0.999± 0.0003 0.999± 0.0002 0.011± 0.0053 0.014± 0.0034 0.012± 0.0016 0.682± 0.0561 0.650± 0.0546 0.682± 0.0251 0.325± 0.0568 0.371± 0.0591 0.337± 0.0264

GOODSST2,length,concept Dirichlet 0.938± 0.0019 0.939± 0.0056 0.942 ± 0.00180 0.189± 0.01989 0.165 ± 0.0179 0.187±0.0256 0.694 ± 0.0193 0.693± 0.0020 0.687± 0.0027 0.146±0.0196 0.133 ± 0.015 0.169± 0.0168
ETS 0.938± 0.0020 0.939± 0.0060 0.941± 0.0017 0.389± 0.0018 0.390± 0.0022 0.393± 0.0007 0.6940±0.0193 0.692± 0.0019 0.687± 0.0034 0.214± 0.0098 0.216± 0.0033 0.220± 0.0057
IRM 0.939± 0.0016 0.939± 0.0058 0.941± 0.0018 0.326± 0.0011 0.326± 0.0013 0.327± 0.0017 0.693± 0.0185 0.692± 0.0026 0.685± 0.0026 0.240± 0.0017 0.232± 0.0050 0.242± 0.0053
OrderInvariant 0.938± 0.0020 0.939± 0.0060 0.941± 0.0022 0.314± 0.0014 0.315± 0.0029 0.315± 0.0012 0.6940±0.0193 0.692± 0.0019 0.687± 0.0033 0.224± 0.0010 0.222± 0.0030 0.223± 0.0054
Spline 0.938± 0.0026 0.938± 0.0044 0.941± 0.0010 0.329± 0.0021 0.329± 0.0019 0.328± 0.0012 0.692± 0.0190 0.692± 0.0022 0.687± 0.0035 0.234± 0.0052 0.231± 0.0044 0.243± 0.0034
VS 0.938± 0.0027 0.939± 0.0057 0.941±0.0018 0.290± 0.2099 0.484± 0.0008 0.487± 0.0007 0.693± 0.0184 0.693± 0.0018 0.687± 0.0031 0.331± 0.0484 0.375± 0.0022 0.382± 0.0048

GOODSST2,length,covariate Dirichlet 0.896 ± 0.0029 0.893± 0.0009 0.895± 0.00095 0.196± 0.0155 0.172 ± 0.0091 0.1797±0.0109 0.825± 0.0037 0.827± 0.0066 0.805± 0.0150 0.163± 0.0198 0.141 ± 0.0087 0.142±0.0122
ETS 0.8966 ± 0.0023 0.894± 0.0011 0.894± 0.0006 0.357± 0.0013 0.359± 0.0004 0.362± 0.0019 0.826± 0.0036 0.828±0.0065 0.806± 0.0117 0.309± 0.0050 0.314± 0.0076 0.300± 0.0070
IRM 0.895± 0.0019 0.893± 0.0003 0.894± 0.0007 0.307± 0.0004 0.307± 0.0003 0.306± 0.0020 0.826± 0.0040 0.828 ± 0.0065 0.809± 0.0152 0.276± 0.0046 0.277± 0.0061 0.265± 0.0078
OrderInvariant 0.896 ± 0.0023 0.894± 0.0011 0.894± 0.0008 0.288± 0.0008 0.285± 0.0008 0.284± 0.0013 0.826± 0.0036 0.828±0.0065 0.806± 0.0106 0.244± 0.0022 0.241± 0.0037 0.225± 0.0054
Spline 0.894± 0.0016 0.890± 0.0009 0.892± 0.0040 0.309± 0.0024 0.307± 0.0009 0.307± 0.0022 0.822± 0.0026 0.822± 0.0092 0.801± 0.0110 0.275± 0.0043 0.276± 0.0063 0.264± 0.0063
VS 0.8963±0.0028 0.893± 0.0008 0.894± 0.0007 0.291± 0.1833 0.460± 0.0011 0.465± 0.0010 0.821± 0.0053 0.827± 0.0071 0.806± 0.0119 0.299± 0.1395 0.431± 0.0061 0.429± 0.0054
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A.9 POST-HOC CALIBRATION STRATEGIES

Several post hoc strategies have been developed for calibrating the predictions of a model. These
have the advantage of flexibility, as they operate only on the outputs of a model and do not require
that any changes be made to the model itself. Some methods include:

• Temperature scaling (TS) (Guo et al., 2017) simply scales the logits by a temperature
parameter T > 1 to smooth the predictions. The scaling parameter T can be tuned on a
validation set.

• Ensemble temperature scaling (ETS) (Zhang et al., 2020) learns an ensemble of
temperature-scaled predictions with uncalibrated predictions (T = 1) and uniform proba-
bilistic outputs (T = 1).

• Vector scaling (VS) Guo et al. (2017) scales the entire output vector of class probabilities,
rather than just the logits.

• Multi-class isotonic regression (IRM) (Zhang et al., 2020) is a multiclass generalization of
the famous isotonic regression method (Zadrozny & Elkan, 2002)): it ensembles predictions
and labels, then learns a monotonically increasing function to map transformed predictions
to labels.

• Order-invariant calibration (Rahimi et al., 2020) uses a neural network to learn an intra-
order-preserving calibration function that can preserve a model’s top-k predictions.

• Spline calibration instead uses splines to fit the calibration function (Gupta et al., 2021).
• Dirichlet calibration (Kull et al., 2019) models the distribution of outputs using a Dirichlet

distribution, using simple log-transformation of the uncalibrated probabilities which are
then passed to a regularized fully connected neural network layer with softmax activation.

For node classification, some graph-specific post-hoc calibration methods have been proposed.
CaGCN (Wang et al., 2021) uses the graph structure and an additional GCN to produce node-wise
temperatures. GATS (Hsu et al., 2022) extends this idea by using graph attention to model the
influence of neighbors’ temperatures when learning node-wise temperatures. We use the post hoc
calibration baselines provided by Hsu et al. in our experiments.

All of the above methods, and others, may be applied to the output of any model including one using
G-�UQ. As we have shown, applying such post hoc methods to the outputs of the calibrated models
may improve uncertainty estimates even more. Notably, calibrated models are expected to produce
confidence estimates that match the true probabilities of the classes being predicted (Naeini et al.,
2015; Guo et al., 2017; Ovadia et al., 2019). While poorly calibrated CIs are over/under confident in
their predictions, calibrated CIs are more trustworthy and can also improve performance on other
safety-critical tasks which implicitly require reliable prediction probabilities (see Sec. 5). We report
the top-1 label expected calibration error (ECE) (Kumar et al., 2019; Detlefsen et al., 2022). Formally,
let pi be the top-1 probability, ci be the predicted confidence, bi a uniformly sized bin in [0, 1]. Then,

ECE :=
NX

i

bik(pi � ci)k

.
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A.10 DETAILS ON GENERALIZATION GAP PREDICTION

Accurate estimation of the expected generalization error on unlabeled datasets allows models with
unacceptable performance to be pulled from production. To this end, generalization error predictors
(GEPs) (Garg et al., 2022; Ng et al., 2022; Jiang et al., 2019; Trivedi et al., 2023a; Guillory et al., 2021)
which assign sample-level scores, S(xi) which are then aggregated into dataset-level error estimates,
have become popular. We use maximum softmax probability and a simple thresholding mechanism
as the GEP (since we are interested in understanding the behavior of confidence indicators), and
report the error between the predicted and true target dataset accuracy: GEPError := ||Acctarget�
1

|X|
P

i I(S(x̄i; F) > ⌧)|| where ⌧ is tuned by minimizing GEP error on the validation dataset. We
use the confidences obtained by the different baselines as sample-level scores, S(xi) corresponding
to the model’s expectation that a sample is correct. The MAE between the estimated error and true
error is reported on both in- and out-of -distribution test splits provided by the GOOD benchmark.

A.11 RESULTS ON GENERALIZATION ERROR PREDICTION

GEP Experimental Setup. GEPs (Garg et al., 2022; Ng et al., 2022; Jiang et al., 2019; Trivedi et al.,
2023a; Guillory et al., 2021) aggregate sample-level scores capturing a model’s uncertainty about
the correctness of a prediction into dataset-level error estimates. Here, we use maximum softmax
probability for scores and a thresholding mechanism as the GEP. (See Appendix A.10 for more
details.) We consider READOUT anchoring with both pretrained and end-to-end training, and report
the mean absolute error between the predicted and true target dataset accuracy on the OOD test split.

GEP Results. As shown in Table 16, both pretrained and end-to-end G-�UQ outperform the vanilla
model on 7/8 datasets. Notably, we see that pretrained G-�UQ is particularly effective as it obtains
the best performance across 6/8 datasets. This not only highlights its utility as a flexible, light-weight
strategy for improving uncertainty estimates without sacrificing accuracy, but also emphasizes that
importance of structure, in lieu of full stochasticity, when estimating GNN uncertainties.

Table 16: GOOD-Datasets, Generalization Error Prediction Performance. The MAE between
the predicted and true test error on the OOD test split is reported. G-�UQ variants outperform
vanilla models on 7/8 datasets (GOODMotif(Basis,Covariate) being the exception). Pretrained G-
�UQ is particularly effective at this task as it achieves the best performance overall on 6/8 datasets.
Promisingly, we see that regular G-�UQ improves performance over the vanilla model on 6/8
datasets (even if it is not the best overall). We further observe that performing generalization error
prediction is more challenging under covariate shift than concept shift on the GOODCMNIST,
GOODMotif(Basis) and GOODMotif(Size) datasets. On these datasets, the MAE is almost twice as
large than their respective concept shift counterparts, across methods. GOODSST2 is the exception,
where concept shift is in fact more challenging. To the best our knowledge, we are the first to
investigate generalization error prediction on GNN-based tasks under distribution shift. Understanding
this behavior further is an interesting direction of future work.

CMNIST (Color) MotifLPE (Basis) MotifLPE (Size) SST2
Method Concept(#) Covariate (#) Concept(#) Covariate(#) Concept(#) Covariate(#) Concept(#) Covariate(#)

Vanilla 0.200± 0.009 0.510± 0.089 0.045± 0.003 0.570± 0.012 0.324± 0.018 0.537± 0.146 0.117± 0.006 0.056± 0.044
G-�UQ 0.190± 0.010 0.493± 0.072 0.023± 0.003 0.572± 0.019 0.317± 0.007 0.528± 0.189 0.124± 0.016 0.054± 0.043
Pretr. G-�UQ 0.192± 0.005 0.387± 0.048 0.018± 0.012 0.573± 0.004 0.307± 0.016 0.356± 0.143 0.114± 0.004 0.030± 0.026

27



Under review as a conference paper at ICLR 2024

A.12 ADDITIONAL STUDY ON PRETRAINED G-�UQ

For the datasets and data shifts on which we reported out-of-distribution calibration error of pretrained
vs. in-training G-�UQ earlier in Fig. 4, we now report additional results for in-distribution and
out-of distribution accuracy as well as calibration error. We also include results for the additional
GOODMotif-basis benchmark for completeness, noting that the methods provided by the original
benchmark Gui et al. (2022) generalized poorly to this split (which may be related to why G-
�UQ methods offer little improvement over the vanilla model.) Fig. 8 shows these extended results.
By these additional metrics, we again see the competitiveness of applying G-�UQ to a pretrained
model versus using it in end-to-end training.

Figure 8: Evalauting Pretrained G-�UQ. Here, we report the performance of pretrained G-
�UQ models vs. end-to-end and vanilla models with respect to in-distribution and out-of-distribution
accuracy as well as expected calibration error. With the exception of the GOODMotif (basis) dataset,
pretrained G-�UQ improves the OOD ECE over both the vanilla model and end-to-end G-�UQ at
comparable or improved OOD accuracy on 7/8 datasets. Furthermore, pretrained G-�UQ also
improves the ID ECE on all but the GOODMotif (size) datasets (6/8), where it performs comparably
to the vanilla model, and maintains the ID accuracy. (We note that all methods are comparably better
calibrated on the GOODMotif ID data than GOODCMIST/GOODSST2 ID data; we suspect this is
because there may exist simple shortcuts available in the GOODMotif dataset that can be used on the
ID test set effectively.) Overall, these results clearly demonstrate that pretrained G-�UQ does offer
some performance advantages over end-to-end G-�UQ and does so at reduced training times (see
Table. A.13). For example, on GOODCMNIST (covariate shift), pretrained G-�UQ is not only 50%
faster than end-to-end G-�UQ , it also improves OOD accuracy and OOD ECE over both the vanilla
and end-to-end G-�UQmodels.
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A.13 RUNTIME TABLE

Table 17: Runtimes. We include the runtimes of both training per epoch (in seconds) and performing
calibration. Reducing stochasticity can help reduce computation (L1 ! L3). Cost can also be reduced
by using a pretrained model.

GOODCMNIST GOODSST2 GOODMotifLPE

Dataset Training (S) Inference (S) Training (S) Inference (S) Training (S) Inference (S)

Vanilla 18.5 25.8 10.8 18.5 3.8 4.5
Temp. Scaling 18.5 23.5 10.8 13.4 3.8 5.3
DEns (Ens Size=3) 18.456 x Ens Size 59.4 10.795 x Ens Size 29.0 3.8 x Ens Size 11.8
G-�UQ (L1, 10 anchors) 22.1 181.5 15.9 17.1 5.8 15.5
G-�UQ (L2, 10) 22.4 148.6 12.7 15.5 5.8 11.8
G-�UQ (HiddenRep, 10) 18.5 28.0 13.8 19.6 3.9 6.5
G-�UQ (Pretr. HiddenRep, 10) 8.6 27.8 6.8 16.0 2.5 6.4
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A.14 MEAN AND VARIANCE OF NODE FEATURE GAUSSIANS

Table 18: Mean and Variance of Node Feature Anchoring Gaussians. We report the mean and
variance of the Gaussian distributions fitted to the input node features. Because the input node
features vary in size, we report aggregate statistics over the mean and variance corresponding to each
dimension. For example, Min(Mu) indicates that we are reports the minimum mean over the d-dim
set of means.

Dataset Domain Shift Min (Mu) Max (Mu) Mean (Mu) Std (Mu) Min (Std) Max (Std) Mean (Std) Std (Std)

GOODSST2 length concept -4.563 0.69 -0.011 0.278 0.163 0.803 0.242 0.049
GOODSST2 length covariate -4.902 0.684 -0.01 0.3 0.175 0.838 0.255 0.05

GOODCMNIST color concept 0.117 0.133 0.127 0.008 0.092 0.097 0.095 0.003
GOODCMNIST color covariate 0.087 0.131 0.102 0.025 0.108 0.109 0.108 0

GOODMotifLPE size covariate 0.003 0.021 0.011 0.008 0.835 1.728 1.248 0.377
GOODMotifLPE size concept -0.006 0 -0.002 0.003 0.542 1.114 0.783 0.242
GOODMotifLPE basis concept -0.011 0.015 0.001 0.011 0.721 1.464 1.09 0.304
GOODMotifLPE basis covariate -0.007 -0.002 -0.004 0.002 0.808 1.913 1.251 0.469

GOODWebKB university concept 0 0.95 0.049 0.099 0.001 0.5 0.168 0.095
GOODWebKB university covariate 0 0.934 0.05 0.104 0.001 0.5 0.164 0.098

GOODCora degree concept 0 0.507 0.007 0.017 0.001 0.5 0.061 0.051
GOODCora degree covariate 0 0.518 0.007 0.017 0.001 0.5 0.061 0.052

GOODCBAS color covariate 0.394 0.591 0.471 0.093 0.142 0.492 0.403 0.174
GOODCBAS color concept 0.23 0.569 0.4 0.144 0.168 0.495 0.39 0.152

Figure 9: GOODCMNIST, Concept, Anchoring Distribution. We plot the mean and variance of
the fitted anchoring distribution vs. the true feature distribution for each input dimension. We observe
there is a mismatch between the empircal distribution and the fitted Gaussian. However, we did not
find this mismatch to harm the effectiveness of G-�UQ.

Figure 10: GOODCMNIST, Covariate, Anchoring Distribution. We plot the mean and variance of
the fitted anchoring distribution vs. the true feature distribution for each input dimension. We observe
there is a mismatch between the empircal distribution and the fitted Gaussian. However, we did not
find this mismatch to harm the effectiveness of G-�UQ.
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Table 19: Number of Parmeters per Model.We provide the number of parameters in the vanilla
and modified parameter as follows. Note, that the change in parameters is architecture and input
dimension dependent. For example, GOODCMNIST, and GOODSST2 use GIN MPNN layers.
Therefore, when changing the layer dimension, we are changing the dimension of its internal MLP.
It is not an error that intermediate layer G-�UQhave the same number of parameters, this is due to
the architecture: these layers are the same size in the vanilla model. Likewise, GOODCora’s input
features have dimension is 8701, so doubling the input layer’s dimension appears to add a signficant
number of parameters. We do not believe this

Dataset GOODCMNIST GOODMotif GOODSST2 GOODCORA GOODWebKB GOODCBAS

Baseline 2001310 911403 1732201 2816770 695105 185104
G-�UQ(NFA) 2003110 913803 2193001 5429770 1206005 186304
G-�UQ(L1) 2360110 1633203 2091001
G-�UQ(L2) 2360110 1633203 2091001
G-�UQ(L3) 2360110
G-�UQ(L4) 2360110
G-�UQ(Readout) 2004310 912303 1732501
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A.15 EXPANDED DISCUSSION ON ANCHORING DESIGN CHOICES

Below, we expand upon some of the design choices for the proposed anchoring strategies.

When performing node featuring anchoring, how does fitting a Gaussian distribution to the
input node features help manage the combinatorial stochasticity induced by message passing?
Without loss of generality, consider a node classification setting, where every sample is assigned a
unique anchor. Then, due to message passing, after l hops, a given node’s representation will have
aggregated information from its l hop neighborhood. However, since each node in this neighborhood
has a unique anchor, we see that any given node’s representation is not only stochastic due to its own
anchor but also that of its neighbors. For example, if any of its neighbors are assigned a different
anchor, then the given node’s representation will change, even if its own anchor did not. Since this
behavior holds true for all nodes and each of their respective neighborhoods, we loosely refer to
this phenomenon having combinatorial complexity, as effectively marginalizing out the anchoring
distribution would require handling any and all changes to all l-hop neighbors. In contrast, when
performing anchored image classification, the representation of a sample is only dependent on its
unique, corresponding anchor, and is not influenced by the anchors of other samples. To this end,
using the fitted Gaussian distribution helps manage this complexity, since changes to the anchors of a
node’s l-hop neighborhood are simpler to model as they require only learning to marginalize out a
Gaussian distribution (instead of the training distribution). Indeed, for example, if we were to assume
simplified model where message passing only summed node neighbors, the anchoring distribution
would remain gaussian after l rounds of message passing since the sum of gaussians is still gaussian
(the exact parameters of the distribution would depend on the normalization used however).
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