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ABSTRACT

We investigate a principal-agent problem modeled within a Markov Decision Pro-
cess, where the principal and the agent have their own rewards. The principal can
provide subsidies to influence the agent’s action choices, and the agent’s resulting
action policy determines the rewards accrued to the principal. Our focus is on
designing a robust subsidy scheme that maximizes the principal’s cumulative ex-
pected return, even when the agent displays bounded rationality and may deviate
from the optimal action policy after receiving subsidies.

As a baseline, we first analyze the case of a perfectly rational agent and show that
the principal’s optimal subsidy coincides with the policy that maximizes social
welfare, the sum of the utilities of both the principal and the agent. We then in-
troduce a bounded-rationality model: the globally e-incentive-compatible agent,
who accepts any policy whose expected cumulative utility lies within € of the per-
sonal optimum. In this setting, we prove that the optimal robust subsidy scheme
problem simplifies to a one-dimensional concave optimization. This reduction not
only yields a clean analytical solution but also highlights a key structural insight:
optimal subsidies are concentrated along the social-welfare-maximizing trajecto-
ries. We further characterize the loss in social welfare—the degradation under
the robust subsidy scheme compared to the maximum achievable—and provide
an upper bound on this loss. Finally, we investigate a finer-grained, state-wise
e-incentive-compatible model. In this setting, we show that under two natural def-
initions of state-wise incentive-compatibility, the problem becomes intractable:
one definition results in a non-Markovian agent action policy, while the other ren-
ders the search for an optimal subsidy scheme NP-hard.

1 INTRODUCTION

The principal-agent problem (often modeled as a Stackelberg game) has long been central to the
study of strategic interactions where one party acts on behalf of another, yet with potentially mis-
aligned incentives. This setting arises frequently in economics and governance: for example, govern-
ments design taxes, subsidies, and public investments to guide individual behavior toward socially
beneficial outcomes. However, in decentralized markets, each participant ultimately pursues their
own utility, and centralized guidance can only partially influence outcomes. A similar dynamic ap-
pears in machine learning, where reinforcement learning with human feedback (RLHF) is employed
to align large language models (LLMs) with societal values such as ethics and legal compliance.
In both cases, the principal faces the fundamental challenge of shaping an agent’s behavior without
direct control, while respecting both parties’ interests.

In this paper, we investigate the principal-agent problem within the framework of a Markov Decision
Process (MDP), where the principal can provide subsidies to influence the agent’s action choices.
More specifically, in our setting, each action under each state yields two distinct rewards: one for
the principal and one for the agent. The principal may also assign non-negative subsidies to actions.
The agent selects an action policy based on its own reward combined with subsidies offered by
the principal. The principal, in turn, strategically designs these subsidies to influence the agent’s
choices, aiming to maximize the principal’s overall payoff, which equals the total principal’s reward
associated with the agent’s chosen action minus the subsidies provided.
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A natural assumption in such models is that the agent always behaves rationally, selecting the trajec-
tory that maximizes the sum of the agent’s own reward and the subsidies provided by the principal.
Yet in practice, this assumption is often violated: agents may deviate from perfect rationality due
to bounded cognition, incomplete information, or limited computational power. For example, in
economics, individuals may fail to optimize utility precisely because of uncertainty or behavioral
biases. Similarly, in reinforcement learning, approximate training algorithms may yield suboptimal
policies due to limited exploration or finite computation.

Motivated by these considerations, we ask:
How should the principal design subsidies when the agent may behave irrationally?

Our goal is to identify a robust subsidy scheme that guarantees the principal the best possible
expected cumulative return in the worst-case scenario.

Our Contributions We introduce a theoretical framework based on Markov Decision Processes
(MDPs) to model the principal-agent problem and formulate the design of an optimal robust subsidy
scheme as a minimax optimization problem. Within this framework, we systematically analyze three
agent models: the perfectly rational agent, the globally e-incentive-compatible (IC) agent, and the
state-wise e-IC agent. For each model, we provide structural insights and algorithmic solutions.

We first study a perfectly rational agent as a baseline, who always selects actions that maximize its
own reward. In Theorem (3.1} we characterize the optimal subsidy scheme and show in Proposition
[3.2] that it suffices to subsidize only actions that maximize social welfare, defined as the sum of the
principal’s and agent’s utilities. Under this scheme, the agent’s best-response policy aligns with the
social welfare-maximizing policy, establishing a clear benchmark for incentive alignment.

Next, we consider globally e-IC agents, who tolerate at most an € loss relative to their optimal reward
under a given subsidy scheme. Unlike perfectly rational agents, these agents may adopt stochastic
policies, making the principal’s optimization a nontrivial bi-level problem. Theorem shows
that this problem can be equivalently reduced to maximizing a one-dimensional concave function
over a bounded interval, allowing efficient solution via standard first-order methods. Structurally,
in Proposition we show the optimal subsidy mirrors the perfectly rational case by exclusively
rewarding actions that align with maximizing social welfare; and, in the worst-case response, the
agent’s policy will assign positive probability to the socially optimal actions, though it may also
mix with other actions. We further provide a quantitative analysis of the gap between the total
payoff achieved under this robust scheme and the maximum possible social welfare, as shown in

Proposition 4.3]

Finally, in Section [5] we examine state-wise e-IC agents, for which the e-tolerance must hold at
each individual state. Two natural formalizations arise, each presenting distinct challenges. In the
first formalization, the agent’s worst-case response may necessitate a non-Markovian policy, thereby
violating the foundational assumptions of the MDP framework and introducing history dependence
that makes the problem computationally intractable. In the second formalization, while the agent’s
worst-case response remains polynomial-time computable, Theorem [5.1)demonstrates that the prin-
cipal’s problem becomes NP-hard. These findings illustrate that, although state-wise constraints are
conceptually appealing, they introduce significant computational and modeling complexities that
limit practical applicability.

Related work The principal-agent problem, a central concept in economics (Ross| [1973}; (Gross-
man & Hart,|1992), arises when a principal delegates tasks to an agent whose actions may be guided
by self-interest. This framework underpins both contract theory (Laffont & Maskin, 1981} |Guru-
ganesh et al.|[2021)) and mechanism design (Myerson, |1982;|Kadan et al.,[2017).

Recent work has examined this problem in the setting of Markov Decision Processes (MDPs). Re-
search in this area falls into two broad directions. The first, information design, seeks to influence
the agent’s beliefs, as in Bayesian persuasion (Gan et al., [2022; [Wu et al., 2022} |Bernasconi et al.,
2023). The second, more closely aligned with our work, focuses on shaping the agent’s incentives
through policy teaching (Zhang & Parkes| [2008; Banihashem et al.| [2022) or environment/model
design (Thoma et al.l 2024} |Yu & Ho, |2022). A comprehensive survey is provided by |Diitting et al.
(2024). Among these, two approaches are most closely related to our study:
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Contract-based models. This line of research integrates contract theory with MDPs, assuming the
principal observes only states and offers state-dependent payments. Prior studies analyze subgame
perfect equilibrium (Wu et al.l 2024 [Ivanov et al.,|2024)), showing that history-dependent contracts
are necessary for farsighted agents (Bollini et al. 2024). These works typically assume perfectly
rational agents and establish that the optimal contract design problem is NP-hard.

Reward shaping. In Reward shaping, the principal modifies the agent’s incentives via additional
rewards for specific state—action pairs, subject to a fixed budget (Ben-Porat et al., [2024), with the
design problem remaining NP-hard. Extensions address behavioral uncertainty through robust re-
ward design (Wu et al.,2025)). In contrast, we incorporate incentive costs directly into the principal’s
objective, treating them as part of payoff optimization rather than an external constraint.

2 PROBLEM FORMULATION

The Principal-Agent MDP Model We consider a principal-agent problem modeled as a time-
inhomogeneous, finite-horizon Markov Decision Process (MDP). In this setting, the principal aims
to achieve a goal by influencing an agent’s actions. The principal can offer subsidies to incentivize
the agent to follow a policy that benefits the principal.

Formally, we define the problem instance using the tuple M = (S, A, H,P,rp,ra, §, II), where:

* S is the set of the finite states and A is the set of actions. We assume that both states and
actions are discrete.

e H={0,1,---,H — 1} is the set of time steps, with H representing the time horizon.

* P:Sx AxH — A(S) is the transition kernel , where P(s’|s, a, h) indicates the proba-
bility of transferring to state s’ € S after executing action a € A in state s € S at timestep
heH.

* rp,74 S X A X H — R are the reward functions of the principal and the agent, respec-
tively, where rp(s, a, h) (resp. (s, a,h)) denotes the reward obtained by the principal
(resp. agent) when the agent executes action a € A in state s € S at timestep h € H.

» Without loss of generality, § is the fixed starting state for the agent.

Subsidy Scheme and Action Policy The principal commits to a subsidy scheme Ar : S x A x
H — Rxo. Here, Ar(s, a, h) is a non-negative payment from the principal to the agent for taking
action a in state s at timestep h. We denote the set of all feasible subsidy policies as Ra .

Given a subsidy Ar on action « in state s at timestep h, the effective rewards for the principal and
agent become:

r87(s,a,h) = rp(s,a,h) — Ar(s,a,h) and 757 (s,a,h) =ra(s,a,h) + Ar(s,a, h)

The agent observes the subsidy scheme and then chooses a Markovian action policy 7 : S x H —
A(A). Based on the agent’s (ir)rationality, for any given Ar, the agent will choose a policy from a
specific set of feasible policies, which we denote by II(Ar).

Value Functions For any player i € {P, A}, subsidy scheme Ar, and agent policy 7, we define
the standard state-value and action-value functions via the Bellman expectation equations:

VA (s,h) = > mw(als, h)QT A" (s,a, h)
acA
Q% (s,a,h) = (s,a,h) + ) P(s/]s,a, VTS (s bt 1)
s'eS
with the terminal condition V;"*" (s, H) = 0. Furthermore, we use er(s, h) and @jr(s, a,h)to

denote the optimal state-value and action-value functions attainable by the agent,

er (s,h) = max@jr (s,a,h)

@ﬁr(s,a, h) =ra(s,a,h)+ Z P(s'|s,a, h)VjT(s’, h+1)
s'eS
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Additionally, V"= (s, h), Q72"="(s,a, h), V4~ (s,h) and Q4 (s, a, h) denote the corre-

7
sponding value in the absence of subsidies.

Social Welfare We define social welfare as the aggregate reward of both the principal and the
agent: 74y (s,a,h) = rp(s,a,h) +ra(s,a, h), which remains unaffected by the subsidy term Ar.

The social welfare value functions, VJ, and QF,, characterize the expected social welfare under an
agent policy 7:

Va(s,h) =Y w(als, h) QZ, (s, a, h),

acA

QT (s,a,h) = re(s,a,h) + Z P(s'|s,a,h) Vi (s’ h + 1).
s'eS

Analogously, the optimal social welfare value functions, V}, and Q7,,, are defined as:

*
SwW?

V(s h) = I(fleaj(Q:w(‘q?& h),

Qiy(s,a,h) =1 (s,a,h) + Y P(s']s,a,h) Vo (s, b+ 1).
s'eS

An action « is said to be social-welfare-maximizing in state s at timestep A if it is greedy with
respect to the optimal @-value, i.e., a € arg max, c 4 Q% (s,a’, h).

Optimization Objective We consider a robust formulation where the principal seeks a subsidy
scheme that performs best against the agent’s worst-case response. The agent’s adversarial action
policy to a subsidy Ar is an agent policy 7a,- that minimizes the principal’s expected return within
the feasible set II(Ar):

Tar € argmin VA2 (3, h = 0)

mEII(Ar)

The principal’s objective is to find the optimal subsidy scheme Ar* that maximizes this worst-case
outcome. The optimal value for the principal is therefore:

PT £ in V3o (5,h = 2.1
OFT = e, ., Vo (1 =0 .

3  WARM-UP: THE PERFECTLY RATIONAL AGENT

We begin with the simplest setting of a perfectly rational agent, defined as an agent that seeks to
maximize its cumulative reward. Although this scenario is conceptually straightforward, it provides
a crucial foundation for the subsequent analysis of more complex, irrational agents. We formalize
this concept as follows.

Definition 3.1 (Perfectly Rational Agent). Given a subsidy scheme Ar, the action policy m €
IIo(Ar) of a perfectly rational agent satisfies the constraint

VAT (3, h=0) > V5 (3, h = 0).

Tie-breaking Rule A tie-breaking rule dictates the agent’s choice when multiple actions yield
identical rewards. In this setting with a perfectly rational agent, we assume that when two options
provide the same personal reward, the agent selects the more cooperative action—that is, the one
that benefits the principal more. For example, consider a single state with two actions. Both give
the agent a reward of 0, but the principal receives 2 for the first action and O for the second. Even a
negligible subsidy on the first action makes it strictly preferred. As the subsidy approaches zero, the
agent’s choice remains the action with a higher principal value. Thus, tie-breaking systematically
favors actions that increase the principal’s payoff. This assumption allows for a tractable proof of
optimality in this section, but it is important to note that we will not rely on this rule in the more
general frameworks developed later in the paper.
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3.1 OPTIMAL SUBSIDY SCHEME

With the definition of perfect rationality, we now address the problem of determining the optimal
subsidy scheme Ar*. The following theorem characterizes the principal’s optimal payoff and the
optimal subsidy scheme. Detailed proof is deferred to Appendix A.3.

Theorem 3.1 (Optimal Subsidy Scheme). For a perfectly rational agent, the principal’s optimal
payoff is given by
— Ar—
Va3, h=0) = V3" "(5,h =0),
that is, the maximum attainable social welfare (over all action policies) minus the maximum reward
the agent can obtain in the absence of subsidies. Furthermore, there exists an optimal subsidy
scheme Ar* such that, for every state—action—timestep triple (s, a, h),

Ar*(s,a,h) = Vﬁrzo(s,h) —@ﬁrzo(&a,h). 3.1

Proof Sketch. The principal’s optimal payoff is bounded above by V% (5,h = 0) — VﬁT:O(é, h =

0), since the total value of the principal and agent cannot exceed the maximum possible social
welfare, and the agent will not accept less than their stand-alone value without subsidies. This upper
bound is achieved under the subsidy scheme Ar* defined in equation (3.I). Under this scheme,
the agent’s adjusted Q-values are equalized across all actions: Q4" (s,a,h) = Vﬁ’_o(s, h) for
all (s,a,h). Thus, the agent is indifferent among all actions. Our provisional tie-breaking rule
then ensures the agent selects actions that maximize the principal’s reward, allowing the principal’s
payoff to exactly reach the upper bound. O

Although Theorem identifies an optimal subsidy scheme that provides transfers on nearly all
actions, the following proposition shows that, to achieve optimal rewards, the principal needs to
subsidize only the social-welfare-maximizing actions. The detailed proof is deferred to Appendix
A4

Proposition 3.2 (Social Welfare). There exists an optimal subsidy scheme Ary,, that assigns posi-
tive transfers exclusively to social-welfare-maximizing actions. Under Ary,, the agent implements
social-welfare-maximizing agent policy 7, allowing the principal to attain the maximum achiev-
able social welfare.

4 OPTIMAL POLICIES FOR GLOBALLY ¢e-1C AGENTS

When an agent is no longer perfectly rational, the optimality of its response ceases to be the sole
factor guiding its decisions. To model such bounded rationality, a natural approach is to assume that
the agent can tolerate a maximum reward loss of ¢, in line with the classical notion of e-incentive
compatibility (IC). However, since we are dealing with sequential decision-making, several interpre-
tations of e-IC are possible. Here, we focus on the so-called globally e-IC agent, which constrains
only the cumulative reward loss over the entire decision horizon.

Definition 4.1. An agent is a globally €-IC agent if and only if, given a subsidy scheme Ar, the
action policy m € II9(Ar) satisfies
VAT (5 h=0) > V5 (5,h = 0) — e

4.1 OPTIMAL SUBSIDY SCHEME

We now consider the problem of determining the optimal subsidy scheme Ar*. Unlike the perfectly
rational case, the agent’s best-response policy may be stochastic.

To handle this, we reformulate the objective (2.1) using occupancy measures. Specifically, let
1(s,a, h) denote the probability that the agent takes action « in state s at timestep h. Replacing
the policy 7 with its corresponding occupancy measure (i, the optimization problem becomes

i sa,h ,a,h) — Ar(s,a,h)), 4.1
B, S-S ).
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where M (Ar) is the set of occupancy measures satisfying the following constraints:

Initial state: Zusah—o =1, Z,usah—())—o Vs # 8, (4.2a)

Transition: Zu (s,a,h) Z u(s'sa'sh —1)P(s|s’,a’ h — 1), (4.2b)

Non-negativity: u(s7 a,h) >0, (4.2¢)

Global e-IC: 3" uls,a,h)(ra(s,a,h) + Ar(s,a,h)) > V5 (3, h=0) — . (4.2d)
s,a,h

Directly solving this program is challenging for two main reasons. First, the feasible set of w is not
fixed but depends on the choice of Ar, creating a coupling between the inner and outer variables
that distinguishes our setting from standard minimax formulations. Second, defining f(Ar) =
Mingenr(Ar) 2o o 1408, @, h) (1p(s,a,h) — Ar(s,a, h)) shows that f(Ar) is not concave in Ar
(see Appendix A.2.1 for example). Consequently, the outer problem maxa,. f(Ar) is not a concave
maximization , which rules out standard convex optimization methods.

In our main theorem, we show the problem can be reformulated to a one-dimensional concave
optimization (Theorem [4.1). The approach leverages the dual of the inner optimization problem
and swaps the order of optimization between the subsidy scheme Ar and the dual variables (c, V).
The optimal subsidy scheme can then be expressed as the difference between the V-function and
Q@-function, analogous to the perfectly rational case.

Theorem 4.1. The optimization problem is equivalent to maximizing a concave function F(x),
formulated as

max F(z) =2V, (5,h=0)—-V'(§h=0)—
z€[0,1)

sw

where, for each state s and timestep h, V" (s, h) £ max, {xV (s,h) = Vi Ar=0(, h)}

Furthermore, for an optimal x*, there exists an optimal subsidy scheme Ar* such that
Ar*(s,a,h) = V;:* (s,h) — Q;* (s,a,h) 4.3)

where Q% (s,a,h) £ x*rg.(s,a,h) —rp(s,a,h) + 3, cg P(s']s,a, h)V3 (8", h + 1).

Proof. We begin by considering the inner program over the state-action occupancy measure p for a
fixed subsidy scheme Ar. This program is a linear program. By introducing dual variables oo € R
for the globally e-IC constraint and V e RISIH+D) for the transition (4.2a)) and initial state
(@.2b) constraints, we can express the problem in its dual form. Combining this with the outer
maximization over Ar, o, and V' yields the following optimization problem:

Jnax V(4,h=0)— oze—!—aniaXVA "(5,h =0)
such that V' (s, h) < rp(s,a,h)—ara(s,a,h)—(14+a)Ar(s,a,h)+> s P(s'[s,a,h)V (s, h+1)
forany s € S, a € A, and h € H; and with the terminal condition V (s, H) = 0 for any state s € S.
Next, we exchange maxa, and max,>o, and analyze maximization over Ar for a fixed V" and o.

. T . . . AT,
Notice that the objective is non-decreasing with respect to Ar, since V' AT (8, h = 0) represents the
maximum value attainable by the agent under the subsidy Ar. Additionally, the constraints impose
an upper bound on each Ar(s,a, h):

1
Ar(s,a,h) < m( —V(s,h)+ S%;9P(s’|s,a, RV (s',h+1) +rp(s,a,h) —ara(s,a, h))

Thus, the optimal choice for Ar is to take this upper bound, making the inequality hold with equal-
ity. Given « and V, substituting the optimal choice of Ar, the RHS of the above inequality, into
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er(é, h =0) = max, E,,[Zfigl ra(St, at, t) + Ar(sg, at,t)} gives

—Ar
Vo (5. h=0) =
a4 (8, ) mgxl—i—a

H-1
EW[ Z (Tp(St,CLt,t) -+ TA(St,at,t))

t=0

+ Z P(st41]8t, a1, )V (sp41,t + 1) = Vs, 1)
S5t4+1E€S
1 . R
- H—a(vsw(s, h=0)—V(3h= 0)).
Substituting this back, the problem reduces to

max max

V(5,h=0)+ ——VZ(3,h = 0) — ae

a>0 V 14« 1+a
st. V(s,h) <rp(s,a,h) —ara(s,a,h) + Z P(s'|s,a,h)V(s',h+ 1),
s'eS
V(s,H) <0.
Observing the inner optimization over V (s, h) coincides with form of minimizing cumulative reward
in an MDP with modified reward rp — ar4. By letting z = 1% and introducing V7 (s, h) equals
= _H% times the optimal value of V (s, h), the formulation equals
x
V(5 h=0)=VX(5,h=0) —
e @ (3 ) = V(5 el

where  V(3,h =0) 2 — (1 — ) - min {ngm‘o(g, h=0)— %VX’AT:O(& h= o)}

= max{zV(3,h = 0) — V3 *"="(3,h = 0)}.

Restricting 7 to deterministic action policies does not change the value of V*(35, h = 0), and under
this restriction, V*(8, h = 0) is the maximum of finitely many linear functions in z, so the objective
function is concave over the interval [0, 1). O

Markovian vs. Non-Markovian A process is called Markovian if it depends solely on its current
state, independent of its past trajectory. Conversely, a process is non-Markovian if it can depend
on historical states, i.e., it possesses “memory.”

In our framework, both the principal and the agent may adopt non-Markovian strategies. For ex-
ample, the principal might determine subsidies based not only on the agent’s current action but also
on past actions. Similarly, in equation (.I)), the agent could adopt a non-Markovian globally e-IC
policy to reduce the principal’s reward. Nevertheless, the following two key observations establish
that it suffices to restrict attention to Markovian strategies.

First observation: Given a Markovian subsidy scheme of the principal, there always exists a Marko-
vian globally e-IC policy for the agent that minimizes the principal’s reward. This follows from the
fact that the inner optimization problem in equation ([.1) is a linear program. Any non-Markovian
e-IC policy can be represented by an occupancy measure p(s, a, h), which specifies the probability
of taking action a in state s at timestep h. Such an occupancy measure can always be replicated by
a Markovian policy, ensuring identical rewards for both the principal and the agent.

Second observation: Among all possible subsidy schemes—Markovian or non-Markovian—the
Markovian scheme specified in equation (#.3) is optimal. A non-Markovian scheme can be trans-
formed into a Markovian one by augmenting the state space to encode the relevant history. By
Theorem for each state—action pair in this augmented representation, the scheme in equation
(@.3)) coincides exactly with its Markovian counterpart.

Remark We briefly examine the boundary cases of z* and € in Theorem When € = 0, as
x* — 1, the principal’s value approaches V%,(3,h = 0) — V£7=0(5, h = 0), consistent with the
tie-breaking rule in the perfectly rational case. This shows that the globally e-IC agent naturally
generalizes the perfectly rational agent.
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4.2 ACTION PoLICY

According to Theorem [.1] the optimal subsidy scheme Ar* takes a form similar to that in the
perfectly rational case. The following proposition shows that the principal can still allocate positive
transfers exclusively to the social-welfare-maximizing actions. Furthermore, the agent is still willing
to cooperate with the principal to a certain extent by choosing one social-welfare-maximizing agent
policy mg, with probability z*, the optimal solution in Theorem The detailed proof of the
following proposition is deferred to Appendix A.S.

Proposition 4.2 (Optimal subsidy scheme and action policy). There exists an optimal subsidy
scheme Ary, that assigns positive reward transfers solely to social-welfare-maximizing actions.
Meanwhile, there exists a globally e-1C action policy 7 a,,, minimizing the principal’s reward, which
is the mixture of a social-welfare-maximizing agent policy my, and one other action policy, placing
a weight of at least x* on Ty,

Proof Sketch. The proof relies on two key insights. First, under the optimal sub31dy scheme Ar*,

the policy 7, achieves the maximum agent expected cumulative reward, V A (s, h = 0). This
implies that it is sufficient to provide subsidies only along the trajectories induced by Trsw, Without
affecting the optlmal value for the principal. Second, there exists an action policy 7 whose agent

value falls below V A (s, h = 0) — ¢, which can be combined with 7, to form the globally e-IC
policy mar,,, such that the dual of the global e-incentive compatibility constraint is tight. O

4.3 SOCIAL WELFARE

We define the social welfare gap d,, as the difference between the maximum attainable welfare
and the welfare achieved under the optimal subsidy scheme Ar*. When ¢ — 400, the agent can
effectively bypass the global e-IC constraint and freely select any action policy. In this limit, the
welfare gap becomes dgy = Vi (5, h = 0) — min, Vi (5, h = 0). Our objective is to characterize
the upper bound on Jg,, and the rate at which social welfare declines as a function of ¢, particularly
in the regime where € remains small. We first establish the following upper bound on gy .

Proposition 4.3. Given € and the corresponding optimal solution x* € (0,1), the social welfare
gap is Oy, = =5 and it is upper bounded by O(\/e).

This O(+1/€) bound can be achieved in certain specific cases (see Appendix A.2.2 for an example).
However, in most cases, the social welfare gap ds,, exhibits two different growth rates—O(+/€) or
O(e)—depending on whether V* is differentiable at z*. A concrete example is provided below,
while detailed discussions are deferred to Appendix A.6.1.

Example Consider a single-period scenario with three actions and € = 1. For the first action, the
principal’s reward is 7 and the agent’s reward is 3. For the second action, the principal’s reward is 1
and the agent’s reward is 2. For the third action, the principal’s reward is 1 and the agent’s reward is
0. Figure shows that x can grow at rates of O(e€) and O(y/€), corresponding to the cases in Figure
Where x remains constant or grows at O(1/e€). Figure|3c|depicts the piecewise-linear relationship
between V' (8, h = 0) and x, where the constant-z value in Figurecoincides with the break point
of V¥(8, h = 0), a non-differentiable point of the objective function.

- — V, ($,h=0) with respect to x

/ === 65y scale as O(VE) -==- x" decreases as O(vV€) SS
—— b4y scale as O(e) —— x' is constant

S S B N B T R
(a) dsw versus e (b) z* versus € (©) V7 (8, h = 0) versus

Figure 1: Curves of gy and 2™ versus € when V;*($, h = 0) is non-differentiable.

8
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5 STATE-WISE ¢-1C AGENT

In this section, we examine the state-wise e-1C agent, which differs from the globally e-IC agent
in that incentive compatibility is enforced locally at each state and decision step. Intuitively, such
an agent ensures that its chosen action remains within e of the best immediate value available at
that decision point. While the idea is simple, constructing a mathematically consistent and tractable
formalization is more subtle. We provide two definitions below.

Value-Consistent State-Wise ¢-IC Agent We first define the value-consistent state-wise e-1C
agent, where the agent’s action at each state must approximate the optimal reward within e.

Definition 5.1. An agent is a value-consistent state-wise e-IC agent if, under a subsidy scheme Ar,
the induced policy w € 11V (Ar) satisfies V2" (s, h) > VjT(s, h) —eforall s € S and h € H.

A key challenge with this formulation is that the agent’s policy minimizing the principal’s reward
under a given subsidy scheme may be non-Markovian. In such cases, the agent’s policy cannot be
represented within polynomial size.

1 O 1 O

Z a, — ay
O OB () ()

1 1~

Z a, i

2 {s) 2 () —(s2)w p

(a) Original MDP instance (b) History-dependent MDP expansion

Figure 2: Illustration of value-consistent state-wise e-IC agents.

To illustrate, consider the post-subsidy MDP in Figure [2a] where (i) for action a; at s;: principal
reward 100, agent reward 3; (ii) for action ao at s3: principal reward 2, agent reward 2; and (iii) for
all other actions: reward 0. Under a Markovian policy, the value-consistent state-wise e-IC agent
minimizes the principal’s reward by selecting a9 at s3, and steering toward s3 from s;. This yields
a principal reward of 2. However, under a non-Markovian policy, we can duplicate s3 into two
history-dependent states, s} and s3. At s3, the agent always selects az, while at s, the agent mixes
between two actions with equal probability. This reduces the principal’s expected reward to 1.5.

Greedy State-Wise ¢-IC Agent To avoid non-Markovian behavior, we introduce the greedy state-
wise e-IC agent, which replaces recursive value computations with greedy look-ahead. Once the

. . —=A o . S .
subsidy scheme is fixed, V' AT becomes deterministic, and the agent greedily minimizes the princi-
pal’s value through local decisions.

Definition 5.2. An agent is a greedy state-wise e-IC agent if, under subsidy scheme Ar, the induced
policy m € IIE(Ar) satisfies, forall s € S, h € H.:

> wlals, W) (r&7(s,0. ) + > P15, a, ) VA (s h+1)) = V3 (s,h) — e,
acA s'eS

However, even in this simplified greedy setting, designing the principal’s optimal subsidy scheme
remains computationally intractable. The complete proof is deferred to Appendix A.7.

Theorem 5.1. Given a greedy state-wise €-IC agent, computing the principal’s optimal subsidy
scheme is NP-hard.

6 CONCLUSION

In this paper, we study a principal-agent problem with the aim of designing a robust subsidy scheme
that maximizes the cumulative expected return in the presence of an irrational agent. We demonstrate
that, under the globally e-IC assumption, the optimal subsidy scheme can be effectively determined,
representing a natural extension of the perfectly rational case. We further show that formulating
the state-wise e-IC follower is computationally challenging. As future work, it would be interesting
to consider scenarios in which the principal does not have prior knowledge of the agent’s reward
function or the value of ¢, such as in a learning-based setting.
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A APPENDIX

A.1 USAGE OF LLM

We employed the large language model (LLM) to assist in refining the language and enhancing the
clarity of this manuscript. The LLM was not used for generating research ideas, identifying related
work, performing analyses, or contributing to the substantive scientific content of this paper.

A.2 MISSING EXAMPLES
A.2.1 COUNTEREXAMPLE ON CONVEXITY

Consider a single-period scenario with three actions and e = 2. The principal receives 0 for the
first action and 5 for both the second and third actions, while the agent’s reward is O for the first
action and 1 for other actions. Let Ar; and Arg transfer 2 units to the second and third actions,
respectively; both yield a principal value of 1. A convex combination, Ars, transferring 1 unit to
both actions, results in a leader value of 0, directly violating concavity. This illustrates that the outer
optimization cannot be assumed concave.

A.2.2 EXAMPLE OF dsy SCALING AS O(+1/€)

Consider a single-period scenario with two actions and € = 1. The principal and agent values for the
first action are 4 and 0, respectively, and for the second action, they are 0 and 2. In this setting, 1 —x*
always scales as O(+/€) and matches the upper bound. The core idea behind is in such instance, the
function V* (3§, h = 0) is a complete linear function in interval [0, 1]. Figureillustrates relationship
between dsy, 2*, and €, along with the behavior of V.*(5, h = 0) as a function of .

—— V, (5,h=0) with respect to x

/

7
i
0254 1
'
1
1

-== 64, scale as O(VE) 0] === x" decreases as O(VE) .

ok 0B ok o 1he 1h 1k U 2ho oh ok ok o the s ik TE e P
(a) Jsw versus € (b) z* versus € () V7 (8,h = 0) versus

Figure 3: Curves of dg, and x* versus € when V;*(8, h = 0) is differentiable.

A.3 PROOF OF THEOREM [3.1]

By definition, for any subsidy scheme Ar with induced action policy wa, € IIo(Ar), we have

VEATAT (3 h = 0) + VA2 (5, h = 0) = VIar (5, h = 0) < VZ5(5,h = 0). (A.1)

11
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Moreover, since any subsidy scheme provides the agent with non-negative reward transfers, back-

ward induction gives

H—-1
VA7 (3,h = 0) = maxE lZ Tﬁr(wt’“]

t=0
H—1
> maxE lz TA(st,at,t)‘|
" =0
=V h=0).

(A2)

Combining this with inequality (A.T), the optimal principal value is upper bounded by

OPT < Vi (3,h =0) — V5 (5, h = 0).

It remains to show that

Art(s,a,h) = V5 (s,h) = Q4 (s,a,h)

achieves this bound. For any policy 7, substituting Ar* into VX’AT* (8, h = 0) and applying back-
ward induction establishes that the agent’s value for every action equals V{7=(3, h = 0), which
makes inequality (A.2) tight. In addition, since the social-welfare-maximizing policy , renders

inequality (A.T)) exact, the principal’s value under Ar* is

—Ar=0

VEmAT (8, h=0) = Va(8,h=0) = V3" (3,h=0),

which coincides with the upper bound. Consequently, under the cooperative tie-breaking rule, the

agent selects gy, thereby achieving
OPT = V3 (5,h = 0) = V'3 (3,h = 0).

A.4 PROOF FOR PROPOSITION[3.2]

Recall that in Theorem [3.1] we defined the optimal reward transfer as

Ar*(s,a,h) = Vﬁr 0(s,h) er O(s,a, h).

In fact, it suffices to retain the reward transfer only along the social-welfare-maximizing actions. In

particular, we define subsidy scheme Ar, as

Arg(s,a,h) = {

0, otherwise.

Ar*(s,a,h), if mg(al|s,h) >0,

so that the agent value of social-welfare-maximizing action policy 7y, under Ary,, is

VAT (3 = 0) = V5 (8,h=0) = V3 (3, h =

which yields a principal value of V}, (5, h = 0) — Vﬁr 0(5, h =0).

A.5 PROOF OF PROPOSITION[4.2]

Optimal subsidy scheme Recall from (4.3) that
Ar*(s,a,h) =Vi(s,h) — Qr(s,a,h)

=V (s,h) —a"rew(s,a,h) +1rp(s,a,h) — ZP (s'|s,a, h)V,
/ES

(s’ h+ 1)

=(1—a")rp(s,a,h) —x*ra(s,a,h) + V(s h) ZP "Is,a, W)V (s' b+ 1).

s'eS

12
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Let g, be a deterministic social-welfare-maximizing agent policy. We now define a subsidy scheme
Arg, that is restricted to gy :

Ar*(s,a,h), if mey(als,h) >0,
0, otherwise.

Argy(s,a,h) £ {

First, we claim that under either subsidy scheme, Arg, or Ar*, the agent’s optimal value is identical:

Ve (5 h=0)=Vy" (3.8 =0).

The central argument of the proof is that, under both Ar* and Arg,, action policy 7, can achieve
the agent’s maximal value, and the values thus attained coincide. Specifically,

Vﬁr* (§7 h = 0) (;) VXSW,AT-* (§7 h— 0) (_i) ngrsw,Arsw(g) b= 0) (:(') Vﬁr,w(§7 h— 0)

In what follows, we establish the validity of each equality (a)-(c) sequentially.
We first show (a):

—Ar* Tew , AT [ A

Vi (3,h=0)=V""" (5,h=0).

To see this, consider any action policy 7 under Ar*,

VAT (5,h =0) = E,

H-1
Z ra(se, ae,t) + AT*(shaht)]

t=0
H-1
=E, 2 ra(se,ap, t) + (1 —ax")rp(se,ae,t) — *ra(se, a, t) (A3)
+ Vi (se,t) — Z P(sit1|se, a0, ) Vi (se41,t + 1)
51,4,165
=(1—-2")VL(8,h=0)+ V(5 h=0).
Subtracting the agent value under any policy 7 from that under g, gives
VAT (3,h = 0) = VAT (3,h = 0)
=1 =2")(Va(5,h =0) = V@ (8,h = 0))
<0, (A4
which implies 7, can achieves the maximum agent value under Ar*:
VIeAT (3 = 0) = V5 (3, = 0). (A3)

Then, we show (b):
VAT (3,h = 0) = Vi~ A™ (3, h = 0).
Based on the definition of Arg,, we can express Ary,, for any triple (s, a, h) as
Argy(s,a,h) = 150y (mew(als, b)) Ar(s,a, h),

where 17,03 (2) is the indicator function:

1 1, >0,

=007 0, z<o.

By introducing the occupancy measure /i, of policy 7, which satisfies (3, psw(s,a’, h)) -

Tow(als, h) = psw(s,a, h) for any (s, a, h), we have 1;,~0y (mew(als, h)) > L0y (psw(s, a, h)).

13
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Hence,

VX””AT* (5,h=0) = Z fow (s, a,h)(ra(s,a,h) + Ar*(s,a,h))

s,ah

= Z (MSW(Sa a, h)TA(sv a, h) + 1{.’£>0} (:U‘SW(s» a, h)) : :U‘SW(sa a, h)AT*(sv a, h))

s,ah

< Z (NSW(Sa a, h)TA(s, a, h) + 1{w>0} (WSW(G‘|S7 h)) ’ MSW(Sa a, h)AT*(S, a, h))

s,ah
= Z (usw(s,a,h)rA(s,a,h) + usw(s,a,h)Arsw(s,a,h))
s,a,h

= VB (3,h = 0).

Meanwhile, since Ar*(s,a, h) > Arg(s,a, h) for any (s, a, h), by construction, it follows that
VI AT (3, h = 0) > Vi A™ (3, h = 0).

Combining the above results, we can conclude that
VAT (3 h = 0) = ViR (5,h = 0).

Finally, we establish (c):

VAT (5 h = 0) = Ty ™ (3, h = 0).

To prove this, it suffices to show that for any policy 7, V2" (3, h = 0) < V™2™ (3, h = 0),

. . . . . . . AT o
which directly implies that 7, attains the maximum agent value under Argy, i.e., V' AT' (8,h =

0) = V27 (3,h = 0).
The inequality, V™ (5, h = 0) < V™27 (3, h = 0), follows from the chain
VAT (3 h=0) < VI (3,h = 0) < VEVAT (8, = 0) = VIA™ (3, h = 0).

The first inequality holds because the construction, Ary(s,a,h) < Ar*(s,a,h) for all (s, a, h),
which implies, for any action policy m, Vi>™ (5,h = 0) < V{'2" (3,h = 0). The second
inequality follows from (A.4). The final equality holds because Ar*(s, a, h) = Arg, (s, a, h) when-
ever ey (als, h) > 0.

By combining (a), (b), and (c), we can conclude Vﬁr (8,h=0) = ersw(é, h = 0) follows.

Next, we show that the principal’s worst-case reward under Ary, is no worse than under Ar*.
Suppose an action policy 7 is globally e-IC under Arg,,. By definition, this implies that the agent’s

. TFATw A . . .
value under Arg, achieves V' AT (8,h = 0) — e. From the previous discussion, we know that

Vo (5.h = 0) = Vﬁrsw(é, h = 0) and Arg, < Ar*. Consequently, the action policy 7 is also
globally e-IC under Ar*. The converse, however, does not necessarily hold.

Thus, relative to Ar*, the scheme Arg, reduces the set of agent policies that are globally e-IC.
Moreover, for any given action policy, the principal’s payoff under Arg, is at least as large as under
Ar*. Tt follows that the principal attains at least the same worst-case reward under Ary, as under
Ar*. Since Ar* is optimal, the principal’s worst-case reward is identical under both schemes,
thereby establishing the first part of the proposition.

Action Policy under Ar*  To prove the latter part of Proposition[4.2] the key idea is to analyze the
agent’s response under a given subsidy scheme Ar. Recall from the preliminaries that we define the
adversarial response 7, to a subsidy scheme Ar as

Tar € argmin VA2 (3, h = 0).
mell(Ar)

In the following discussion, we refer to ma, as the agent’s adversarial action policy. Further, we
begin by analyzing the agent’s behavior in a single-period instance and then extend the results to the

14
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multi-period case. Formally, when H = 1, there is only one state §, so we can omit (s, k) in the
expressions. The optimization problem for agent then becomes

mgnZﬂ'(a)rAr a) st Z >maxrﬁ (a) —e,m(a) >0, Z

As this is a linear program, we apply the KKT conditions to analyze the optimal solution. The
Lagrangian function is

L(r;0,8,V) :Zw(a) 8(a )+a(mgxrﬁr(a)—e—z (@)rd" (@)
*Zﬂ +V(1—Z (a))
= ZW(CL)(TPT( ) —ari"(a )—V—i—ﬁ(a)) —I—V—I—a(maxrﬁr(a) —€).

The resulting dual program is as followed:

mz%/XV—&—a(maxrﬁr( a)—€) st a>0,V<rpa)—ara(a).

Let o®” and V27 denote the optimal dual values under the subsidy scheme A7, and let OTPA"
denote the final principal value under the same subsidy scheme. By complementary slackness, for
any action a such that

r87(a) — a®"r3"(a) = VAT = min (rp"(a) — o«®"r3"(a)),

we have ma-(a) > 0. We refer to such actions as the candidate actions a € A, since they can
potentially be chosen by the agent given subsidy scheme Ar.

However in certain problem instances, there exist candidate actions that do not appear in any agent’s
adversarial action policy. For example, consider e = 1 and two actions: the first action has principal
reward O and agent reward 1, while the second action has principal reward 1 and agent reward 2. The
unique agent’s adversarial action policy deterministically selects the first action, yet setting o = 2
would include both actions as candidate actions. In general, based on the value of optimal dual
variable o* under optimal subsidy scheme Ar*, we claim there are three possible scenarios:

* Case 1: o = 0. Every candidate action at this point attains the minimum principal value,
so any action satisfying the globally e-IC constraint can be deterministically chosen.

* Case 2: a* > 0, and all candidate actions satisfy the globally e-IC constraint. Comple-
mentary slackness implies the agent’s value is exactly max,74(a) — €, so only actions
attaining this value can be chosen. This case coincides with the above example.

* Case 3: o* > 0, and some candidate actions have agent reward below max, 74 (a) —
€. Then, the agent can mix actions above and below this threshold to form an agent’s
adversarial action policy, leading to the fact that any candidate action may become part of
agent response.

To further explain the agent’s behavior pattern in Case 2 and Case 3, we use the following equations
to show that when a®” > 0, as long as the action policy distribution 7 is supported only on candi-
date actions and achieves an agent value exactly equal to max, 74 (a) — €, the policy 7 constitutes
one possible adversarial action policy of the agent. In other words, we only need to consider how
to organize the policy distribution supported on candidate actions so as to achieve an agent value
exactly equal to max, 74 (a) — e.

Y mla)r’(a) = Z m(a)(rp"(a) — 747 (a) + 0By w(a)ry"(a)

= Z a)VAT + aAr(InaX a7 (a) — €)

= OPTA’"
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We now extend to the multi-period case. Observe that under subsidy scheme Ar, any multi-period
policy 7; can be viewed as a single-period action a; with principal reward Vgi’m(é, h = 0)
and agent reward V”“AT(S, h = 0), yielding a single-period instance with infinitely many ac-
tions. Although this transformation is generally intractable, it provides a useful framework for
analyzing the properties of action policies. Suppose the single-period agent’ adversarial action
policy is 7%, the multi-period agent’s adversarial action policy can be recovered as 7*(als,h) =
> mi(a;) mi(als, h) for any state s, action a and timestep h, where 7} (a;) denotes the probability
assigned to policy ;. Accordingly, we define the candidate policy 7@ € TI under subsidy scheme Ar
as

VA" (3, h =0) — a®" V32 (5,h = 0) = min {VE>"(5,h = 0) — 2"V 2 (3,h = 0)},
analogous to the single-period candidate actions, so that the adversarial agent’s action policy can be
expressed as a convex combination of these candidate policies.

We next establish that, under the optimal subsidy scheme Ar* from Theorem [{.1] every action
policy , including gy, qualifies as a candidate. Recall from (#.3) that

Ar*(s,a,h) =Vi(s,h) — Qr(s,a,h)
=V>(s,h) — x*re(s,a,h) +rp(s,a,h) — ZP (8'|s,a, h) VA (s',h 4+ 1)

s'eS
=(1—a")rp(s,a,h) —x*ra(s,a,h) + V(s h) ZP "Is,a, W)V (s, h + 1),
s’eS
where * = 27— + -. For any action policy, under optimal subsidy scheme Ar* substituting Ar* into
the expression V22" (3,h = 0) — a* V27 (5,h = 0) yields
VEAT (5,h = 0) — VAT (3,h = 0)
rH—1
=Er Tp(stai,t) — a*ra(se, ap,t) — (1+a*)Ar (Stvatvt)]
L t=0
rH—1 . 1
E, 2 rp(se, ae, t) — T x*rA(st,at,t) i Ar*(st,at,t)]
rH-1 .
=E, TP(Sfa afat) - 1— *TA(Shaht) (A6)
L t=0 r
1 * *
g (1 —a")rp(se, ar, t) — x*ra(se, ag,t))
1 " X
— T Vz* (St,t) - Z P(St+1‘3t7at7t+ 1)Vx* (8t+1,t+ 1)
st4+1E€S
1

=— V2i(8,h=0).
SV h=0)
Thus, every action policy 7 yields the same value
VEAT (3, h = 0) — a* VA" (3,h = 0).
Consequently, all action policies qualify as candidate policies, and we have

* 1
mﬂin{Vg’Ar (3,h = 0) — a* VAT (5, h_o)} VE(8,h =0).

g ®

Having established this, we note that not all candidate policies necessarily receive positive probabil-
ity in the support of an agent’s adversarial action policy, as illustrated in the single-period analysis.
Similarly, we distinguish cases based on the value of the optimal dual variable a*: when a* = 0,
the corresponding optimal solution is z* = 0, making the proposition trivial; When a* > 0, we
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assert that Case 2 will never happen under optimal subsidy scheme Ar* as there exists a candidate

. o . . —Ar* . . .
policy ™ whose agent value is strictly smaller than V' AT (8, h = 0) — e. Moreover, this policy & can
be combined with 7, to construct the agent’s adversarial action policy.

In detail, we construct the candidate policy 7 by analyzing the derivative of the objective function.
Applying the envelope theorem (Milgrom & Segal,|2002), the derivative of the objective with respect
to z in Theorem[4.1]is given by

€

ma (A7)

Fl(x) = ‘/st«(‘é?h = 0) - V;C;z(gvh = 0) -
where 7, = arg max,{zV(3,h = 0) — VA2"="(3,h = 0)}. In general, the objective function
may have a finite number of non-differentiable points, arising from the potential non-uniqueness
of Vi=(5,h = 0). Nevertheless, since the set of sub-differentials can be fully characterized by
the derivative expression, for simplicity and clarity we do not distinguish between derivatives and
sub-derivatives, and we treat stationary points by directly setting F”(z) = 0.

Since the objective function is concave, the optimal solution £* and the corresponding policy 7,
can be characterized by the vanishing derivative condition. Furthermore, the requirement o* > 0
ensures that 2* € (0, 1), implying that =*, as an interior optimum, necessarily exists as a stationary
point. Consequently, imposing F”(z) = 0 yields

A ok (A €

Va8, h=0) =V ($h=0) = g3

In general, 7~ can be represented as any convex combination of some action policies 7, maximiz-
ing 2V (3,h = 0) - Vj* ’Ar:0(§, h = 0). Since every action policy qualifies as a candidate policy
under Ar*, .- can equivalently be viewed as a convex combination of candidate policies. Hence,
there exists a candidate policy 7 such that

# = argmax{zV7(5,h = 0) — VE2"=%(3,h = 0)},
with ) c
Va(3:h =0) = Vo (3, h =0) = 55

To upper bound the agent value of 7, using equations (A.3) and (A.5), we deduce that for action
policy 7,

VA (5 h = 0) = VEA (5,h = 0) = (1— x*)(vs;;(g, h=0)—Vi(3h= 0)), (A.8)

which, combined with the preceding inequality, implies

Vo (G h=0) - VIAT (3, h=0) > : € >e
— X

Thus, by mixing 7y, and 7 with weight p, we construct an agent’s adversarial action policy whose

. —Art .. . .
value is exactly V' Ar (8, h = 0) — e. Moreover, the mixing weight on 7, must satisfy p > z*. The
derivation of this lower bound on p is as follows:

First, by the definition of the mixed policy and dual variable o* > 0,
VAT (G R =0)+ (1—p)ViA (5,h=0) =TV (5,h=0)—e
Since VX“W’AT* (,h=0)= er* (3, h = 0), this equality can be rewritten as
pe+(1=p) (Vi (5,h=0) = (V3" (5,h=0)—¢)) =0.
Next, using the inequality Vﬁr* (3,h =0) — Vi7" (3,h = 0) > (1 — 2*) e, we obtain
—€

1—a2*
Finally, dividing both sides by € > 0 gives p > x*.

+¢€) > 0.

pe+ (1 —p)(
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Action Policy under Arg, When the optimal subsidy scheme is shifted from Ar* to Arg,, our
primary objective—towards establishing the latter part of the proposition—is to verify that both 7
and 7, continue to satisfy the requirements of candidate policies. We first claim that the optimal
solution z* and the optimal dual variable o* remain unchanged under this modification. By the first
part of Proposition the principal’s optimal value is preserved in this transition. Furthermore,
recalling from Theoremthat the objective function F'(x) is concave, it follows that both 2* and
«* remain optimal.

Then, to determine whether an action policy 7 , such as 7 and 7, qualifies as a candidate policy
under Arg,, it suffices to verify whether

VE R (8,h = 0) — a* V2™ (3,h = 0)

_ (A.9)
= min {VI’;’A“W@, h=0)—a*VIA™ (5 h = 0)} .

For clarity, we define
g(m; Ar) 2 VAT (3 h = 0) — V2T (3, h = 0).

The proof proceeds in two steps. First, we establish a lower bound for the right-hand side of (A.9)
as

1
min g(m; Argy) = min {V;;’A“w(é, h=0)—a*VIA™ (3 h = 0)} > — Vi3 h=0).
T ™ —x
Second, we show that for the action policies 7 and gy,
1
(75 Argy) = g(Trsw; Argyw) = —ﬁVI**(é, h =0).
— T

In the first step, note that since Ar* > Ary,, we have for any action policy 7,
VEAT (3,h=0) < VEA™(3,h=0), Vi® (3,h=0)>Vi2™(5h=0).

As a* > 0, it follows that for any ,

g(m, Arg,) = min {VW’AT’W(é, h=0)—a* Ve (s h= O)}
. A" /A [ LUVA SN
> min { VI (5,1 = 0) — " VP2 (5,0 = 0) ] (A.10)
1
= - (5,h=0
V(5 h=0)
In the second step, to prove 7 is a candidate policy and attains the minimum 7#‘/} (8,h =0),
we connect g(#; Arg,) and —==V% (8, h = 0) via g(7; Ar = 0). Substituting z* = %, we

obtain

g(7; Ar =0) = VA28, h = 0) — a*V2"=0(5,h = 0)

*

= VB3, h = 0) = = Vi =(5,h = 0)
— X

! ((x* — VAT (5, h = 0) + 2" VEAT0(5 b = 0))
o 1—g* P e A e

1 A .
= (VG = 0) = VIR 5, h = 0))
b ax {:Jc*V’T (3,h=0) - VIA=0(3,h = 0)} (A.11)

1—x* = VAN P ’

= min {v;’A’TO(g, h=0) -+ z VTG = 0)}

1
= - Vi h=0). (A.12)
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Equality (A-TT)) follows since
# = argmax{z* V7 (3,h = 0) — VE2"="(5,h = 0)},

while (A.12) corresponds to the definition of V,*($, h = 0) in Theorem

VF(3,h=0) 2 —(1 — ) -min {V];’AT_O(é, h=0)— %vj{’”zo(g, h = 0)} :

We next turn to d1scuss the equality between g (7, Argy) and g(7, Ar = 0). Combining (A.10) with
g(&, Ar = 0) = ==V (8, h = 0), we obtain

g(7, Argy) > g(7, Ar = 0).

To establish equality, it suffices to show g(7, Argy,) < g(7,Ar = 0). Since Arg(s,a,h) >
Ar(s,a, h) for all (s,a, h), we have

VEA™(8,h=0) S VAR08, h=0), V2™ (3,h=0)> Vi "(3,h=0).

With o* > 0, it follows that

g(7t, Argy) = V2™ (3, h = 0) — o V32" (3, h = 0)
<V7F’Ar_0(§,h20)—a V‘n’Ar 0( h—O)
= g(7, Ar =0)

Thus g(7, Argy) = g(7, Ar = 0).

For g, recall that after changing from Ar* to Ary,, its agent value remains unchanged. Since
the social welfare is unaffected by the subsidy scheme, the principal’s value also remains the same.
Hence,

9(Taw, Argy) = VI (5 1 = 0) — o VAT (3, h = 0) (A.13)
= VI AT (5 h = 0) — VAT (5,h = 0) (A.14)

- (5,h =0 A.15

Vi (3,h=0), (A.15)

where the last equality follows from (A-6).

Finally, to bound the probability weight, recall that both the maximum agent value and the agent
value of 7, remain unchanged, i.e.

—Argy

VXSW:ATsw(g’ h — O) — VXWHAT* (§7 h ) VA ( ,h _ O) _ er* (§7 h _ O)

Meanhile, for 7, its deviation from the maximum agent value is still bounded as
V‘n’ATsw( h—0)<V;AT (A,h:O)
€
< V 5,h=0)—

Arsw €

Therefore, by the same reasoning as under Ar*, we conclude that 7, and & constitute an optimal
adversarial pair for the agent, with 7, assigned a probability weight of at least z*.

A.6  PROOF OF PROPOSITION[4.3]

According to the proof Theorem [{.1] recall that the optimal subsidy scheme Ar* given optimal dual

variable (a*, V*) is
1

Ar*(s,a,h) = T
a

(—V*(s, h)+ Z P(s|s,a, h)V*(s', h+1)+rp(s,a,h)—ara(s,a, h))
s'eS
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Therefore, the agent’s action policy ma,+ under Ar* satisfies

TCA* r* A 1 X[ A ¥ * (A *
Viar A (S’h:()):l_'_a*v(s,h=0)+1(j7‘/sw(57hzo)—a57
— AP, 1

VIar AT G = 0) > VY (3, h=0)—c=

(V2 (3,h = 0) — V*(5,h = 0) — .

1+ ao*

Based on the KKT condition, when z* € (0, 1) hence a* > 0, the above inequality becomes the
equality. Therefore, combining the above two equations, we can conclude that

o = V(8,1 = 0) = V3 (5,5 = 0) = (1 +a")e = -

—x
The key to analyze such gap is to examine the relationship between ¢ and x*. By applying the
envelope theorem (Milgrom & Segall 2002), the derivative of the objective function respect to  in

Theorem . 1lis .

1—a)

where m, = argmax,{zVZ(5,h = 0) — Vg’Arzo(é,h = 0)}. In general, the objective func-
tion contains a finite number of non-differentiable points, which arise from the non-uniqueness of
VZI=(8,h = 0). Nevertheless, since the set of sub-differential can be fully characterized by the
expression of the derivative, for the sake of simplicity and clarity we do not distinguish between
derivatives and sub-derivatives, and in the discussion of stationary points we directly set the deriva-
tive F’(x) to 0.

Fl(z) = Va,(8,h =0) = Vir(8,h = 0) — (A.16)

Meanwhile, since the objective function is concave, the optimal solution z* and the corresponding
policy 7.« can be characterized by the condition that the derivative vanishes. Moreover, the require-
ment «* > 0 ensures that 2* € (0, 1), which implies that 2*, as an interior optimum, necessarily
exists as a stationary point. Consequently, imposing the condition F’(z) = 0 yields

€
1—2a*= .
’ \/Vstv(é, h=0)— Var (3, = 0)
Since 7.~ is an action policy, we can immediately have a trivial bound as

(A.17)

Uy

However, in fact, we can obtain a tighter constant bound on V%, (3, h = 0) — Vig*™ (8, h = 0). Denote
7 4 as the action policy that attains the minimum principal value in the absence of a subsidy, i.e.,

74 = argmin V3 2"=0(3, h = 0),
K
and if multiple action policies achieve this minimum, we select 74 to be the one among them that
maximizes social welfare. We claim that

Vs:v(évh = 0) - ‘/ST\;JL* (§7h = O) > V:\:v(gvh = 0) - ‘/SC:JA(‘éah = 0)

To prove this, we show that for any = € [0, 1),
Vv (8, h=0) 2 VA (8,7 =0).
Recall that
e = arg max{zV7(3,h = 0) — VE2"="(5,h = 0)}.
By simple rearrangement and u;ing x > 0, we obtain
V(5,0 = 0) — VA5, h = 0) >+ (VEAr=0(5, 1= 0) - VEYAT (5,1 = 0)).

As 74 minimizes the principal value with Ar = 0, the right-hand side is nonnegative, which imme-
diately implies

V:\;I (évh - 0) 2 Vsz;A(évh - O),
as desired. Moreover, this bound is tight: based on the definition of 74, there always exists some
xo € (0, 1) such that for any x € [0, o], the policy m4 maximizes 2 V.5 (s, h) — V;-,”AT:O(S7 h).
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Having established a bound on V* “(8,h = 0) — Vi¥" (5,h = 0), we can immediately derive a
corresponding bound on 1 — z*

€

1—a* < .
v \/V;V(g,hzm— A (3, h = 0)

Finally, applying the condition F’(x) = 0 once more, we obtain

Osw = ;= (Va(8,h =0) = VA (8,h = 0)) (1 —z¥)

<V (Vi (5,h=0) —Var(5,h=0)) ¢,

demonstrating that the social welfare gap dgy is upper bounded by O(v/e).

A.6.1 THE DEPENDENCE OF dgy ON €

When analyzing the relationship between dg,, and ¢, a straightforward observation is that the effec-
tiveness of the limited subsidy diminishes as € approaches infinity, allowing the agent to bypass the
globally e-IC constraint and achieve a trivial minimization of the leader’s value. In this scenario,
even as € continues to increase, the social welfare gap remains unchanged. Therefore, our analy-
sis focuses on relatively small values of ¢, examining how the social welfare gap grows gy as €
increases and =* € (0, 1).

The key issue in equation ( is that changes in ¢ may simultaneously affect both z* and the
term V5 (8,h = 0) — Vg™ ( h = 0). However, a closer analysis of the derivative reveals that ¢
cannot inﬂuence these two quantities simultaneously. Before presenting the detailed argument, we
first establish the following lemma, which shows that * is monotone in e.

Lemma A.1. The optimal solution x* € (0, 1) is monotonically non-decreasing in e.

Proof. Recall that

V; (5.h = 0) £ max {aV7,(3,h = 0) - VEAr=0(8,h = 0)}.
Since V;*(8, h = 0) is the maximum of finitely many linear functions in z, its derivative V.= (8, h =
0) is non-decreasing in . Consequently, Vi (5, h = 0) — Vio*" (8, h = 0) is non-increasing in z.
Further, for 2* € (0, 1), imposing the stationarity condition F’(z) = 0 yields

€= (1—a")(Va(3,h = 0) = V3" (3,h = 0)).

As z* increases, both (1 —z*) and V%, (8, h = 0) — Vo™ (8, h = 0) decrease, making the right-hand
side of the above equation monotonically non-increasing in =*. Thus, for the equality to hold, an
increase in € must be matched by an increase in x*, which proves the claim. [

We then analyze the two possible cases of z* given ¢, corresponding to d, scaling as O(1/€) or
O(e), respectively:

* When the piecewise linear function V*(s, h) is differentiable at z*, every m,« € II,~
yields the same social welfare V" (3, h = 0). Owing to this uniqueness, there exists a
small interval § such that for all z € (z* — J,2* 4 §), the policy 7.~ remains unchanged.
Consequently, z* is linearly related to /€, and the social welfare gap scales as O(1/€).

* When V*(s, h) is non-differentiable at 2*, different 7.~ induce different levels of social
welfare. In this case as F'(z) is concave, within IT,«, there exist two policies 7. and 77.
achieving the minimum and maximum social welfare, respectively, which define the left-
and right-hand derivatives around z*. We claim as long as

the optimal solution for € remains z*, and the social welfare gap scales as O(¢). To see this,
consider the counterexample. Recall from the proof of Lemmathat Ve (8,h = 0) is

Ve (3, h = 0) — Vi (3,7 = 0) > > V5, (3,h = 0) — V& (3,h = 0),
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non-decreasing in x. Suppose the solution for €’ is 2’. If 2/ < x*, then

F'(a') = Vi, (3,h = 0) — Vi’ (8,h = 0) — —

(1—2a')?
P Wi* ~ €
>V (5,h=0) = Viy (s,h:O)—m
N 7l €
>‘/§*W(S7h:0)*‘/swl (S,h:O)*m

>0,

which shows 2’ is not a stationary point, and hence not optimal for a concave function. The
proof for ' > x* follows analogously by replacing 7. with 7. and showing F’(z') < 0.

A.7 PROOF OF THEOREM[3.]]
A.7.1 TECHNICAL LEMMAS

As our proof involves iteratively optimizing the subsidy scheme for the single-period problem in-
stance, we begin by introducing the following definitions for clarity.

Definition A.1. Given tolerance ¢, the problem instance I = ((rp(a;),ra(a;)):) is a single-period
problem where H = 1, the agent is a globally ¢-IC agent, and rp,r 4 are the principal and agent
reward functions for actions a1, - - - , a|4|. Given € and problem instance I:

. VPAT(I ) denotes the principal value under subsidy scheme Ar.

» V27(I) denotes the maximal agent value under subsidy scheme Ar.

» VA(I) denotes the optimal principal value under the optimal subsidy scheme Ar*.
» Vi(I) denotes the maximal agent value under the optimal subsidy scheme Ar*.

Based on the above definitions, we establish several useful properties of the subsidy scheme in
the following lemmas, which will be employed in the proof of NP-hardness. Intuitively, the first
lemma describes how the principal’s value is determined when the agent adversarially reallocates
probabilities in response to a given reward transfer. The second lemma characterizes the optimal
reward transfer and the corresponding principal and agent values in a simple two-action instance.
The third lemma analyzes how the optimal principal value in a three-action instance relates to the
optimal values of its two-action sub-instances, providing useful bounds for iterative constructions.

Lemma A.2. Let I = ((a,b), (c,d)) witha > c and b > d. Under the subsidy scheme Ar = 0, the
principal’s final value is
ab —ae —ad + ce

vAr=(n) = Tl

Proof. To adversarially minimize the principal value under the constraint of global e-IC, it’s obvious
that the agent will choose to mix the first and the second action so that V2™=(I) = b — €. By
denoting the probability weight on the first action as p, we have

b—d—
pb+(1—pd=b—¢ = p:bidg.
Substituting into the principal’s value formula,

ab — ae —ad + ce

b—d

VA=) =pa+ (1 - p)e =

Lemma A.3. Let I = ((a,0),(0,0)) with a > €. Then the principal’s optimal value is
Vi(I) = (Va— e,
achieved by setting the reward transfer for the first action as \/ae. Correspondingly, the agent’s
value under this optimal transfer is
Vi) = Vae.
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Proof. Clearly, the principal will allocate a positive subsidy to the first action only if doing so can
yield a principal value exceeding zero. Consider a reward transfer x > e assigned to the first action
under a subsidy scheme Ar. For a given z, the principal’s value is

Vﬁ\‘r(l):a—x—%.

Maximizing over © > €, we obtain the optimal principal value
VA(T) = max VA(T) = a + ¢ — 2v/ac = (Va - Vo)
Consequently, the agent’s value under the optimal agent value is

Vi(l) = vae.
O

Lemma A4. Let I = (Ay, Ao, As) with A; = (rp(a;),ra(a;)). Suppose fori € {2,3}, rp(ar) +
ra(ar) > rp(a;) +ra(a;) + €. Define I' = (A1, As) and I" = (Ay, As). Then

Vp(I) < min{VE(I'), VE(I")},

Proof. According to Proposition[4.2] for any instance, the optimal reward transfer assigns a nonzero
reward only to the first action. Applying concave maximization to instance I, we recall that the
objective function is

F(z) = 2V (3,h = 0) — V7 (3,h = 0) — —

67
1—=z

where 7, = arg max,{zV7 (3, h = 0) — VZ2"=%(3,h = 0)}, and its derivative is
€

F'(@) = Va(8,h = 0) =V (3,0 = 0) = 75

By observation, we have
F'(0) = Vo (8,h = 0) = V30 (3,h = 0) — ¢,

where 7y minimizes the principal’s value, and F’(x) — —oo as x — 1. Therefore, there are two
cases:

* There exists my that chooses a; in instance /. Substituting into the derivative, we obtain
F’(0) < 0, and the optimal solution is * = 0, which implies that the optimal subsidy
scheme is Ar* = 0. Similarly, the optimal schemes for I’ and I"’ are also Ar* = 0. Since
action a4 yields the highest social welfare, it also provides the largest agent value. Conse-
quently, in all three instances, the agent will deterministically select action a1, resulting in

VA(D) = VE(I') = VE(I").

* 7o chooses an action other than a;. In this case, based on the condition that for i € {2, 3},
rp(a1) +ralar) > rp(a;) +ra(a;) + € wehave F'(0) > 0 and z* € (0, 1) for instances
I, I and I”. According to Proposition the optimal subsidy assigns a positive transfer
only to action a1, and there exists an agent’s adversarial action policy that mixes action a;
with other actions in all three instances. Suppose the optimal subsidy schemes for instances
LI, I" are Ar*(I), Ar*(I'), and Ar*(I"), respectively. Then we have

VA(D) = min{Vp" P (Ay, A2), V" D (A, A3)),
Vi) = VAT U (4, Ay),
VA" =V (Ar A).

By the definition of the optimal subsidy scheme, we then obtain

VAT D (A, ) < VR (4, Ay, VETD(A), A < VT (A, A3),

which completes the proof.
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h=0
1 -
h - 1 n+m
a; (9,0) ’?17"1
—E(lJrZs))
h=2
h=3

Figure 4: Illustrative Construction of the NP-Hardness Reduction Instance

A.7.2 PROOF OF THEOREM [5.1]

We prove the hardness by a reduction from the Maximum Independent Set problem.

Construction Given a graph G = (V, E), we construct a corresponding problem instance as
illustrated in Figure[d] Let n = |V/| and m = |E|, and assume n > 2.

Throughout the proof, we refer to an action with rp = 0 and 74 = 0 as a blank action. The time
horizon is set to H = 4, with a global initial state § that has only one blank action, which transitions
uniformly to the vertex states s,, , Sy, - - - , Sy,, and the edge states s., , Se,, - - - , Se

For each vertex state s,,, there is a blank action leading to an intermediate state s/, for padding. The
subsidy scheme at this intermediate state encodes whether the corresponding vertex v is included

in the maximum independent set. Two actions, a; and a,., are available from s/ with the following
specifications:

2 . ..
s aiz rp(sh,ai,h =2) = (14 5=)" €, ra(s),a;,h = 2) = 0, deterministically transition-
ing to state s/,.

n
v

* a,: ablank action that deterministically transitions to state s

For each edge e € F connecting vertices v; and v;, the corresponding edge state s has three actions
ay, any,, and a, designed to enforce the independent set constraints:

* a;: rp(se,a,h = 1) = 9¢, ra(se,a;, h = 1) = 0, deterministically transitioning to state
s ,, which is then followed by a padding state s/, .

!/
e,m>

* a,,: a blank action that deterministically transitions to state s which is then followed

by a padding state s, ,,.
* ap: Tp(Se,ar,h = 1) = —8%6, rA(Se,ar, h = 1) = —% (1 + ﬁ) €, which transitions

with equal probability to states s;,, and s, .

Under this MDP construction, we claim that there exists an independent set of size k in G if and
only if there exists a subsidy scheme Ar in the MDP that allows the principal to achieve a reward of

4n?

n+m

k4 am
B
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If direction Given a size-k independent set V* C V in graph GG, we construct a subsidy scheme

. - T4 .
Ar that achieves a principal value of %mme. The scheme is defined as follows:

* Foreachv € V*, set Ar(s),a;,h =2) =1+ 5-€and Ar(s),a,,h =2) =0.
* For each v ¢ V*, set zero subsidy for both actions a; and a, at (s}, h = 2).

* For each edge e € E, set Ar(se,a;,h = 1) = 3¢ and leave actions a,, and a, with zero
subsidy.

* No subsidy is applied to any other actions.

With this subsidy scheme Ar, the agent greedily minimizes the principal value from bottom to top.
First, consider a vertex state s/, and let 7w denote the agent’s action policy under Ar. By utilizing
Lemmal[A.3] we obtain:

« Forv e V*, VEAA7(s) h=2) = 2eandVA "(s!

h=2)=1+ 3

1)7

« Forv ¢ V*, VA2 (sl h=2) = 0and V5, (s, h=2) = 0.

Next, consider an edge state s., where e connects vertices v, and vy. There are two scenarios
depending on whether one of the endpoints is in the independent set:

 If one endpoint is in V* (i.e.,, v1 € V* or vo € V™), the agent faces a single-period
problem instance ((6¢, 3¢), (0,0), (0,0)). Since two actions have identical principal and
agent rewards, Lemma implies that the resulting principal value in (s., h = 1) is 4e.

* If neither endpoint i 1s in V* (ie., VA ¢ V* and v ¢ V™), the agent faces the instance
((6€,3€),(0,0), (—giz€, —3(1 + 5-)e)). Following the analysis in Lemma A4} the agent
chooses a mixture between (a1, ag) r (a1, as). Applying LemmalA.2} we find with n > 1

V(66,30 0.0) - VA ((6630), (~grzec— (14 52 ) ) )

15+ 52 — gor
246—7877 €
Tt
MU+H -1+ 2 - L)
7 1
3t o,
1 1
:*1*ﬂ+s*€
T, L
2 4

<0,

which confirms that the final principal value remains 4e.

Therefore, the total principal value under subsidy scheme Ar is

k-fset(n—k)-0+4e-m &5 4+4m
TAr,AT [ A n2 n2
VpArar (3, h =0) = —4 =4 €.

ko tam

Only if direction Suppose a subsidy scheme Ar achieves 42———e. for the principal. We show

that this implies the existence of a size-k independent set V* C V in G.

We first upper bound the maximum principal value achievable under any subsidy scheme Ar. There
are two primary sources of principal value:

* Vertex states s : by Lemma each vertex contributes at most #e.

* Edge states s.: by Lemma [A.3] and Lemma [A.4] each edge contributes at most
Vi((9¢,0),(0,0)) = de.
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Consequently, to attain the claimed principal value, at least & vertex states must yield positive con-
tributions. We claim that these vertices form an independent set. To see this, suppose otherwise:
let v; and vy be connected by an edge €. Since both s, and s/, have nonzero principal values, the
principal must provide a reward transfer of at least 1 on action g; at both s/, and s/, . Then, for

action a, at sg, the agent’s expected value is at least (% — ﬁ)e, while the principal’s value is at most

87%6. We can upper bound the principal value from (sgz, & = 1) under any subsidy scheme Ar as

us T * 1 1 1
VVPAWA (85’ h = 1) < VP ((96,0), (@Ea (5 - 4n>€) (AIS)
1 . 1 1 1
= 8?6 + VO ((96 — 8?670)7 (0, (5 — 471))6) (Al9)
1 . 11
< g2tV ((960),(0,(5 = 1-))e (A.20)
1 171
=g2¢ T Vo (5 + 1-)6,0),(0,0)) (A21)
2
1 17 1
T ( Gt ﬁ)
BN (RIS B
8n?2 2 4n 2  4n ¢

Inequality follows directly from Lemmal[A.4]together with the observation that, in any single-
period problem instance, simultaneously decreasing the principal’s reward and increasing the agent’s
reward for an action can only reduce the optimal principal value. In equality (A.T9), It is evident that
subtracting the same value from the principal reward of each action and then summing afterwards
does not affect the optimal solution. Inequality (A.20) arises from the fact that there is a pure
principal reward increase in the first action. In equation (A.2T)), to obtain a strictly positive principal
value, at least (% — ﬁ)e must be subsidized on the first action. After such subsidy, as both actions
now have the same agent reward, we set zero reward for both actions to sustain the relative value.

Meanwhile, we can apply lemma[A.3|to find the to optimal principal value.

Next, we upper bound the total principal reward across all sources:

* Principal reward from agent visiting s,,: at most 47112 € per vertex, for at most n vertices.

* Principal reward from agent visiting s, for edges e € E \ {€}: at most 4¢ per edge, for at
most m — 1 edges.

* Principal reward from agent visiting sg: at most (# + (12—9 +-)—2 % + —) €.

Summing over all contributions, the total principal value is

1
VEAr AT (5, h = 0) <

“n+m 8n2 2 4n 2 4n 4n?

( ! +(§+i)72 17+1>e+(ml)~4e+n-61.
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Comparing with the claimed value, for n > 2 we obtain

k
izt 4m
¥

TAr, AT /A
A h=
n+m P (5, 0)

_ € i+4 i+§+i
T n4+m 4n? 8n? 2  4n

€ 17 1 11 1
> Ty A S
“n+m 2 8n? 2 2n

>0

Here, inequality lb follows from neglecting the -5

4n?

17+i
2 4n

)

1
4n

(A.22)

(A.23)

(A.24)

(A.25)

term, and inequality li is obtained

by substituting n = 2. This contradiction demonstrates that any set of k vertices yielding positive
principal value must form an independent set, thereby completing the proof.
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