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ABSTRACT

We investigate a principal-agent problem modeled within a Markov Decision Pro-
cess, where the principal and the agent have their own rewards. The principal can
provide subsidies to influence the agent’s action choices, and the agent’s resulting
action policy determines the rewards accrued to the principal. Our focus is on
designing a robust subsidy scheme that maximizes the principal’s cumulative ex-
pected return, even when the agent displays bounded rationality and may deviate
from the optimal action policy after receiving subsidies.

As a baseline, we first analyze the case of a perfectly rational agent and show that
the principal’s optimal subsidy coincides with the policy that maximizes social
welfare, the sum of the utilities of both the principal and the agent. We then in-
troduce a bounded-rationality model: the globally ϵ-incentive-compatible agent,
who accepts any policy whose expected cumulative utility lies within ϵ of the per-
sonal optimum. In this setting, we prove that the optimal robust subsidy scheme
problem simplifies to a one-dimensional concave optimization. This reduction not
only yields a clean analytical solution but also highlights a key structural insight:
optimal subsidies are concentrated along the social-welfare-maximizing trajecto-
ries. We further characterize the loss in social welfare—the degradation under
the robust subsidy scheme compared to the maximum achievable—and provide
an upper bound on this loss. Finally, we investigate a finer-grained, state-wise
ϵ-incentive-compatible model. In this setting, we show that under two natural def-
initions of state-wise incentive-compatibility, the problem becomes intractable:
one definition results in a non-Markovian agent action policy, while the other ren-
ders the search for an optimal subsidy scheme NP-hard.

1 INTRODUCTION

The principal–agent problem (often modeled as a Stackelberg game) has long been central to the
study of strategic interactions where one party acts on behalf of another, yet with potentially mis-
aligned incentives. This setting arises frequently in economics and governance: for example, govern-
ments design taxes, subsidies, and public investments to guide individual behavior toward socially
beneficial outcomes. However, in decentralized markets, each participant ultimately pursues their
own utility, and centralized guidance can only partially influence outcomes. A similar dynamic ap-
pears in machine learning, where reinforcement learning with human feedback (RLHF) is employed
to align large language models (LLMs) with societal values such as ethics and legal compliance.
In both cases, the principal faces the fundamental challenge of shaping an agent’s behavior without
direct control, while respecting both parties’ interests.

In this paper, we investigate the principal–agent problem within the framework of a Markov Decision
Process (MDP), where the principal can provide subsidies to influence the agent’s action choices.
More specifically, in our setting, each action under each state yields two distinct rewards: one for
the principal and one for the agent. The principal may also assign non-negative subsidies to actions.
The agent selects an action policy based on its own reward combined with subsidies offered by
the principal. The principal, in turn, strategically designs these subsidies to influence the agent’s
choices, aiming to maximize the principal’s overall payoff, which equals the total principal’s reward
associated with the agent’s chosen action minus the subsidies provided.
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A natural assumption in such models is that the agent always behaves rationally, selecting the trajec-
tory that maximizes the sum of the agent’s own reward and the subsidies provided by the principal.
Yet in practice, this assumption is often violated: agents may deviate from perfect rationality due
to bounded cognition, incomplete information, or limited computational power. For example, in
economics, individuals may fail to optimize utility precisely because of uncertainty or behavioral
biases. Similarly, in reinforcement learning, approximate training algorithms may yield suboptimal
policies due to limited exploration or finite computation.

Motivated by these considerations, we ask:

How should the principal design subsidies when the agent may behave irrationally?

Our goal is to identify a robust subsidy scheme that guarantees the principal the best possible
expected cumulative return in the worst-case scenario.

Our Contributions We introduce a theoretical framework based on Markov Decision Processes
(MDPs) to model the principal-agent problem and formulate the design of an optimal robust subsidy
scheme as a minimax optimization problem. Within this framework, we systematically analyze three
agent models: the perfectly rational agent, the globally ϵ-incentive-compatible (IC) agent, and the
state-wise ϵ-IC agent. For each model, we provide structural insights and algorithmic solutions.

We first study a perfectly rational agent as a baseline, who always selects actions that maximize its
own reward. In Theorem 3.1, we characterize the optimal subsidy scheme and show in Proposition
3.2 that it suffices to subsidize only actions that maximize social welfare, defined as the sum of the
principal’s and agent’s utilities. Under this scheme, the agent’s best-response policy aligns with the
social welfare-maximizing policy, establishing a clear benchmark for incentive alignment.

Next, we consider globally ϵ-IC agents, who tolerate at most an ϵ loss relative to their optimal reward
under a given subsidy scheme. Unlike perfectly rational agents, these agents may adopt stochastic
policies, making the principal’s optimization a nontrivial bi-level problem. Theorem 4.1 shows
that this problem can be equivalently reduced to maximizing a one-dimensional concave function
over a bounded interval, allowing efficient solution via standard first-order methods. Structurally,
in Proposition 4.2, we show the optimal subsidy mirrors the perfectly rational case by exclusively
rewarding actions that align with maximizing social welfare; and, in the worst-case response, the
agent’s policy will assign positive probability to the socially optimal actions, though it may also
mix with other actions. We further provide a quantitative analysis of the gap between the total
payoff achieved under this robust scheme and the maximum possible social welfare, as shown in
Proposition 4.3.

Finally, in Section 5, we examine state-wise ϵ-IC agents, for which the ϵ-tolerance must hold at
each individual state. Two natural formalizations arise, each presenting distinct challenges. In the
first formalization, the agent’s worst-case response may necessitate a non-Markovian policy, thereby
violating the foundational assumptions of the MDP framework and introducing history dependence
that makes the problem computationally intractable. In the second formalization, while the agent’s
worst-case response remains polynomial-time computable, Theorem 5.1 demonstrates that the prin-
cipal’s problem becomes NP-hard. These findings illustrate that, although state-wise constraints are
conceptually appealing, they introduce significant computational and modeling complexities that
limit practical applicability.

Related work The principal–agent problem, a central concept in economics (Ross, 1973; Gross-
man & Hart, 1992), arises when a principal delegates tasks to an agent whose actions may be guided
by self-interest. This framework underpins both contract theory (Laffont & Maskin, 1981; Guru-
ganesh et al., 2021) and mechanism design (Myerson, 1982; Kadan et al., 2017).

Recent work has examined this problem in the setting of Markov Decision Processes (MDPs). Re-
search in this area falls into two broad directions. The first, information design, seeks to influence
the agent’s beliefs, as in Bayesian persuasion (Gan et al., 2022; Wu et al., 2022; Bernasconi et al.,
2023). The second, more closely aligned with our work, focuses on shaping the agent’s incentives
through policy teaching (Zhang & Parkes, 2008; Banihashem et al., 2022) or environment/model
design (Thoma et al., 2024; Yu & Ho, 2022). A comprehensive survey is provided by Dütting et al.
(2024). Among these, two approaches are most closely related to our study:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Contract-based models. This line of research integrates contract theory with MDPs, assuming the
principal observes only states and offers state-dependent payments. Prior studies analyze subgame
perfect equilibrium (Wu et al., 2024; Ivanov et al., 2024), showing that history-dependent contracts
are necessary for farsighted agents (Bollini et al., 2024). These works typically assume perfectly
rational agents and establish that the optimal contract design problem is NP-hard.

Reward shaping. In Reward shaping, the principal modifies the agent’s incentives via additional
rewards for specific state–action pairs, subject to a fixed budget (Ben-Porat et al., 2024), with the
design problem remaining NP-hard. Extensions address behavioral uncertainty through robust re-
ward design (Wu et al., 2025). In contrast, we incorporate incentive costs directly into the principal’s
objective, treating them as part of payoff optimization rather than an external constraint.

2 PROBLEM FORMULATION

The Principal-Agent MDP Model We consider a principal-agent problem modeled as a time-
inhomogeneous, finite-horizon Markov Decision Process (MDP). In this setting, the principal aims
to achieve a goal by influencing an agent’s actions. The principal can offer subsidies to incentivize
the agent to follow a policy that benefits the principal.

Formally, we define the problem instance using the tuple M = ⟨S,A,H,P, rP , rA, ŝ,Π⟩, where:

• S is the set of the finite states and A is the set of actions. We assume that both states and
actions are discrete.

• H = {0, 1, · · · , H − 1} is the set of time steps, with H representing the time horizon.
• P : S × A×H → ∆(S) is the transition kernel , where P (s′|s, a, h) indicates the proba-

bility of transferring to state s′ ∈ S after executing action a ∈ A in state s ∈ S at timestep
h ∈ H .

• rP , rA : S × A ×H → R are the reward functions of the principal and the agent, respec-
tively, where rP (s, a, h) (resp. rA(s, a, h)) denotes the reward obtained by the principal
(resp. agent) when the agent executes action a ∈ A in state s ∈ S at timestep h ∈ H.

• Without loss of generality, ŝ is the fixed starting state for the agent.

Subsidy Scheme and Action Policy The principal commits to a subsidy scheme ∆r : S × A ×
H → R≥0. Here, ∆r(s, a, h) is a non-negative payment from the principal to the agent for taking
action a in state s at timestep h. We denote the set of all feasible subsidy policies as R∆.

Given a subsidy ∆r on action a in state s at timestep h, the effective rewards for the principal and
agent become:

r∆r
P (s, a, h) = rP (s, a, h)−∆r(s, a, h) and r∆r

A (s, a, h) = rA(s, a, h) + ∆r(s, a, h)

The agent observes the subsidy scheme and then chooses a Markovian action policy π : S × H →
∆(A). Based on the agent’s (ir)rationality, for any given ∆r, the agent will choose a policy from a
specific set of feasible policies, which we denote by Π(∆r).

Value Functions For any player i ∈ {P,A}, subsidy scheme ∆r, and agent policy π, we define
the standard state-value and action-value functions via the Bellman expectation equations:

V π,∆r
i (s, h) =

∑
a∈A

π(a|s, h)Qπ,∆r
i (s, a, h)

Qπ,∆r
i (s, a, h) = r∆r

i (s, a, h) +
∑
s′∈S

P (s′|s, a, h)V π,∆r
i (s′, h+ 1)

with the terminal condition V π,∆r
i (s,H) = 0. Furthermore, we use V

∆r

A (s, h) and Q
∆r

A (s, a, h) to
denote the optimal state-value and action-value functions attainable by the agent,

V
∆r

A (s, h) = max
a

Q
∆r

A (s, a, h)

Q
∆r

A (s, a, h) = rA(s, a, h) +
∑
s′∈S

P (s′|s, a, h)V ∆r

A (s′, h+ 1)

3
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Additionally, V π,∆r=0
i (s, h), Qπ,∆r=0

i (s, a, h), V
∆r=0

A (s, h) and Q
∆r=0

A (s, a, h) denote the corre-
sponding value in the absence of subsidies.

Social Welfare We define social welfare as the aggregate reward of both the principal and the
agent: rsw(s, a, h) ≜ rP (s, a, h) + rA(s, a, h), which remains unaffected by the subsidy term ∆r.

The social welfare value functions, V π
sw and Qπ

sw, characterize the expected social welfare under an
agent policy π:

V π
sw(s, h) =

∑
a∈A

π(a|s, h)Qπ
sw(s, a, h),

Qπ
sw(s, a, h) = rsw(s, a, h) +

∑
s′∈S

P (s′|s, a, h)V π
sw(s

′, h+ 1).

Analogously, the optimal social welfare value functions, V ∗
sw and Q∗

sw, are defined as:

V ∗
sw(s, h) = max

a∈A
Q∗

sw(s, a, h),

Q∗
sw(s, a, h) = rsw(s, a, h) +

∑
s′∈S

P (s′|s, a, h)V ∗
sw(s

′, h+ 1).

An action a is said to be social-welfare-maximizing in state s at timestep h if it is greedy with
respect to the optimal Q-value, i.e., a ∈ argmaxa′∈A Q∗

sw(s, a
′, h).

Optimization Objective We consider a robust formulation where the principal seeks a subsidy
scheme that performs best against the agent’s worst-case response. The agent’s adversarial action
policy to a subsidy ∆r is an agent policy π∆r that minimizes the principal’s expected return within
the feasible set Π(∆r):

π∆r ∈ argmin
π∈Π(∆r)

V π,∆r
P (ŝ, h = 0)

The principal’s objective is to find the optimal subsidy scheme ∆r∗ that maximizes this worst-case
outcome. The optimal value for the principal is therefore:

OPT ≜ max
∆r∈R∆

min
π∈Π(∆r)

V π,∆r
P (ŝ, h = 0) (2.1)

3 WARM-UP: THE PERFECTLY RATIONAL AGENT

We begin with the simplest setting of a perfectly rational agent, defined as an agent that seeks to
maximize its cumulative reward. Although this scenario is conceptually straightforward, it provides
a crucial foundation for the subsequent analysis of more complex, irrational agents. We formalize
this concept as follows.

Definition 3.1 (Perfectly Rational Agent). Given a subsidy scheme ∆r, the action policy π ∈
Π0(∆r) of a perfectly rational agent satisfies the constraint

V π,∆r
A (ŝ, h = 0) ≥ V

∆r

A (ŝ, h = 0).

Tie-breaking Rule A tie-breaking rule dictates the agent’s choice when multiple actions yield
identical rewards. In this setting with a perfectly rational agent, we assume that when two options
provide the same personal reward, the agent selects the more cooperative action—that is, the one
that benefits the principal more. For example, consider a single state with two actions. Both give
the agent a reward of 0, but the principal receives 2 for the first action and 0 for the second. Even a
negligible subsidy on the first action makes it strictly preferred. As the subsidy approaches zero, the
agent’s choice remains the action with a higher principal value. Thus, tie-breaking systematically
favors actions that increase the principal’s payoff. This assumption allows for a tractable proof of
optimality in this section, but it is important to note that we will not rely on this rule in the more
general frameworks developed later in the paper.
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3.1 OPTIMAL SUBSIDY SCHEME

With the definition of perfect rationality, we now address the problem of determining the optimal
subsidy scheme ∆r∗. The following theorem characterizes the principal’s optimal payoff and the
optimal subsidy scheme. Detailed proof is deferred to Appendix A.3.
Theorem 3.1 (Optimal Subsidy Scheme). For a perfectly rational agent, the principal’s optimal
payoff is given by

V ∗
sw(ŝ, h = 0) − V

∆r=0

A (ŝ, h = 0),

that is, the maximum attainable social welfare (over all action policies) minus the maximum reward
the agent can obtain in the absence of subsidies. Furthermore, there exists an optimal subsidy
scheme ∆r∗ such that, for every state–action–timestep triple (s, a, h),

∆r∗(s, a, h) = V
∆r=0

A (s, h)−Q
∆r=0

A (s, a, h). (3.1)

Proof Sketch. The principal’s optimal payoff is bounded above by V ∗
sw(ŝ, h = 0) − V

∆r=0

A (ŝ, h =
0), since the total value of the principal and agent cannot exceed the maximum possible social
welfare, and the agent will not accept less than their stand-alone value without subsidies. This upper
bound is achieved under the subsidy scheme ∆r∗ defined in equation (3.1). Under this scheme,
the agent’s adjusted Q-values are equalized across all actions: Q∆r∗

A (s, a, h) = V
∆r=0

A (s, h) for
all (s, a, h). Thus, the agent is indifferent among all actions. Our provisional tie-breaking rule
then ensures the agent selects actions that maximize the principal’s reward, allowing the principal’s
payoff to exactly reach the upper bound.

Although Theorem 3.1 identifies an optimal subsidy scheme that provides transfers on nearly all
actions, the following proposition shows that, to achieve optimal rewards, the principal needs to
subsidize only the social-welfare-maximizing actions. The detailed proof is deferred to Appendix
A.4.
Proposition 3.2 (Social Welfare). There exists an optimal subsidy scheme ∆rsw that assigns posi-
tive transfers exclusively to social-welfare-maximizing actions. Under ∆rsw, the agent implements
social-welfare-maximizing agent policy πsw, allowing the principal to attain the maximum achiev-
able social welfare.

4 OPTIMAL POLICIES FOR GLOBALLY ϵ-IC AGENTS

When an agent is no longer perfectly rational, the optimality of its response ceases to be the sole
factor guiding its decisions. To model such bounded rationality, a natural approach is to assume that
the agent can tolerate a maximum reward loss of ϵ, in line with the classical notion of ϵ-incentive
compatibility (IC). However, since we are dealing with sequential decision-making, several interpre-
tations of ϵ-IC are possible. Here, we focus on the so-called globally ϵ-IC agent, which constrains
only the cumulative reward loss over the entire decision horizon.
Definition 4.1. An agent is a globally ϵ-IC agent if and only if, given a subsidy scheme ∆r, the
action policy π ∈ Πg

ϵ (∆r) satisfies

V π,∆r
A (ŝ, h = 0) ≥ V

∆r

A (ŝ, h = 0)− ϵ.

4.1 OPTIMAL SUBSIDY SCHEME

We now consider the problem of determining the optimal subsidy scheme ∆r∗. Unlike the perfectly
rational case, the agent’s best-response policy may be stochastic.

To handle this, we reformulate the objective (2.1) using occupancy measures. Specifically, let
µ(s, a, h) denote the probability that the agent takes action a in state s at timestep h. Replacing
the policy π with its corresponding occupancy measure µ, the optimization problem becomes

max
∆r∈R∆

min
µ∈M(∆r)

∑
s,a,h

µ(s, a, h)
(
rP (s, a, h)−∆r(s, a, h)

)
, (4.1)

5
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where M(∆r) is the set of occupancy measures satisfying the following constraints:

Initial state:
∑
a

µ(ŝ, a, h = 0) = 1,
∑
a

µ(s, a, h = 0) = 0 ∀s ̸= ŝ, (4.2a)

Transition:
∑
a

µ(s, a, h) =
∑
s′,a′

µ(s′, a′, h− 1)P (s|s′, a′, h− 1), (4.2b)

Non-negativity: µ(s, a, h) ≥ 0, (4.2c)

Global ϵ-IC:
∑
s,a,h

µ(s, a, h)
(
rA(s, a, h) + ∆r(s, a, h)

)
≥ V

∆r

A (ŝ, h = 0)− ϵ. (4.2d)

Directly solving this program is challenging for two main reasons. First, the feasible set of µ is not
fixed but depends on the choice of ∆r, creating a coupling between the inner and outer variables
that distinguishes our setting from standard minimax formulations. Second, defining f(∆r) =
minµ∈M(∆r)

∑
s,a,h µ(s, a, h)

(
rP (s, a, h) − ∆r(s, a, h)

)
shows that f(∆r) is not concave in ∆r

(see Appendix A.2.1 for example). Consequently, the outer problem max∆r f(∆r) is not a concave
maximization , which rules out standard convex optimization methods.

In our main theorem, we show the problem can be reformulated to a one-dimensional concave
optimization (Theorem 4.1). The approach leverages the dual of the inner optimization problem
and swaps the order of optimization between the subsidy scheme ∆r and the dual variables (α, V ).
The optimal subsidy scheme can then be expressed as the difference between the V -function and
Q-function, analogous to the perfectly rational case.

Theorem 4.1. The optimization problem (4.1) is equivalent to maximizing a concave function F (x),
formulated as

max
x∈[0,1)

F (x) = xV ∗
sw(ŝ, h = 0)− V ∗

x (ŝ, h = 0)− x

1− x
ϵ,

where, for each state s and timestep h, V ∗
x (s, h) ≜ maxπ

{
xV π

sw(s, h)− V π,∆r=0
P (s, h)

}
.

Furthermore, for an optimal x∗, there exists an optimal subsidy scheme ∆r∗ such that

∆r∗(s, a, h) = V ∗
x∗(s, h)−Q∗

x∗(s, a, h) (4.3)

where Q∗
x∗(s, a, h) ≜ x∗rsw(s, a, h)− rP (s, a, h) +

∑
s′∈S P (s′|s, a, h)V ∗

x∗(s′, h+ 1).

Proof. We begin by considering the inner program over the state-action occupancy measure µ for a
fixed subsidy scheme ∆r. This program is a linear program. By introducing dual variables α ∈ R+

for the globally ϵ-IC constraint (4.2d) and V ∈ R|S|(H+1) for the transition (4.2a) and initial state
(4.2b) constraints, we can express the problem in its dual form. Combining this with the outer
maximization over ∆r, α, and V yields the following optimization problem:

max
α≥0,V

V (ŝ, h = 0)− αϵ+ αmax
∆r

V
∆r

A (ŝ, h = 0)

such that V (s, h) ≤ rP (s, a, h)−αrA(s, a, h)−(1+α)∆r(s, a, h)+
∑

s′∈S P (s′|s, a, h)V (s′, h+1)
for any s ∈ S, a ∈ A, and h ∈ H; and with the terminal condition V (s,H) = 0 for any state s ∈ S.

Next, we exchange max∆r and maxα≥0,V and analyze maximization over ∆r for a fixed V and α.
Notice that the objective is non-decreasing with respect to ∆r, since V

∆r

A (ŝ, h = 0) represents the
maximum value attainable by the agent under the subsidy ∆r. Additionally, the constraints impose
an upper bound on each ∆r(s, a, h):

∆r(s, a, h) ≤ 1

1 + α

(
− V (s, h) +

∑
s′∈S

P (s′|s, a, h)V (s′, h+ 1) + rP (s, a, h)− αrA(s, a, h)
)
.

Thus, the optimal choice for ∆r is to take this upper bound, making the inequality hold with equal-
ity. Given α and V , substituting the optimal choice of ∆r, the RHS of the above inequality, into

6
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V
∆r

A (ŝ, h = 0) = maxπ Eπ

[∑H−1
t=0 rA(st, at, t) + ∆r(st, at, t)

]
gives

V
∆r

A (ŝ, h = 0) = max
π

1

1 + α
Eπ

[
H−1∑
t=0

(
rP (st, at, t) + rA(st, at, t)

)
+

∑
st+1∈S

P (st+1|st, at, t)V (st+1, t+ 1)− V (st, t)

]

=
1

1 + α

(
V ∗

sw(ŝ, h = 0)− V (ŝ, h = 0)
)
.

Substituting this back, the problem reduces to

max
α≥0

max
V

1

1 + α
V (ŝ, h = 0) +

α

1 + α
V ∗

sw(ŝ, h = 0)− αϵ

s.t. V (s, h) ≤ rP (s, a, h)− αrA(s, a, h) +
∑
s′∈S

P (s′|s, a, h)V (s′, h+ 1),

V (s,H) ≤ 0.

Observing the inner optimization over V (s, h) coincides with form of minimizing cumulative reward
in an MDP with modified reward rP − αrA. By letting x = α

1+α and introducing V ∗
x (s, h) equals

= − 1
1+α times the optimal value of V (s, h), the formulation equals

max
x∈(0,1]

x · V ∗
sw(ŝ, h = 0)− V ∗

x (ŝ, h = 0)− x

1− x
ϵ

where V ∗
x (ŝ, h = 0) ≜ − (1− x) ·min

π

{
V π,∆r=0
P (ŝ, h = 0)− x

1− x
V π,∆r=0
A (ŝ, h = 0)

}
= max

π

{
xV π

sw(ŝ, h = 0)− V π,∆r=0
P (ŝ, h = 0)

}
.

Restricting π to deterministic action policies does not change the value of V ∗
x (ŝ, h = 0), and under

this restriction, V ∗
x (ŝ, h = 0) is the maximum of finitely many linear functions in x, so the objective

function is concave over the interval [0, 1).

Markovian vs. Non-Markovian A process is called Markovian if it depends solely on its current
state, independent of its past trajectory. Conversely, a process is non-Markovian if it can depend
on historical states, i.e., it possesses ”memory.”

In our framework, both the principal and the agent may adopt non-Markovian strategies. For ex-
ample, the principal might determine subsidies based not only on the agent’s current action but also
on past actions. Similarly, in equation (4.1), the agent could adopt a non-Markovian globally ϵ-IC
policy to reduce the principal’s reward. Nevertheless, the following two key observations establish
that it suffices to restrict attention to Markovian strategies.

First observation: Given a Markovian subsidy scheme of the principal, there always exists a Marko-
vian globally ϵ-IC policy for the agent that minimizes the principal’s reward. This follows from the
fact that the inner optimization problem in equation (4.1) is a linear program. Any non-Markovian
ϵ-IC policy can be represented by an occupancy measure µ(s, a, h), which specifies the probability
of taking action a in state s at timestep h. Such an occupancy measure can always be replicated by
a Markovian policy, ensuring identical rewards for both the principal and the agent.

Second observation: Among all possible subsidy schemes—Markovian or non-Markovian—the
Markovian scheme specified in equation (4.3) is optimal. A non-Markovian scheme can be trans-
formed into a Markovian one by augmenting the state space to encode the relevant history. By
Theorem 4.1, for each state–action pair in this augmented representation, the scheme in equation
(4.3) coincides exactly with its Markovian counterpart.

Remark We briefly examine the boundary cases of x∗ and ϵ in Theorem 4.1. When ϵ = 0, as
x∗ → 1, the principal’s value approaches V ∗

sw(ŝ, h = 0) − V ∆r=0
A (ŝ, h = 0), consistent with the

tie-breaking rule in the perfectly rational case. This shows that the globally ϵ-IC agent naturally
generalizes the perfectly rational agent.
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4.2 ACTION POLICY

According to Theorem 4.1, the optimal subsidy scheme ∆r∗ takes a form similar to that in the
perfectly rational case. The following proposition shows that the principal can still allocate positive
transfers exclusively to the social-welfare-maximizing actions. Furthermore, the agent is still willing
to cooperate with the principal to a certain extent by choosing one social-welfare-maximizing agent
policy πsw with probability x∗, the optimal solution in Theorem 4.1. The detailed proof of the
following proposition is deferred to Appendix A.5.

Proposition 4.2 (Optimal subsidy scheme and action policy). There exists an optimal subsidy
scheme ∆rsw that assigns positive reward transfers solely to social-welfare-maximizing actions.
Meanwhile, there exists a globally ϵ-IC action policy π∆rsw minimizing the principal’s reward, which
is the mixture of a social-welfare-maximizing agent policy πsw and one other action policy, placing
a weight of at least x∗ on πsw.

Proof Sketch. The proof relies on two key insights. First, under the optimal subsidy scheme ∆r∗,
the policy πsw achieves the maximum agent expected cumulative reward, V

∆r∗

A (ŝ, h = 0). This
implies that it is sufficient to provide subsidies only along the trajectories induced by πsw, without
affecting the optimal value for the principal. Second, there exists an action policy π̂ whose agent
value falls below V

∆r∗

A (ŝ, h = 0) − ϵ, which can be combined with πsw to form the globally ϵ-IC
policy π∆rsw , such that the dual of the global ϵ-incentive compatibility constraint is tight.

4.3 SOCIAL WELFARE

We define the social welfare gap δsw as the difference between the maximum attainable welfare
and the welfare achieved under the optimal subsidy scheme ∆r∗. When ϵ → +∞, the agent can
effectively bypass the global ϵ-IC constraint and freely select any action policy. In this limit, the
welfare gap becomes δsw = V ∗

sw(ŝ, h = 0) −minπ V
π

sw(ŝ, h = 0). Our objective is to characterize
the upper bound on δsw and the rate at which social welfare declines as a function of ϵ, particularly
in the regime where ϵ remains small. We first establish the following upper bound on δsw.

Proposition 4.3. Given ϵ and the corresponding optimal solution x∗ ∈ (0, 1), the social welfare
gap is δsw = ϵ

1−x∗ and it is upper bounded by O(
√
ϵ).

This O(
√
ϵ) bound can be achieved in certain specific cases (see Appendix A.2.2 for an example).

However, in most cases, the social welfare gap δsw exhibits two different growth rates—O(
√
ϵ) or

O(ϵ)—depending on whether V ∗
x is differentiable at x∗. A concrete example is provided below,

while detailed discussions are deferred to Appendix A.6.1.

Example Consider a single-period scenario with three actions and ϵ = 1. For the first action, the
principal’s reward is 7 and the agent’s reward is 3. For the second action, the principal’s reward is 1
and the agent’s reward is 2. For the third action, the principal’s reward is 1 and the agent’s reward is
0. Figure 3a shows that x can grow at rates of O(ϵ) and O(

√
ϵ), corresponding to the cases in Figure

3b where x remains constant or grows at O(
√
ϵ). Figure 3c depicts the piecewise-linear relationship

between V ∗
x (ŝ, h = 0) and x, where the constant-x value in Figure 3b coincides with the break point

of V ∗
x (ŝ, h = 0), a non-differentiable point of the objective function.

(a) δsw versus ϵ (b) x∗ versus ϵ (c) V ∗
x (ŝ, h = 0) versus x

Figure 1: Curves of δsw and x∗ versus ϵ when V ∗
x (ŝ, h = 0) is non-differentiable.
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5 STATE-WISE ϵ-IC AGENT

In this section, we examine the state-wise ϵ-IC agent, which differs from the globally ϵ-IC agent
in that incentive compatibility is enforced locally at each state and decision step. Intuitively, such
an agent ensures that its chosen action remains within ϵ of the best immediate value available at
that decision point. While the idea is simple, constructing a mathematically consistent and tractable
formalization is more subtle. We provide two definitions below.

Value-Consistent State-Wise ϵ-IC Agent We first define the value-consistent state-wise ϵ-IC
agent, where the agent’s action at each state must approximate the optimal reward within ϵ.
Definition 5.1. An agent is a value-consistent state-wise ϵ-IC agent if, under a subsidy scheme ∆r,
the induced policy π ∈ Πv

ϵ (∆r) satisfies V π,∆r
A (s, h) ≥ V

∆r

A (s, h)− ϵ for all s ∈ S and h ∈ H.

A key challenge with this formulation is that the agent’s policy minimizing the principal’s reward
under a given subsidy scheme may be non-Markovian. In such cases, the agent’s policy cannot be
represented within polynomial size.

(a) Original MDP instance (b) History-dependent MDP expansion

Figure 2: Illustration of value-consistent state-wise ϵ-IC agents.

To illustrate, consider the post-subsidy MDP in Figure 2a, where (i) for action a1 at s1: principal
reward 100, agent reward 3; (ii) for action a2 at s3: principal reward 2, agent reward 2; and (iii) for
all other actions: reward 0. Under a Markovian policy, the value-consistent state-wise ϵ-IC agent
minimizes the principal’s reward by selecting a2 at s3, and steering toward s3 from s1. This yields
a principal reward of 2. However, under a non-Markovian policy, we can duplicate s3 into two
history-dependent states, s13 and s23. At s13, the agent always selects a2, while at s23, the agent mixes
between two actions with equal probability. This reduces the principal’s expected reward to 1.5.

Greedy State-Wise ϵ-IC Agent To avoid non-Markovian behavior, we introduce the greedy state-
wise ϵ-IC agent, which replaces recursive value computations with greedy look-ahead. Once the
subsidy scheme is fixed, V

∆r

A becomes deterministic, and the agent greedily minimizes the princi-
pal’s value through local decisions.
Definition 5.2. An agent is a greedy state-wise ϵ-IC agent if, under subsidy scheme ∆r, the induced
policy π ∈ Πs

ϵ(∆r) satisfies, for all s ∈ S, h ∈ H:∑
a∈A

π(a|s, h)
(
r∆r
A (s, a, h) +

∑
s′∈S

P (s′|s, a, h)V ∆r

A (s′, h+ 1)
)

≥ V
∆r

A (s, h)− ϵ.

However, even in this simplified greedy setting, designing the principal’s optimal subsidy scheme
remains computationally intractable. The complete proof is deferred to Appendix A.7.
Theorem 5.1. Given a greedy state-wise ϵ-IC agent, computing the principal’s optimal subsidy
scheme is NP-hard.

6 CONCLUSION

In this paper, we study a principal-agent problem with the aim of designing a robust subsidy scheme
that maximizes the cumulative expected return in the presence of an irrational agent. We demonstrate
that, under the globally ϵ-IC assumption, the optimal subsidy scheme can be effectively determined,
representing a natural extension of the perfectly rational case. We further show that formulating
the state-wise ϵ-IC follower is computationally challenging. As future work, it would be interesting
to consider scenarios in which the principal does not have prior knowledge of the agent’s reward
function or the value of ϵ, such as in a learning-based setting.
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A APPENDIX

A.1 USAGE OF LLM

We employed the large language model (LLM) to assist in refining the language and enhancing the
clarity of this manuscript. The LLM was not used for generating research ideas, identifying related
work, performing analyses, or contributing to the substantive scientific content of this paper.

A.2 MISSING EXAMPLES

A.2.1 COUNTEREXAMPLE ON CONVEXITY

Consider a single-period scenario with three actions and ϵ = 2. The principal receives 0 for the
first action and 5 for both the second and third actions, while the agent’s reward is 0 for the first
action and 1 for other actions. Let ∆r1 and ∆r2 transfer 2 units to the second and third actions,
respectively; both yield a principal value of 1. A convex combination, ∆r3, transferring 1 unit to
both actions, results in a leader value of 0, directly violating concavity. This illustrates that the outer
optimization cannot be assumed concave.

A.2.2 EXAMPLE OF δSW SCALING AS O(
√
ϵ)

Consider a single-period scenario with two actions and ϵ = 1. The principal and agent values for the
first action are 4 and 0, respectively, and for the second action, they are 0 and 2. In this setting, 1−x∗

always scales as O(
√
ϵ) and matches the upper bound. The core idea behind is in such instance, the

function V ∗
x (ŝ, h = 0) is a complete linear function in interval [0, 1]. Figure 3 illustrates relationship

between δsw, x∗, and ϵ, along with the behavior of V ∗
x (ŝ, h = 0) as a function of x.

(a) δsw versus ϵ (b) x∗ versus ϵ (c) V ∗
x (ŝ, h = 0) versus x

Figure 3: Curves of δsw and x∗ versus ϵ when V ∗
x (ŝ, h = 0) is differentiable.

A.3 PROOF OF THEOREM 3.1

By definition, for any subsidy scheme ∆r with induced action policy π∆r ∈ Π0(∆r), we have

V π∆r,∆r
P (ŝ, h = 0) + V π∆r,∆r

A (ŝ, h = 0) = V π∆r
sw (ŝ, h = 0) ≤ V ∗

sw(ŝ, h = 0). (A.1)
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Moreover, since any subsidy scheme provides the agent with non-negative reward transfers, back-
ward induction gives

V π,∆r
A (ŝ, h = 0) = max

π
E

[
H−1∑
t=0

r∆r
A (st, at, t)

]

≥ max
π

E

[
H−1∑
t=0

rA(st, at, t)

]
(A.2)

= V
∆r=0

A (ŝ, h = 0).

Combining this with inequality (A.1), the optimal principal value is upper bounded by

OPT ≤ V ∗
sw(ŝ, h = 0)− V

∆r=0

A (ŝ, h = 0).

It remains to show that

∆r∗(s, a, h) = V
∆r=0

A (s, h) − Q
∆r=0

A (s, a, h)

achieves this bound. For any policy π, substituting ∆r∗ into V π,∆r∗

A (ŝ, h = 0) and applying back-
ward induction establishes that the agent’s value for every action equals V ∆r=0

A (ŝ, h = 0), which
makes inequality (A.2) tight. In addition, since the social-welfare-maximizing policy πsw renders
inequality (A.1) exact, the principal’s value under ∆r∗ is

V πsw,∆r∗

P (ŝ, h = 0) = V ∗
sw(ŝ, h = 0)− V

∆r=0

A (ŝ, h = 0),

which coincides with the upper bound. Consequently, under the cooperative tie-breaking rule, the
agent selects πsw, thereby achieving

OPT = V ∗
sw(ŝ, h = 0)− V

∆r=0

A (ŝ, h = 0).

A.4 PROOF FOR PROPOSITION 3.2

Recall that in Theorem 3.1, we defined the optimal reward transfer as

∆r∗(s, a, h) = V
∆r=0

A (s, h) − Q
∆r=0

A (s, a, h).

In fact, it suffices to retain the reward transfer only along the social-welfare-maximizing actions. In
particular, we define subsidy scheme ∆r∗sw as

∆rsw(s, a, h) =

{
∆r∗(s, a, h), if πsw(a|s, h) > 0,

0, otherwise.
.

so that the agent value of social-welfare-maximizing action policy πsw under ∆rsw is

V πsw,∆rsw
A (ŝ, h = 0) = V

∆r∗

A (ŝ, h = 0) = V
∆r=0

A (ŝ, h = 0),

which yields a principal value of V ∗
sw(ŝ, h = 0)− V

∆r=0

A (ŝ, h = 0).

A.5 PROOF OF PROPOSITION 4.2

Optimal subsidy scheme Recall from (4.3) that

∆r∗(s, a, h) = V ∗
x∗(s, h)−Q∗

x∗(s, a, h)

= V ∗
x∗(s, h)− x∗rsw(s, a, h) + rP (s, a, h)−

∑
s′∈S

P (s′|s, a, h)V ∗
x∗(s′, h+ 1)

= (1− x∗)rP (s, a, h)− x∗rA(s, a, h) + V ∗
x∗(s, h)−

∑
s′∈S

P (s′|s, a, h)V ∗
x∗(s′, h+ 1).
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Let πsw be a deterministic social-welfare-maximizing agent policy. We now define a subsidy scheme
∆rsw that is restricted to πsw:

∆rsw(s, a, h) ≜

{
∆r∗(s, a, h), if πsw(a|s, h) > 0,

0, otherwise.

First, we claim that under either subsidy scheme, ∆rsw or ∆r∗, the agent’s optimal value is identical:

V
∆r∗

A (ŝ, h = 0) = V
∆rsw

A (ŝ, h = 0).

The central argument of the proof is that, under both ∆r∗ and ∆rsw, action policy πsw can achieve
the agent’s maximal value, and the values thus attained coincide. Specifically,

V
∆r∗

A (ŝ, h = 0)
(a)
= V πsw,∆r∗

A (ŝ, h = 0)
(b)
= V πsw,∆rsw

A (ŝ, h = 0)
(c)
= V

∆rsw

A (ŝ, h = 0).

In what follows, we establish the validity of each equality (a)-(c) sequentially.

We first show (a):

V
∆r∗

A (ŝ, h = 0) = V πsw,∆r∗

A (ŝ, h = 0).

To see this, consider any action policy π under ∆r∗,

V π,∆r∗

A (ŝ, h = 0) = Eπ

[
H−1∑
t=0

rA(st, at, t) + ∆r∗(st, at, t)

]

= Eπ

[
H−1∑
t=0

rA(st, at, t) + (1− x∗)rP (st, at, t)− x∗rA(st, at, t)

+ V ∗
x∗(st, t)−

∑
st+1∈S

P (st+1|st, at, t)V ∗
x∗(st+1, t+ 1)

]
= (1− x∗)V π

sw(ŝ, h = 0) + V ∗
x∗(ŝ, h = 0).

(A.3)

Subtracting the agent value under any policy π from that under πsw gives

V π,∆r∗

A (ŝ, h = 0)− V πsw,∆r∗

A (ŝ, h = 0)

= (1− x∗)(V π
sw(ŝ, h = 0)− V πsw

sw (ŝ, h = 0))

≤ 0, (A.4)

which implies πsw can achieves the maximum agent value under ∆r∗:

V πsw,∆r∗

A (ŝ, h = 0) = V
∆r∗

A (ŝ, h = 0). (A.5)

Then, we show (b):

V πsw,∆r∗

A (ŝ, h = 0) = V πsw,∆rsw
A (ŝ, h = 0).

Based on the definition of ∆rsw, we can express ∆rsw for any triple (s, a, h) as

∆rsw(s, a, h) = 1{x>0}(πsw(a|s, h))∆r(s, a, h),

where 1{x>0}(x) is the indicator function:

1{x>0} =

{
1, x > 0,

0, x ≤ 0.

By introducing the occupancy measure µsw of policy πsw, which satisfies (
∑

a′ µsw(s, a
′, h)) ·

πsw(a|s, h) = µsw(s, a, h) for any (s, a, h), we have 1{x>0}(πsw(a|s, h)) ≥ 1{x>0}(µsw(s, a, h)).
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Hence,

V πsw,∆r∗

A (ŝ, h = 0) =
∑
s,a,h

µsw(s, a, h)
(
rA(s, a, h) + ∆r∗(s, a, h)

)
=
∑
s,a,h

(
µsw(s, a, h)rA(s, a, h) + 1{x>0}(µsw(s, a, h)) · µsw(s, a, h)∆r∗(s, a, h)

)
≤
∑
s,a,h

(
µsw(s, a, h)rA(s, a, h) + 1{x>0}(πsw(a|s, h)) · µsw(s, a, h)∆r∗(s, a, h)

)
=
∑
s,a,h

(
µsw(s, a, h)rA(s, a, h) + µsw(s, a, h)∆rsw(s, a, h)

)
= V πsw,∆rsw

A (ŝ, h = 0).

Meanwhile, since ∆r∗(s, a, h) ≥ ∆rsw(s, a, h) for any (s, a, h), by construction, it follows that

V πsw,∆r∗

A (ŝ, h = 0) ≥ V πsw,∆rsw
A (ŝ, h = 0).

Combining the above results, we can conclude that

V πsw,∆r∗

A (ŝ, h = 0) = V πsw,∆rsw
A (ŝ, h = 0).

Finally, we establish (c):
V πsw,∆rsw
A (ŝ, h = 0) = V

∆rsw

A (ŝ, h = 0).

To prove this, it suffices to show that for any policy π, V π,∆rsw
A (ŝ, h = 0) ≤ V πsw,∆rsw

A (ŝ, h = 0),

which directly implies that πsw attains the maximum agent value under ∆rsw, i.e., V
∆rsw

A (ŝ, h =

0) = V πsw,∆rsw
A (ŝ, h = 0).

The inequality, V π,∆rsw
A (ŝ, h = 0) ≤ V πsw,∆rsw

A (ŝ, h = 0), follows from the chain

V π,∆rsw
A (ŝ, h = 0) ≤ V π,∆r∗

A (ŝ, h = 0) ≤ V πsw,∆r∗

A (ŝ, h = 0) = V πsw,∆rsw
A (ŝ, h = 0).

The first inequality holds because the construction, ∆rsw(s, a, h) ≤ ∆r∗(s, a, h) for all (s, a, h),
which implies, for any action policy π, V π,∆rsw

A (ŝ, h = 0) ≤ V π,∆r∗

A (ŝ, h = 0). The second
inequality follows from (A.4). The final equality holds because ∆r∗(s, a, h) = ∆rsw(s, a, h) when-
ever πsw(a|s, h) > 0.

By combining (a), (b), and (c), we can conclude V
∆r∗

A (ŝ, h = 0) = V
∆rsw

A (ŝ, h = 0) follows.

Next, we show that the principal’s worst-case reward under ∆rsw is no worse than under ∆r∗.
Suppose an action policy π is globally ϵ-IC under ∆rsw. By definition, this implies that the agent’s
value under ∆rsw achieves V

∆rsw

A (ŝ, h = 0) − ϵ. From the previous discussion, we know that

V
∆r∗

A (ŝ, h = 0) = V
∆rsw

A (ŝ, h = 0) and ∆rsw ≤ ∆r∗. Consequently, the action policy π is also
globally ϵ-IC under ∆r∗. The converse, however, does not necessarily hold.

Thus, relative to ∆r∗, the scheme ∆rsw reduces the set of agent policies that are globally ϵ-IC.
Moreover, for any given action policy, the principal’s payoff under ∆rsw is at least as large as under
∆r∗. It follows that the principal attains at least the same worst-case reward under ∆rsw as under
∆r∗. Since ∆r∗ is optimal, the principal’s worst-case reward is identical under both schemes,
thereby establishing the first part of the proposition.

Action Policy under ∆r∗ To prove the latter part of Proposition 4.2, the key idea is to analyze the
agent’s response under a given subsidy scheme ∆r. Recall from the preliminaries that we define the
adversarial response π∆r to a subsidy scheme ∆r as

π∆r ∈ argmin
π∈Π(∆r)

V π,∆r
P (ŝ, h = 0).

In the following discussion, we refer to π∆r as the agent’s adversarial action policy. Further, we
begin by analyzing the agent’s behavior in a single-period instance and then extend the results to the
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multi-period case. Formally, when H = 1, there is only one state ŝ, so we can omit (s, h) in the
expressions. The optimization problem for agent then becomes

min
π

∑
a

π(a)r∆r
P (a) s.t.

∑
a

π(a)r∆r
A (a) ≥ max

a
r∆r
A (a)− ϵ, π(a) ≥ 0,

∑
a

π(a) = 1.

As this is a linear program, we apply the KKT conditions to analyze the optimal solution. The
Lagrangian function is

L(π;α, β, V ) =
∑
a

π(a)r∆r
P (a) + α

(
max

a
r∆r
A (a)− ϵ−

∑
a

π(a)r∆r
A (a)

)
+
∑
a

β(a)(−π(a)) + V
(
1−

∑
a

π(a)
)

=
∑
a

π(a)
(
r∆r
P (a)− αr∆r

A (a)− V + β(a)
)
+ V + α

(
max

a
r∆r
A (a)− ϵ

)
.

The resulting dual program is as followed:

max
α,V

V + α
(
max

a
r∆r
A (a)− ϵ

)
s.t. α ≥ 0, V ≤ rP (a)− αrA(a).

Let α∆r and V ∆r denote the optimal dual values under the subsidy scheme ∆r, and let OTP∆r

denote the final principal value under the same subsidy scheme. By complementary slackness, for
any action a such that

r∆r
P (a)− α∆rr∆r

A (a) = V ∆r = min
a

(
r∆r
P (a)− α∆rr∆r

A (a)
)
,

we have π∆r(a) ≥ 0. We refer to such actions as the candidate actions a ∈ A, since they can
potentially be chosen by the agent given subsidy scheme ∆r.

However in certain problem instances, there exist candidate actions that do not appear in any agent’s
adversarial action policy. For example, consider ϵ = 1 and two actions: the first action has principal
reward 0 and agent reward 1, while the second action has principal reward 1 and agent reward 2. The
unique agent’s adversarial action policy deterministically selects the first action, yet setting α = 2
would include both actions as candidate actions. In general, based on the value of optimal dual
variable α∗ under optimal subsidy scheme ∆r∗, we claim there are three possible scenarios:

• Case 1: α∗ = 0. Every candidate action at this point attains the minimum principal value,
so any action satisfying the globally ϵ-IC constraint can be deterministically chosen.

• Case 2: α∗ > 0, and all candidate actions satisfy the globally ϵ-IC constraint. Comple-
mentary slackness implies the agent’s value is exactly maxa rA(a) − ϵ, so only actions
attaining this value can be chosen. This case coincides with the above example.

• Case 3: α∗ > 0, and some candidate actions have agent reward below maxa rA(a) −
ϵ. Then, the agent can mix actions above and below this threshold to form an agent’s
adversarial action policy, leading to the fact that any candidate action may become part of
agent response.

To further explain the agent’s behavior pattern in Case 2 and Case 3, we use the following equations
to show that when α∆r > 0, as long as the action policy distribution π is supported only on candi-
date actions and achieves an agent value exactly equal to maxa rA(a) − ϵ, the policy π constitutes
one possible adversarial action policy of the agent. In other words, we only need to consider how
to organize the policy distribution supported on candidate actions so as to achieve an agent value
exactly equal to maxa rA(a)− ϵ.∑

a

π(a)r∆r
P (a) =

∑
a

π(a)(r∆r
P (a)− α∆rr∆r

A (a)) + α∆r
∑
a

π(a)r∆r
A (a)

=
∑
a

π(a)V ∆r + α∆r(max
a

r∆r
A (a)− ϵ)

= OPT∆r

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We now extend to the multi-period case. Observe that under subsidy scheme ∆r, any multi-period
policy πi can be viewed as a single-period action ai with principal reward V πi,∆r

P (ŝ, h = 0)

and agent reward V πi,∆r
A (ŝ, h = 0), yielding a single-period instance with infinitely many ac-

tions. Although this transformation is generally intractable, it provides a useful framework for
analyzing the properties of action policies. Suppose the single-period agent’ adversarial action
policy is π∗

s , the multi-period agent’s adversarial action policy can be recovered as π∗(a|s, h) =∑
i π

∗
s (ai)πi(a|s, h) for any state s, action a and timestep h, where π∗

s (ai) denotes the probability
assigned to policy πi. Accordingly, we define the candidate policy π ∈ Π under subsidy scheme ∆r
as

V π,∆r
P (ŝ, h = 0)− α∆rV π,∆r

A (ŝ, h = 0) = min
π

{
V π,∆r
P (ŝ, h = 0)− α∆rV π,∆r

A (ŝ, h = 0)
}
,

analogous to the single-period candidate actions, so that the adversarial agent’s action policy can be
expressed as a convex combination of these candidate policies.

We next establish that, under the optimal subsidy scheme ∆r∗ from Theorem 4.1, every action
policy π, including πsw, qualifies as a candidate. Recall from (4.3) that

∆r∗(s, a, h) = V ∗
x∗(s, h)−Q∗

x∗(s, a, h)

= V ∗
x∗(s, h)− x∗rsw(s, a, h) + rP (s, a, h)−

∑
s′∈S

P (s′|s, a, h)V ∗
x∗(s′, h+ 1)

= (1− x∗)rP (s, a, h)− x∗rA(s, a, h) + V ∗
x∗(s, h)−

∑
s′∈S

P (s′|s, a, h)V ∗
x∗(s′, h+ 1),

where x∗ = α∗

1+α∗ . For any action policy, under optimal subsidy scheme ∆r∗ substituting ∆r∗ into
the expression V π,∆r

P (ŝ, h = 0)− α∗V π,∆r
A (ŝ, h = 0) yields

V π,∆r∗

P (ŝ, h = 0)− α∗V π,∆r∗

A (ŝ, h = 0)

=Eπ

[
H−1∑
t=0

rP (st, at, t)− α∗rA(st, at, t)− (1 + α∗)∆r∗(st, at, t)

]

=Eπ

[
H−1∑
t=0

rP (st, at, t)−
x∗

1− x∗ rA(st, at, t)−
1

1− x∗∆r∗(st, at, t)

]

=Eπ

[
H−1∑
t=0

rP (st, at, t)−
x∗

1− x∗ rA(st, at, t)

− 1

1− x∗ ((1− x∗)rP (st, at, t)− x∗rA(st, at, t))

− 1

1− x∗

V ∗
x∗(st, t)−

∑
st+1∈S

P (st+1|st, at, t+ 1)V ∗
x∗(st+1, t+ 1)

]

=− 1

1− x∗V
∗
x∗(ŝ, h = 0).

(A.6)

Thus, every action policy π yields the same value

V π,∆r∗

P (ŝ, h = 0)− α∗V π,∆r∗

A (ŝ, h = 0).

Consequently, all action policies qualify as candidate policies, and we have

min
π

{
V π,∆r∗

P (ŝ, h = 0)− α∗V π,∆r∗

A (ŝ, h = 0)
}
= − 1

1− x∗V
∗
x∗(ŝ, h = 0).

Having established this, we note that not all candidate policies necessarily receive positive probabil-
ity in the support of an agent’s adversarial action policy, as illustrated in the single-period analysis.
Similarly, we distinguish cases based on the value of the optimal dual variable α∗: when α∗ = 0,
the corresponding optimal solution is x∗ = 0, making the proposition trivial; When α∗ > 0, we
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assert that Case 2 will never happen under optimal subsidy scheme ∆r∗ as there exists a candidate
policy π̂ whose agent value is strictly smaller than V

∆r∗

A (ŝ, h = 0)− ϵ. Moreover, this policy π̂ can
be combined with πsw to construct the agent’s adversarial action policy.

In detail, we construct the candidate policy π̂ by analyzing the derivative of the objective function.
Applying the envelope theorem (Milgrom & Segal, 2002), the derivative of the objective with respect
to x in Theorem 4.1 is given by

F ′(x) = V ∗
sw(ŝ, h = 0)− V πx

sw (ŝ, h = 0)− ϵ

(1− x)2
, (A.7)

where πx = argmaxπ{xV π
sw(ŝ, h = 0) − V π,∆r=0

P (ŝ, h = 0)}. In general, the objective function
may have a finite number of non-differentiable points, arising from the potential non-uniqueness
of V πx

sw (ŝ, h = 0). Nevertheless, since the set of sub-differentials can be fully characterized by
the derivative expression, for simplicity and clarity we do not distinguish between derivatives and
sub-derivatives, and we treat stationary points by directly setting F ′(x) = 0.

Since the objective function is concave, the optimal solution x∗ and the corresponding policy πx∗

can be characterized by the vanishing derivative condition. Furthermore, the requirement α∗ > 0
ensures that x∗ ∈ (0, 1), implying that x∗, as an interior optimum, necessarily exists as a stationary
point. Consequently, imposing F ′(x) = 0 yields

V ∗
sw(ŝ, h = 0)− V πx∗

sw (ŝ, h = 0) =
ϵ

(1− x∗)2
.

In general, πx∗ can be represented as any convex combination of some action policies π̃x maximiz-
ing xV π̃x

sw (ŝ, h = 0)−V π̃x,∆r=0
P (ŝ, h = 0). Since every action policy qualifies as a candidate policy

under ∆r∗, πx∗ can equivalently be viewed as a convex combination of candidate policies. Hence,
there exists a candidate policy π̂ such that

π̂ = argmax
π

{xV π
sw(ŝ, h = 0)− V π,∆r=0

P (ŝ, h = 0)},

with
V ∗

sw(ŝ, h = 0)− V π̂
sw(ŝ, h = 0) ≥ ϵ

(1− x∗)2
.

To upper bound the agent value of π̂, using equations (A.3) and (A.5), we deduce that for action
policy π̂,

V
∆r∗

A (ŝ, h = 0)− V π̂,∆r∗

A (ŝ, h = 0) = (1− x∗)
(
V ∗

sw(ŝ, h = 0)− V π̂
sw(ŝ, h = 0)

)
, (A.8)

which, combined with the preceding inequality, implies

V
∆r∗

A (ŝ, h = 0)− V π̂,∆r∗

A (ŝ, h = 0) ≥ ϵ

1− x∗ ≥ ϵ.

Thus, by mixing πsw and π̂ with weight p, we construct an agent’s adversarial action policy whose
value is exactly V

∆r∗

A (ŝ, h = 0)− ϵ. Moreover, the mixing weight on πsw must satisfy p ≥ x∗. The
derivation of this lower bound on p is as follows:

First, by the definition of the mixed policy and dual variable α∗ > 0,

pV πsw,∆r∗

A (ŝ, h = 0) + (1− p)V π̂,∆r∗

A (ŝ, h = 0) = V
∆r∗

A (ŝ, h = 0)− ϵ.

Since V πsw,∆r∗

A (ŝ, h = 0) = V
∆r∗

A (ŝ, h = 0), this equality can be rewritten as

pϵ+ (1− p)
(
V π̂,∆r∗

A (ŝ, h = 0)−
(
V

∆r∗

A (ŝ, h = 0)− ϵ
))

= 0.

Next, using the inequality V
∆r∗

A (ŝ, h = 0)− V π̂,∆r∗

A (ŝ, h = 0) ≥ (1− x∗)−1ϵ, we obtain

pϵ+ (1− p)
( −ϵ

1− x∗ + ϵ
)
≥ 0.

Finally, dividing both sides by ϵ > 0 gives p ≥ x∗.
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Action Policy under ∆rsw When the optimal subsidy scheme is shifted from ∆r∗ to ∆rsw, our
primary objective—towards establishing the latter part of the proposition—is to verify that both π̂
and πsw continue to satisfy the requirements of candidate policies. We first claim that the optimal
solution x∗ and the optimal dual variable α∗ remain unchanged under this modification. By the first
part of Proposition 4.2, the principal’s optimal value is preserved in this transition. Furthermore,
recalling from Theorem 4.1 that the objective function F (x) is concave, it follows that both x∗ and
α∗ remain optimal.

Then, to determine whether an action policy π , such as π̂ and πsw, qualifies as a candidate policy
under ∆rsw, it suffices to verify whether

V π,∆rsw
P (ŝ, h = 0)− α∗V π,∆rsw

A (ŝ, h = 0)

= min
π

{
V π,∆rsw
P (ŝ, h = 0)− α∗V π,∆rsw

A (ŝ, h = 0)
}
.

(A.9)

For clarity, we define

g(π;∆r) ≜ V π,∆r
P (ŝ, h = 0)− α∗V π,∆r

A (ŝ, h = 0).

The proof proceeds in two steps. First, we establish a lower bound for the right-hand side of (A.9)
as

min
π

g(π;∆rsw) = min
π

{
V π,∆rsw
P (ŝ, h = 0)− α∗V π,∆rsw

A (ŝ, h = 0)
}

≥ − 1

1− x∗V
∗
x∗(ŝ, h = 0).

Second, we show that for the action policies π̂ and πsw,

g(π̂;∆rsw) = g(πsw; ∆rsw) = − 1

1− x∗V
∗
x∗(ŝ, h = 0).

In the first step, note that since ∆r∗ ≥ ∆rsw, we have for any action policy π,

V π,∆r∗

P (ŝ, h = 0) ≤ V π,∆rsw
P (ŝ, h = 0), V π,∆r∗

A (ŝ, h = 0) ≥ V π,∆rsw
A (ŝ, h = 0).

As α∗ ≥ 0, it follows that for any π,

g(π,∆rsw) = min
π

{
V π,∆rsw
P (ŝ, h = 0)− α∗V π,∆rsw

A (ŝ, h = 0)
}

≥ min
π

{
V π,∆r∗

P (ŝ, h = 0)− α∗V π,∆r∗

A (ŝ, h = 0)
}

= − 1

1− x∗V
∗
x∗(ŝ, h = 0).

(A.10)

In the second step, to prove π̂ is a candidate policy and attains the minimum − 1
1−x∗V

∗
x∗(ŝ, h = 0),

we connect g(π̂;∆rsw) and − 1
1−x∗V

∗
x∗(ŝ, h = 0) via g(π̂; ∆r = 0). Substituting x∗ = α∗

1+α∗ , we
obtain

g(π̂;∆r = 0) = V π̂,∆r=0
P (ŝ, h = 0)− α∗V π̂,∆r=0

A (ŝ, h = 0)

= V π̂,∆r=0
P (ŝ, h = 0)− x∗

1− x∗V
π̂,∆r=0
A (ŝ, h = 0)

= − 1

1− x∗

(
(x∗ − 1)V π̂,∆r=0

P (ŝ, h = 0) + x∗V π̂,∆r=0
A (ŝ, h = 0)

)
= − 1

1− x∗

(
x∗V π̂

sw(ŝ, h = 0)− V π̂,∆r=0
P (ŝ, h = 0)

)
= − 1

1− x∗ max
π

{
x∗V π

sw(ŝ, h = 0)− V π,∆r=0
P (ŝ, h = 0)

}
(A.11)

= min
π

{
V π,∆r=0
P (ŝ, h = 0)− x∗

1− x∗V
π,∆r=0
A (ŝ, h = 0)

}
= − 1

1− x∗V
∗
x∗(ŝ, h = 0). (A.12)
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Equality (A.11) follows since

π̂ = argmax
π

{x∗V π
sw(ŝ, h = 0)− V π,∆r=0

P (ŝ, h = 0)},

while (A.12) corresponds to the definition of V ∗
x (ŝ, h = 0) in Theorem 4.1:

V ∗
x (ŝ, h = 0) ≜ −(1− x) ·min

π

{
V π,∆r=0
P (ŝ, h = 0)− x

1− x
V π,∆r=0
A (ŝ, h = 0)

}
.

We next turn to discuss the equality between g(π̂,∆rsw) and g(π̂,∆r = 0). Combining (A.10) with
g(π̂,∆r = 0) = − 1

1−x∗V
∗
x∗(ŝ, h = 0), we obtain

g(π̂,∆rsw) ≥ g(π̂,∆r = 0).

To establish equality, it suffices to show g(π̂,∆rsw) ≤ g(π̂,∆r = 0). Since ∆rsw(s, a, h) ≥
∆r(s, a, h) for all (s, a, h), we have

V π̂,∆rsw
P (ŝ, h = 0) ≤ V π̂,∆r=0

P (ŝ, h = 0), V π̂,∆rsw
A (ŝ, h = 0) ≥ V π̂,∆r=0

A (ŝ, h = 0).

With α∗ ≥ 0, it follows that

g(π̂,∆rsw) = V π̂,∆rsw
P (ŝ, h = 0)− α∗V π̂,∆rsw

A (ŝ, h = 0)

≤ V π̂,∆r=0
P (ŝ, h = 0)− α∗V π̂,∆r=0

A (ŝ, h = 0)

= g(π̂,∆r = 0).

Thus g(π̂,∆rsw) = g(π̂,∆r = 0).

For πsw, recall that after changing from ∆r∗ to ∆rsw, its agent value remains unchanged. Since
the social welfare is unaffected by the subsidy scheme, the principal’s value also remains the same.
Hence,

g(πsw,∆rsw) = V πsw,∆rsw
P (ŝ, h = 0)− α∗V πsw,∆rsw

A (ŝ, h = 0) (A.13)

= V πsw,∆r∗

P (ŝ, h = 0)− α∗V πsw,∆r∗

A (ŝ, h = 0) (A.14)

= − 1

1− x∗V
∗
x∗(ŝ, h = 0), (A.15)

where the last equality follows from (A.6).

Finally, to bound the probability weight, recall that both the maximum agent value and the agent
value of πsw remain unchanged, i.e.

V πsw,∆rsw
A (ŝ, h = 0) = V πsw,∆r∗

A (ŝ, h = 0) = V
∆rsw

A (ŝ, h = 0) = V
∆r∗

A (ŝ, h = 0).

Meanhile, for π̂, its deviation from the maximum agent value is still bounded as

V π̂,∆rsw
A (ŝ, h = 0) ≤ V π̂,∆r∗

A (ŝ, h = 0)

≤ V
∆r∗

A (ŝ, h = 0)− ϵ

1− x∗

= V
∆rsw

A (ŝ, h = 0)− ϵ

1− x∗ .

Therefore, by the same reasoning as under ∆r∗, we conclude that πsw and π̂ constitute an optimal
adversarial pair for the agent, with πsw assigned a probability weight of at least x∗.

A.6 PROOF OF PROPOSITION 4.3

According to the proof Theorem 4.1, recall that the optimal subsidy scheme ∆r∗ given optimal dual
variable (α∗, V ∗) is

∆r∗(s, a, h) =
1

1 + α∗

(
−V ∗(s, h)+

∑
s′∈S

P (s′|s, a, h)V ∗(s′, h+1)+rP (s, a, h)−αrA(s, a, h)
)
.
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Therefore, the agent’s action policy π∆r∗ under ∆r∗ satisfies

V π∆r∗ ,∆r∗

P (ŝ, h = 0) =
1

1 + α∗V
∗(ŝ, h = 0) +

α∗

1 + α∗V
∗

sw(ŝ, h = 0)− α∗ϵ,

V π∆r∗ ,∆r∗

A (ŝ, h = 0) ≥ V
∆r∗

A (ŝ, h = 0)− ϵ =
1

1 + α∗ (V
∗

sw(ŝ, h = 0)− V ∗(ŝ, h = 0))− ϵ.

Based on the KKT condition, when x∗ ∈ (0, 1) hence α∗ > 0, the above inequality becomes the
equality. Therefore, combining the above two equations, we can conclude that

δsw = V ∗
sw(ŝ, h = 0)− V π∆r∗

sw (ŝ, h = 0) = (1 + α∗)ϵ =
ϵ

1− x∗ .

The key to analyze such gap is to examine the relationship between ϵ and x∗. By applying the
envelope theorem (Milgrom & Segal, 2002), the derivative of the objective function respect to x in
Theorem 4.1 is

F ′(x) = V ∗
sw(ŝ, h = 0)− V πx

sw (ŝ, h = 0)− ϵ

(1− x)2
, (A.16)

where πx = argmaxπ{xV π
sw(ŝ, h = 0) − V π,∆r=0

P (ŝ, h = 0)}. In general, the objective func-
tion contains a finite number of non-differentiable points, which arise from the non-uniqueness of
V πx

sw (ŝ, h = 0). Nevertheless, since the set of sub-differential can be fully characterized by the
expression of the derivative, for the sake of simplicity and clarity we do not distinguish between
derivatives and sub-derivatives, and in the discussion of stationary points we directly set the deriva-
tive F ′(x) to 0.

Meanwhile, since the objective function is concave, the optimal solution x∗ and the corresponding
policy πx∗ can be characterized by the condition that the derivative vanishes. Moreover, the require-
ment α∗ > 0 ensures that x∗ ∈ (0, 1), which implies that x∗, as an interior optimum, necessarily
exists as a stationary point. Consequently, imposing the condition F ′(x) = 0 yields

1− x∗ =

√
ϵ

V ∗
sw(ŝ, h = 0)− V πx∗

sw (ŝ, h = 0)
. (A.17)

Since πx∗ is an action policy, we can immediately have a trivial bound as

V ∗
sw(ŝ, h = 0)− V πx∗

sw (ŝ, h = 0) ≥ V ∗
sw(ŝ, h = 0)−min

π
V π

sw(ŝ, h = 0),

However, in fact, we can obtain a tighter constant bound on V ∗
sw(ŝ, h = 0)−V πx∗

sw (ŝ, h = 0). Denote
πA as the action policy that attains the minimum principal value in the absence of a subsidy, i.e.,

πA = argmin
π

V π,∆r=0
P (ŝ, h = 0),

and if multiple action policies achieve this minimum, we select πA to be the one among them that
maximizes social welfare. We claim that

V ∗
sw(ŝ, h = 0)− V πx∗

sw (ŝ, h = 0) ≥ V ∗
sw(ŝ, h = 0)− V πA

sw (ŝ, h = 0).

To prove this, we show that for any x ∈ [0, 1),

V πx
sw (ŝ, h = 0) ≥ V πA

sw (ŝ, h = 0).

Recall that
πx = argmax

π
{xV π

sw(ŝ, h = 0)− V π,∆r=0
P (ŝ, h = 0)}.

By simple rearrangement and using x > 0, we obtain

V πx
sw (ŝ, h = 0)− V πA

sw (ŝ, h = 0) ≥ 1

x

(
V πx,∆r=0
P (ŝ, h = 0)− V πA,∆r=0

P (ŝ, h = 0)
)
.

As πA minimizes the principal value with ∆r = 0, the right-hand side is nonnegative, which imme-
diately implies

V πx
sw (ŝ, h = 0) ≥ V πA

sw (ŝ, h = 0),

as desired. Moreover, this bound is tight: based on the definition of πA, there always exists some
x0 ∈ (0, 1) such that for any x ∈ [0, x0], the policy πA maximizes xV π

sw(s, h)− V π,∆r=0
P (s, h).
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Having established a bound on V ∗
sw(ŝ, h = 0) − V πx∗

sw (ŝ, h = 0), we can immediately derive a
corresponding bound on 1− x∗:

1− x∗ ≤
√

ϵ

V ∗
sw(ŝ, h = 0)− V πA

sw (ŝ, h = 0)
.

Finally, applying the condition F ′(x) = 0 once more, we obtain

δsw =
ϵ

1− x∗ = (V ∗
sw(ŝ, h = 0)− V πA

sw (ŝ, h = 0)) (1− x∗)

≤
√
(V ∗

sw(ŝ, h = 0)− V πA
sw (ŝ, h = 0)) · ϵ,

demonstrating that the social welfare gap δsw is upper bounded by O(
√
ϵ).

A.6.1 THE DEPENDENCE OF δSW ON ϵ

When analyzing the relationship between δsw and ϵ, a straightforward observation is that the effec-
tiveness of the limited subsidy diminishes as ϵ approaches infinity, allowing the agent to bypass the
globally ϵ-IC constraint and achieve a trivial minimization of the leader’s value. In this scenario,
even as ϵ continues to increase, the social welfare gap remains unchanged. Therefore, our analy-
sis focuses on relatively small values of ϵ, examining how the social welfare gap grows δsw as ϵ
increases and x∗ ∈ (0, 1).

The key issue in equation (A.17) is that changes in ϵ may simultaneously affect both x∗ and the
term V ∗

sw(ŝ, h = 0) − V πx∗
sw (ŝ, h = 0). However, a closer analysis of the derivative reveals that ϵ

cannot influence these two quantities simultaneously. Before presenting the detailed argument, we
first establish the following lemma, which shows that x∗ is monotone in ϵ.
Lemma A.1. The optimal solution x∗ ∈ (0, 1) is monotonically non-decreasing in ϵ.

Proof. Recall that

V ∗
x (ŝ, h = 0) ≜ max

π

{
xV π

sw(ŝ, h = 0)− V π,∆r=0
P (ŝ, h = 0)

}
.

Since V ∗
x (ŝ, h = 0) is the maximum of finitely many linear functions in x, its derivative V πx

sw (ŝ, h =
0) is non-decreasing in x. Consequently, V ∗

sw(ŝ, h = 0) − V πx∗
sw (ŝ, h = 0) is non-increasing in x.

Further, for x∗ ∈ (0, 1), imposing the stationarity condition F ′(x) = 0 yields

ϵ = (1− x∗)2
(
V ∗

sw(ŝ, h = 0)− V πx∗
sw (ŝ, h = 0)

)
.

As x∗ increases, both (1−x∗) and V ∗
sw(ŝ, h = 0)−V πx∗

sw (ŝ, h = 0) decrease, making the right-hand
side of the above equation monotonically non-increasing in x∗. Thus, for the equality to hold, an
increase in ϵ must be matched by an increase in x∗, which proves the claim.

We then analyze the two possible cases of x∗ given ϵ, corresponding to δsw scaling as O(
√
ϵ) or

O(ϵ), respectively:

• When the piecewise linear function V ∗
x (s, h) is differentiable at x∗, every πx∗ ∈ Πx∗

yields the same social welfare V πx∗
sw (ŝ, h = 0). Owing to this uniqueness, there exists a

small interval δ such that for all x ∈ (x∗ − δ, x∗ + δ), the policy πx∗ remains unchanged.
Consequently, x∗ is linearly related to

√
ϵ, and the social welfare gap scales as O(

√
ϵ).

• When V ∗
x (s, h) is non-differentiable at x∗, different πx∗ induce different levels of social

welfare. In this case as F (x) is concave, within Πx∗ , there exist two policies πl
x∗ and πr

x∗

achieving the minimum and maximum social welfare, respectively, which define the left-
and right-hand derivatives around x∗. We claim as long as

V ∗
sw(ŝ, h = 0)− V

πl
x∗

sw (ŝ, h = 0) ≥ ϵ′

(1− x∗)2
≥ V ∗

sw(ŝ, h = 0)− V
πr
x∗

sw (ŝ, h = 0),

the optimal solution for ϵ′ remains x∗, and the social welfare gap scales as O(ϵ). To see this,
consider the counterexample. Recall from the proof of Lemma A.1 that V πx∗

sw (ŝ, h = 0) is
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non-decreasing in x. Suppose the solution for ϵ′ is x′. If x′ < x∗, then

F ′(x′) = V ∗
sw(ŝ, h = 0)− V

πx′
sw (ŝ, h = 0)− ϵ

(1− x′)2

≥ V ∗
sw(ŝ, h = 0)− V

πl
x∗

sw (ŝ, h = 0)− ϵ

(1− x′)2

> V ∗
sw(ŝ, h = 0)− V

πl
x∗

sw (ŝ, h = 0)− ϵ

(1− x∗)2

≥ 0,

which shows x′ is not a stationary point, and hence not optimal for a concave function. The
proof for x′ > x∗ follows analogously by replacing πl

x∗ with πr
x∗ and showing F ′(x′) < 0.

A.7 PROOF OF THEOREM 5.1

A.7.1 TECHNICAL LEMMAS

As our proof involves iteratively optimizing the subsidy scheme for the single-period problem in-
stance, we begin by introducing the following definitions for clarity.
Definition A.1. Given tolerance ϵ, the problem instance I = ((rP (ai), rA(ai))i) is a single-period
problem where H = 1, the agent is a globally ϵ-IC agent, and rP , rA are the principal and agent
reward functions for actions a1, · · · , a|A|. Given ϵ and problem instance I:

• V ∆r
P (I) denotes the principal value under subsidy scheme ∆r.

• V ∆r
A (I) denotes the maximal agent value under subsidy scheme ∆r.

• V ∗
P (I) denotes the optimal principal value under the optimal subsidy scheme ∆r∗.

• V ∗
A(I) denotes the maximal agent value under the optimal subsidy scheme ∆r∗.

Based on the above definitions, we establish several useful properties of the subsidy scheme in
the following lemmas, which will be employed in the proof of NP-hardness. Intuitively, the first
lemma describes how the principal’s value is determined when the agent adversarially reallocates
probabilities in response to a given reward transfer. The second lemma characterizes the optimal
reward transfer and the corresponding principal and agent values in a simple two-action instance.
The third lemma analyzes how the optimal principal value in a three-action instance relates to the
optimal values of its two-action sub-instances, providing useful bounds for iterative constructions.
Lemma A.2. Let I = ((a, b), (c, d)) with a > c and b ≥ d. Under the subsidy scheme ∆r = 0, the
principal’s final value is

V ∆r=0
P (I) =

ab− aϵ− ad+ cϵ

b− d
.

Proof. To adversarially minimize the principal value under the constraint of global ϵ-IC, it’s obvious
that the agent will choose to mix the first and the second action so that V ∆r=0

A (I) = b − ϵ. By
denoting the probability weight on the first action as p, we have

pb+ (1− p)d = b− ϵ =⇒ p =
b− d− ϵ

b− d
.

Substituting into the principal’s value formula,

V ∆r=0
P (I) = pa+ (1− p)c =

ab− aϵ− ad+ cϵ

b− d
.

Lemma A.3. Let I = ((a, 0), (0, 0)) with a > ϵ. Then the principal’s optimal value is

V ∗
P (I) = (

√
a−

√
ϵ)2,

achieved by setting the reward transfer for the first action as
√
aϵ. Correspondingly, the agent’s

value under this optimal transfer is
V ∗
A(I) =

√
aϵ.
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Proof. Clearly, the principal will allocate a positive subsidy to the first action only if doing so can
yield a principal value exceeding zero. Consider a reward transfer x ≥ ϵ assigned to the first action
under a subsidy scheme ∆r. For a given x, the principal’s value is

V ∆r
P (I) = a− x− aϵ

x
.

Maximizing over x ≥ ϵ, we obtain the optimal principal value

V ∗
P (I) = max

x≥ϵ
V ∆r
P (I) = a+ ϵ− 2

√
aϵ = (

√
a−

√
ϵ)2.

Consequently, the agent’s value under the optimal agent value is

V ∗
A(I) =

√
aϵ.

Lemma A.4. Let I = (A1, A2, A3) with Ai = (rP (ai), rA(ai)). Suppose for i ∈ {2, 3}, rP (a1) +
rA(a1) > rP (ai) + rA(ai) + ϵ . Define I ′ = (A1, A2) and I ′′ = (A1, A3). Then

V ∗
P (I) ≤ min{V ∗

P (I
′), V ∗

P (I
′′)}.

Proof. According to Proposition 4.2, for any instance, the optimal reward transfer assigns a nonzero
reward only to the first action. Applying concave maximization to instance I , we recall that the
objective function is

F (x) = xV ∗
sw(ŝ, h = 0)− V ∗

x (ŝ, h = 0)− x

1− x
ϵ,

where πx = argmaxπ{xV π
sw(ŝ, h = 0)− V π,∆r=0

P (ŝ, h = 0)}, and its derivative is

F ′(x) = V ∗
sw(ŝ, h = 0)− V πx

sw (ŝ, h = 0)− ϵ

(1− x)2
.

By observation, we have

F ′(0) = V ∗
sw(ŝ, h = 0)− V π0

sw (ŝ, h = 0)− ϵ,

where π0 minimizes the principal’s value, and F ′(x) → −∞ as x → 1. Therefore, there are two
cases:

• There exists π0 that chooses a1 in instance I . Substituting into the derivative, we obtain
F ′(0) < 0, and the optimal solution is x∗ = 0, which implies that the optimal subsidy
scheme is ∆r∗ = 0. Similarly, the optimal schemes for I ′ and I ′′ are also ∆r∗ = 0. Since
action a1 yields the highest social welfare, it also provides the largest agent value. Conse-
quently, in all three instances, the agent will deterministically select action a1, resulting in
V ∗
P (I) = V ∗

P (I
′) = V ∗

P (I
′′).

• π0 chooses an action other than a1. In this case, based on the condition that for i ∈ {2, 3},
rP (a1)+ rA(a1) > rP (ai)+ rA(ai)+ ϵ, we have F ′(0) > 0 and x∗ ∈ (0, 1) for instances
I , I ′ and I ′′. According to Proposition 4.2, the optimal subsidy assigns a positive transfer
only to action a1, and there exists an agent’s adversarial action policy that mixes action a1
with other actions in all three instances. Suppose the optimal subsidy schemes for instances
I , I ′, I ′′ are ∆r∗(I), ∆r∗(I ′), and ∆r∗(I ′′), respectively. Then we have

V ∗
P (I) = min{V ∆r∗(I)

P (A1, A2), V
∆r∗(I)
P (A1, A3)},

V ∗
P (I

′) = V
∆r∗(I′)
P (A1, A2),

V ∗
P (I

′′) = V
∆r∗(I′′)
P (A1, A3).

By the definition of the optimal subsidy scheme, we then obtain

V
∆r∗(I)
P (A1, A2) ≤ V

∆r∗(I′)
P (A1, A2), V

∆r∗(I)
P (A1, A3) ≤ V

∆r∗(I′′)
P (A1, A3),

which completes the proof.
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Figure 4: Illustrative Construction of the NP-Hardness Reduction Instance

A.7.2 PROOF OF THEOREM 5.1

We prove the hardness by a reduction from the Maximum Independent Set problem.

Construction Given a graph G = ⟨V,E⟩, we construct a corresponding problem instance as
illustrated in Figure 4. Let n = |V | and m = |E|, and assume n ≥ 2.

Throughout the proof, we refer to an action with rP = 0 and rA = 0 as a blank action. The time
horizon is set to H = 4, with a global initial state ŝ that has only one blank action, which transitions
uniformly to the vertex states sv1 , sv2 , . . . , svn and the edge states se1 , se2 , . . . , sem .

For each vertex state sv , there is a blank action leading to an intermediate state s′v for padding. The
subsidy scheme at this intermediate state encodes whether the corresponding vertex v is included
in the maximum independent set. Two actions, al and ar, are available from s′v with the following
specifications:

• al: rP (s′v, al, h = 2) =
(
1 + 1

2n

)2
ϵ, rA(s′v, al, h = 2) = 0, deterministically transition-

ing to state s′′v .

• ar: a blank action that deterministically transitions to state s′′′v .

For each edge e ∈ E connecting vertices vi and vj , the corresponding edge state se has three actions
al, am, and ar designed to enforce the independent set constraints:

• al: rP (se, al, h = 1) = 9ϵ, rA(se, al, h = 1) = 0, deterministically transitioning to state
s′e,l, which is then followed by a padding state s′′e,l .

• am: a blank action that deterministically transitions to state s′e,m, which is then followed
by a padding state s′′e,m.

• ar: rP (se, ar, h = 1) = − 1
8n2 ϵ, rA(se, ar, h = 1) = − 1

2

(
1 + 1

2n

)
ϵ, which transitions

with equal probability to states s′vi and s′vj .

Under this MDP construction, we claim that there exists an independent set of size k in G if and
only if there exists a subsidy scheme ∆r in the MDP that allows the principal to achieve a reward of

k
4n2 + 4m

n+m
ϵ.
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If direction Given a size-k independent set V ∗ ⊂ V in graph G, we construct a subsidy scheme

∆r that achieves a principal value of
k

4n2 +4m

n+m ϵ. The scheme is defined as follows:

• For each v ∈ V ∗, set ∆r(s′v, al, h = 2) = 1 + 1
2nϵ and ∆r(s′v, ar, h = 2) = 0.

• For each v /∈ V ∗, set zero subsidy for both actions al and ar at (s′v, h = 2).

• For each edge e ∈ E, set ∆r(se, al, h = 1) = 3ϵ and leave actions am and ar with zero
subsidy.

• No subsidy is applied to any other actions.

With this subsidy scheme ∆r, the agent greedily minimizes the principal value from bottom to top.
First, consider a vertex state s′v and let π denote the agent’s action policy under ∆r. By utilizing
Lemma A.3, we obtain:

• For v ∈ V ∗, V π∆r,∆r
P (s′v, h = 2) = 1

4n2 ϵ and V
∆r

A (s′v, h = 2) = 1 + 1
2nϵ.

• For v /∈ V ∗, V π∆r,∆r
P (s′v, h = 2) = 0 and V

∆r

A (s′v, h = 2) = 0.

Next, consider an edge state se, where e connects vertices v1 and v2. There are two scenarios
depending on whether one of the endpoints is in the independent set:

• If one endpoint is in V ∗ (i.e., v1 ∈ V ∗ or v2 ∈ V ∗), the agent faces a single-period
problem instance ((6ϵ, 3ϵ), (0, 0), (0, 0)). Since two actions have identical principal and
agent rewards, Lemma A.2 implies that the resulting principal value in (se, h = 1) is 4ϵ.

• If neither endpoint is in V ∗ (i.e., VA /∈ V ∗ and v2 /∈ V ∗), the agent faces the instance
((6ϵ, 3ϵ), (0, 0), (− 1

8n2 ϵ,− 1
2 (1 +

1
2n )ϵ)). Following the analysis in Lemma A.4, the agent

chooses a mixture between (a1, a2) or (a1, a3). Applying Lemma A.2, we find with n > 1

V ∆r=0
P ((6ϵ, 3ϵ), (0, 0))− V ∆r=0

P

(
(6ϵ, 3ϵ),

(
− 1

8n2
ϵ,−1

2

(
1 +

1

2n

)
ϵ

))
= 4ϵ−

15 + 3
2n − 1

8n2

7
2 + 1

4n

ϵ

=
(14 + 1

n )− (15 + 3
2n − 1

8n2 )
7
2 + 1

4n

ϵ

=
−1− 1

2n + 1
8n2

7
2 + 1

4n

ϵ

< 0,

which confirms that the final principal value remains 4ϵ.

Therefore, the total principal value under subsidy scheme ∆r is

V π∆r,∆r
P (ŝ, h = 0) =

k · 1
4n2 ϵ+ (n− k) · 0 + 4ϵ ·m

n+m
=

k
4n2 + 4m

n+m
ϵ.

Only if direction Suppose a subsidy scheme ∆r achieves
k

4n2 +4m

n+m ϵ. for the principal. We show
that this implies the existence of a size-k independent set V ∗ ⊂ V in G.

We first upper bound the maximum principal value achievable under any subsidy scheme ∆r. There
are two primary sources of principal value:

• Vertex states s′v: by Lemma A.3, each vertex contributes at most 1
4n2 ϵ.

• Edge states se: by Lemma A.3 and Lemma A.4, each edge contributes at most
V ∗
P ((9ϵ, 0), (0, 0)) = 4ϵ.
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Consequently, to attain the claimed principal value, at least k vertex states must yield positive con-
tributions. We claim that these vertices form an independent set. To see this, suppose otherwise:
let v1 and v2 be connected by an edge e. Since both s′v1 and s′v2 have nonzero principal values, the
principal must provide a reward transfer of at least 1 on action al at both s′v1 and s′v2 . Then, for
action ar at se, the agent’s expected value is at least ( 12 −

1
4n )ϵ, while the principal’s value is at most

1
8n2 ϵ. We can upper bound the principal value from (se, h = 1) under any subsidy scheme ∆r as

V π∆r,∆r
P (se, h = 1) ≤ V ∗

P

(
(9ϵ, 0), (

1

8n2
ϵ, (

1

2
− 1

4n
)ϵ

)
(A.18)

=
1

8n2
ϵ+ V ∗

0

(
(9ϵ− 1

8n2
ϵ, 0), (0, (

1

2
− 1

4n
))ϵ

)
(A.19)

≤ 1

8n2
ϵ+ V ∗

0

(
(9ϵ, 0), (0, (

1

2
− 1

4n
))ϵ

)
(A.20)

=
1

8n2
ϵ+ V ∗

0 ((
17

2
+

1

4n
)ϵ, 0), (0, 0)) (A.21)

=
1

8n2
ϵ+

(√
(
17

2
+

1

4n
)ϵ−

√
ϵ

)2

=

(
1

8n2
+ (

19

2
+

1

4n
)− 2

√
17

2
+

1

4n

)
ϵ

Inequality (A.18) follows directly from Lemma A.4 together with the observation that, in any single-
period problem instance, simultaneously decreasing the principal’s reward and increasing the agent’s
reward for an action can only reduce the optimal principal value. In equality (A.19), It is evident that
subtracting the same value from the principal reward of each action and then summing afterwards
does not affect the optimal solution. Inequality (A.20) arises from the fact that there is a pure
principal reward increase in the first action. In equation (A.21), to obtain a strictly positive principal
value, at least ( 12 − 1

4n )ϵ must be subsidized on the first action. After such subsidy, as both actions
now have the same agent reward, we set zero reward for both actions to sustain the relative value.
Meanwhile, we can apply lemma A.3 to find the to optimal principal value.

Next, we upper bound the total principal reward across all sources:

• Principal reward from agent visiting sv: at most 1
4n2 ϵ per vertex, for at most n vertices.

• Principal reward from agent visiting se for edges e ∈ E \ {e}: at most 4ϵ per edge, for at
most m− 1 edges.

• Principal reward from agent visiting se: at most
(

1
8n2 + ( 192 + 1

4n )− 2
√

17
2 + 1

4n

)
ϵ.

Summing over all contributions, the total principal value is

V π∆r,∆r
P (ŝ, h = 0) ≤ 1

n+m

[(
1

8n2
+ (

19

2
+

1

4n
)− 2

√
17

2
+

1

4n

)
ϵ+ (m− 1) · 4ϵ+ n · ϵ

4n2

]
.
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Comparing with the claimed value, for n ≥ 2 we obtain
k

4n2 + 4m

n+m
ϵ− V π∆r,∆r

P (ŝ, h = 0)

=
ϵ

n+m

((
k

4n2
+ 4

)
−

(
1

8n2
+

19

2
+

1

4n
− 2

√
17

2
+

1

4n

)
− 1

4n

)
(A.22)

≥ ϵ

n+m

(
2

√
17

2
− 1

8n2
− 11

2
− 1

2n

)
(A.23)

≥ ϵ

n+m

(
2

√
17

2
− 1

32
− 11

2
− 1

4

)
(A.24)

> 0 (A.25)

Here, inequality (A.22) follows from neglecting the k
4n2 term, and inequality (A.23) is obtained

by substituting n = 2. This contradiction demonstrates that any set of k vertices yielding positive
principal value must form an independent set, thereby completing the proof.
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