A Additional experiments

A.1 Additional experiments on other pre-trained models

In this section, we report the results on CLIP and MOCO in Table | and Table 2, respectively. Note
that the first seven columns of validation datasets are fine-grained, while the next three are coarse-
grained ones. We mark the best results for each dataset in bold, and the best baseline in blue. We
highlight the results of L4A g in red to emphasize that the Low-Lever Layer Lifting attack equipped
with Uniform Gaussian Sampling shows great cross-finetuning transferability and performs best.
These tables show that our proposed methods outperform all the baselines by a large margin. For
example, as can be seen from Table 1, if the target model is Resnet50 pre-trained by MOCOQO, the
best competitor UAP achieves an average attack success rate of 54.34%, while the L4 Ay, can lift it
up to 54.72% and the UGS technique further boosts the performance up to 59.72%.

Table 1: The attack success rate(%) of various methods we study against ResnetS0 pretrained by
MOCO. Note that C10 stands for CIFAR10, and C100 stands for CIFAR100.

ASR [[Cars Pets Food DID FGVC CUB SVHN] CI0 C100 STLIO [AVG
FFF,, 30.72 2559 60.03 48.51 8497 6282 492 | 17.22 5537 12.84 | 40.30
FFFmean 39.04 3249 68.94 5293 8557 6893 8.02 | 2223 67.53 1426 | 45.99
FFFone 31.82 2726 53.06 51.38 7792 5442 509 | 1743 5726 10.23 | 38.59
DR 4430 39.63 51.11 53.51 81.43 5585 501 | 3024 7425 1391 | 4492
SSP 3375 3644 7532 60.00 80.32 6873 590 | 2542 69.27 29.03 | 48.42
ASV 40.01 3227 60.63 47.50 8287 62.77 41.71 | 11.15 5030 9.05 | 43.83
UAP 61.00 5244 77.00 60.75 83.79 6854 575 | 28.02 68.22 37.94 | 54.34
UAPEPGD || 45.55 38.05 70.12 5479 69.04 5725 3.82 | 1047 4838 2144 | 41.89
L4Apase 4410 51.86 77.44 62.61 81.49 6130 565 | 4570 81.88 27.33 | 53.94
LAAfuse 4425 54.02 78.09 63.19 8290 6326 5.13 | 46.71 81.66 2795 | 54.72
L4A g 61.22 58.11 86.52 67.71 88.96 6557 5.08 | 39.23 83.12 41.93 | 59.74

Table 2: The attack success rate(%) of various methods we study against ResnetS0 pretrained by
CLIP. Note that C10 stands for CIFAR10, and C100 stands for CIFAR100.

ASR [[Cars Pets Food DID FGVC CUB SVHN] CI0 C100 STLIO [AVG
FFF,o 89.96 90.41 9457 8245 87.81 99.08 9850 | 7820 80.41 89.19 | 89.06
FFFmean 92.86 89.78 93.28 8149 8930 99.00 99.10 | 75.35 80.41 89.71 | 89.03
FFFone 89.21 86.73 9347 8032 85.63 99.03 9838 | 71.78 80.41 84.89 | 86.98
DR 71.84 5274 77.07 7032 86.69 99.01 94.69 | 61.74 80.41 84.06 | 77.86
SSP 85.61 8498 8323 78.19 90.00 9898 9850 | 75.80 80.41 87.90 | 86.36
ASV 91.04 90.80 9398 81.82 8896 98.02 97.68 | 78.75 79.41 87.34 | 88.78
UAP 75.84 65.84 87.12 7340 88.08 99.00 96.52 | 57.18 80.41 87.03 | 81.04
UAPEPGD || 64.15 52.14 6035 6723 89.99 9859 95.14 | 47.05 80.41 80.86 | 73.59
L4Apase 79.83 66.61 79.74 70.53 8596 99.03 98.04 | 64.00 84.01 8226 | 81.00
L4Ause 96.57 9627 98.39 86.01 88.11 99.00 9841 | 80.41 80.95 90.01 | 91.41
L4A g 97.12 97.19 98.67 91.12 91.56 99.02 99.10 | 96.55 8041 8536 | 93.61

A.2 PAPs against adversarial fine-tuned models

In our paper, we only conduct experiments on standard fine-tuning. We followed the training process
introduced by [5], which adopts a distillation term to preserve high-quality features of the pretrained
model to boost model performance from a view of information theory. We do some additional
experiments on Resnet50 pretrained by SimCLRv2. And the results are as follows.

Table 3: The attack success rate(%) of different methods against adversarial fine-tuned models. Note
that C10 stands for CIFAR10 and C100 stands for CIFAR100.

ASR [[Cars Pets Food DID FGVC CUB SVHN] CI0 C100 STLIO [AVG
FFF,, 14.69 26.08 50.86 48.40 27.68 31.74 3435 | 36.78 10.30 16.56 | 29.74
FFFmean 1472 2630 5036 48.14 2770 3190 3393 | 3674 997 16.61 | 29.64
FFFone 14.65 26.53 53.08 4852 27.06 3149 34.02 | 3735 1099 16.73 | 30.04
DR 1433 2696 5084 47.13 2739 3241 3381 |3739 1085 1630 | 29.74
SSP 1431 26.08 50.01 48.08 27.51 32.10 33.14 | 37.14 11.20 16.34 | 29.59
ASV 11.95 1635 2537 3723 2458 2693 3222 | 3139 632 7.15 | 21.95
UAP 14.54 25.67 4792 48.19 2734 3260 33.60 | 36.71 10.94 16.26 | 29.38
UAPEPGD || 1440 2420 46.82 47.18 2732 3253 34.02 | 3529 1038 15.51 | 28.77
L4Apase 1448 26.76 55.66 50.69 2622 32.14 3345 | 3733 11.10 16.75 | 30.46
L4Afuse 14.64 28.07 5559 50.74 2696 3249 3357 | 37.66 11.31 1694 | 30.80
L4A g 1435 25.84 53.79 50.16 2680 32.02 33.54 | 36.52 10.81 16.56 | 30.04

As seen from the table, all the methods suffer degenerated performance against adversarial fine-
tuning. However, L4A still performs best among these competitors. For example, considering the
DTD dataset, the best baseline FFF,,. achieves an attack success rate of 48.52%, while the ASR of
the villain L4 Ay, is up to 50.69%, and the fusing loss further boosts the performance to 50.74%.

A.3 PAPs against adversarial pretrained models

To test PAPs against adversarial pretrained models, we follow the method proposed by [6], which
uses adversarial views to boost robustness. We first train a robust Resnet50 using enhanced Sim-
CLRv2. Then, we generate PAPs using that model and test them on both the adversarial fine-tuned
and standard fine-tuned models on downstream tasks. In Table 4, we report the results on standard
finetuned models.

Table 4: The attack success rate(%) of different methods against adversarial-pretrained-standard-
finetuned models. Note that C10 stands for CIFAR10, and C100 stands for CIFAR100.

ASR [[Cars Pets Food DID FGVC CUB SVHN] CI0 CI100 STLIO [AVG
FFF,, 4534 2333 53.16 4495 67.63 4589 81.12 | 60.78 9538 18.48 | 53.61
FFFnean 50.81 27.86 60.99 4697 7456 52.69 81.27 | 71.33 99.00 28.97 | 59.45
FFFone 4437 2521 47.12 46.65 6835 4389 8150 | 63.36 97.78 15.10 | 53.33
DR 48.81 34.15 6132 4830 7998 5136 7629 | 63.17 80.29 13.22 | 55.69
SSpP 44.67 3423 4484 4872 69.79 4532 83.32 | 81.44 9795 2095 | 54.21
ASV 4794 2532 56.66 4580 6594 41.14 7852 | 61.25 96.17 12.16 | 53.09
UAP 35.03 32.65 38.39 4644 67.12 4222 7872 | 67.66 93.81 36.41 | 53.84
UAPEPGD || 23.20 17.85 2520 39.10 5347 31.19 6641 | 13.63 6698 633 | 3433
L4Apase 5593 2641 67.82 5255 79.60 56.64 84.07 | 84.52 99.00 28.16 | 63.47
LAAfuse 67.08 2594 6795 54.04 8220 61.41 84.05 | 83.09 99.00 33.71 | 65.85
L4Ayg 82.46 2591 7437 51.65 8893 7214 84.08 | 78.66 98.98 31.97 | 68.91

The above table shows that adversarial-pretrained models show little robustness after standard fine-
tuning, which is also reported in [2, 9]. In such settings, L4A still performs best among these
competitors: the best baseline FFF.,, achieves an average attack success rate of 59.45%, while
the ASR of the villain L4 Ay, is up to 63.47%, and the Uniform Gaussian sampling further boosts
the performance to 68.91%. Another interesting finding is that low-level-based methods, such as
FFF, DR, SSP and L4A, perform better than high-level-based ones like UAPEPGD, which uses
classification scores. This further supports our findings in Fig 2 and our motivation to use low-level
layers.

In Table 5, we report the results on adversarial-finetuned models. Note that we adopt the adversarial-
finetuning method in [5].

Table 5: The attack success rate(%) of different methods against adversarial-pretrained-adversarial-
fine-tuned models. Note that C10 stands for CIFAR10, and C100 stands for CIFAR100.

ASR [[Cars Pets Food DID FGVC CUB SVHN] CI0 CI00 STLIO [AVG
FFFo 14.82 27.13 4784 49.19 3761 3882 924 |21.27 3932 16.60 | 30.18
FFFean 14.88 27.09 48.82 4940 38.01 3880 9.09 | 2045 3932 1647 |30.23
FFFone 1495 2725 47.08 4940 37.80 39.01 9.02 |21.09 3931 1631 | 30.12
DR 15.18 28.59 4851 4830 3846 3873 8.64 | 20.73 39.61 16.86 | 30.36
SSp 1520 28.67 3993 4638 38.88 3742 735 |21.89 3949 15.11 | 29.03
ASV 15.56 27.77 49.17 49.15 3858 37.83 10.16 | 18.82 34.71 13.44 | 29.52
UAP 15.53 27.77 48.23 4696 3855 3759 749 | 15.64 3530 1443 | 28.75
UAPEPGD || 15.00 2824 4139 4649 3798 37.04 6.69 | 11.75 3502 1244 | 27.20
L4Apase 15.64 29.59 49.18 51.65 38.01 39.83 11.24 | 2443 3839 1696 | 31.49
LAAfuse 1590 30.88 49.83 49.89 38.01 40.05 10.69 | 2425 3720 17.10 | 31.38
L4A g 15.69 30.25 4959 52.02 37.68 39.87 11.25 |24.52 38.06 17.11 | 31.60

From Table 5, we can see that adversarial-pretrained-adversarial-finetuned models show much ro-
bustness after fine-tuning, which is consistent with Appendix A.2 and the finding in [2, 9] that ad-
versarial fine-tuning contributes to the final robustness more than adversarial pre-training. Although
all the methods degenerate a lot, L4A is still among the best ones.

A.4 PAPs in other vision tasks

We conduct experiments on semantic segmentation and object detection tasks in this subsection to
evaluate our methods. For object detection, we adopt the off-the-shelf Resnet5S0 model provided
by MMDetection repo, which is pre-trained by the method of MOCOvV2 on ImageNet and then
fine-tuned on the COCO object detection task. The results of different methods are in Table 6

Table 6: Objection detection finetuned on COCO. Evaluation is on COCO val2017, and results are
reported in the metrics of mAP, mAPsy, and mAP;5. We mark the best ones for each metric in bold.
Note that EPGD stands for the UAPEPGD method.

Methods [FFFa, FFFpewn FFFone STD SSP ASV UAP EPGD | LdApse L4Apse L4A

mAP 30.7 30.0 30.8 31.6 31.0 29.8 302 342 29.8 29.3 26.5
mAPs 48.5 47.6 48.6 49.6 48.6 469 478 53.1 46.9 46.2 42.5
mAP75 329 32.1 33.0 342 334 319 325 374 32.0 31.6 28.2

The table shows that our proposed methods outperform all the baselines by a large margin. For
example, the best competitor ASV achieves a mAPs5y of 46.9%, while the UGS technique can
degenerate it to 42.5%, showing its effectiveness.

As for segmentation, we use the ViT-base model provided by MMSegmentatation, which is pre-
trained by MAE on ImageNet and then finetuned on the ADE20k dataset. The results are as follows:

Table 7: Segmentation finetuned on ADE20k. Results are reported in the metric of mloU. Note that
EPGD stands for UAPEPGD method.

methods || FFF,, FFFpean FFFoe STD SSP ASV UAP EPGD | L4Ap,e L4Apse LAAy
mloU 40.63 40.79 40.86 42.67 4199 41.84 41.89 41.07 | 39.38 39.59 39.44

From the table, we can see that our methods generalize well to the segmentation task. While FFF,,
achieve a mloU of 40.63%, that of L4A,, is 39.38%. All the experiments above show the great
cross-task transfer-ability of our methods.

B Gradient alignment

B.1 Gradient alignment: Proof

In this section, we formulate the definition of the gradient alignment and give a brief proof.

B.1.1 Preliminaries

Given a convolutional layer Conv with kernel size = ks, stride = 1, bias = 0, an input image im €
R™Xi then the output ReLu[Conv(im, kernel)] € R(n—ks+1)x(in=ks+1) Note that ks <<
n.

According to the methods for calculating convolution in computers, the input image x will be flatten
into a vector x € R"™, where n = 4n x +n and the weights of the convolution layer can be reshaped
into a matrix W € R™*" where m = (in — ks + 1) x (in — ks 4+ 1). Then we have the output
y = RelLu [Wx]

Denote w; as the i-th row of the matrix W. Let the elements of the kernel and x subject to the
standard normal distribution independently.

Lemma 1. E[w;w] | = ks?0; ;.

Proof. When i = j, we have w;w! ~ X?(ks?). Thus E|[w;w!| = ks?
T

When i # j, due to the arrangement of the none-zero elements in the matrix WV, we have w,w ;=

N
kzl Tk, Th,, Where zp,, 7, ~ N(0,1) independently and 0 < N < ks?. Thus]E[wiwﬂ =

M=

N
; E [z, op,] = kz E [z, |E[zr,] =0 U
=1

1

Lemma 2. P(wiij =

. _ 2
Proof. There are only ks? non-zero elements in w;. Then we have (", %) ways to choose ks? zero

elements from w;, making the sum of the product zero. Meanwhile, we have (kzz) ways to choose
ks? elements from w ;. Finally the probability is the ratio of the two values. O

Assumption 1. w;w] =0, fori # j.

According to Lemma 1, E[w,wﬂ = 0 fori # j. According to Lemma 2, l'%m P(winT = O) =
ks 50

1.

Assumption 2. The elements of X1, xo and the kernel subject to the standard normal distribution

independently.

B.1.2 Proof

Let x; and x5 € R"™ be two flattened vectors and let W be the weight matrix of the first convolution
layer.

For the first iteration of the L4A algorithm, the output of the first convolution layer y; =
ReLu(Wx). Then the gradient of the loss function in the first step is:

OL 1 0yly, izm:aReLuQ(wixl) .
0x; m Ox3 m X1 ¢

i=1
m m (D
2 2
- Z RelLu (WiX1>U(WiX1)Wi = o Z RelLu (wixl)wi

i=1 i=1

where U (-) denotes the step function.

Considering the update of 8, we have the output in the second step y, = ReLu[W (x1 + ag—xLl)]
where « denotes the step size. Then the gradient of the loss function in the second step is:

m OReLu?(w;xs + w; ReLu(w,x WT
87[’ laygﬂb _lz (i mygl (’ 1))
T m

O0xso T m Oxo 0%

i=1

OReLu®(w;xs + 22 ReLu(w;x)w;w!))
m Z 8x2

— Z ReL’I_L(W,L'XQ + Q—QReLu(wix)wiwiT)Wi
mai3 m

Ignoring the update of d, we have the output of the convolution layer in the second step y5 =
ReLu (WXQ)

Then the gradient in the second step can be formulated as:

oL 1 oysTys 1 i OReLu®(Wixz)
0xo m 0Xa m = Xo ‘
m 3)

1 & 1
2% Z ReLU(WiXQ)U(WiXQ)WZ‘ = 2% Z ReLu(WiXQ)W

i=1 i=1

Definition 1 (Gradient alignment). GA = Ey, x, |52 & T]

Here the gradient alignment measures the similarity between steps of different iterations.

Definition 2 (Pseudo-gradient alignment). PGA = Ey, «, [giQ g xLl T]

Here the pseudo-gradient alignment shows the similarity when ignoring the update and provides the
reference value for easy comparison.

Theorem 1. The GA of L4A is never smaller than the PG A.

Proof.
(L DLT) oLt OLT
Oxy 0% Oxy 0x1
4 m

= E[ZRBLU W;Xo + —ReLu(wle)Wz WZ Z ReLu ijl) f}

=1 Jj=1

Z ReLu (wpcg)w,; Z ReLu (ijl)wf}
j=1

m

ZReLu W; XQ)W ReLu(w xl) T}

= % [Z ReLu W iXo + 7R6LU(W X1)W1WT)WZR€LU(W xl)wT}
4
7

i2 Z [(ReLu wiXxs + %ReLu(w X2) Wiwl) — RBLU(WiXQ))ReLU(Wixl)WiW;r >0

Note that ReLu (wixz)wi > 0, thus ReLu (w Xo+ 22 Re L (W XQ)W w;) ReLu (W XQ) >
0 O

B.2 Gradient alignment: Simulation

In this subsection, we provide details about the simulation evaluating the gradient alignment of dif-
ferent algorithms. First, we run the targeted algorithm 256 times and record the gradients obtained
in the algorithm. Then we compute the cosine similarity matrix of the 256 gradients and exclude di-
agonal elements. Finally, we refer to the average over the similarity matrix as the gradient alignment
of the method. Here we provide additional simulation results on Resnet50 and ViT16 in Table 8 and

Table 9 respectively. Note that we report the attack success rates (%).

Resnet50 GA ImageNet AVG ViT16 GA ImageNet AVG
FFFean 0.0158 4598 52.10 FFFnean 0.1005 99.88 ~ 71.06
DR 0.0449 4546 48.26 DR 0.0861 56.06 27.02
UAP 0.0020 9534 55.16 UAP 0.0504 9846 55.16
UAPEPGD | 0.0010 93.67 69.28 UAPEPGD | 0.0049 97.66 66.95
SSP 0.0449 4428 53.64 SSp 0.1279 80.63 53.40
L4Apase 0.5489 4554 71.16 L4 Apase 0.1386 94.15 94.00

Table 8: Gradient alignment on Resnet50 Table 9: Gradient alignment on ViT16

C Ablation studies

C.1 Effect of fusing the knowledge of different layers

Here we discuss the effect of the scale factor A to fuse the knowledge from different layers, and the
results are shown in Fig 1. For Resnet50, in Fig. (b), setting A as 10%-° can boost the performance
by 1.5%.

Attack Success Rate
Attack Success Rate
Attack Success Rate

i
. e 60 —— Pets
— Food

— oo — oo
404 — arami0 - 40{ — crar1o
—— CIFAR100 l —— CIFAR100
— Fove — Fovc
20]— e 20l — s

SVHN SVHN.
—— st
- A

— sto
- AG

1015

1005 10!

04
1072 10713 1071 107°% 10°
lamuda

(¢) ViT

ol
1072 1071% 107! 107°% 10° 10°° 10! 1013

lamuda

(b) Resnet50

1015

1005 10!

o0l
1072 10715 1071 107°% 10°
lamuda

(a) Resnetl01

Figure 1: The effect of the scale factor in L4 Ay

C.2 Effect of using high-level loss

To study the effect of utilizing the high-level features, we choose Resnet50 pre-trained by SimCLRv2
as the target. In previous experiments, we found that the L4 Ag method performs best with A = 1.
Thus, we fix it and add a new loss term summing over the lifting loss of the third, fourth and fifth
layers, which is balanced by a hyperparameter 1 (Note that we divided the Resnet50 into five blocks,
meaning that it has five layers in total in our settings. Please refer to Appendix F.1 for more details
about the model architecture). Finally the training loss of the experiments testing high-level layers
can be formulated as follows:

2

5
. _ i 2 J 2
win L(fy. x.6) = ~Eqp, [Z 5o Ol + 0311+ 6>||F}, o)
We report the attack success rate (%) of using different i, against Resnet50 pre-trained by SimCLRv2.
Note that C10 stands for CIFAR10, and C100 stands for CIFAR100. Results are shown in the
Table 10.

Table 10: The attack success rate(%) of different ;o against Resnet50 pretrained by SimCLRv2.
Note that C10 stands for CIFAR10 and C100 stands for CIFAR100.

i [[Cars Pets Food DTD FGVC CUB SVHN | CI0 CI00 STL10 [AVG

0 96.00 59.80 65.00 77.93 95.02 85.05 69.39 | 6441 7629 37.54 | 72.64
0.01 || 95.32 56.99 63.60 76.06 9493 8331 69.65 | 67.30 77.55 37.76 | 72.25
0.1 95.00 56.06 62.02 75.00 9532 8221 66.76 | 70.36 77.86 35.28 | 71.59
1 95.16 56.55 62.11 7495 9520 8227 67.15 | 69.20 7847 3575 | 71.68
10 96.17 55.16 62.08 77.82 9526 8352 6648 | 67.37 77.56 33.39 | 71.48
100 || 61.78 42771 59.86 70.05 86.68 66.26 63.43 | 86.99 6492 2178 | 62.44

As seen from the last column, the larger the weight of the loss of the high-level layers, the worse it
performs. Moreover, when the loss of high-level layers overwhelms the low-level ones, the method
suffers a significant performance drop (over 10%) in attack success rates. These results show that
adding the high-level loss to the training loss bears negative effects.

C.3 Hyperparameters in the Uniform Gaussian Sampling.

We chose these hyperparameters as y; = 0.4, pp, = 0.6, o7 = 0.05, o5, = 0.1 in the experiments.
The reasons are as follows. For p; and pp, we aim to make the mean g drawn from U (g, pup,)
distributed around 0.5, since the input images are normalized to [0, 1]. Thus we tried several config-
urations of (, py), such as (0.4, 0.6) and (0.45, 0.55), and found that (0.4, 0.6) performs best. For
oy and o, we hope that most of the samples ng ~ N(u, o) lie in [0, 1]. Thus o ~ U(oy, op,) cannot
be too large. We also tried some configurations of (o, o) and found that (0.05, 0.1) performs best.

Interestingly, the set (0.4, 0.6, 0.05, 0.10) generalizes well across the three models. Thus we did not
tune these hyperparameters for each model but adopted a single configuration in Table 1, Table 2,
and Table 3.

C.4 Pixel-level perturbations

To test the pixel-level perturbations, we add ¢ = 0.05 to the input images and then evaluate the
performance on the three pre-trained models studied in the paper. Then we report the average at-
tack success rate(%) on the ten datasets in Table 11, and detailed performance in Table 12. Note
that SimR101, SimR101 and MAEVIT stand for Resnet101 pretrained by SimCLRv2, Resnet50
pretrained by SimCLRv2 and ViT-base-16 pretrained by MAE, respectively.

Table 11: The average attack success of different methods against the three models. Note that C10
stands for CIFAR10 and C100 stands for CIFAR100.

methods || FFFn, FFFuen FFFone STD SSP ASV UAP EPGD | L4Apse LAAgse L4Aq | Pixel

SimR101 || 48.55 4422 40.26 42.63 40.75 46.65 43.86 59.34 | 66.89 7190 7220 |12.97
SimR50 || 43.86 52.10 5298 4826 53.64 58.19 55.16 69.28 | 71.16 72.64 77.80 | 13.76
MAEVIT || 77.69 71.06 7435 27.02 53.40 22.64 55.16 66.95 | 94.00 9442 9530 |12.52

Table 12: The attack success rate(%) of the pixel-level attack on ten datasets. Note that C10 stands
for CIFAR10 and C100 stands for CIFAR100.

ASR [[Cars Pets Food DTD FGVC CUB SVHN [CI0O CI00 STLIO [AVG

SimR101 || 1042 970 12.15 2936 2379 2125 261 |221 1546 2.5 12.97
SimR50 10.73 11.61 12.15 29.57 26.67 2247 268 | 253 16.14 3.09 | 13.76
MAEVIT || 992 690 10.53 2628 3375 1796 264 |250 1199 276 | 12.52

As we can see from the tables, the pixel-level perturbations have little effect on the predictions.

D Datasets

We evaluate the performance of pre-trained adversarial perturbations on the CIFAR100 and CI-
FARI10 [8], STL10 [4], Cars [7], Pets [12], Food [1], DTD [3], FGVC [10], CUB [13], SVHN [11].

We report the calibration (fine-grained or coarse-grained) and the accuracy on clean samples in Ta-

ble D.
Table 13: Calibration and ACC (%)
Dataset | | Cars Pets Food DTD FGVC CUB SVHN | CIFAR10 CIFAR100 STL10
Calibration fine fine fine fine fine fine fine coarse coarse coarse
Resnet101 ACC 89.80 90.60 87.90 71.01 77.04 78.78 97.40 97.85 84.81 97.33
Resnet50 ACC 89.35 88.20 87.84 70.60 74.01 78.13 97.40 97.51 84.03 97.00
ViT ACC 90.03 93.48 89.60 73.60 67.16 82.32 97.38 98.10 88.03 97.20

Our datasets do not involve these issues.

E Visualisation of Perturbations

ASV

L4A

Resnet50 Resnetl01

ViT16

Figure 2: Visualization of pre-trained adversarial perturbations

F Implementations

F.1 Model architecture

To evaluate the effect of attacking different layers, we divide Resnet50, Resnet101 and ViT16 into
5 parts. Here we provide the mapping relationship from the original name to the five layers, respec-
tively.

Table 14: Model architecture

Layers layerl layer2 layer3 layer4 layer5
Resnet50 net[0] net[1] net[2] net[3] net[4]
Resnet101 net[0] net[1] net[2] net[3] net[4]
ViT16 blocks[0] blocks[1,2,3] blocks[4,5,6] blocks[7,8,9] blocks[10,11]

F.2 Resources

We use one Nvidia GeForce RTX 2080 Ti for generating and evaluating PAPs.

References

[1] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101-mining discriminative
components with random forests. In European Conference on Computer Vision (ECCV), pages
446461, 2014.

[2] Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang. Ad-
versarial robustness: From self-supervised pre-training to fine-tuning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 699-708,
2020.

[3] Mircea Cimpoi, Subhransu Maji, lasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3606-3613, 2014.

[4] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsuper-
vised feature learning. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 215-223, 2011.

[5] Xinshuai Dong, Anh Tuan Luu, Min Lin, Shuicheng Yan, and Hanwang Zhang. How should
pre-trained language models be fine-tuned towards adversarial robustness? In Advances in
Neural Information Processing Systems (NeurlPS), pages 4356—4369, 2021.

[6] Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang Wang. Robust pre-training by adver-
sarial contrastive learning. In Advances in Neural Information Processing Systems (NeurIPS),
pages 16199-16210, 2020.

[7] Jonathan Krause, Jia Deng, Michael Stark, and Li Fei-Fei. Collecting a large-scale dataset of
fine-grained cars. 2013.

[8] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
20009.

[9] Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning
can distort pretrained features and underperform out-of-distribution. The International Confer-
ence on Learning Representations (ICLR), 2022.

[10] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-
grained visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

[11] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[12] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3498-3505, 2012.

[13] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-
ucsd birds-200-2011 dataset. 2011.

