670

671
672

673

674
675
676

677

678

679

680
681

682
683
684
685
686
687

A Data Mixture Details

We list our used data mixture in . The mixture mostly follows [5], with a few additional
datasets.

OpenVLA Training Dataset Mixture

Fractal [83] 12.7%
Kuka [45] 12.7%
Bridgel[6, 47] 13.3%
Taco Play [84, 85] 3.0%
Jaco Play [86] 0.4%
Berkeley Cable Routing [87] 0.2%
Roboturk [88] 2.3%
Viola [89] 0.9%
Berkeley Autolab URS [90] 1.2%
Toto [91] 2.0%
Language Table [92] 4.4%
Stanford Hydra Dataset [93] 4.4%
Austin Buds Dataset [94] 0.2%
NYU Franka Play Dataset [95] 0.8%
Furniture Bench Dataset [96] 2.4%
UCSD Kitchen Dataset [97] <0.1%
Austin Sailor Dataset [98] 2.2%
Austin Sirius Dataset [99] 1.7%

DLR EDAN Shared Control [100] <0.1%
IAMLab CMU Pickup Insert [101] 0.9%

UTAustin Mutex [102] 2.2%
Berkeley Fanuc Manipulation [103] 0.7%
CMU Stretch [104] 0.2%
BC-Z [55] 7.5%
FMB Dataset [? | 7.1%
DobbE [105] 1.4%
DROID [11] 10.0%

Table 3: OpenVLA training data mixture using datasets from the Open X-Embodiment dataset [1], following [5]
with a few additions.

B Evaluation Tasks and Detailed Results

In this section, we provide more details on the BridgeData V2 WidowX and RT-1 robot evaluations
discussed in , as well as the Franka-Tabletop and Franka-DROID fine-tuning evaluations
discussed in

B.1 Bridge V2 WidowX Evaluation Details

Here we focus specifically on BridgeData V2 evaluations discussed in

B.1.1 Bridge V2 Evaluation Tasks

As described in , we evaluate each generalist robot manipulation policy on 17 tasks with
10 trials each. In this section, we provide details on the task categories and individual tasks.

In total, we evaluate on 5 visual generalization tasks, 2 motion generalization tasks, 3 physical
generalization tasks, 4 semantic generalization tasks, and 3 language grounding tasks. Note that all
tasks we evaluate on introduce some form of distribution shift since we are unable to procure the
exact objects used in the original dataset (other distribution shifts naturally arise as we reproduce a

real-world test environment originally constructed at a different location; see for a
detailed discussion on such distribution shifts). All 17 tasks are depicted in . Each rollout is
3We remove DROID for the last third of training due to slow learning progress (see) and re-

distribute its mixture weights across all other datasets.

17

Put Eggplant into Pot (Easy Version)
o, 1]
5 P |

Put Eggplant into Pot
7 o 7] .

Visual Gen.

Motion Gen.

Physical Gen.

Semantic Gen.

Language Grounding

Figure 6: BridgeData V2 WidowX robot evaluation tasks. We evaluate every generalist robot policy on 4
types out-of-distribution (OOD) generalization tasks: visual, motion, physical, and semantic (as defined in
Section 4.1). Every pair of images shows the start state and an example end state after the robot completes the
task. We also rigorously assess language grounding in the 3 tasks shown in the bottom 3 rows, by changing the
prompt while fixing the initial state and testing whether the policy can approach the correct target object.

18

688
689

690

691
692
693
694
695
696
697

698
699
700
701
702

703
704

706
707
708

709
710
71
712
713

714
715
716
717
718

719
720
721
722
723
724
725
726

727
728
729
730
731
732

733
734
735
736
737
738
739

marked as a failure (0) or success (1). In some more difficult tasks, we record partial successes (0.5);
we describe the conditions for partial credit in the task descriptions below.

Below we describe each of the 17 tasks, in the order shown in

1.

. Put Eggplant into Pot (w/ Clutter): This is the same task as the “Put Eggplant into Pot

Put Eggplant into Pot (Easy Version): The robot’s goal is to pick up the eggplant and
drop it into the pot. This is a visual generalization task because we use a handcrafted paper
pot that has a different appearance than the pot used in the original BridgeData V2 training
dataset (since we are unable to procure the original pot). Unlike all 16 other tasks, for
this particular task we initialize the robot’s end-effector directly above the eggplant before
rolling out the policy; hence, we call this the “Easy Version” of the “Put Eggplant into Pot”
task.

. Put Eggplant into Pot: This is the same task as described above, except that the robot’s

end-effector is not initialized directly above the eggplant. Instead, we initialize it in a
position that is fixed across all rollouts, which means that the robot must horizontally reach
for the eggplant first before manipulating it. (Note: The same applies to all other tasks
described below.) This is a visual generalization task for the same reason as above.

. Put Cup from Counter into Sink: The robot’s goal is to pick up the pink cup from either

the kitchen countertop or drying rack and place it into the sink on the right. This is a visual
generalization task because we use a pink cup rather than a blue cup (a blue cup is used in
the original BridgeData V2 dataset, but we find that none of the methods we evaluate is able
to manipulate it reliably — most likely because the color of the cup blends in with the color
of the sink).

1)

task, except that it is more difficult due to the presence of several distractor objects. Itis a
visual generalization task for the same reason discussed in the normal “Put Eggplant into
Pot” task, and even more so given unseen distractors in the scene. Partial credit (0.5 out of
1) is rewarded when the robot moves towards the correct target object.

. Put Yellow Corn on Pink Plate: The robot’s goal is to pick up the yellow corn and place

it on the pink plate. This is a visual generalization task due to the presence of unseen
distractor objects in the scene, such as a green dinosaur on the countertop in the back section
of the sink. Partial credit (0.5 out of 1) is rewarded when the robot moves towards the
correct target object.

. Lift Eggplant: The robot’s goal is to grasp and lift the eggplant into the air. This is a motion

generalization task because the eggplant is initialized in unseen positions and/or orienta-
tions, and the robot is forced to move beyond its training distribution of positions and/or
orientations and often perform long-range reaching in order to complete the task. (Note:
Long-range reaching is not demonstrated in this environment in the original BridgeData V2
demonstrations; see for details.) We find that this task, though seemingly
simple, is deceptively challenging for many policies. Partial credit (0.5 out of 1) is rewarded
when the robot makes contact with the eggplant.

. Put Carrot on Plate (w/ Height Change): The robot’s goal is to pick up the carrot and place

it on the yellow plate. This is a motion generalization task because the plate is elevated
from its usual position at the bottom of the sink, and the robot must adjust its trajectory
to correctly place the carrot on the elevated platform (without knocking down the plate in
the process). Partial credit (0.5 out of 1) is rewarded when the robot grasps the carrot and
touches the plate with it.

. Put Carrot on Plate: This is the same task as above, except that the plate is at its normal

position (at the bottom of the sink or drying rack). We consider this a physical generaliza-
tion task because the carrot has a different size and shape than the one used in the original
BridgeData V2 dataset, which is shorter and narrower. (Note that the previous version of this
task listed above would also technically be a physical generalization task since it involves
the same carrot, but we list it under the “motion generalization” category since that is the
focus there.)

19

740
741
742
743

744

754

774

784

786

787
788
789

10.

11.

12.

13.

14.

15.

16.

17.

. Flip Pot Upright: The robot’s goal is to manipulate the pot such that it is oriented upright

in the sink at the end of the episode. This is a physical generalization task because this
pot has a different size and shape than the one used in the original BridgeData V2 training
demonstrations (the pot we use is wider and shorter).

Lift AAA Battery: The robot’s goal is simply to grasp the AAA battery and lift it up into the
air. This is considered a physical generalization task because the battery is much smaller
and thinner than target objects seen in the BridgeData V2 training demonstrations in this
environment; see for details. (Note that this target object does not exist in
the original BridgeData V2 demonstrations in this environment, so this is also an instance of
“semantic generalization”, but we classify it solely as “physical generalization” since that is
the main focus here).

Move Skull into Drying Rack: The robot’s goal is to grasp the skull windup toy and drop
it into the yellow drying rack in the left part of the sink. This is a semantic generalization
task since the skull is an unseen target object (does not appear in the BridgeData V2 training
demonstrations).

Lift White Tape: The robot’s goal is to grasp and lift the white roll of tape into the air.
This is a semantic generalization task since the white tape roll is an unseen target object
(does not appear in the BridgeData V2 training demonstrations). (Note that this task may
also be considered as “physical generalization” because of its shape being different than the
objects seen in the training demonstrations in this environment; most policies struggle to
grasp objects with this ring structure, and they often move the robot’s end-effector directly
into the center region.)

Take Purple Grapes out of Pot: The robot’s goal is to grasp the purple grapes lying inside
the steel pot and remove it from the pot (by lifting it out and/or dropping it anywhere outside
the pot). This is a semantic generalization task because it is an unseen language instruction;
the robot has never seen this task in the original BridgeData V2 training dataset.

Stack Blue Cup on Pink Cup: The robot’s goal is to grasp the blue cup and place it securely
on top of the pink cup. This is a semantic generalization task because it is an unseen
language instruction; the robot has never seen this task in this environment in the original
BridgeData V2 training dataset. Partial credit (0.5 out of 1) is rewarded when the robot
grasps the blue cup and touches the pink cup with the blue cup.

Put {Eggplant, Red Bottle} into Pot: This is a language grounding task. The robot’s goal
is to put the specified target object into the pot. Both the eggplant and red bottle are present
in the scene. We conduct paired evaluations: for the same initial state, we prompt the policy
to target the eggplant in one episode, and then the red bottle in the next episode. We test
each method 5 times with the eggplant and 5 times with the red bottle, using the same set
of 5 initial states for both target objects. Partial credit (0.5 out of 1) is rewarded when the
robot moves towards the correct target object.

Lift {Cheese, Red Chili Pepper}: This is a language grounding task. The robot’s goal is
to grasp and lift the specified target object. We conduct paired evaluations as described in
the task above. Partial credit (0.5 out of 1) is rewarded when the robot moves towards the
correct target object.

Put {Blue Cup, Pink Cup} on Plate: This is a language grounding task. The robot’s
goal is to grasp the specified target object and place it onto the plate. We conduct paired
evaluations as described in other language grounding tasks. Partial credit (0.5 out of 1) is
rewarded when the robot moves towards the correct target object.

B.1.2 Comparing Evaluation Tasks to Original Bridge V2 Training Data

We conduct our evaluations in a sink environment used in the original BridgeData V2 dataset [6].
We reproduce the environment to match the original environment in the BridgeData V2 dataset with
rough approximations for the robot’s location relative to the sink, as well as the camera’s placement

20

790
791
792

794
795
796
797

798
799
800
801

802
803
804
805
806
807
808
809
810

811
812
813
814
815
816
817
818
819

relative to the scene. Given the lack of precise measurements of these positions in the original dataset,
we are unable to reproduce the exact environment setup, and natural distribution shifts arise due to
slightly different robot, sink, and camera placements. In addition, since we evaluate robot policies
in a different location than where the training demonstrations were collected from, other natural
distribution shifts arise. For example, the lighting conditions and background (e.g., visible areas
behind the sink) are inevitably different than what was seen in the training dataset. Furthermore, we
are unable to procure the exact set of objects used in the original BridgeData V2 dataset, so there are
distribution shifts between the objects used at train time and those used at test time.

Despite all these challenges, we find that certain generalist policies, such as OpenVLA and RT-2-X,
can still generalize and perform various tasks fairly reliably “out-of-the-box”. Other generalist
policies, such as RT-1-X and Octo, can also complete some tasks, though they struggle when tested
with more difficult generalization tasks in our BridgeData V2 evaluation suite.

The original BridgeData V2 dataset includes demonstrations of the following seven tasks in this
specific sink environment: “Flip Pot Upright”, “Put Carrot on Plate”, “Put Cup from Counter (or
Drying Rack) into Sink”, “Put Eggplant into Pot”, “Put Knife on Cutting Board”, “Put Spoon in Pot”,
and “Turn Lever Vertical to Front”. See Fig. 7 for samples images of all these tasks from the original
dataset. Note that all training demonstrations collected in this environment are initialized such that
the robot’s end-effector is positioned directly above the target object in the beginning of the episode.
(However, this is not the case across all environments in the BridgeData V2 dataset; in some other
environments, the robot is initialized farther away from the target object, so it must horizontally reach
for the object first before manipulating it.)

Flip Pot Upright Put Carrot on Plate Put Cup from Counter into Sink

Put Eggplant into Pot

Figure 7: Original BridgeData V2 sink environment tasks. Images from sample demonstrations in the sink
environment from the original BridgeData V2 dataset reveal that all demonstrations in this environment were
initialized such that the robot’s end-effector was positioned immediately above the target object. Note that these
initial states are different from the initial states we use in our BridgeData V2 evaluation tasks shown in Fig. 6.
In our evaluations, we always initialize the robot’s end-effector to a fixed location above the sink, rather than
positioning it directly above the target object (except for one task: “Put Eggplant into Pot (Easy Version)”).

In our BridgeData V2 evaluation suite, only one task — “Put Eggplant into Pot (Easy Version”) — is
initialized with the robot’s end-effector hovering directly over the target object; in all 16 other tasks,
the end-effector is initialized at a fixed location above the sink such that the robot must horizontally
reach towards the object. This initial condition, in combination with the distribution shifts we
introduce in the various types of OOD generalization in our evaluation suite, challenges the generalist
policies and requires a high degree of robustness in order to complete the tasks successfully. Hence,
the success rates for policies like RT-1-X and Octo are lower than what is reported in prior works.
However, we find that other policies such as RT-2-X and OpenVLA still achieve relatively strong
performance despite all these distribution shifts and challenges.

21

820

821
822
823
824

826

827

828

830
831
832

833

834
835

836

838

839

841

842
843
844

845
846

847
848
849

B.1.3 Detailed Bridge V2 Evaluation Results

See for the full BridgeData V2 WidowX evaluation results. The number of successes for each
method, out of 10 trials, is listed for each of 17 tasks. OpenVLA achieves strongest performance in
the majority of the tasks and has the highest aggregate success rate among the generalist policies.
RT-2-X also shows good performance, outperforming RT-1-X and Octo, though it does not perform
as well as OpenVLA. RT-1-X and Octo generally experience difficulty in these generalization tasks.

Table 4: Detailed BridgeData V2 WidowX evaluation results. We report performance on the full evaluation
suite of 17 tasks (discussed in), including visual/motion/physical/semantic generalization tasks and
language grounding tasks. Note that partial success (score of 0.5) is possible for some tasks; see

for details. We find that OpenVLA performs best in most tasks and achieves highest performance overall,
followed by RT-2-X. On the other hand, RT-1-X and Octo struggle in the evaluations, only getting 0-2 successes
in several tasks. See for illustrations of all tasks.

’ . . RT-1-X Octo RT-2-X OpenVLA (ours)
Category Task # Trials # Successes # Successes # Successes # Successes
Visual gen Put Eggplant into Pot (Easy Version) 10 1 5 7 10
Visual gen Put Eggplant into Pot 10 0 1 5 10
Visual gen Put Cup from Counter into Sink 10 1 1 0 7
Visual gen Put Eggplant into Pot (w/ Clutter) 10 1 35 6 7.5
Visual gen Put Yellow Corn on Pink Plate 10 1 4 8 9
Motion gen Lift Eggplant 10 3 0.5 6.5 7.5
Motion gen Put Carrot on Plate (w/ Height Change) 10 2 1 4.5 4.5
Physical gen Put Carrot on Plate 10 1 0 1 8
Physical gen Flip Pot Upright 10 2 6 5 8
Physical gen Lift AAA Battery 10 0 0 2 7
Semantic gen Move Skull into Drying Rack 10 1 0 5 5
Semantic gen Lift White Tape 10 3 0 0 1
Semantic gen Take Purple Grapes out of Pot 10 6 0 5 4
Semantic gen Stack Blue Cup on Pink Cup 10 0.5 0 55 4.5
Language grounding Put {Eggplant, Red Bottle} into Pot 10 25 4 8.5 75
Language grounding Lift {Cheese, Red Chili Pepper} 10 1.5 2.5 8.5 10
Language grounding Put {Blue Cup, Pink Cup} on Plate 10 5 55 8.5 9.5

Mean Success Rate 18.5+2.7% 20.0+2.6% 50.6+3.5% 70.6+3.2%

B.2 RT-1 Robot Evaluation Details
In this section, we provide more details on the RT-1 robot evaluations introduced in

B.2.1 RT-1 Robot Evaluation Tasks

On the RT-1 robot, we evaluate each generalist robot policy on 12 tasks with 5 rollouts each, for a
total of 60 rollouts. The first five tasks test on in-distribution conditions, and the last seven tasks test
on more difficult out-of-distribution (OOD) conditions. All tasks are depicted in . Each rollout
is marked as a failure (0) or success (1).

We describe the 12 tasks below:

1. Pick Coke Can (in-distribution): The robot is positioned in front of a platform with a can
of Coke on top of it. The robot’s goal is to grasp and lift the Coke can.

2. Move Apple near Green Can (in-distribution): The robot is positioned in front of a platform
with an apple and a green soda can on top of it. The robot’s goal is to grasp the apple and
move it next to the green can.

3. Move Blue Chip Bag near Apple (in-distribution): The robot is positioned in front of a
platform with a blue bag of chips and an apple on top of it. The robot’s goal is to grasp the
blue bag of chips and move it close to the apple.

4. Place Coke Can Upright (in-distribution): The robot is positioned in front of a platform
with a can of Coke on top of it, and the can is oriented horizontally on its side. The robot’s
goal is to grasp the Coke can and orient it to be in a vertical position.

5. Open Middle Drawer (in-distribution): The robot is positioned in front of a set of three
drawers. The robot’s goal is to grasp the middle drawer handle and pull the drawer open.

6. Move Orange near Brown Chip Bag (OOD): The robot is positioned in front of a platform
with a brown bag of chips and an orange on top of it. A tablecloth with blue sky and white
cloud patterns covers the platform underneath the objects. The robot’s goal is to grasp the

22

850

852
853

855

856
857
858

859
860
861

862
863
864
865

Pick Coke Can

Move Apple near Green Can

4
&

()

x .
8 Open Middle Drawer

= [— Emmee
c
o

=

B Move Blue Chip Bag near Apple Place Coke Can Upright

=
-

L

DI (

£

Move Orange near Brown Chip Bag Pick Pepsi Can Pick Banana
(w/ Unseen Background) (w/ Unseen Background) (Unseen Target Object)
()

X)
[} Move Coke Can to Taylor Swift
o (Unseen Internet Photo)

A
c

kel
=

2

= Pick Green Cup Place Apple on Plate Place Banana in Pan
"(7,‘ (Unseen Target Object) (Unseen Instruction) (Unseen Instruction)

(=)

w
o
A
=

O]

Figure 8: RT-1 robot evaluation tasks. We evaluate every generalist robot policy on in-distribution tasks
and out-of-distribution (OOD) generalization tasks. OOD tasks involve unseen backgrounds, target objects,
instructions/object relations, and semantic concepts (e.g., photos from the Internet that do not appear in robot
action data).

orange and bring it next to the bag of chips. This task is OOD because the orange is an
unseen object relative to the training dataset, and the tablecloth is an unseen background.”

7. Pick Pepsi Can (OOD): The robot is positioned in front of a platform with a can of Pepsi
on top of it. A tablecloth with bright yellow/brown patterns covers the platform underneath
the can. The robot’s goal is to grasp and lift the can. This task is OOD because the Pepsi
can is an unseen object, and the tablecloth is an unseen background.

8. Pick Banana (OOD): The robot is positioned in front of a platform with an apple, a can
of Coke, and a banana. The robot’s goal is to grasp and lift the banana. This task is OOD
because the banana is an unseen target object.

9. Pick Green Cup (OOD): The robot is positioned in front of a platform with a banana, a can
of Pepsi, and a green cup. The robot’s goal is to grasp and lift the green cup. This task is
OOD because all objects in the scene are unseen in the training data.

10. Place Apple on Plate (OOD): The robot is positioned in front of a platform with a plate and
an apple. The robot’s goal is to grasp the apple and move it onto the plate. This task is OOD
because it is a novel instruction describing an unseen object relation: training demonstrations
only cover moving the apple near the plate, rather than placing it on top of the plate.

4See Appendix of Brohan et al. [7] for a detailed list of OOD conditions in RT-1 robot evaluations.

23

866
867
868
869

870

871
872
873
874
875

876

877
878
879

880

881
882
883

884
885
886
887

888

889
890
891
892
893

894
895
896
897
898
899

11. Place Banana in Pan (OOD): The robot is positioned in front of a platform with a pan and
a banana. The robot’s goal is to grasp the banana and move it into the pan. This task is OOD
because the banana is an unseen target object, and it is a novel instruction describing an
unseen object relation, as explained in the previous task.

B.2.2 Detailed RT-1 Robot Evaluation Results

Table 5: Detailed RT-1 robot evaluation results. We report full evaluation results for RT-1 robot evaluations
discussed in . Each generalist policy is evaluated with 60 rollouts across 12 tasks, covering both
in-distribution and out-of-distribution (OOD) testing conditions. In the bottom row, we report mean success rate
=+ StdErr for each policy. OpenVLA and RT-2-X both significantly outperform RT-1-X and Octo overall (we

bold the mean success rate for both due to overlapping error bars). See for illustrations of all tasks.
. RT-1-X Octo RT-2-X OpenVLA (ours)
Category Task # Trials # Successes # Successes # Successes # Successes
In-distribution Pick Coke Can 5 5 1 5 5
In-distribution Move Apple near Green Can 5 3 3 3 5
In-distribution Move Blue Chip Bag near Apple 5 0 3 4 5
In-distribution Place Coke Can Upright 5 0 0 4 4
In-distribution ~ Open Middle Drawer 5 0 4 2 3
00D Move Orange near Brown Chip Bag 5 1 2 5 5
OOD Pick Pepsi Can 5 3 0 5 4
00D Pick Banana 5 5 3 5 5
OO0D Pick Green Cup 5 1 0 5 5
OOD Place Apple on Plate 5 0 0 4 4
OO0D Place Banana in Pan 5 0 0 2 4
OOD Move Coke Can near Taylor Swift 5 2 0 3 2
Mean Success Rate 33.3+£6.1% 26.7+£5.8% 78.3+5.4% 85.0+4.6%
Full results for the RT-1 robot evaluations are shown in . Overall, we find that RT-1-X and

Octo experience difficulty on the evaluation tasks; they are often unable to achieve a single success
out of five trials in several tasks. On the other hand, RT-2-X and OpenVLA demonstrate strong
performance, completing every task at least two times out of five trials; these two VLA policies
perform comparably with each other on this particular evaluation suite.

B.3 Data-Efficient Adaptation Experiment Details

In this section, we provide more details on the data-efficient adaptation experiments discussed in
, where we investigate the effectiveness of fine-tuned OpenVLA policies on new robot
setups such as Franka-Tabletop and Franka-DROID.

B.3.1 Franka-Tabletop and Franka-DROID Tasks

We collect 10-150 demonstrations of each of seven tasks. The first six tasks correspond to a robot
setup which we denote as “Franka-Tabletop” (Franka Emika Panda robot mounted on top of a table),
and the final task corresponds to a robot setup which we call “Franka-DROID”.

In the Franka-Tabletop setup, the first three of six tasks correspond to single-instruction tasks and
are narrow, while the last three tasks correspond to multi-instruction tasks in which multiple objects
are present in the scene and the robot must manipulate the correct one depending on the language
instruction.

Below we describe each of the six Franka-Tabletop tasks shown in

1. Put Carrot in Bowl (single-instruction): The robot’s goal is to grasp the carrot and place it
into the bowl. We collect 50 demonstrations of this task for the training dataset, randomly
placing the carrot and the bowl at different locations on the table in every episode. The carrot
is always initialized on the left side of the bowl. During evaluation, each trial is recorded as
a success (1) or failure (0); there is no partial credit.

2. Pour Corn into Pot (single-instruction): The robot’s goal is to grasp the red bowl, move
towards the steel pot, and pour the contents (a yellow corn) into the pot. We collect 50
demonstrations of this task for the training dataset, randomly placing the bowl and the pot at
different locations on the table in every episode. The bowl is always initialized on the right
side of the pot. During evaluation, each trial is recorded as a success (1) or failure (0); there
is no partial credit.

24

900
901
902
903
904
905
906
907

In-Distribution Out-of-Distribution

— -

Put Carrot in Bowl

Pour Corn into Pot

Narrow Single-Instruction Tasks

Flip Pot Upright

Move <object> onto Plate

Knock <object> Over

Diverse Multi-Instruction Tasks

Cover <object> with Towel

Figure 9: Franka-Tabletop fine-tuning tasks. Franka-Tabletop tasks used in the data-efficient adaptation
experiments in Section 4.2 and described in detail in Fig. 9 are depicted above. The first three of six tasks,
shown in the top three rows, only involve a single instruction, while the last three tasks in the bottom three
rows involve multiple objects and instructions (the instructions specify the target object or target location).
The first column shows sample initial states matching the training data distribution, while the second column
shows out-of-distribution (OOD) initial states (e.g., unseen backgrounds, target objects, distractors, and object
positions/orientations). Every policy in Section 4.2 is evaluated with 1012 rollouts on in-distribution tasks and
5-6 rollouts on OOD tasks.

3. Flip Pot Upright (single-instruction): The robot’s goal is to grasp the steel pot (which
is initially oriented vertically), rotate it to be in the upright position, and place it back
onto the table. We collect only 10 demonstrations of this task for the training dataset,
randomly placing the steel pot at various locations within a small section of the table.
During evaluation, each trial is recorded as a success (1), failure (0), or partial success (0.5).
Partial successes include grasping the pot but not orienting it upright, or knocking it over to
the upright position but not carefully guiding it. The robot must release the pot at the end of
the episode for full credit.

25

908
909
910
911
912
913
914
915

917
918
919
920
921
922
923
924

925
926
927
928
929
930
931
932
933
934

935
936
937

938

939

940

941

942

943
944

945
946

947
948
949
950

951
952
953
954
955
956
957
958

4. Move <object> onto Plate (multi-instruction): The robot’s goal is to grasp one out of
three objects (depending on the target specified in the language instruction) and place it
on the plate on the right side of the table. We collect 150 demonstrations of this task for
the training dataset, randomly placing different combinations of three objects on the table
and selecting one as the target. The plate is always initialized on the right side of the table.
During evaluation, each trial is recorded as a success (1), failure (0), or partial success (0.5).
Partial success is recorded when the first object that the robot makes contact with is the
correct target object (i.e., the object specified in the language instruction), but the robot does
not complete the task.

5. Knock <object> Over (multi-instruction): The robot’s goal is to approach one out of three
objects (depending on the target specified in the language instruction) and push it until
it falls over. We collect 70 demonstrations of this task for the training dataset, randomly
placing different combinations of three objects on the table and selecting one as the target.
During evaluation, each trial is recorded as a success (1), failure (0), or partial success (0.5).
Partial success is recorded when the first object that the robot makes contact with is the
correct target object (i.e., the object specified in the language instruction), but the robot does
not complete the task.

6. Cover <object> with Towel (multi-instruction): The robot’s goal is to grasp the blue towel
and place it on one out of three objects (depending on the target specified in the language
instruction). We collect 45 demonstrations of this task for the training dataset, randomly
placing different combinations of three objects on the table. During evaluation, each trial
is recorded as a success (1), failure (0), or partial success (0.5). Partial success is recorded
when the first object that the robot touches with the towel is the correct target object (i.e.,
the object specified in the language instruction), but the robot does not complete the task
(e.g., it drops the towel onto the table instead of on top of the target object). Full credit is
given when any part of the towel is resting over the top surface of the target object, i.e., the
object does not need to be fully covered.

For every Franka-Tabletop task, we evaluate each method with 10—12 in-distribution trials and 5-6
OOD generalization trials. The in-distribution and OOD test conditions are depicted in (second
column).

We describe the OOD test conditions for each of the six tasks below:

Put Carrot in Bowl (OOD): An eggplant (unseen object) replaces the carrot.

Pour Corn into Pot (OOD): An unseen brown tablecloth covers the tabletop.

Flip Pot Upright (OOD): An unseen white tablecloth covers the tabletop

Move <object> onto Plate (OOD): A set of three unseen objects are placed on the table.

M e

Knock <object> Over (OOD): Two unseen distractor objects (red plastic cup and brown
box) are positioned behind the set of three seen objects.

6. Cover <object> with Towel (OOD): The three objects on the table are placed upside-down
and at unseen positions.

Finally, in the Franka-DROID environment, we experiment with one task and variants of it: Wipe
Table (see). In this task, the robot’s goal is to grab the brush and sweep all three small brown
objects into the dustpan. We collect 70 demonstrations for this task for the training dataset, varying
the positions of all the objects.

At test time, we evaluate on in-distribution conditions matching the training data (, left), as
well as out-of-distribution (OOD) conditions in which distractor objects are also present in the scene
on the table (, right). Since there are various possible outcomes for each trial, we define a
scoring rubric as follows: The maximum score for each trial is 2 points. The policy receives the full
2 points if the robot sweeps all three objects into the dustpan. It receives 1 point for successfully
sweeping one or two objects into the dustpan. Otherwise, it receives 0 points. We evaluate each
policy with 18 in-distribution trials and 12 OOD trials, so each policy receives an aggregate score out
of 60 points.

26

959

960
961
962
963
964
965
966
967

968

969
970
971
972
973
974
975
976
977
978

Wipe Table Wipe Table w/ Distractors
(In-Distribution) (Out-of-Distribution)
-] p= T ——

Figure 10: Franka-DROID fine-tuning task. The “Wipe Table” task shown here is the final task used in
the data-efficient adaptation experiments in . The left image shows the initial conditions for an
in-distribution trial. The right image shows an out-of-distribution trial in which unseen distractor objects are
present on the table. To fully complete the task, the robot must grab the brush and sweep all three objects into
the dustpan.

B.3.2 Detailed Franka-Tabletop and Franka-DROID Evaluation Results

Full evaluation results for both Franka-Tabletop and Franka-DROID evaluations are shown in

We evaluate the methods discussed in . We find that Diffusion Policy demonstrates strong
performance on the single-instruction Franka-Tabletop tasks (‘“Put Carrot in Bow!l”, “Pour Corn
in Pot”, and “Flip Pot Upright”), outperforming other methods. However, OpenVLA (Octo Mix)
and Octo achieve higher performance in the more diverse multi-instruction tasks (“Move <object>
onto Plate”, “Knock <object> Over”, and “Cover <object> with Towel”). In the Franka-DROID
environment, OpenVLA (Octo Mix) obtains strong results. Overall, we find that OpenVLA (Octo
Mix) achieves the highest average performance across both tasks.

Table 6: Detailed data-efficient adaptation experiment results. We report the performance of Diffusion Policy
trained from scratch on new robot tasks, as well as generalist policies fine-tuned on the same data. Each policy
is tested against both in-distribution and out-of-distribution (OOD) generalization conditions. We find that no
single policy performs best on all tasks: Diffusion Policy achieves high success rates on single-instruction tasks,
while OpenVLA (Octo Mix) and Octo performs well on diverse multi-instruction tasks. In terms of aggregate
performance, however, OpenVLA (Octo Mix) obtains the highest average success rate across both environments.
OpenVLA OpenVLA (Octo Mix)

Diffusion Policy

#trials Diffusion Policy Octo

(matched) (scratch) (ours)
Franka-Tabletop (SHz) ~ “Put Carrot in Bowl” (in-distribution) 10 90.0 80.0 40.0 40.0 90.0
“Put Carrot in Bowl” (OOD) 5 20.0 0.0 20.0 20.0 40.0
“Pour Corn into Pot” (in-distribution) 10 100.0 90.0 0.0 10.0 50.0
“Pour Corn into Pot” (OOD) 5 80.0 60.0 0.0 0.0 60.0
“Flip Pot Upright” (in-distribution) 10 100.0 85.0 40.0 85.0 90.0
“Flip Pot Upright” (OOD) 5 50.0 20.0 0.0 60.0 40.0
“Move <object> onto Plate” (in-distribution) 12 25.0 25.0 41.7 50.0 79.2
“Move <object> onto Plate” (OOD) 6 8.3 333 8.3 58.3 41.7
“Knock <object> Over” (in-distribution) 12 333 25.0 83.3 62.5 87.5
“Knock <object> Over” (OOD) 6 16.7 16.7 333 25.0 833
“Cover <object> with Towel” (in-distribution) 12 16.7 20.8 91.7 20.8 62.5
“Cover <object> with Towel” (OOD) 6 16.7 333 91.7 0.0 41.7
Average 48.5+4.9% 43.44+4.7% 43.44+4.4% 38.9+4.5% 68.2+4.2%
Franka-DROID (15Hz) ~ “Wipe Table” (in-distribution) 18 50.0% 27.8% 52.8% 30.6% 55.6%
“Wipe Table” + Distractors (OOD) 12 12.5% 25.0% 16.7% 20.8% 54.2%
Average 35.04+8.0% 26.7+7.5% 38.3+8.5% 26.7£7.5% 55.0+7.7%

C Infrastructure for Training and Inference

The final OpenVLA model is trained on a cluster of 64 A100 GPUs for 14 days, or a total of
21,500 A100-hours, using a batch size of 2048. During inference, OpenVLA requires 15GB of GPU
memory when loaded in bfloat16 precision, i.e., without quantization, and runs at approximately
6Hz on one NVIDIA RTX 4090 GPU (without compilation, speculative decoding, or other inference
speed-up tricks). We can further reduce the memory footprint of OpenVLA during inference via
quantization, and we demonstrate minimal performance regression with quantized VLA execution in

. We report inference speed on various consumer- and server-grade GPUs in . For
convenience, we implement a remote VLA inference server to allow realtime remote streaming of
action predictions to the robot — removing the need for the robot to have a powerful GPU. We release
this remote inference solution as part of our open-source code release ().

27

979

980
981
982
983
984
985
986
987

988

989
990
991
992
993
994

995
996
997
998
999
1000
1001

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

bfloat16
5 = 8 bit
§ 4 bit
Y4
(V2]
5
83
Q
<
2
1 I
Em =

1080Ti 2080Ti A5000 Al100 RTX 4090 H100

Figure 11: OpenVLA inference speed for various GPUs. Both bfloat16 and int4 quantization achieve high
throughput, especially on GPUs with Ada Lovelace architecture (RTX 4090, H100). Further speed-ups are
possible with modern LLM inference frameworks like TensorRT-LLM [106]. &: Model sharded across two
GPU s to fit.

D The OpenVLA Codebase

Along with our model, we will release the OpenVLA codebase, a modular PyTorch codebase for
training VLA models (see). It scales from fine-tuning
VLAs on individual GPUs to training billion-parameter VLAs on multi-node GPU clusters, and
supports modern techniques for large transformer model training such as automatic mixed precision
(AMP, PyTorch [107]), FlashAttention [108] and fully sharded data parallelism (FSDP, Zhao et al.
[80]). Out of the box, the OpenVLA codebase has full support for training on the Open X-Embodiment
dataset, integrates with HuggingFace’s [21] AutoModel class, supports LoRA fine-tuning [25] and
quantized model inference [26, 81]. Everything will be released under a permissive MIT license.

E RT-2-X vs. OpenVLA in Bridge V2 Evaluations

In this section, we provide additional details on RT-2-X vs. OpenVLA comparisons in BridgeData V2
evaluations discussed in . As discussed previously, OpenVLA is pretrained on a larger
subset of OpenX data than RT-2-X and uses a fused SigLIP-DinoV2 vision backbone rather than a
single visual encoder. However, in addition to these factors, we believe that OpenVLA’s significant
improvement upon RT-2-X specifically in BridgeData V2 evaluations (as shown in) also stems
from more careful preprocessing of the Bridge dataset.

During the development of the OpenVLA model, we discovered that the original version of the
BridgeData V2 dataset contained many transitions with all-zero (no-op) actions. For instance, in
every demonstration, an all-zero action was recorded as the ground-truth action in the first timestep.
Consequently, training a highly expressive VLA model on the original dataset without any data
preprocessing led to a policy that frequently predicted all-zero actions and froze during evaluations.
Therefore, we simply filtered out the first transition in every demonstration when training the
OpenVLA model, and this was sufficient for mitigating the freezing behavior in most cases.

However, the RT-2-X model was trained without such data preprocessing, so it often suffers the
aforementioned freezing behavior if deployed out of the box without modifying the model querying
procedure — which severely deteriorates rollout performance. Since this is a proprietary model that
is infeasible for us to re-train (e.g., with our preprocessed version of the BridgeData V2 dataset),
we mitigated this issue by simply querying the second-most-likely action from the model, since the
first-most-likely action was often all zeros while the second-most-likely action was not. (Note that this
is the same workaround that was applied by the developers of the RT-2-X model for BridgeData V2
evaluations reported in the Open X-Embodiment experiments [1].) This workaround led to much
stronger RT-2-X performance on BridgeData V2 evaluations — though we believe that it is still
suboptimal compared to re-training the model on the preprocessed version of the dataset.

28

https://anonymous-openvla.github.io

1012
1013
1014
1015
1016
1017
1018
1019

We also tried to dynamically query RT-2-X, i.e., by first sampling the first-most-likely action and
then sampling the second-most-likely action if the first one was all zeros. However, we empirically
found that dynamic querying led to worse performance than simply querying the second-most-likely
action at all times. We hypothesize that this is due to a change in the robot’s dynamics that arises
from dynamic querying: pausing in the middle of a trajectory to re-query the model leads to slight
interruptions in the robot’s movement due to non-neglible latency in the querying pipeline, and this
leads to subtle performance degradation. Therefore, we report the performance of RT-2-X when
always querying the second-most-likely action, as done in the Open X-Embodiment project [1].

29

	Introduction
	Related Work
	The OpenVLA Model
	Preliminaries: Vision-Language Models
	OpenVLA Training Procedure
	Training Data
	OpenVLA Design Decisions

	Experiments
	Direct Evaluations on Multiple Robot Platforms
	Data-Efficient Adaptation to New Robot Setups
	Efficient OpenVLA Fine-Tuning and Inference

	Conclusion and Limitations
	Data Mixture Details
	Evaluation Tasks and Detailed Results
	Bridge V2 WidowX Evaluation Details
	Bridge V2 Evaluation Tasks
	Comparing Evaluation Tasks to Original Bridge V2 Training Data
	Detailed Bridge V2 Evaluation Results

	RT-1 Robot Evaluation Details
	RT-1 Robot Evaluation Tasks
	Detailed RT-1 Robot Evaluation Results

	Data-Efficient Adaptation Experiment Details
	Franka-Tabletop and Franka-DROID Tasks
	Detailed Franka-Tabletop and Franka-DROID Evaluation Results

	Infrastructure for Training and Inference
	The OpenVLA Codebase
	RT-2-X vs. OpenVLA in Bridge V2 Evaluations

