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Supplementary Material

A. Implementation Details

Dataset. We partition the data into training and testing
sets, comprising 119 and 45 subjects, respectively. Of these
subjects, the data of 11 training subjects and 3 testing sub-
jects are provided by [13] and others are processed by our
FLAME tracking algorithm. For more information about
the dataset, we highly encourage the reader to refer to the
paper of NeRSemble [8] for further details.

Model Detail. We divide the Gaussian primitives into
p = 11 parts, including 1) “forehead”, 2) “nose”, 3) “eye”,
4) “teeth”, 5) “lip”, 6) “ear”, 7) “hair”, 8) “boundary”, 9)
“neck”, 10) “other face region”, and 11) “other”. The part
for the primitives is determined by the face masks provided
by FLAME [9]. The illustration of Gaussian primitives with
different parts is shown in Fig. A. The primitive number is
set to n = 83, 651 by initializing from a UV map with a
resolution of 300×300. The feature dimensions of identity-
shared point encoding f , identity code z, and point appear-
ance feature h are set to c1 = 48, c2 = 128, and c3 = 34
respectively. All the MLPs fM consist of 4 layers. Mean-
while, the CNN fC contains 6 layers. The identity codebook
z is initialized with zero.

Training Detail. We adopt Adam [7] optimizer for the
model training. For prior learning, we utilize k = 119 iden-
tities and set the batch size to 32. For all the parameters, the
learning rate begins at 1e−3 and decreases with the cosine
scheduler. The prior model is trained on 8 A100 GPUs for
100K steps, which takes around 2 days. The loss weights
λm, λl1, λssim, λlpips, λα, λs, λµ, and λarap are set to 10,
0.8, 0.2, 0.4, 1, 1, 0.01, and 1 respectively. For few-shot
personalization, we set the batch size to 1. We set the learn-
ing rate of the identity-shared point encoding f to 1e−3 and
other parameters’ to 1e−5. Unless otherwise stated, we take
500 steps for inversion and 500 steps for fine-tuning, which
uses about 5 minutes in total with an A100 GPU. For view
regularization, we generate m = 16 reference views similar
to the camera setups of the NeRSemble dataset. The loss
weights λref is set to 0.01. For 3-shot novel identities’ per-
sonalization on NeRSemble, we utilize cameras with id “0”,
“8”, and “15”. For our captured data, we select viewpoints
similar to those of NeRSemble.

About adaptive density control. To allow full control
of primitive numbers, we do not utilize adaptive density
control, opacity reset, and point pruning as GaussianA-
vatars [13].
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Figure A. Illustration of the FLAME mesh (left) and semantic part
of our Gaussian primitives bound on the mesh (right). Different
point colors represent different parts.

B. Experiment Results
B.1. Network Comparison

GAPNet is capable of adapting to different numbers of IDs
for training. To demonstrate the network capability, we
compare its performance for a single person against Gaus-
sianAvatars [13]. For a fair comparison of the network, we
utilize the same adaptive density control approaches as [13].
We also use the full training data of each single subject,
similar to [13]. The mean quantitative results over subject
“074”, “175”, and “210” are shown in Tab. A. GAPNet ob-
tains better results in all metrics. We further illustrate the
qualitative comparisons in Fig. B. Our model is capable
of fitting the dynamic details of the training subject well,
as shown in self-reenactment results. Moreover, our cross-
reenactment performance is significantly more robust than
GaussianAvatars. The robust animations further prove our
model design is quite suitable for learning generalizable pri-
ors across different subjects.

Method LPIPS↓ PSNR↑ SSIM↑
GaussianAvatars 0.120 25.21 0.911
Ours 0.091 25.48 0.912

Table A. Comparisons for single avatar creations.

B.2. Prior Learning Results

We show our prior learning results of the 119 identities in
Fig. H. The visualized results show that our GAPNet can
learn the appearance characteristics of different identities.



B.3. More Qualitative Results

We present additional qualitative experimental results in
Fig. C, Fig. D, and Fig. E. All subjects are novel IDs and
were not seen during the training process.

Fig. C shows self-reenactment results with novel-view
renderings for different identities. Fig. D and Fig. E present
cross-reenactment results from frontal and side views, re-
spectively, demonstrating stable animations.

The results indicate that our model effectively gener-
alizes to data that differs from the NeRSemble dataset.
Furthermore, it achieves consistent few-shot performance
across diverse ethnicities and genders, thereby further rein-
forcing its capacity for effective generalization.

B.4. Head Avatar Editing

Since our representation models textures using 3D Gaussian
Splatting upon the base FLAME mesh, we can perform 1)
texture interpolation between different identities using the
same FLAME mesh, 2) texture swapping using the same
FLAME mesh, and 3) geometry editing by swapping the
FLAME mesh. The results are shown in Fig. F.

B.5. More In-the-wild Results

In this section, we present additional results on in-the-wild
images. All result IDs are out-of-distribution samples be-
yond the NeRSemble [8] dataset. Specifically, we capture
monocular video data of each identity performing various
expressions and select 12 images for avatar personalization.
As shown in Fig. G, we present the cross-reenactment driv-
ing results when providing the same facial expression mo-
tion sequence. The results demonstrate that our method ex-
hibits strong few-shot generalization capability even in in-
the-wild settings.

C. Further Discussions on Baselines
We compare multiple baseline approaches for one-shot and
few-shot personalization based on the number of input im-
ages in the main text. In this section, we further elucidate
the details of the experimental comparisons.

C.1. Baseline taxonomy

We categorize the baselines into two types based on whether
they involve a process of learning priors.

Type-I includes: ROME [6], GOHA [11], VOODOO
3D [14], HiDe-NeRF [10], Portrait4Dv1 [2], Por-
trait4Dv2 [3], GPAvatar [1] and DiffusionRig [4].

Type-II includes: FlashAvatar [15], GaussianA-
vatars [13] and NHA [5]

C.2. Comparison with single-view baselines

In one-shot personalization experiments, when driving
novel expressions, tri-plane representation-based volume

rendering methods [1–3, 10, 11, 14] require the driving
image as input. This might result in appearance leakage
(e.g., dynamic details of new expressions). In contrast, our
method uses only the tracking mesh of the driving image
and models dynamic details through prior learning.

C.3. Comparison with GS-based methods

We show the comparison with GaussianAvatars [13] and
FlashAvatar [15] in Fig. J. Although they do not focus
on few-shot input like ours, we include comparisons be-
cause we all use 3D Gaussian Splatting as a representation.
We observe that they require a substantial overlap of input
views or monocular videos with human heads rotated to dif-
ferent orientations.

In few-shot personalization experiments, as shown in
the Fig. J, all per-subject optimization Gaussian Splatting-
based baselines lack prior information and require indi-
vidual training for each person. It can be observed that
all baseline methods tend to overfit the training views
and fail to extrapolate to unseen views. This qualitative
comparison demonstrates the effectiveness and necessity
of constructing priors for Gaussian Splatting. Due to the
noticeable artifacts, FlashAvatar†, GaussianAvatars‡, and
GaussianAvatars♦ are infeasible for calculating meaningful
ID similarity metrics. Therefore, we did not report their
corresponding metrics in Tab.1 of the main text.

D. Limitations and Future Works
While our method can quickly construct personalized, high-
fidelity, and realistic human head avatars, it still has the fol-
lowing issues: (1) In cases where the subject wears glasses
or has noticeable facial accessories, the avatar construction
may exhibit artifacts (as depicted in Fig. K). A reason for
this incapability is that our prior learning phase does not
incorporate such samples for training. Including the corre-
sponding data for training can potentially resolve this prob-
lem. (2) The adoption of CNNs for refinement in screen
space may result in view-dependent overfitting, which can
induce flickering among different viewpoints and lead to
quality degradation for certain unseen views during train-
ing. Therefore, exploring more consistent refinement tech-
niques in 3D space presents a promising avenue for further
investigation. (3) Our method does not focus on modeling
the subject’s clothing and hair. We believe that combining
methods such as [12] to model hair or clothing separately
is a promising research direction. (4) Additionally, lighting
variation is important for the realism of head avatars. Cur-
rently, we only consider uniform lighting. We believe that
integrating relighting into the Gaussian Splatting is also a
promising research direction for head avatars.
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Figure B. Self- and cross-reenactment comparisons between our method and GaussianAvatars for single-subject modeling.



Figure C. Self-reenactment results. The images inside the red box are the driving expressions. We showcase the renderings from different
viewpoints.
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Figure D. Cross-reenactment results. The images inside the red box are the driving expressions.



Figure E. Cross-reenactment results. The images inside the red box are the driving expressions.
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Figure F. Illustration of the GAPNet’s 1) texture interpolation, 2) texture swapping, and 3) geometry swapping. The results on the same
row are using the same head geometry. The identities inside red boxes use the paired texture and FLAME mesh.

Figure G. Qualitative results of 3D animatable head avatars generated from few-shot in-the-wild images and driven by the same facial
expression sequence.



Figure H. The rendered results of the 119 identities used for prior learning.
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Figure I. More qualitative experiments on other subjects using 3-shot inputs compared to state-of-the-art methods.
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Figure J. Qualitative comparison results. We compare the rendering results from different views using our 3-shot input avatars with the
Gaussian Splatting-based baseline methods.
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Figure K. Failure cases. Our approach can not resolve subjects with noticeable facial accessories (e.g., glasses).
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