
A Additional experiments

A.1 Additional experiments on other pre-trained models

In this section, we report the results on CLIP and MOCO in Table 1 and Table 2, respectively. Note
that the first seven columns of validation datasets are fine-grained, while the next three are coarse-
grained ones. We mark the best results for each dataset in bold, and the best baseline in blue. We
highlight the results of L4Augs in red to emphasize that the Low-Lever Layer Lifting attack equipped
with Uniform Gaussian Sampling shows great cross-finetuning transferability and performs best.
These tables show that our proposed methods outperform all the baselines by a large margin. For
example, as can be seen from Table 1, if the target model is Resnet50 pre-trained by MOCO, the
best competitor UAP achieves an average attack success rate of 54.34%, while the L4Afuse can lift it
up to 54.72% and the UGS technique further boosts the performance up to 59.72%.

Table 1: The attack success rate(%) of various methods we study against Resnet50 pretrained by
MOCO. Note that C10 stands for CIFAR10, and C100 stands for CIFAR100.

ASR Cars Pets Food DTD FGVC CUB SVHN C10 C100 STL10 AVG
FFFno 30.72 25.59 60.03 48.51 84.97 62.82 4.92 17.22 55.37 12.84 40.30
FFFmean 39.04 32.49 68.94 52.93 85.57 68.93 8.02 22.23 67.53 14.26 45.99
FFFone 31.82 27.26 53.06 51.38 77.92 54.42 5.09 17.43 57.26 10.23 38.59
DR 44.30 39.63 51.11 53.51 81.43 55.85 5.01 30.24 74.25 13.91 44.92
SSP 33.75 36.44 75.32 60.00 80.32 68.73 5.90 25.42 69.27 29.03 48.42
ASV 40.01 32.27 60.63 47.50 82.87 62.77 41.71 11.15 50.30 9.05 43.83
UAP 61.00 52.44 77.00 60.75 83.79 68.54 5.75 28.02 68.22 37.94 54.34
UAPEPGD 45.55 38.05 70.12 54.79 69.04 57.25 3.82 10.47 48.38 21.44 41.89
L4Abase 44.10 51.86 77.44 62.61 81.49 61.30 5.65 45.70 81.88 27.33 53.94
L4Afuse 44.25 54.02 78.09 63.19 82.90 63.26 5.13 46.71 81.66 27.95 54.72
L4Augs 61.22 58.11 86.52 67.71 88.96 65.57 5.08 39.23 83.12 41.93 59.74

Table 2: The attack success rate(%) of various methods we study against Resnet50 pretrained by
CLIP. Note that C10 stands for CIFAR10, and C100 stands for CIFAR100.

ASR Cars Pets Food DTD FGVC CUB SVHN C10 C100 STL10 AVG
FFFno 89.96 90.41 94.57 82.45 87.81 99.08 98.50 78.20 80.41 89.19 89.06
FFFmean 92.86 89.78 93.28 81.49 89.30 99.00 99.10 75.35 80.41 89.71 89.03
FFFone 89.21 86.73 93.47 80.32 85.63 99.03 98.38 71.78 80.41 84.89 86.98
DR 71.84 52.74 77.07 70.32 86.69 99.01 94.69 61.74 80.41 84.06 77.86
SSP 85.61 84.98 83.23 78.19 90.00 98.98 98.50 75.80 80.41 87.90 86.36
ASV 91.04 90.80 93.98 81.82 88.96 98.02 97.68 78.75 79.41 87.34 88.78
UAP 75.84 65.84 87.12 73.40 88.08 99.00 96.52 57.18 80.41 87.03 81.04
UAPEPGD 64.15 52.14 60.35 67.23 89.99 98.59 95.14 47.05 80.41 80.86 73.59
L4Abase 79.83 66.61 79.74 70.53 85.96 99.03 98.04 64.00 84.01 82.26 81.00
L4Afuse 96.57 96.27 98.39 86.01 88.11 99.00 98.41 80.41 80.95 90.01 91.41
L4Augs 97.12 97.19 98.67 91.12 91.56 99.02 99.10 96.55 80.41 85.36 93.61

A.2 PAPs against adversarial fine-tuned models

In our paper, we only conduct experiments on standard fine-tuning. We followed the training process
introduced by [5], which adopts a distillation term to preserve high-quality features of the pretrained
model to boost model performance from a view of information theory. We do some additional
experiments on Resnet50 pretrained by SimCLRv2. And the results are as follows.

1

Table 3: The attack success rate(%) of different methods against adversarial fine-tuned models. Note
that C10 stands for CIFAR10 and C100 stands for CIFAR100.

ASR Cars Pets Food DTD FGVC CUB SVHN C10 C100 STL10 AVG
FFFno 14.69 26.08 50.86 48.40 27.68 31.74 34.35 36.78 10.30 16.56 29.74
FFFmean 14.72 26.30 50.36 48.14 27.70 31.90 33.93 36.74 9.97 16.61 29.64
FFFone 14.65 26.53 53.08 48.52 27.06 31.49 34.02 37.35 10.99 16.73 30.04
DR 14.33 26.96 50.84 47.13 27.39 32.41 33.81 37.39 10.85 16.30 29.74
SSP 14.31 26.08 50.01 48.08 27.51 32.10 33.14 37.14 11.20 16.34 29.59
ASV 11.95 16.35 25.37 37.23 24.58 26.93 32.22 31.39 6.32 7.15 21.95
UAP 14.54 25.67 47.92 48.19 27.34 32.60 33.60 36.71 10.94 16.26 29.38
UAPEPGD 14.40 24.20 46.82 47.18 27.32 32.53 34.02 35.29 10.38 15.51 28.77
L4Abase 14.48 26.76 55.66 50.69 26.22 32.14 33.45 37.33 11.10 16.75 30.46
L4Afuse 14.64 28.07 55.59 50.74 26.96 32.49 33.57 37.66 11.31 16.94 30.80
L4Augs 14.35 25.84 53.79 50.16 26.80 32.02 33.54 36.52 10.81 16.56 30.04

As seen from the table, all the methods suffer degenerated performance against adversarial fine-
tuning. However, L4A still performs best among these competitors. For example, considering the
DTD dataset, the best baseline FFFone achieves an attack success rate of 48.52%, while the ASR of
the villain L4Abase is up to 50.69%, and the fusing loss further boosts the performance to 50.74%.

A.3 PAPs against adversarial pretrained models

To test PAPs against adversarial pretrained models, we follow the method proposed by [6], which
uses adversarial views to boost robustness. We first train a robust Resnet50 using enhanced Sim-
CLRv2. Then, we generate PAPs using that model and test them on both the adversarial fine-tuned
and standard fine-tuned models on downstream tasks. In Table 4, we report the results on standard
finetuned models.

Table 4: The attack success rate(%) of different methods against adversarial-pretrained-standard-
finetuned models. Note that C10 stands for CIFAR10, and C100 stands for CIFAR100.

ASR Cars Pets Food DTD FGVC CUB SVHN C10 C100 STL10 AVG
FFFno 45.34 23.33 53.16 44.95 67.63 45.89 81.12 60.78 95.38 18.48 53.61
FFFmean 50.81 27.86 60.99 46.97 74.56 52.69 81.27 71.33 99.00 28.97 59.45
FFFone 44.37 25.21 47.12 46.65 68.35 43.89 81.50 63.36 97.78 15.10 53.33
DR 48.81 34.15 61.32 48.30 79.98 51.36 76.29 63.17 80.29 13.22 55.69
SSP 44.67 34.23 44.84 48.72 69.79 45.32 83.32 81.44 97.95 20.95 54.21
ASV 47.94 25.32 56.66 45.80 65.94 41.14 78.52 61.25 96.17 12.16 53.09
UAP 35.03 32.65 38.39 46.44 67.12 42.22 78.72 67.66 93.81 36.41 53.84
UAPEPGD 23.20 17.85 25.20 39.10 53.47 31.19 66.41 13.63 66.98 6.33 34.33
L4Abase 55.93 26.41 67.82 52.55 79.60 56.64 84.07 84.52 99.00 28.16 63.47
L4Afuse 67.08 25.94 67.95 54.04 82.20 61.41 84.05 83.09 99.00 33.71 65.85
L4Augs 82.46 25.91 74.37 51.65 88.93 72.14 84.08 78.66 98.98 31.97 68.91

The above table shows that adversarial-pretrained models show little robustness after standard fine-
tuning, which is also reported in [2, 9]. In such settings, L4A still performs best among these
competitors: the best baseline FFFmean achieves an average attack success rate of 59.45%, while
the ASR of the villain L4Abase is up to 63.47%, and the Uniform Gaussian sampling further boosts
the performance to 68.91%. Another interesting finding is that low-level-based methods, such as
FFF, DR, SSP and L4A, perform better than high-level-based ones like UAPEPGD, which uses
classification scores. This further supports our findings in Fig 2 and our motivation to use low-level
layers.

In Table 5, we report the results on adversarial-finetuned models. Note that we adopt the adversarial-
finetuning method in [5].

2

Table 5: The attack success rate(%) of different methods against adversarial-pretrained-adversarial-
fine-tuned models. Note that C10 stands for CIFAR10, and C100 stands for CIFAR100.

ASR Cars Pets Food DTD FGVC CUB SVHN C10 C100 STL10 AVG
FFFno 14.82 27.13 47.84 49.19 37.61 38.82 9.24 21.27 39.32 16.60 30.18
FFFmean 14.88 27.09 48.82 49.40 38.01 38.80 9.09 20.45 39.32 16.47 30.23
FFFone 14.95 27.25 47.08 49.40 37.80 39.01 9.02 21.09 39.31 16.31 30.12
DR 15.18 28.59 48.51 48.30 38.46 38.73 8.64 20.73 39.61 16.86 30.36
SSP 15.20 28.67 39.93 46.38 38.88 37.42 7.35 21.89 39.49 15.11 29.03
ASV 15.56 27.77 49.17 49.15 38.58 37.83 10.16 18.82 34.71 13.44 29.52
UAP 15.53 27.77 48.23 46.96 38.55 37.59 7.49 15.64 35.30 14.43 28.75
UAPEPGD 15.00 28.24 41.39 46.49 37.98 37.04 6.69 11.75 35.02 12.44 27.20
L4Abase 15.64 29.59 49.18 51.65 38.01 39.83 11.24 24.43 38.39 16.96 31.49
L4Afuse 15.90 30.88 49.83 49.89 38.01 40.05 10.69 24.25 37.20 17.10 31.38
L4Augs 15.69 30.25 49.59 52.02 37.68 39.87 11.25 24.52 38.06 17.11 31.60

From Table 5, we can see that adversarial-pretrained-adversarial-finetuned models show much ro-
bustness after fine-tuning, which is consistent with Appendix A.2 and the finding in [2, 9] that ad-
versarial fine-tuning contributes to the final robustness more than adversarial pre-training. Although
all the methods degenerate a lot, L4A is still among the best ones.

A.4 PAPs in other vision tasks

We conduct experiments on semantic segmentation and object detection tasks in this subsection to
evaluate our methods. For object detection, we adopt the off-the-shelf Resnet50 model provided
by MMDetection repo, which is pre-trained by the method of MOCOv2 on ImageNet and then
fine-tuned on the COCO object detection task. The results of different methods are in Table 6

Table 6: Objection detection finetuned on COCO. Evaluation is on COCO val2017, and results are
reported in the metrics of mAP, mAP50, and mAP75. We mark the best ones for each metric in bold.
Note that EPGD stands for the UAPEPGD method.

Methods FFFno FFFmean FFFone STD SSP ASV UAP EPGD L4Abase L4Afuse L4Augs

mAP 30.7 30.0 30.8 31.6 31.0 29.8 30.2 34.2 29.8 29.3 26.5
mAP50 48.5 47.6 48.6 49.6 48.6 46.9 47.8 53.1 46.9 46.2 42.5
mAP75 32.9 32.1 33.0 34.2 33.4 31.9 32.5 37.4 32.0 31.6 28.2

The table shows that our proposed methods outperform all the baselines by a large margin. For
example, the best competitor ASV achieves a mAP50 of 46.9%, while the UGS technique can
degenerate it to 42.5%, showing its effectiveness.

As for segmentation, we use the ViT-base model provided by MMSegmentatation, which is pre-
trained by MAE on ImageNet and then finetuned on the ADE20k dataset. The results are as follows:

Table 7: Segmentation finetuned on ADE20k. Results are reported in the metric of mIoU. Note that
EPGD stands for UAPEPGD method.

methods FFFno FFFmean FFFone STD SSP ASV UAP EPGD L4Abase L4Afuse L4Augs

mIoU 40.63 40.79 40.86 42.67 41.99 41.84 41.89 41.07 39.38 39.59 39.44

From the table, we can see that our methods generalize well to the segmentation task. While FFFno
achieve a mIoU of 40.63%, that of L4Ano is 39.38%. All the experiments above show the great
cross-task transfer-ability of our methods.

B Gradient alignment

B.1 Gradient alignment: Proof

In this section, we formulate the definition of the gradient alignment and give a brief proof.

3

B.1.1 Preliminaries

Given a convolutional layer Conv with kernel size = ks, stride = 1, bias = 0, an input image im ∈
Rin×in, then the output ReLu

[
Conv(im, kernel)

]
∈ R(in−ks+1)×(in−ks+1). Note that ks <<

in.

According to the methods for calculating convolution in computers, the input image x will be flatten
into a vector x ∈ Rn, where n = in× in and the weights of the convolution layer can be reshaped
into a matrix W ∈ Rm×n, where m = (in − ks + 1) × (in − ks + 1). Then we have the output
y = ReLu

[
Wx

]
.

Denote wi as the i-th row of the matrix W. Let the elements of the kernel and x subject to the
standard normal distribution independently.

Lemma 1. E
[
wiw

T
j

]
= ks2δi,j .

Proof. When i = j, we have wiw
T
i ∼ X 2(ks2). Thus E

[
wiw

T
i

]
= ks2.

When i ̸= j, due to the arrangement of the none-zero elements in the matrix W , we have wiw
T
j =

N∑
k=1

xk1
xk2

, where xk1
, xk2

∼ N(0, 1) independently and 0 ≤ N ≤ ks2. Thus E
[
wiw

T
j

]
=

N∑
k=1

E
[
xk1

xk2

]
=

N∑
k=1

E
[
xk1

]
E
[
xk2

]
= 0

Lemma 2. P
(
wiw

T
j = 0

)
=

(
n−ks2

ks2

)(
n

ks2

) .

Proof. There are only ks2 non-zero elements in wi. Then we have
(
n−ks2

ks2

)
ways to choose ks2 zero

elements from wj , making the sum of the product zero. Meanwhile, we have
(

n
ks2

)
ways to choose

ks2 elements from wj . Finally the probability is the ratio of the two values.

Assumption 1. wiw
T
j = 0, for i ̸= j.

According to Lemma 1, E
[
wiw

T
j

]
= 0 for i ̸= j. According to Lemma 2, lim

ks2

n →0

P
(
wiw

T
j = 0

)
=

1.

Assumption 2. The elements of x1, x2 and the kernel subject to the standard normal distribution
independently.

B.1.2 Proof

Let x1 and x2 ∈ Rn be two flattened vectors and let W be the weight matrix of the first convolution
layer.

For the first iteration of the L4A algorithm, the output of the first convolution layer y1 =
ReLu

(
Wx1

)
. Then the gradient of the loss function in the first step is:

∂L

∂x1
=

1

m

∂yT
1 y1

∂x1
=

1

m

m∑
i=1

∂ReLu2(wix1)

x1
wi

=
2

m

m∑
i=1

ReLu
(
wix1

)
U
(
wix1

)
wi =

2

m

m∑
i=1

ReLu
(
wix1

)
wi

(1)

where U(·) denotes the step function.

Considering the update of δ, we have the output in the second step y2 = ReLu
[
W

(
x1 + α ∂L

∂x1

)]
where α denotes the step size. Then the gradient of the loss function in the second step is:

4

∂L

∂x2
=

1

m

∂yT
2 y2

∂x2
=

1

m

m∑
i=1

∂ReLu2(wix2 +wi
2α
m

m∑
j=1

ReLu
(
wjx1

)
wT

j)

∂x2

=
1

m

m∑
i=1

∂ReLu2(wix2 +
2α
m ReLu

(
wix

)
wiw

T
i)

∂x2

=
2

m

m∑
i=1

ReLu
(
wix2 +

2α

m
ReLu

(
wix

)
wiw

T
i

)
wi

(2)

Ignoring the update of δ, we have the output of the convolution layer in the second step y∗
2 =

ReLu
(
Wx2

)
Then the gradient in the second step can be formulated as:

∂L∗

∂x2
=

1

m

∂y∗
2
Ty∗

2

∂x2
=

1

m

m∑
i=1

∂ReLu2(wix2)

x2
wi

= 2
1

m

m∑
i=1

ReLu
(
wix2

)
U
(
wix2

)
wi = 2

1

m

m∑
i=1

ReLu
(
wix2

)
wi

(3)

Definition 1 (Gradient alignment). GA = Ex1,x2

[
∂L
∂x2

∂L
∂x1

T]
Here the gradient alignment measures the similarity between steps of different iterations.

Definition 2 (Pseudo-gradient alignment). PGA = Ex1,x2

[
∂L∗

∂x2

∂L
∂x1

T]
Here the pseudo-gradient alignment shows the similarity when ignoring the update and provides the
reference value for easy comparison.

Theorem 1. The GA of L4A is never smaller than the PGA.

Proof.

E
(∂L

∂x2
· ∂L

∂x1

T)
− E

(∂L∗

∂x2
· ∂L

∂x1

T)
=

4

m2
E
[m∑

i=1

ReLu
(
wix2 +

2α

m
ReLu

(
wix1

)
wiw

T
i

)
wi

m∑
j=1

ReLu
(
wjx1

)
wT

j

]

− 4

m2
E
[m∑

i=1

ReLu
(
wix2

)
wi

m∑
j=1

ReLu
(
wjx1

)
wT

j

]

=
4

m2
E
[m∑

i=1

ReLu
(
wix2 +

2α

m
ReLu

(
wix1

)
wiw

T
i

)
wiReLu

(
wix1

)
wT

i

]

− 4

m2
E
[m∑

i=1

ReLu
(
wix2

)
wiReLu

(
wix1

)
wT

i

]

=
4

m2

m∑
i=1

E
[(

ReLu
(
wix2 +

2α

m
ReLu

(
wix2

)
wiw

T
i

)
−ReLu

(
wix2

))
ReLu

(
wix1

)
wiw

T
i

]
≥ 0

Note that ReLu
(
wix2

)
wiw

T
i ≥ 0, thus ReLu

(
wix2+

2α
m ReLu

(
wix2

)
wiw

T
i

)
−ReLu

(
wix2

)
≥

0

5

B.2 Gradient alignment: Simulation

In this subsection, we provide details about the simulation evaluating the gradient alignment of dif-
ferent algorithms. First, we run the targeted algorithm 256 times and record the gradients obtained
in the algorithm. Then we compute the cosine similarity matrix of the 256 gradients and exclude di-
agonal elements. Finally, we refer to the average over the similarity matrix as the gradient alignment
of the method. Here we provide additional simulation results on Resnet50 and ViT16 in Table 8 and
Table 9 respectively. Note that we report the attack success rates (%).

Resnet50 GA ImageNet AVG
FFFmean 0.0158 45.98 52.10
DR 0.0449 45.46 48.26
UAP 0.0020 95.34 55.16
UAPEPGD 0.0010 93.67 69.28
SSP 0.0449 44.28 53.64
L4Abase 0.5489 45.54 71.16

Table 8: Gradient alignment on Resnet50

ViT16 GA ImageNet AVG
FFFmean 0.1005 99.88 71.06
DR 0.0861 56.06 27.02
UAP 0.0504 98.46 55.16
UAPEPGD 0.0049 97.66 66.95
SSP 0.1279 80.63 53.40
L4Abase 0.1386 94.15 94.00

Table 9: Gradient alignment on ViT16

C Ablation studies

C.1 Effect of fusing the knowledge of different layers

Here we discuss the effect of the scale factor λ to fuse the knowledge from different layers, and the
results are shown in Fig 1. For Resnet50, in Fig. (b), setting λ as 100.5 can boost the performance
by 1.5%.

(a) Resnet101 (b) Resnet50 (c) ViT

Figure 1: The effect of the scale factor in L4Afuse

C.2 Effect of using high-level loss

To study the effect of utilizing the high-level features, we choose Resnet50 pre-trained by SimCLRv2
as the target. In previous experiments, we found that the L4Afuse method performs best with λ = 1.
Thus, we fix it and add a new loss term summing over the lifting loss of the third, fourth and fifth
layers, which is balanced by a hyperparameter µ (Note that we divided the Resnet50 into five blocks,
meaning that it has five layers in total in our settings. Please refer to Appendix F.1 for more details
about the model architecture). Finally the training loss of the experiments testing high-level layers
can be formulated as follows:

min
δ

L(fθ, x, δ) = −Ex∼Dp

[2∑
i=1

||f i
θ(x+ δ)||2F + µ

5∑
j=3

||f j
θ (x+ δ)||2F

]
, (4)

We report the attack success rate (%) of using different µ against Resnet50 pre-trained by SimCLRv2.
Note that C10 stands for CIFAR10, and C100 stands for CIFAR100. Results are shown in the
Table 10.

6

Table 10: The attack success rate(%) of different µ against Resnet50 pretrained by SimCLRv2.
Note that C10 stands for CIFAR10 and C100 stands for CIFAR100.

µ Cars Pets Food DTD FGVC CUB SVHN C10 C100 STL10 AVG
0 96.00 59.80 65.00 77.93 95.02 85.05 69.39 64.41 76.29 37.54 72.64
0.01 95.32 56.99 63.60 76.06 94.93 83.31 69.65 67.30 77.55 37.76 72.25
0.1 95.00 56.06 62.02 75.00 95.32 82.21 66.76 70.36 77.86 35.28 71.59
1 95.16 56.55 62.11 74.95 95.20 82.27 67.15 69.20 78.47 35.75 71.68
10 96.17 55.16 62.08 77.82 95.26 83.52 66.48 67.37 77.56 33.39 71.48
100 61.78 42.71 59.86 70.05 86.68 66.26 63.43 86.99 64.92 21.78 62.44

As seen from the last column, the larger the weight of the loss of the high-level layers, the worse it
performs. Moreover, when the loss of high-level layers overwhelms the low-level ones, the method
suffers a significant performance drop (over 10%) in attack success rates. These results show that
adding the high-level loss to the training loss bears negative effects.

C.3 Hyperparameters in the Uniform Gaussian Sampling.

We chose these hyperparameters as µl = 0.4, µh = 0.6, σl = 0.05, σh = 0.1 in the experiments.
The reasons are as follows. For µl and µh, we aim to make the mean µ drawn from U(µl, µh)
distributed around 0.5, since the input images are normalized to [0, 1]. Thus we tried several config-
urations of (µl, µh), such as (0.4, 0.6) and (0.45, 0.55), and found that (0.4, 0.6) performs best. For
σl and σh, we hope that most of the samples n0 ∼ N(µ, σ) lie in [0, 1]. Thus σ ∼ U(σl, σh) cannot
be too large. We also tried some configurations of (σl, σh) and found that (0.05, 0.1) performs best.

Interestingly, the set (0.4, 0.6, 0.05, 0.10) generalizes well across the three models. Thus we did not
tune these hyperparameters for each model but adopted a single configuration in Table 1, Table 2,
and Table 3.

C.4 Pixel-level perturbations

To test the pixel-level perturbations, we add ϵ = 0.05 to the input images and then evaluate the
performance on the three pre-trained models studied in the paper. Then we report the average at-
tack success rate(%) on the ten datasets in Table 11, and detailed performance in Table 12. Note
that SimR101, SimR101 and MAEViT stand for Resnet101 pretrained by SimCLRv2, Resnet50
pretrained by SimCLRv2 and ViT-base-16 pretrained by MAE, respectively.

Table 11: The average attack success of different methods against the three models. Note that C10
stands for CIFAR10 and C100 stands for CIFAR100.

methods FFFno FFFmean FFFone STD SSP ASV UAP EPGD L4Abase L4Afuse L4Augs Pixel
SimR101 48.55 44.22 40.26 42.63 40.75 46.65 43.86 59.34 66.89 71.90 72.20 12.97
SimR50 43.86 52.10 52.98 48.26 53.64 58.19 55.16 69.28 71.16 72.64 77.80 13.76
MAEViT 77.69 71.06 74.35 27.02 53.40 22.64 55.16 66.95 94.00 94.42 95.30 12.52

Table 12: The attack success rate(%) of the pixel-level attack on ten datasets. Note that C10 stands
for CIFAR10 and C100 stands for CIFAR100.

ASR Cars Pets Food DTD FGVC CUB SVHN C10 C100 STL10 AVG
SimR101 10.42 9.70 12.15 29.36 23.79 21.25 2.61 2.21 15.46 2.75 12.97
SimR50 10.73 11.61 12.15 29.57 26.67 22.47 2.68 2.53 16.14 3.09 13.76
MAEViT 9.92 6.90 10.53 26.28 33.75 17.96 2.64 2.50 11.99 2.76 12.52

As we can see from the tables, the pixel-level perturbations have little effect on the predictions.

D Datasets

We evaluate the performance of pre-trained adversarial perturbations on the CIFAR100 and CI-
FAR10 [8], STL10 [4], Cars [7], Pets [12], Food [1], DTD [3], FGVC [10], CUB [13], SVHN [11].

7

We report the calibration (fine-grained or coarse-grained) and the accuracy on clean samples in Ta-
ble D.

Table 13: Calibration and ACC (%)

Dataset Cars Pets Food DTD FGVC CUB SVHN CIFAR10 CIFAR100 STL10

Calibration fine fine fine fine fine fine fine coarse coarse coarse
Resnet101 ACC 89.80 90.60 87.90 71.01 77.04 78.78 97.40 97.85 84.81 97.33
Resnet50 ACC 89.35 88.20 87.84 70.60 74.01 78.13 97.40 97.51 84.03 97.00
ViT ACC 90.03 93.48 89.60 73.60 67.16 82.32 97.38 98.10 88.03 97.20

Our datasets do not involve these issues.

E Visualisation of Perturbations

Figure 2: Visualization of pre-trained adversarial perturbations

F Implementations

F.1 Model architecture

To evaluate the effect of attacking different layers, we divide Resnet50, Resnet101 and ViT16 into
5 parts. Here we provide the mapping relationship from the original name to the five layers, respec-
tively.

Table 14: Model architecture

Layers layer1 layer2 layer3 layer4 layer5
Resnet50 net[0] net[1] net[2] net[3] net[4]
Resnet101 net[0] net[1] net[2] net[3] net[4]
ViT16 blocks[0] blocks[1,2,3] blocks[4,5,6] blocks[7,8,9] blocks[10,11]

F.2 Resources

We use one Nvidia GeForce RTX 2080 Ti for generating and evaluating PAPs.

References
[1] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative

components with random forests. In European Conference on Computer Vision (ECCV), pages
446–461, 2014.

[2] Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang. Ad-
versarial robustness: From self-supervised pre-training to fine-tuning. In Proceedings of the

8

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 699–708,
2020.

[3] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3606–3613, 2014.

[4] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsuper-
vised feature learning. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 215–223, 2011.

[5] Xinshuai Dong, Anh Tuan Luu, Min Lin, Shuicheng Yan, and Hanwang Zhang. How should
pre-trained language models be fine-tuned towards adversarial robustness? In Advances in
Neural Information Processing Systems (NeurIPS), pages 4356–4369, 2021.

[6] Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang Wang. Robust pre-training by adver-
sarial contrastive learning. In Advances in Neural Information Processing Systems (NeurIPS),
pages 16199–16210, 2020.

[7] Jonathan Krause, Jia Deng, Michael Stark, and Li Fei-Fei. Collecting a large-scale dataset of
fine-grained cars. 2013.

[8] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[9] Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning
can distort pretrained features and underperform out-of-distribution. The International Confer-
ence on Learning Representations (ICLR), 2022.

[10] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-
grained visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

[11] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[12] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3498–3505, 2012.

[13] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-
ucsd birds-200-2011 dataset. 2011.

9

