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Abstract

The estimation of cumulative distribution functions (CDF) is an important learning task
with a great variety of downstream applications, such as risk assessments in predictions
and decision making. In this paper, we study functional regression of contextual CDFs
where each data point is sampled from a linear combination of context dependent CDF basis
functions. We propose functional ridge-regression-based estimation methods that estimate
CDFs accurately everywhere. In particular, given n samples with d basis functions, we show
estimation error upper bounds of rOp

a

d{nq for fixed design, random design, and adversarial
context cases. We also derive matching information theoretic lower bounds, establishing
minimax optimality for CDF functional regression. Furthermore, we remove the burn-in time
in the random design setting using an alternative penalized estimator. Then, we consider
agnostic settings where there is a mismatch in the data generation process. We characterize
the error of the proposed estimators in terms of the mismatched error, and show that the
estimators are well-behaved under model mismatch. Moreover, to complete our study, we
formalize infinite dimensional models where the parameter space is an infinite dimensional
Hilbert space, and establish a self-normalized estimation error upper bound for this setting.
Notably, the upper bound reduces to the rOp

a

d{nq bound when the parameter space is
constrained to be d-dimensional. Our comprehensive numerical experiments validate the
efficacy of our estimation methods in both synthetic and practical settings.

1 Introduction

Estimating cumulative distribution functions (CDF) of random variables is a salient theoretical problem that
underlies the study of many real-world phenomena. For example, Huang et al. (2021) and Liu et al. (2022)
recently showed that estimating CDFs is sufficient for risk assessment, thereby making CDF estimation a
key building block for such decision-making problems. In a similar vein, it is known that CDFs can also
be used to directly compute distorted risk functions (Wirch & Hardy, 2001), coherent risks (Artzner et al.,
1999), conditional value-at-risk and mean-variance (Cassel et al., 2023), and cumulative prospect theory risks
(Prashanth et al., 2016). Furthermore, CDFs are also useful in calculating various risk functionals appearing
in insurance premium design, portfolio design, behavioral economics, behavioral finance, and healthcare
applications (Rockafellar et al., 2000; Shapiro et al., 2014; Prashanth et al., 2016; Wong et al., 2022). Given
the broad utility of estimating CDFs, there is a vast (and fairly classical) literature that tries to understand
this problem.
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In particular, the renowned Glivenko-Cantelli theorem (Cantelli, 1933; Glivenko, 1933) states that given
independent samples of a random variable, one can construct a consistent estimator for its CDF. Tight
non-asymptotic sample complexity rates for such estimation using the Kolmogorov-Smirnov (KS) distance as
the loss have also been established in the literature (Cantelli, 1933; Glivenko, 1933; Dvoretzky et al., 1956;
Massart, 1990). However, these results are all limited to the setting of a single random variable. In contrast,
many modern learning problems, such as doubly-robust estimators in contextual bandits, treatment effects,
and Markov decision processes (Huang et al., 2021; Kallus et al., 2019; Huang et al., 2022), require us to
simultaneously learn the CDFs of potentially infinitely many random variables from limited data. Hence, the
classical results on CDF estimation do not address the needs of such emerging learning applications.

Contributions. In this work, as a first step towards developing general CDF estimation methods that
fulfill the needs of the aforementioned learning problems, we study functional linear regression of CDFs,
where samples are generated from CDFs that are convex combinations of context-dependent CDF bases.
Our model resembles the well-studied linear regression and stochastic linear bandits problem. In linear
regression, researchers analyzed finite-dimensional parametric models with pre-selected feature functions.
These pre-designed features result from extensive feature engineering processes carried out for the underlying
task. Similarly, within the domain of contextual bandits, researchers studied the stochastic linear bandit
problem using a linear model (Lattimore & Szepesvári, 2020, Equation (19.1)) with finite dimension and
known feature map. Thus, it is natural to commence the analysis assuming the access to known “feature”
CDFs, which ultimately bestows the advantages intrinsic to linear regression. As our main contribution, we
define both least-squares regression and ridge regression estimators for the unknown linear weight parameter,
and establish corresponding estimation error bounds for the fixed design, random design, adversarial, and
self-normalized settings. In particular, given n samples with d CDF bases, we prove estimation error upper
bounds that scale like rOp

a

d{nq (neglecting sub-dominant factors). Our derivations are inspired by the
classical finite dimensional fixed design, random design, and adversarial self-normalized theories (Peña et al.,
2008; Abbasi-Yadkori et al., 2011b). Our results achieve the same problem-dependent scaling as in canonical
finite dimensional linear regression (Abbasi-Yadkori et al., 2011b;a; Hsu et al., 2012b), and importantly, in
contrast to the mentioned works, do not depend on the label/reward/response magnitude. Moreover, we
derive Ωp

a

d{nq information theoretic lower bounds for functional linear regression of CDFs. This establishes
minimax estimation rates of rΘp

a

d{nq for the CDF functional regression problem. We later show that this
result directly implies the concentration of CDFs in KS distance. We also propose a new penalized estimator
that theoretically eliminates the requirement on the burn-in time of sample size in the random design setting.
Then, we consider agnostic settings where there is a mismatch between our linear model and the actual
data generation process. We characterize the estimation error of the proposed estimator in terms of the
mismatch error, and demonstrate that the estimator is well-behaved under model mismatch. To complete our
study, we generalize the parameter space in the linear model from finite-dimensional Euclidean spaces to
general infinite-dimensional Hilbert spaces, extend the ridge regression estimator to the infinite-dimensional
model with proper regularization, and establish a corresponding self-normalized estimation error upper bound
which immediately recovers our previous rOp

a

d{nq upper bound when the parameter space is restricted to be
d-dimensional. Finally, we present numerical results for synthetic and real data experiments to illustrate the
performance of our estimation methods.

Related works. A complementary approach to the proposed CDF regression framework is quantile
regression (Koenker & Bassett Jr, 1978). Although quantile regression may appear to be closely related to
CDF regression at first glance, the two problems have very different flavors. Indeed, unlike CDFs, quantiles are
not sufficient for law invariant risk assessment. Besides, due to their infinite range, quantile estimation is quite
challenging, resulting in analyses that only consider pointwise estimation (Takeuchi et al., 2006). However, as
it is necessary to estimate multiple quantiles for CDF estimation, a simultaneous analysis of multiple quantile
estimates is needed theoretically, which typically requires a union bound on the failure probability that
increases linearly with the number of estimates. Furthermore, the estimated multiple quantiles may not be
monotonically increasing with respect to the probability values, requiring extra effort to construct a valid CDF
from a finite series of quantile estimates. Moreover, any such construction will incur a non-convergent KS
distance between the estimated CDF and the true CDF for some distribution, as a general CDF can exhibit
jumps or flat regions at any position. Additionally, the quality of the estimated CDF from multiple estimated
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quantiles relies heavily on the selection of grid points of probability values, which is instance-dependent and
may require knowledge of the distribution the learner seeks to estimate. Thus, establishing a universal rule for
choosing grid points that yield reasonable CDF estimates via quantile regression across diverse distributions
proves challenging. In practice, the introduction of grid points introduces numerous hyperparameters to
tune, adding artificial complexity to the methodology. Perhaps more importantly, quantile regression can be
ill-posed in many machine learning settings. For example, quantiles are not estimatable in decision-making
problems and games with mixed random variables (which take both discrete and continuous values). For
these reasons, our focus in this paper will be on CDF regression.

Several works have delved into the realm of conditional CDF estimation. Hall et al. (1999) estimated
conditional CDFs for fixed cutoff y and context x using local logistic methods and adjusted Nadaraya-Watson
estimators. However, their analysis necessitates the assumption of strong regularity conditions on the
conditional CDF (including at least continuous second-order derivatives), the marginal CDF of the context,
and the data generating process. They established asymptotic convergence only for fixed cutoff and context.
Ferraty et al. (2006) introduced a kernel-type nonparametric estimator for conditional CDFs at a fixed context
x. Their analysis mandates that the samples are independent and identically distributed (iid), in addition to
some regularity assumptions concerning the marginal distribution of x and the smoothness of the conditional
CDF. Their theoretical findings, too, revolve around asymptotic scenarios and apply solely to fixed contexts.
Chung & Dunson (2009) proposed a special class of conditional CDFs based on probit stick-breaking process
mixture models. They developed an MCMC algorithm for posterior sampling of parameters but did not
furnish theoretical assurances regarding consistency. Distinguishing itself from existing endeavors, this paper
introduces a novel linear model (1) or (18) where we presume knowledge of an arbitrary family of contextual
CDFs and aim to estimate the weight parameter θ˚. Consequently, our model possesses the capability to
encompass any conditional CDF, enabling the estimation of the conditional CDF across all values of the
context x and cutoff y by estimating one parameter. Furthermore, we embrace an adversarial data generation
process (see Scheme I in Section 2), which surpasses the limitations of the iid setting in terms of generality.
We provide tight non-asymptotic analysis of the estimation error by showing matching upper bounds and
lower bounds of the error. Additionally, our model (1) or (18) readily accommodates the integration of
estimated CDFs from previous works on conditional CDF estimation into the family of feature contextual
CDFs, thereby enhancing the overall quality of the conditional CDF estimates. Furthermore, the probability
approximately correct and Vapnik–Chervonenkis theory (Devroye et al., 2013) has been extended to CDF
with new measures of complexities (Liu et al., 2022).

Chernozhukov et al. (2013) and Koenker et al. (2013) study “distribution regression” where for a fixed cutoff y,
they estimate parameters in conditional CDF models by maximizing log likelihood of 1ty ě Yiu for outcome
samples Y1, . . . , Yn. Thus, both works require specific models for conditional CDFs. Chernozhukov et al.
(2013) introduced a “distribution regression” model where the conditional CDF takes the form of a link
function evaluated at the inner product of vector transformations of the context X and outcome Y . However,
due to the dependence of the log likelihood on the cutoff y within this model, their estimator is inherently
pointwise. They established asymptotic convergence of the estimated conditional CDF. Nonetheless, this
hinges on certain assumptions concerning the true parameter functions, which is challenging to validate.
Koenker et al. (2013) considered the “linear local-scale model” where the outcome is the summation of a linear
local function of the context and the product of a linear scale function of the context and an independent
random error boasting a smooth density. Their convergence results are of an asymptotic nature, assuming iid
samples, alongside other conditions on the expected log likelihood and the asymptotic covariance function
which also pose substantial verification challenges. Furthermore, the maximum likelihood estimation (MLE)
used in both papers only accesses the indicators denoting whether the samples Y1, . . . , Yn surpass a fixed cutoff
y, which underutilizes the wealth of information inherent in the samples. In stark contrast, our estimator (2)
or (21) uses the one-sample empirical CDFs (1tYi ď ¨u) which fully exploit the sample information. Moreover,
as previously mentioned, the estimated CDFs derived in the above distribution regression problems can be
seamlessly integrated into our proposed model.

In some literature, “distribution regression” takes on a distinctive meaning, referring to the model where the
context is a sequence of samples from some distribution which, together with the outcome, is sampled from
some meta joint distribution (Póczos et al., 2013; Szabó et al., 2016). The task is to learn a mapping from
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the distribution of the context to the outcome. Contrastingly, our model (1) or (18) operates in a different
realm: the outcome is a sample from a mixture of contextual CDFs and the task is to learn the weight
parameter θ˚. Thus, our model diverges from the above notion of distribution regression. Our focus is not
on estimating a mapping from distributions to outcomes but on estimating a parameter that governs the
condition distribution. Moreover, there is no meta distribution that the samples follow in our adversarial
data generating process.

Our results on CDF regression have the potential for downstream applications in stochastic bandits (Thompson,
1933; Robbins, 1952; Lattimore & Szepesvári, 2020) where learning algorithms necessitate the estimation of
reward distributions under selected actions and the adaptive exploration of the action space. Then, under
the linear assumption of the reward distributions, our CDF regression method can serve to estimate the
CDFs of the rewards in stochastic bandit algorithms, with readily available theoretical results for integration
into the analysis. For instance, in the infinite-armed bandit problem (Berry et al., 1997; Wang et al., 2022),
assuming that the underlying distribution of arms satisfies our linear model, our method, in conjunction
with an exploration algorithm for arm selection, can be employed to estimate the CDF of the underlying
distribution, which actually enables the estimation of any distribution functional, thereby broadening the
class of indicator-based functionals considered in Wang et al. (2022). Furthermore, since estimating the CDF
of the reward under a target policy in stochastic bandits is adequate for assessing various risk functionals
associated with the target policy (Huang et al., 2021), with our linear assumption on the reward distribution,
our method can be applied to the risk assessment of policies in stochastic bandits. Then, combined with an
exploration algorithm to select policies, our method becomes a valuable tool for minimizing diverse risks in
stochastic bandits, which also extends the conventional scope of minimizing expected regret in stochastic
bandits.

Outline. We briefly outline the rest of the paper. Notation and formal setup for our problem are given in
Section 2. We propose our estimation paradigm and analyze its theoretical performance in Section 3. We
derive corresponding lower bounds on the estimation error in Section 4. We establish upper bounds on the
estimation error under the existence of a mismatch in our proposed model in Section 5. We generalize the
problem from estimating finite dimensional parameters to estimating infinite dimensional parameters, extend
our estimation paradigm to this infinite dimensional setting, and prove an upper bound on estimation error in
Section 6. Numerical results are displayed in Section 7. Conclusions are drawn and future research directions
are suggested in Section 8. All the proofs and additional results are presented in the appendices.

2 Preliminaries

In this section, we introduce the notation used in the paper and set up the learning problem of contextual
CDF regression.

Notation. Let N denote the set of positive integers. For any n P N, let rns denote the set t1, . . . , nu.
For any measure space pΩ, F ,mq, define the Hilbert space L2pΩ,mq :“ tf : Ω Ñ R

ˇ

ˇ

ş

Ω |f |2dm ă 8u with
L2-norm }f}L2pΩ,mq :“

b

ş

Ω |f |2dm for f P L2pΩ,mq. For any positive definite matrix A P Rdˆd, define
} ¨ }A to be the weighted ℓ2-norm in Rd induced by A, i.e., }x}A “

?
xJAx for x P Rd. For the standard

Euclidean (or ℓ2-) norm } ¨ }Id
, where Id denotes the d ˆ d identity matrix, we omit the subscript Id and

simply write } ¨ }. For any square matrix A, let µminpAq denote the smallest eigenvalue of A, µmaxpAq denote
the largest eigenvalue of A and }A}2 denote the spectral norm of the matrix A, i.e., }A}2 :“

a

µmaxpAJAq.
Let KSpF1, F2q :“ supxPR |F1pxq ´ F2pxq| denote the KS distance between two CDFs F1 and F2. Finally, let
1t¨u denote the indicator function. More technical notation dealing with measurability issues is provided at
the beginning of Appendix B.

Problem setup. In this paper, we consider the problem of functional linear regression of CDFs. To define
this problem, let X denote the context space, and let F px, ¨q : R Ñ r0, 1s be the CDF of some R-valued
random variable for any x P X . We assume that X is a Polish space throughout the paper. For a context
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x P X , we observe a sample y from its corresponding CDF F px, ¨q. We next summarize two schemes to
generate px, yq samples:

• Scheme I (Adversarial). For each j P N, an adversary picks xpjq P X (either deterministically or
randomly) in an adaptive way given knowledge of the previous ypiq’s for i ă j, and then ypjq P R is sampled
from F pxpjq, ¨q. This includes the canonical fixed design setting as a special case, where all xpjq’s are
fixed a priori without knowledge of ypjq’s.

• Scheme II (Random). For each j P N, xpjq P X is sampled from some probability distribution P
pjq

X

on X independently, and then ypjq P R is sampled from F pxpjq, ¨q independently. This is known as the
random design setting in the regression context.

Scheme I and Scheme II generalize the assumptions of the data generation process in canonical ridge regression
in Abbasi-Yadkori et al. (2011a) and Hsu et al. (2012b) to the problem of CDF estimation, respectively.
Note that although the random design setting in Scheme II is a special case of Scheme I, we emphasize it
because it has specific properties that deserve a separate treatment. The adversarial setting in Scheme I is
more general than what is typically considered for regression, and our corresponding self-normalized analysis
has several potential future applications in risk assessment for reinforcement learning, e.g., in contextual
bandits (Abbasi-Yadkori et al., 2011a).

The task of contextual CDF regression is to recover F from a sample tpxpjq, ypjqqujPrns of size n. As an
initial step towards this problem, inspired by the well-studied linear regression and linear contextual bandits
problems (Lattimore & Szepesvári, 2020, Equation (19.1)), where finite-dimensional parametric models with
pre-selected feature functions are assumed, we consider a linear model for F . Let d be a fixed positive integer.
For each i P rds and x P X , let ϕipx, ¨q : R Ñ r0, 1s be a feature function that is a CDF of a R-valued random
variable with range contained in some Borel set S Ď R, and assume that ϕi is measurable. Then, we define the
vector-valued function Φ : X ˆ R Ñ r0, 1sd, Φpx, tq “ rϕ1px, tq, . . . , ϕdpx, tqsJ. We assume that there exists
some unknown θ˚ P ∆d´1, where ∆d´1 :“ tpθ1, . . . , θdq P Rd :

řd
i“1 θi “ 1, θi ě 0 for 1 ď i ď du denotes the

probability simplex in Rd, such that,

F px, tq “ θJ
˚ Φpx, tq, @ x P X , t P R. (1)

Thus, we can view Φ as a “basis” for contextual CDF learning.

We visualize the sample generation process in Figure 1 where the contextual CDFs are shown in the left
column and the one-sample empirical CDFs (1ty ď ¨u for sample y) are shown in the right column. It is
worth mentioning the differences between our model and the mixture model with known basis distributions in
the statistics literature. First, the basis distributions in our model depend on the context of the sample and
are not fixed. Second, in mixture models, the samples are assumed to be independent while in our Scheme I,
the samples can be dependent since xpjq is picked adversarially given knowledge of the previous ypiq’s. Thus,
the mixture model with known basis distributions only corresponds to the fixed design setting with the same
context xpjq “ x for all samples.

As explained in the sampling schemes above, given xpjq at the jth sample, the observation ypjq is generated
according to the CDF F pxpjq, ¨q “ θJ

˚ Φpxpjq, ¨q. For notational convenience, we will often refer to the
vector-valued function Φpxpjq, ¨q as Φjp¨q for all j P rns, so that F pxpjq, ¨q “ θJ

˚ Φjp¨q. Under the linear model
in (1), our goal is to estimate the unknown parameter θ˚ from the sample tpxpjq, ypjqqujPrns in a (regularized)
least-squares error sense. This in turn recovers the contextual CDF function F .

3 Upper bounds on estimation error

In this section, we propose an estimation paradigm for the unknown parameter θ˚ in Section 3.1, derive the
upper bounds on the associated estimation error in Section 3.2, and propose a new penalized estimator that
theoretically eliminates the burn-in time of the sample size in the random setting in Section 3.3.
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Contextual

CDFs:

Samples:

j = 2 j = 3j = 1 j = 4 j = 5 j = 6

Figure 1: A visualization of the data generating process. For each j P r6s with context xpjq P X , the upper
row shows the d contextual CDFs (ϕipx

pjq, ¨q, i P rds) under the context xpjq. For ypjq drawn from the CDF
F pxpjq, ¨q “ θJ

˚ Φpxpjq, ¨q where Φpxpjq, ¨q :“ rϕipx
pjq, ¨q, . . . , ϕdpxpjq, ¨qsJ, the bottom row shows the sample

empirical CDF Iypjq p¨q :“ 1typjq ď ¨u.

3.1 Ridge regression estimator

We begin by formally stating our least-squares functional regression optimization problem to learn θ˚. Given
a probability measure m on S, the sample tpxpjq, ypjqqujPrns, and the set of basis functions tΦjujPrns, we
propose to estimate θ˚ by minimizing the (ridge or) ℓ2-regularized squared L2pS,mq-distance between the
estimated and empirical CDFs:

pθλ :“ arg min
θPRd

n
ÿ

j“1
}Iypjq ´ θJΦj}2

L2pS,mq ` λ}θ}2, (2)

where λ ě 0 is the hyper-parameter that determines the level of regularization, and the function observation
Iypjq ptq :“ 1typjq ď tu is an empirical CDF of ypjq that forms an unbiased estimator for F pxpjq, ¨q conditioned
on past contexts and observations. Hence, in Scheme I, we only require that Iypjq ´ θJΦj is a zero-mean
function given past contexts and observations, making our analysis suitable for online learning problems
where the later contexts can depend on the past contexts and observations. We remark that the adoption
of L2-distance in (2) is natural. Indeed, researchers have considered the L2-distance between a one-sample
empirical CDF and a CDF estimate in the definition of Continuous Ranked Probability Score (CRPS)
(Hersbach, 2000) to assess the performance of the CDF estimate in approximating data distributions. In
fact, viewing the one-sample empirical CDF as the response and the basis contextual CDFs as the feature in
linear regression, it is natural to consider the least squares method, precisely corresponding to minimizing
the L2-distance in our functional setting. Notice further that pθλ in (2) is an improper estimator since it may
not lie in ∆d´1. However, since ∆d´1 is compact in Rd, rθλ :“ arg minϑP∆d´1 }ϑ ´ pθλ}A exists for any positive
definite A P Rdˆd. Moreover, since ∆d´1 is also convex, we have }rθλ ´ θ}A ď }pθλ ´ θ}A (Beck, 2014, Theorem
9.9) for any θ P ∆d´1 including θ˚. This means that an upper bound on }pθλ ´ θ˚}A is also an upper bound
on }rθλ ´ θ˚}A. Additionally, as we will see later, the pθλ has a closed-form analytic solution which benefits
the analysis of the estimation error. Therefore, we focus our analysis on the improper estimator pθλ, noting
that its projection onto ∆d´1 yields an estimator rθλ for which the same upper bounds hold.
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When λ ą 0, the objective function in (2) is a p2λq-strongly convex function of θ P Rd (see, e.g., Bertsekas
et al., 2003, for the definition), and is uniquely minimized at

pθλ “

˜

n
ÿ

j“1

ż

S

ΦjΦJ
j dm ` λId

¸´1 ˜ n
ÿ

j“1

ż

S

IypjqΦjdm

¸

. (3)

For the unregularized case where λ “ 0, we omit the subscript λ and write pθ to denote a corresponding
estimator in (2). Note that when λ “ 0, if µminp

řn
j“1

ş

S
ΦjΦJ

j dmq ą 0, the objective function in (2) is still
strongly convex, and is uniquely minimized at pθ given in (3) with λ “ 0. In practice, one can deploy standard
numerical methods to compute the integral in (3), and the computational complexity of the matrix inversion
is cubic in the dimension d. However, iterative methods can be used to obtain better dimension dependence
in the running time. As a remark, since the probability density functions (PDFs) of the basis distributions
may not exist, the samples in Scheme I can be dependent, and the distributions of the contexts in Scheme II
are unknown, the likelihood function of the samples generally does not exist in our problem setting, which
rules out the usage of MLE. But our estimator (2) always exists. Moreover, we focus on non-asymptotic
analysis of our estimator and prove self-normalized upper bounds for the estimation error, which is rarely
analyzed for MLEs.

Lastly, it is worth remarking upon the choice of measure m used above. In order for the estimator in
(2) to be well-defined, since Iyptq, θJΦpx, tq P r0, 1s for any t, y P R and x P X , it suffices to ensure that
mpSq ă 8 (i.e., m is a finite measure). This is the reason why we restrict m to be a probability measure on
S. Furthermore, the probability measure m can in general be chosen to adapt to specific problem settings.
For example, the uniform measure mU on S is often easy to compute for some choices of S. Specifically, if
0 ă LebpSq ă 8, where Leb denotes the Lebesgue measure, mU is defined by dmU

dLeb “ 1
LebpSq

, where dmU
dLeb is the

Radon-Nikodym derivative. If S is a finite set with cardinality #S, mU “ 1
#S

ř

sPS δs, where δs denotes the
Dirac measure at s. On the other hand, when S “ R, m can be set to the Gaussian measure γc,σ2 defined by
γc,σ2 pdxq “ 1?

2πσ2 e´px´cq
2

{p2σ2
qdx with c P R and σ2 ą 0.

3.2 Self-normalized bounds in various settings

For samples generated according to Scheme I, we prove self-normalized upper bounds on the error pθλ ´ θ˚.
For any probability measure m on S, define Un :“

řn
j“1

ş

S
ΦjΦJ

j dm and Unpλq “ Un ` λId for n P N and
λ ě 0. For n, d P N, λ, τ P p0, 8q, and δ P p0, 1q, define

ελpn, d, δq :“
a

d log p1 ` n{λq ` 2 logp1{δq `
?

λ}θ˚} and (4)

εpn, d, δ, τq :“
ˆ

?
d `

a

8d logp1{δq `
4
3
a

d{n logp1{δq

˙

{
?

τ . (5)

The next theorem states our self-normalized upper bound on the estimation error.
Theorem 1 (Self-normalized bound in adversarial setting). Assume m is a probability measure on S and
tpxpjq, ypjqqujPN is sampled according to Scheme I with F defined in (1). For any λ ą 0 and δ P p0, 1q, with
probability at least 1 ´ δ, for all n P N, the estimator defined in (2) satisfies

}pθλ ´ θ˚}Unpλq ď ελpn, d, δq. (6)

Moreover, for the unregularized case, we have the following result.
Proposition 2 (Self-normalized bound in adversarial setting for unregularized estimator). Under the same
assumptions as Theorem 1, if UN is positive definite for a fixed N P N, then for any δ P p0, 1q and n ě N ,
with probability at least 1 ´ δ, the estimator defined in (2) with λ “ 0 satisfies

}pθ ´ θ˚}Un
ď ε pn, d, δ, µminpUnq{nq . (7)

The proofs of Theorem 1 and Proposition 2 are provided in Appendix B.1. Informally, Theorem 1 and
Proposition 2 convey that with high probability, the self-normalized errors }pθλ ´ θ˚}Unpλq and }pθ ´ θ˚}Un
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scale as rOp
?

dq in the ℓ2-regularized and unregularized cases, where rOp¨q ignores logarithmic and other sub-
dominant factors. We note that Theorem 1 and Proposition 2 also imply upper bounds on the (un-normalized)
error }pθλ ´ θ˚}. Indeed, for any positive definite matrix A P Rdˆd and vector a P Rd, we have }a} ď

µminpAq´1{2}a}A. Thus, for example, (6) in Theorem 1 implies that }pθλ ´ θ˚} ď µminpUnpλqq´1{2ελpn, d, δq “

rO
`
a

d{p1 ` µminpUnqq
˘

with high probability. Then, for the projected estimator rθλ P ∆d´1, we have
}rθλ ´ θ˚} ď rO

`

mint1,
a

d{p1 ` µminpUnqqu
˘

by the property of ∆d´1. When µminpUnq “ Θpnq, we have
}pθλ ´ θ˚} “ rO

`
a

d{n
˘

.

The key idea in the proof of Theorem 1 is to first notice that pθλ ´ θ˚ “ Unpλq´1Wn ´

Unpλq´1pλθ˚q, where Wn :“
řn

j“1
ş

S
pIypjqΦj ´ θJ

˚ ΦjΦjqdm. We next show that tĎMnuně0 where ĎMn :“
λd{2

detpUnpλqq1{2 exp
´

1
2 }Wn}2

Unpλq´1

¯

is a super-martingale. Doob’s maximal inequality for super-martingales is
then used in conjunction with some careful algebra to establish (6). To prove Proposition 2, we use a vector
Bernstein inequality for bounded martingale difference sequences (Hsu et al., 2012a, Proposition 1.2) to show
a high probability upper bound for }Wn}. Note that UN being positive definite implies that Un is positive
definite for n ě N . Since }pθ ´ θ˚}Un

“ }Wn}U´1
n

ď }Wn}{
a

µminpUnq, we establish (7).

Since the fixed design is a special case of the adversarial setting, Theorem 1 and Proposition 2 imply the
same rO

`
?

d
˘

-style upper bounds as a corollary in the fixed design setting.
Corollary 3 (Self-normalized bound in fixed design setting). For an arbitrary probability measure m on S
and an arbitrary sequence txpjqujPN P XN, assume that ypjq is sampled from F pxpjq, ¨q independently for each
j P N with F defined in (1). For any λ ą 0 and δ P p0, 1q, with probability at least 1 ´ δ, the estimator defined
in (2) satisfies (6) for all n P N.

If UN is positive definite for some fixed N P N, then for any δ P p0, 1q and n ě N , with probability at least
1 ´ δ, the estimator defined in (2) with λ “ 0 satisfies (7).

The proof of Corollary 3 is inline with those of Theorem 1 and Proposition 2.

Furthermore, based on Theorem 1 and Proposition 2, we prove self-normalized upper bounds on the estimation
error under Scheme II, which corresponds to the random design setting in linear regression. For any probability
measure m on S Ď R, define Σpjq :“ E

xpjq„P
pjq

X

“ş

S
ΦjΦJ

j dm
‰

and Σn :“
řn

j“1 Σpjq for j, n P N.

Theorem 4 (Self-normalized bound in random design setting). Assume m is a probability measure on S,
tpxpjq, ypjqqujPN is sampled according to Scheme II with F defined in (1), and µmin

`

Σpjq
˘

ě σmin for some
constant σmin ą 0 and all j P N. For any δ P p0, 1{2q and n ě 32d2

σ2
min

logp d
δ q, with probability at least 1 ´ 2δ, the

estimator in (2) with λ “ 0 satisfies

}pθ ´ θ˚}Σn
ď 2ε pn, d, δ, σminq . (8)

Moreover, for regularized estimators, we have the following result.
Proposition 5 (Self-normalized bound in random design setting for regularized estimator). Under the same
assumptions as Theorem 4, for any λ ą 0, δ P p0, 1{2q, and n ě 32d2

σ2
min

log
`

d
δ

˘

, with probability at least 1 ´ 2δ,
the estimator defined in (2) satisfies

}pθλ ´ θ˚}Σn ď
?

2ελpn, d, δq. (9)

The proofs of Theorem 4 and Proposition 5 are given in Appendix B.2. As before, they convey that in the
random design setting, the self-normalized errors }pθλ ´ θ˚}Σn and }pθ ´ θ˚}Σn scale as rO

`
?

d
˘

with high
probability in the ℓ2-regularized and unregularized cases. Moreover, we once again note that Theorem 4
and Proposition 5 imply upper bounds on the (un-normalized) error }pθλ ´ θ˚}. For example, since σmin
is a positive constant, (8) implies that }pθ ´ θ˚} ď 2µminpΣnq´1{2ε pn, d, δ, σminq “ rO

`
a

d{n
˘

with high
probability since µminpΣnq ě nσmin by Weyl’s inequality (Weyl, 1912). Moreover, it is not hard to show
that for general Σn and λ ą 0, (9) can be generalized to }pθλ ´ θ˚}Σnpλq “ rOp

?
dq which again implies that

}pθλ ´ θ˚} “ rOpmint1,
a

d{pµminpΣnq ` 1quq.

8
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The main idea in the proofs of Theorem 4 and Proposition 5 is to establish a high probability lower bound on
µminp∆nq, where ∆n :“ Σ´ 1

2
n pUn ´ Σnq Σ´ 1

2
n . This can be achieved using the matrix Hoeffding’s inequality

(Tropp, 2012, Theorem 1.3). Then, we show that for any λ ě 0, }pθλ´θ˚}Σn
ď p1`µmin p∆nqq´1{2}pθλ´θ˚}Unpλq.

For Theorem 4, we prove that µminpUnq ě µminpΣnqpµminp∆nq ` 1q. Then, we can lower bound µminpUnq

in (7) by a multiple of µminpΣnq with high probability. Thus, (8) follows from (7) and the high probability
lower bound on µminp∆nq. For Proposition 5, (9) follows from (6) and the high probability lower bound on
µminp∆nq.

We briefly compare our results in this section with related results in the literature. In the (canonical, finite
dimensional) adversarial linear regression setting, Abbasi-Yadkori et al. (2011a) and Zhou et al. (2021) show
an rO

`
?

d
˘

upper bound for the self-normalized error of the ridge least-squares estimator. Specifically, the
upper bound in Hsu et al. (2012b) is rOpR

?
dq for the case where the noise term is R-sub-Gaussian and the

upper bound in Zhou et al. (2021) is rOpσ
?

d ` Rq for the case where the noise term is bounded by R with
variance bounded by σ2. The functional regression upper bound in (6) aligns precisely with this scaling
(neglecting sub-dominant factors) with respect to d and n. Moreover, the upper bounds of Abbasi-Yadkori
et al. (2011a) and Zhou et al. (2021) are susceptible to the magnitudes of the responses, as evidenced by their
multiplicative constants of d. In contrast, the multiplicative constant in our upper bound is 1, ensuring that
our upper bound remains independent of response scales. This independence constitutes a notable advantage,
distinguishing our linear model from those explored in previous works. In the (canonical, finite dimensional)
random design linear regression setting, Hsu et al. (2012b) show rO

`
?

d
˘

upper bounds for the self-normalized
error of the unregularized least-squares estimator under some conditions on the distribution of covariates.
The upper bound in (8) for the unregularized case also matches this scaling (neglecting sub-dominant factors).
Nevertheless, it’s crucial to acknowledge that our linear model (1) is characterized by a unique complexity.
Unlike the canonical linear regression framework, where the features are finite-dimensional vectors, and the
response is a scalar, both features and response are functions in our model. Consequently, the theoretical
results of Abbasi-Yadkori et al. (2011a), Zhou et al. (2021), and Hsu et al. (2012b) are not applicable to our
estimators. This intricacy introduces numerous analytical challenges, setting it apart from the conventional
linear regression paradigm. Furthermore, in our infinite dimensional model (18) studied in latter chapters, we
elevate the parameter from a finite-dimensional vector to a function (infinite dimensional vector), ushering in
even more formidable complexities and challenges during the analysis.

Finally, we note that an upper bound on }pθλ ´ θ˚} immediately implies an upper bound on the KS distance
between our estimated CDF and the true one. Let pFλpx, ¨q :“ rθJ

λ Φpx, ¨q denote the estimated CDF for any
x P X . Then, under the linear model (1), we have

sup
xPX

KSp pFλpx, ¨q, F px, ¨qq “ sup
xPX ,tPS

|prθλ ´ θ˚qJΦpx, tq| ď}rθλ ´ θ˚} sup
xPX ,tPS

}Φpx, tq}

ď
?

d}pθλ ´ θ˚},

where we use the Cauchy-Schwarz inequality and the fact that supxPX ,tPS }Φpx, tq} ď
?

d. Since }pθλ ´ θ˚} “

rO
`

mint1,
a

d{p1 ` µminpUnqqu
˘

(see discussion below Proposition 2 and 5) and pFλ, F P r0, 1s, we have
supxPX KSp pFλpx, ¨q, F px, ¨qq“ rO

`

mint1, d{
a

p1 ` µminpUnqqu
˘

. It is worth mentioning that the above upper
bound on the estimation error in KS distance may not be sharp because we focus on a tight analysis of
the estimation of θ˚ instead of F px, ¨q for some x P X . Nevertheless, in Appendix A, we show that when
µminpUnq “ 0 (µminpΣnq “ 0), the minimax risk in terms of the uniform KS distance for the estimation of F
is lower bounded by Ωp1q for the adversarial (random) setting.

3.3 Burn-in-time-free upper bound

Note that the theoretical guarantees in Theorem 4 and Proposition 5 require a burn-in time of the sample
size n: n ě 32d2

σ2
min

logp d
δ q. Motivated by Pires & Szepesvári (2012), we propose a new estimator qθλ in (10) to

eliminate the burn-in time of n:
qθλ P arg min

θPRd

`

}Unpλqθ ´ un} ` ∆U
n pδq}θ}

˘

, (10)

9
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where λ ě 0, δ P p0, 1q, un :“
řn

j“1
ş

S
Iypjq Φjdm, and ∆U

n pδq is a positive number such that ∆U
n pδq ě }Un´Σn}

with probability at least 1 ´ δ. For notatoinal convenience, we use qθ to denote qθ0. To calculate qθλ in (10), it
is necessary to first choose ∆U

n pδq for which we prove a lower bound in the following lemma.
Lemma 6. Assume m is a probability measure on S and tpxpjq, ypjqqujPN is sampled according to Scheme II
with F defined in (1). For any δ P p0, 1q and n P N, any ∆U

n pδq ě d
a

8n logpd{δq satisfies ∆U
n pδq ě ∆U

n with
probability at least 1 ´ δ.

The proof of Lemma 6 follows from the matrix Hoeffding’s inequality (Tropp, 2012, Theorem 1.3) and the
boundedness of CDFs, and is provided in Appendix E. Then, we show the following upper bound on the
estimation error of qθλ.
Theorem 7 (Self-normalized bound in random setting without burn-in time). Under the same assumptions
as Lemma 6, for any δ P p0, 1{2q and n P N, if µmin pΣnq ą 0, then, with probability at least 1 ´ 2δ, the
estimator defined in (10) with λ “ 0 satisfies

}qθ ´ θ˚} ď
1

µminpΣnq

„

2d
a

8n logpd{δq}θ˚} ` 2
ˆ

?
nd `

a

8nd logp1{δq `
4
3

?
d logp1{δq

˙ȷ

. (11)

The proof of Theorem 7 is provided in Appendix B.3. It conveys that for any n P N, as long as µpΣnq ą 0,
}qθ ´ θ˚} ď rO

`

d
?

n
µminpΣnq

˘

holds with high probability. Under the assumption that µminpΣpjqq ě σmin for any
j P N as in Theorem 4 and Proposition 5, we have that }qθ ´ θ˚} ď rO

`

d{
?

n
˘

with high probability for any
n P N. Compared with the rO

`
a

d{n
˘

upper bound of the estimation error of pθ in Theorem 4, qθ suffers a
larger error rate wrt the dimension d in order to eliminate the burn-in time of the sample size n. Thus, qθ
is more applicable to the estimation of θ˚ for small sample size and small dimension. However, it is worth
mentioning that since the estimation errors of proper estimators which are contained in the probability
simplex are always bounded by 2, our upper bound in (11) is only non-trivial for the projection of qθ to the
probability simplex when n “ Ωpd2 logpd{δq{σ2

minq which aligns with the scale of the burn-in time of pθ. Thus,
the estimator (10) only eliminates the burn-in time among improper estimators.

The proof of Theorem 7 builds on the upper bound shown in Pires & Szepesvári (2012) for the estimator
that minimizes the unsquared penalized loss as in (10). By Pires & Szepesvári (2012, Theorem 3.4), we have
that with probability at least 1 ´ δ,

}Σnpλqqθλ ´ Σnθ˚} ď pλ ` 2∆U
n pδqq}θ˚} ` 2}un ´ Eruns}.

Then, we can bound }un ´ Eruns} with high probability by the vector Bernstein inequality (Hsu et al., 2012a,
Proposition 1.2). By setting λ “ 0 and ∆U

n pδq “ d
a

8n logpd{δq as is guaranteed by Lemma 6, we obtain (11)
after some derivation.

4 Minimax lower bounds

To show that our estimator (2) is minimax optimal, we prove information theoretic lower bounds on the
ℓ2-norm of the estimation error for any estimator. Recall that for a distribution family Q and (parameter)
function ξ : Q Ñ Rd, the minimax ℓ2-risk is defined as,

RpξpQqq :“ inf̂
ξ

sup
QPQ

Ez„Qr}ξ̂pzq ´ ξpQq}s, (12)

where the infimum is over all (possibly randomized) estimators ξ̂ of ξ based on a sample z, and the supremum
is over all distributions in the family Q. To specialize this definition for our problem, for any x P X and θ P Rd,
let P Φ

Y |x;θ denote the probability measure defined by the CDF θJΦpx, ¨q. Moreover, for any sequence x1:n :“
pxp1q, . . . , xpnqq P X n, define the collection of product measures, Pd

x1:n :“
!

bn
j“1P Φ

Y |xpjq;θ : θ P ∆d´1, Φ P Bd

)

,

where

Bd :“ trϕ1, . . . , ϕdsJ : ϕi : X ˆ R Ñ r0, 1s is measurable and ϕipx, ¨q is a CDF on R, @i P rdsu.

10
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For any distribution P P Pd
x1:n , let θpP q be a parameter in ∆d´1 such that P “ bn

j“1P Φ
Y |xpjq;θ. Then, we have

the following theorem in the adversarial setting.
Theorem 8 (Information theoretic lower bound in adversarial setting). For any d ě 2 and any sequence
x1:n “ pxp1q, . . . , xpnqq P X n, we have

RpθpPd
x1:n qq “ Ω

´

mint1,
a

d{p1 ` µminpUnqqu

¯

. (13)

The proof uses Fano’s method (Fano, 1961) and is given in Appendix C.1. Note that strictly speaking, the
above theorem is written for the fixed design setting. However, a lower bound in the fixed design setting also
implies the same lower bound in adversarial setting. Furthermore, by our discussion below Theorem 1, (6)
implies that in the adversarial setting,

P
„

}pθλ ´ θ˚}2 ě
C1d logpnq ` C2 ` C3r

1 ` µminpUnq

ȷ

ď e´r

for r ą 0 and some constants C1, C2, and C3, which immediately implies that Er}pθλ ´ θ˚}s “

rOp
a

d{p1 ` µminpUnqqq and Er}rθλ´θ˚}s “ rOpmint1,
a

d{p1 ` µminpUnqquq. Thus, our estimator rθλ is minimax
optimal. When µminpUnq “ Θpnq, the optimal rate is rΘp

a

d{nq in the adversarial setting.

In the proof of Theorem 8, we construct a family of Ωpa{
?

dq-packing subsets of ∆d´1 for a P p0, 1q under
ℓ2-distance. We then show that when ϕ1, . . . , ϕd are the CDFs of d Bernoulli distributions, for any θp1q ‰ θp2q

in such a packing subset, the Kullback-Leibler (KL) divergence (see definition in Appendix C.1) satisfies

DpPY |xpjq;θp1q }PY |xpjq;θp2q q “ Opa2p1 ` µminpUnqq{dq

for any j P rns. Since the above family of Bernoulli distributions is a subset of Pd
x1:n , we are able to show that

RpθpPx1:n qq “ Ω
`
a

d{p1 ` µminpUnqq
˘

using Fano’s method and the aforementioned bound on KL divergence.

Next, to analyze minimax ℓ2-risk under the random setting, let DX denote the set of all probability
distributions on X . For any PX P DX , let PXP Φ

Y |X;θ denote the joint distribution of pX, Y q such that the
marginal distribution of X is PX and the conditional distribution of Y given X “ x is P Φ

Y |x;θ. Define the
distribution family

Pd
n :“

␣

bn
j“1 P

pjq

X P Φ
Y |X;θ : θ P Rd, Φ P Bd, P

pjq

X P DX
(

,

and for any P P Pd
n, let θpP q denote the parameter in ∆d´1 such that P “ bn

j“1P
pjq

X P Φ
Y |X;θ. Clearly, for

any x1:n P X n, we have
␣

bn
j“1δxpjqPY |X;θ : θ P ∆d´1( Ď Pd

n. Thus, each Pd
x1:n is a collection of marginal

distributions of elements belonging to such subsets of Pd
n. Then, by the definition of minimax ℓ2-risk, Theorem

8 immediately implies the following corollary.
Corollary 9 (Information theoretic lower bound in random setting). For any d ě 2,

RpθpPd
nqq “ Ω

´

mint1,
a

d{p1 ` µminpΣnqqu

¯

(14)

The proof is given in Appendix C.2. By the discussion below Proposition 5, our estimator rθλ (λ ą 0) is
minimax optimal. When µminpΣnq “ Θpnq as in Theorem 4 and Corollary 5, the lower bound on the Euclidean
norm of the estimation error is also Ω

`
a

d{n
˘

in random setting. Following the discussion below Theorem
4, (8) implies that in random setting, Pr}pθ ´ θ˚} ě C1

a

d{n ` C2
a

rd{n ` C3r
?

d{ns ď e´r for r ą 0 and
constants C1, C2, and C3, which immediately implies that Er}pθ ´ θ˚}s “ rOp

a

d{nq. Thus, the estimator (2)
is minimax optimal with rate rΘp

a

d{nq in random setting when µminpΣnq “ Θpnq.

5 Mismatched model

In general, a mismatch may exist between the true target function and our linear model (1) with basis Φ. So,
in analogy with canonical linear regression where additive Gaussian random variables are used to model the

11
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error term (Montgomery et al., 2021), we consider the following mismatched model:

F px, tq “ θJ
˚ Φpx, tq ` epx, tq, @ x P X , t P R, (15)

where an additive error function depending on the context is included to model the mismatch in (1). Note that
in (15), each F px, ¨q is a CDF and e : X ˆ S Ñ r´1, 1s is a measurable function. One equivalent interpretation
of (15) is as follows. Suppose that their exists another contextual CDF function ϕe such that F px, ¨q is a
mixture of the linear model θJ

˚ Φpx, ¨q and the new feature function ϕepx, ¨q, i.e., for some q P r0, 1s,

F px, tq “ p1 ´ qqθJ
˚ Φpx, tq ` qϕepx, tq “ θJ

˚ Φpx, tq ` q
`

ϕepx, tq ´ θJ
˚ Φpx, tq

˘

, @ x P X , t P R.

Then, we naturally obtain an additive error function epx, tq “ q
`

ϕepx, tq ´ θJ
˚ Φpx, tq

˘

.

Given a sample tpxpjq, ypjqqujPrns generated using the mismatched model (15), let ejptq denote epxpjq, tq for
j P rns. Moreover, define En :“

řn
j“1

ş

S
ejΦjdm and Bn :“ ErEns “

řn
j“1 E

“ş

S
ejΦjdm

‰

. Then, we have the
following theoretical guarantees for the task of estimating θ˚ using the estimator in (2) in the adversarial and
random settings.
Theorem 10 (Self-normalized bound in mismatched adversarial setting). Assume m is a probability measure
on S and tpxpjq, ypjqqujPN is sampled according to Scheme I with F defined in (15). For any λ ą 0 and
δ P p0, 1q, with probability at least 1 ´ δ, the estimator defined in (2) satisfies that for all n P N,

}pθλ ´ θ˚}Unpλq ď ελpn, d, δq ` }En}{
?

λ. (16)

The proof of Theorem 10 follows the same approach as the proof of Theorem 1, and it is provided in Appendix
I.1. Furthermore, Theorem 10 implies Corollary 11 for the mismatched random setting.
Corollary 11 (Self-normalized bound in mismatched random setting). Assume m is a probability measure on
S, tpxpjq, ypjqqujPN is sampled according to Scheme II with F defined in (15), and µminpΣpjqq ě σmin for some
σmin ą 0 and all j P N. For any λ ą 0, δ P p0, 1{2q, and n ě 32d2

σ2
min

log
`

d
δ

˘

, with probability at least 1 ´ 2δ, the
estimator defined in (2) satisfies

}pθλ ´ θ˚}Σn
ď

?
2ελpn, d, δq `

a

2{λ}Bn}. (17)

The proof of Corollary 11 is given in Appendix I.2. It follows from the proofs of Theorem 10 and Proposition
5.

In the adversarial setting, comparing (16) in Theorem 10 with (6) in Theorem 1, we see that the effect of the
additive error in the mismatched model is captured by the additional }En}{

?
λ term in our self-normalized

error upper bound. Similarly, in the random setting, comparing (17) in Corollary 11 with (9), we again see
that the effect of the additive error is captured by the additional

a

2{λ}Bn} term in the self-normalized upper
bound.

6 Infinite dimensional model

So far, we have been assuming finite-dimensional models where the number of base contextual CDFs ϕi’s
per sample is finite. It is natural to consider generalizing the linear model to be infinite-dimensional and
estimating an infinite dimensional parameter θ˚ which shall be considered as a function on the “index” space
of the base functions. In Section 6.1, we formally introduce the infinite-dimensional linear model. We present
necessary definitions and technical facts for the statement of the estimator and theorem in Section 6.2. We
extend the estimator pθλ in (2) with properly chosen regularization and provide a high probability upper
bound on the estimation error of the generalized estimator in Section 6.3.

6.1 Formal model

First, we introduce the infinite dimensional index space Ω and the generalized basis function Φ. Assume
that pΩ, FΩ, nq is a measure space with npΩq ă 8 and Φ : X ˆ Ω ˆ R Ñ r0, 1s, px, ω, tq ÞÑ Φpx, ω, tq is a

12
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pBpX q b FΩ b BpRqq{Bpr0, 1sq-measurable function (see Appendix B for the explanations of notation) such
that for any x P X and n-a.e. ω P Ω, Φpx, ω, ¨q is the CDF of some R-valued random variable with its range
contained in some Borel set S Ď R. Define the following mapping,

x¨, ¨y : L2pΩ, nq ˆ L2pΩ, nq Ñ R, pf, gq ÞÑ

ż

Ω
fgdn.

Then, x¨, ¨y is an inner product on L2pΩ, nq and pL2pΩ, nq, x¨, ¨yq is a Hilbert space. Let } ¨ } denote the norm
by induced x¨, ¨y on L2pΩ, nq. Assume that pL2pΩ, nq, x¨, ¨yq is separable. Then, there exists a countable
orthonormal basis on pL2pΩ, nq, x¨, ¨yq. For notational convenience, we write L2pΩ, nq to represent the
Hilbert space pL2pΩ, nq, x¨, ¨yq. Let e “ teiu

8
i“1 be an arbitrary countable orthonormal basis of L2pΩ, nq and

σ “ tσiuiPN be an arbitrary real sequence such that
ř8

i“1 |σi| ă 8. Assume that there exists some unknown
θ˚ P Hσ,e such that θ˚ ě 0 n-a.e.,

ş

Ω θ˚n “ 1, and the target function F satisfies the following model

F px, tq “ xθ˚p¨q, Φpx, ¨, tqy, @ x P X , t P R. (18)

6.2 Technical preliminaries

The proofs of the theoretical results in this section are provided in Appendix F. Given the sample
tpxpjq, ypjqqujPN Ď X ˆ R, define the function Φj : Ω ˆ R Ñ r0, 1s, pω, tq ÞÑ Φpxj , ω, tq for any j P N.
Since npΩq ă 8 and |Φpx, ω, tq| ď 1 for any x P X , n-a.e. ω P Ω, and any t P R, we have Φj P L2pΩ, nq for
any j P N. Then, for any j P N, we define,

Ψj : L2pΩ, nq ˆ S Ñ R, pθ, tq ÞÑ xθp¨q, Φjp¨, tqy.

Then, by Holder’s inequality, for any j P N and θ P L2pΩ, nq, we have suptPR |Ψjpθ, tq| ď npΩq
ş

Ω |θ|2dn ă 8.
It follows that Ψjpθ, ¨q P L2pS,mq. Moreover, we have that for any n P N, any θ P L2pΩ, nq, and n-a.e. ω P Ω,

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

ż

S

Ψjpθ, tqΦjpω, tqmpdtq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

j“1

ż

S

|Ψjpθ, tqΦjpω, tq|mpdtq ď nnpΩq

ż

Ω
|θ|2dn.

Since npΩq ă 8, it follows that the function ω ÞÑ
řn

j“1
ş

S
Ψjpθ, tqΦjpω, tqmpdtq is in L2pΩ, nq. Thus, for any

n P N, we can define an operator Un : L2pΩ, nq Ñ L2pΩ, nq by

pUnθqpωq :“
n
ÿ

j“1

ż

S

Ψjpθ, tqΦjpω, tqmpdtq “

n
ÿ

j“1

ż

S

xθp¨q, Φjp¨, tqyΦjpω, tqmpdtq (19)

for any θ P L2pΩ, nq. We show the following properties of Un.
Lemma 12. For any n P N, Un is a self-adjoint positive Hilbert-Schmidt integral operator with }Un} ď nnpΩq.
Thus, it is also a compact operator.

Now, we assume that Un satisfies Assumption 13 for some n P N.
Assumption 13. Assume that ei is an eigenfunction of Un with the corresponding eigenvalue denoted with
λi for any i P N.

Under the Assumption 13 on Un, we can conclude from Lemma 12 that:
Corollary 14. Assume that Un satisfies Assumption 13 for some n P N. Then, we have 0 ď λi ď nnpΩq for
any i P N and λi Ñ 0.

Define the set L2
σpΩ, nq :“

!

θ P L2pΩ, nq :
ř8

i“1
|xei,θy|

2

σ4
i

ă 8

)

. Then, we have that

Lemma 15. For any σ “ tσiuiPN Ď R satisfying
ř8

i“1 |σi| ă 8, L2
σpΩ, nq is a linear subspace of L2pΩ, nq.

For any θ P L2
σpΩ, nq, we have

8
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

λi `
1
σ2

i

ˇ

ˇ

ˇ

ˇ

2
|xei, θy|2 ď

8
ÿ

i“1
2λ2

i |xei, θy|2 `

8
ÿ

i“1

2
σ4

i

|xei, θy|2 ď 2}Unθ}2 ` 2
8
ÿ

i“1

|xei, θy|2

σ4
i

ă 8,

13
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which implies that t
řm

i“1pλi ` 1
σ2

i
qxei, θyeiumPN is a Cauchy sequence and thus converges in L2pΩ, nq to

ř8

i“1pλi ` 1
σ2

i
qxei, θyei P L2pΩ, nq. Therefore, we can define the operator Un,σ : L2

σpΩ, nq Ñ L2pΩ, nq,

θ ÞÑ
ř8

i“1

´

λi ` 1
σ2

i

¯

xei, θyei for which we show the following lemma.

Lemma 16. Un,σ is bijective linear operator from L2
σpΩ, nq onto L2pΩ, nq. U´1

n,σ is a bounded linear operator
on L2pΩ, nq with }U´1

n,σ} ď supiPN σ2
i and U´1

n,σθ “
ř8

i“1
σ2

i xei,θy

1`λiσ2
i

ei for any θ P L2pΩ, nq. Moreover, U´1
n,σ is

positive and self-adjoint.

Consequently, we can define the following mapping

} ¨ }Un,σ : L2
σpΩ, nq Ñ r0, 8q, θ ÞÑ

a

xθ, Un,σθy “

g

f

f

e}θ}2
Un

`

8
ÿ

i“1

|xei, θy|2

σ2
i

, (20)

where }θ}Un
:“

a

xθ, Unθy for any θ P L2pΩ, nq. Define the set

Hσ,e :“
#

θ P L2pΩq :
8
ÿ

i“1
|xei, θy|2{σ2

i ă 8

+

and the mapping x¨, ¨yσ,e : Hσ,e ˆ Hσ,e Ñ R, pf, gq ÞÑ
ř8

i“1
xei,fyxei,gy

σ2
i

. Similar to the proofs of Lemma 15,
we can show that Hσ,e is a linear subspace of L2pΩ, nq. Moreover, pHσ,e, x¨, ¨yσ,eq is also a separable Hilbert
space with tσieiuiPN being an orthonormal basis. For notational convenience, we write Hσ,e to represent the
Hilbert space pHσ,e, ¨, x¨yσ,eq and use } ¨ }σ,e to denote the induced norm on Hσ,e. Moreover, we show the
following lemma.
Lemma 17. For any real sequence σ “ tσiuiPN with limiÑ8 σi “ 0, Hσ,e Ď L2

σpΩ, nq.

6.3 Self-normalized upper bound

Since we have proved that Ψjpθ, ¨q P L2pS,mq for any j P N and θ P L2pΩ, nq, the following loss function is
well-defined on Hσ,e,

Lpθ; σq :“
n
ÿ

j“1
}Iypjq p¨q ´ Ψjpθ, tq}2

L2pS,mq `

8
ÿ

i“1

|xei, θy|2

σ2
i

.

In fact, assuming the convention that 0{0 “ 0 and 1{0 “ 8, we can extend the domain of Lp¨; σq to L2pΩ, nq

by extending its codomain from r0, 8q to r0, 8s.

We propose to estimate θ˚ by minimizing the above loss function over Hσ,e:

pθσ :“ arg min
θPHσ,e

Lpθ; σq. (21)

Since
ř8

i“1
|xei,θy|

2

σ2
i

“ 8 for any θ P L2pΩ, nq, we also have pθσ “ arg minθPL2pΩ,nq Lpθ; λq. We have the
following formula for pθσ in (21).
Proposition 18. The solution to the optimization problem (21) is given as the following,

pθσ “ U´1
n,σ

˜

n
ÿ

j“1

ż

S

Iypjq ptqΦjp¨, tqmpdtq

¸

. (22)

The proof of Proposition 18 is provided in Appendix G. Under the adversarial setting, we show the following
upper bound for the self-normalized estimation error of pθσ in (21).

14
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Theorem 19 (Self-normalized bound in adversarial setting for infinite dimensional model). Assume m is
a probability measure on pS, BpSqq, n is a finite measure on pΩ, FΩq, e “ teiu

8
i“1 is an orthonormal basis

of L2pΩ, nq, σ “ tσiuiPN is a real sequence satisfying
ř8

i“1 |σi| ă 8, θ˚ P Hσ,e satisfies θ˚ ě 0 n-a.e. and
ş

Ω θ˚n “ 1, and tpxpjq, ypjqqujPN is sampled according to Scheme I with F defined in (18).

For any given n P N and any δ P p0, 1q, if Un defined in (19) satisfies Assumption 13 and σ satisfies that
|σi| ă 1?

λi
for any i P N, then, with probability at least 1 ´ δ, the estimator pθσ defined in (21) satisfies

}pθσ ´ θ˚}Un,σ ď

g

f

f

e

˜

8
ÿ

i“1
log p1 ` λiσ2

i q

¸

` 2 log 1
δ

` }θ˚}σ,e. (23)

In particular, for any given n P N and any δ P p0, 1q, if Un defined in (19) satisfies Assumption 13 and σ

satisfies that |σi| ă 1?
nnpΩq

for any i P N, then, with probability at least 1 ´ δ, the estimator pθσ defined in
(21) satisfies

}pθσ ´ θ˚}Un,σ ď

g

f

f

e

˜

8
ÿ

i“1
log p1 ` nnpΩqσ2

i q

¸

` 2 log 1
δ

` }θ˚}σ,e. (24)

The detailed proof of Theorem 19 is provided in Appendix D. Since
ř8

i“1 |σi| ă 8 and θ˚ P Hσ,e, we have
that }θ˚}σ,e ă 8 and

ř8

i“1 |σi|
2 ă 8 which implies that
8
ÿ

i“1
log

`

1 ` λiσ
2
i

˘

ď

8
ÿ

i“1
log

`

1 ` nnpΩqσ2
i

˘

ă 8.

Thus, the RHS terms in (23) and (24) are finite and pθσ ´ θ˚ P L2
σpΩ, nq. (24) conveys that with high

probability,

}pθσ ´ θ˚}Un,σ ď rO

¨

˝1 `

g

f

f

e

8
ÿ

i“1
logp1 ` nnpΩqσ2

i q

˛

‚.

When Ω “ rds for some d P N and n is the counting measure on Ω, (21) reduces to (2) after setting ei “ 1tiu

and σi “ 1?
λ

for any i P rds and some λ ą 0. Then, by (20) and (24), we have }pθσ ´ θ˚}Un
ď rO

`
?

d
˘

and

}pθσ ´ θ˚}Un ď rO
`

a

d{p1 ` µminpUnqq
˘

,

which also recovers the result in Theorem 1. Thus, Theorem 19 is a generalization of Theorem 1 for the
possibly infinite dimensional model (18).

The proof of Theorem 19 generalizes the approach used in the proof of Theorem 1 to the setting of the
infinite dimensional model (18). However, there are plenty of technical challenges in dealing with the infinite
dimensional L2 space. First of all, since the vectors in the proof of Theorem 1 are generalized to functions
and the matrices are generalized to operators, we need to ensure that these functions are well-defined
in some proper spaces and figure out the domain/codomain and properties (e.g., linearity, boundedness,
self-adjointness, positivity, compactness, invertibility, etc) of those operators. As in the proof of Theorem 1,
we would like to write pθσ ´ θ˚ “ U´1

n,σWn ´ U´1
n,σpςθ˚q where,

Wn :“
n
ÿ

j“1

ż

S

Iypjq ptqΦjpω, tqmpdtq ´

ż

S

Ψjpθ˚, tqΦjpω, tqmpdtq,

and ςθ˚ :“
ř8

i“1
xei,θ˚y

σ2
i

ei. However, this sequence t
řm

i“1
xei,θ˚y

σ2
i

eiumPN only converges for θ˚ P L2
σpΩ, nq but

not Hσ,e. Thus, for general θ˚ P Hσ,e, ςθ˚ does not exist and we instead consider the finite-rank operator
ςm : θ ÞÑ

řm
i“1

xei,θy

σ2
i

ei on L2pΩ, nq and the sequence tθ˚,m :“ U´1
n,σpUnθ˚ ` ςmθ˚qumPN which we show satisfies

}θ˚,m ´ θ˚}Un,σ Ñ 0 as m Ñ 8. Then, since it suffices to bound

}pθσ ´ θ˚,m}Un,σ ď }U´1
n,σWn}Un,σ ` }U´1

n,σςmθ˚}Un,σ ď }Wn}U´1
n,σ

` }θ˚}σ,e.

15
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To bound }Wn}U´1
n,σ

, we use the martingale approach as in the proof of Theorem 1. However, after proving
that

␣

Mnpαq :“ exp
`

xα, Wny ´ 1
2 }α}2

Un

˘(

ně0 is a super-martingale for any α P L2pΩ, nq wrt the natural
filtration tFn :“ σpx1, y1, . . . , xn, yn, xn`1quně0, it is difficult to pick a properly defined “Gaussian” random
variable in L2pΩ, nq. Inspired by Lifshits (2012, Example 2.2), we define β “

ř8

i“1 σiζiei with tζiuiPN being a
sequence of independent Np0, 1q-random variables. Note that β P L2pΩ, nq a.s. if

ř8

i“1 σ2
i ă 8. Thus, we can

define ĎMn :“ ErMnpβq|F8s with F8 :“ σpY8
n“1Fnq. Then, we prove that tMnuně0 is also a super-martingale

wrt tFnuně0 and the question remained is to calculate Mn. However, directly generalizing (41), we would get

“}Wn}2
U´1

n,σ
´ }β ´ U´1

n,σWn}2
Un,σ

“ 2xβ, Wny ´ }β}2
Un,σ

”

which does not make sense because }β}Un,σ could be 8 with positive probability. Since it is hard to deal
with this in the integration over the the law of β, we instead adopt the similar approach as we do for θ˚.
Define βm :“

řm
i“1 σiζiei and Wn,m :“

řm
i“1xei, Wnyei. Then, after some calculation, we get

}Wn,m}2
U´1

n,σ
´ }βm ´ U´1

n,σWn,m}2
Un,σ

“ 2xβm, Wn,my ´ }βm}2
Un,σ

and

ErexppHmq|F8s “
1

a

śm
i“1p1 ` λiσ2

i q
exp

ˆ

1
2}Wn,m}2

U´1
n,σ

˙

,

where exppHmq :“ exp
␣

xβm, Wn,my ´ 1
2 }βm}2

Un

(

. Afterwards, we use dominated convergence theorem to
conclude that,

lim
mÑ8

ErexppHmq|F8s “ ErMn|F8s “ ĎMn, a.s..

The verification the integrability of the dominating function exp
´

n
ř8

i“1 |σiζi| ` 1
2
ř8

i“1 λiσ
2
i ζ2

i

¯

is also
quite technical, during which the condition that

ř8

i“1 |σi| ă 8 is used. Finally, we obtain that ĎMn “

1?
ś

8
i“1p1`λiσ2

i
q

exp
´

1
2 }Wn}2

U´1
n,σ

¯

. Then, by applying Doob’s maximal inequality for super-martingales, we

can bound }Wn}2
U´1

n,σ
which yields the final bound on }pθσ ´ θ˚}Un,σ in (23). (24) immediately follows from

(23) and Corollary 14.

7 Numerical studies

In this section, we demonstrate the scaling of estimation errors of the proposed estimator empirically in our
synthetic data experiments in Section 7.1 and illustrate the practical utility of the proposed estimator in our
real data experiments in Section 7.2.

7.1 Synthetic data experiments

This section contains the experimental results on discrete and continuous synthetic data.

Bernoulli data experiments. To illustrate that our estimator (2) achieves the ℓ2-error rate of
rΘp
a

d{p1 ` µminpUnqqq in the estimation of θ under model (1), we consider the Bernoulli data generated
according to the hard instance used to show the lower bound in the proof of Theorem 8 in Appendix C.1.
Specifically, after choosing a true parameter θ˚ P ∆d´1 of dimension d P N, for any j P N, we set ϕipxj , ¨q

as the CDF of Bernoullippjiq for i P rds, where pj :“ rpj1, . . . , pjdsJ P r0, 1sd is defined as follows. When
j P rds, we set pji “ 1 ´

cj

2d3 ´
cj1ti“ju

2d3 ; when j ą d, we set pji “ 1 ´
cjµminpRj´1q

2d2 ´
cjµminpRj´1q1ti“pj mod dqu

2d2 ,
where mod denotes the modulo operation, cj ’s are constants independent of d, and Rj :“ qjqJ

j ` 1
n

řj´1
k“1 qkqJ

k

for any j ě d with qj :“ r1 ´ pj1, . . . , 1 ´ pjdsJ. Then, we sample yj independently from BernoullipθJ
˚ pjq

whose CDF is θJ
˚ Φj . Given n samples, we calculate pθλ using different values of λ according to (21) with

S “ r0, 1s and m “ Lebpr0, 1sq. We evaluate the performance using the un-normalized ℓ2-error }pθλ ´ θ˚}, the
self-normalized error }pθλ ´ θ˚}Unpλq, and the KS distance KSp pFλpx, ¨q, F px, ¨qq (for KS distance, we consider
the family of Bernoulli distributions with parameters in r1 ´ 1

d2 , 1 ´ 1
2d2 s to align with the setting of pj in
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Figure 2: Means and 90% confidence intervals of un-normalized ℓ2-errors }pθλ ´ θ˚}, KS distances
KSp pFλpx, ¨q, F px, ¨qq, and self-normalized errors }pθλ ´ θ˚}Unpλq against sample size n in logarithmic scale in
Bernoulli synthetic data experiments.

data generation). We repeat the experiments 100 times to calculate means and 90% confidence intervals of
the errors.

We first study the dependence of estimation errors of our estimator (2) on sample size n with the dimension
d “ 5. Specifically, for λ “ 0.001, 0.1, and 10, we run the experiments with n ranging from 104 to 106 and
plot the means and 90% confidence intervals of the errors against n (both in logarithmic scale) in Figure 2.
According to Figure 2, for different values of λ, the slopes of the curves of log }pθλ ´θ˚}, log KSp pFλpx, ¨q, F px, ¨qq,
and log }pθλ ´ θ˚}Unpλq against log n are around ´0.5, ´0.5, and 0.025, which obeys the rΘp

a

d{nq, rOpd{
?

nq

(assuming µminpUnq grows linearly with n), and Op
a

d logp1 ` n{λqq upper bounds on the errors }pθλ ´ θ˚},
KSp pFλpx, ¨q, F px, ¨qq, and }pθλ ´ θ˚}Unpλq respectively according to Theorem 1 and 8.

Then, we study the dependence of estimation errors of estimator (2) on dimension d with the sample size
n “ 106. For λ “ 0.001, 0.1, and 10, we run the experiments with d ranging from 10 to 100. Then, we plot the
means and 90% confidence intervals of log }pθλ´θ˚} and log KSp pFλpx, ¨q, F px, ¨qq against log d´log µminpUnpλqq

as well as log }pθλ ´ θ˚}Unpλq against log d in Figure 3. According to Figure 3, for different values of λ, the
slopes of the curves of log }pθλ ´ θ˚} and log KSp pFλpx, ¨q, F px, ¨qq against log d ´ log µminpUnpλqq are around
0.5 and ´0.5 respectively, and the slopes of the curves of log }pθλ ´ θ˚}Unpλq against log d are around 0.5.
These results also obey the rΘp

a

d{p1 ` µminpUnqqq, rOpd{
a

p1 ` µminpUnqquq , and Op
a

d logp1 ` n{λqq upper
bounds on the errors }pθλ ´ θ˚}, KSp pFλpx, ¨q, F px, ¨qq, and }pθλ ´ θ˚}Unpλq respectively according to Theorem 1
and 8.

Polynomial CDF data experiments. For d P N, rpiq :“ i if 1 ď i ď d`1
2 , and rpiq :“ 2

2i´d`1 if
d`1

2 ă i ď d, we consider the following basis CDFs:

ϕipx, tq “ 1tt P r0, 1{xsupxtqrpiq ` 1tt ą 1{xu, i P rds. (25)
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Figure 3: Means and 90% confidence intervals of un-normalized ℓ2-errors }pθλ ´ θ˚}, KS distances
KSp pFλpx, ¨q, F px, ¨qq, and self-normalized errors }pθλ ´ θ˚}Unpλq against d{µminpUnpλqq and dimension d in
logarithmic scale in Bernoulli synthetic data experiments.

To simulate n samples, we first choose a true parameter θ˚. For each j P rns, xj is sampled independently
from the uniform distribution on r0.5, 2s. Then, we sample yj independently from the CDF θJ

˚ Φpxj , ¨q using
the inverse CDF method for j P rns. Given the simulated sample, we calculate pθλ using (3) with S “ r0, 2s,
m chosen as the uniformly distribution mU on S, and different values of λ. We evaluate the performance by
calculating ℓ2-error }pθλ ´ θ˚}, the self-normalized errors }pθλ ´ θ˚}Unpλq and }pθλ ´ θ˚}Σn , and the KS distance
KSp pFλpx, ¨q, F px, ¨qq. To obtain stable results, we repeat the simulation independently 100 times in each
setting to calculate 90% confidence intervals and means of the errors.

Fixing d “ 5, we study the dependence of estimation errors of our estimator (2) on sample size n using
λ “ 0.001, 0.1, and 10. We run the experiments with n ranging from 104 to 106 and plot the means and
90% confidence intervals of the errors against n (both in logarithmic scale) in Figure 4. According to Figure
4, for different values of λ, the slopes of the curves of log }pθλ ´ θ˚}Unpλq and }pθλ ´ θ˚}Σn

against log n are
around 0, which obeys the Op

a

d logp1 ` n{λqq upper bounds proved in Theorem 1 and Proposition 5. When
λ is negligible compared to µminpUnqq, the rOp

a

d{pλ ` µminpUnqqq bound on ℓ2-error followed from Theorem
1 implies the rOp

a

d{nq ℓ2-error bound if µminpUnqq grows linearly with n. Indeed, for small λ “ 0.001, the
slope of the curve of log }pθλ ´ θ˚} against log n in Figure 4a is around ´0.5. When λ is comparable with
µminpUnqq, as is observed in Figure 4b and 4c, the slopes of the curves of ℓ2-errors are larger than ´0.5, which
is expected from the rOp

a

d{pλ ` µminpUnqqq bound. The slopes of the curves of the KS distances against
log n are smaller than 0.5, also obeying the rOpd{

a

pλ ` µminpUnqqq bound implied by Theorem 1.

Next, fixing n “ 105, we run the experiments with d ranging from 10 to 100 using λ “ 0.001, 0.1, and 10. We
plot the means and 90% confidence intervals of the errors against d (both in logarithmic scale) in Figure 5.
According to Figure 5, for different values of λ, the slopes of the curves of log }pθλ ´θ˚}, log }pθλ ´θ˚}Unpλq, and
log }pθλ´θ˚}Σn

against log d are around 0, obeying the respective rOp
a

d{pλ ` µminpUnqqq, Op
a

d logp1 ` n{λqq,
and Op

a

d logp1 ` n{λqq bounds proved in Theorem 1 and Proposition 5. The slopes of the curves of the

18



Published in Transactions on Machine Learning Research (02/2024)

9.5 10.5 11.5 12.5 13.5

log of sample size (log n)

−8

−7

−6

−5

−4

−3

−2

−1

0

lo
g

of
er

ro
r

`2 error KS distance

(a) λ “ 0.001

9.5 10.5 11.5 12.5 13.5

log of sample size (log n)

−8

−7

−6

−5

−4

−3

−2

−1

lo
g

of
er

ro
r

`2 error KS distance

(b) λ “ 0.1

9.5 10.5 11.5 12.5 13.5

log of sample size (log n)

−8

−7

−6

−5

−4

−3

−2

lo
g

of
er

ro
r

`2 error KS distance

(c) λ “ 10

9.5 10.5 11.5 12.5 13.5

log of sample size (log n)

−2.5

−2.0

−1.5

−1.0

−0.5

lo
g

of
se

lf
-n

or
m

al
iz

ed
er

ro
r

Un(λ) Σn

(d) λ “ 0.001

9.5 10.5 11.5 12.5 13.5

log of sample size (log n)

−2.5

−2.0

−1.5

−1.0

−0.5

lo
g

of
se

lf
-n

or
m

al
iz

ed
er

ro
r

Un(λ) Σn

(e) λ “ 0.1

9.5 10.5 11.5 12.5 13.5

log of sample size (log n)

−2.5

−2.0

−1.5

−1.0

−0.5

lo
g

of
se

lf
-n

or
m

al
iz

ed
er

ro
r

Un(λ) Σn

(f) λ “ 10

Figure 4: Means and 90% confidence intervals of un-normalized ℓ2-errors }pθλ ´ θ˚}, KS distances
KSp pFλpx, ¨q, F px, ¨qq, and self-normalized errors }pθλ ´ θ˚}Unpλq and }pθλ ´ θ˚}Σn against sample size n in
logarithmic scale in polynomial CDF synthetic data experiments.

KS distances are smaller than 1, which also obeys the rOpd{
a

pλ ` µminpUnqqq bound implied by Theorem 1.
Since the lower bounds are proved for the worst case of any estimator, the results above do not violate our
theoretical results on lower bound.

7.2 Real data experiments

We compare the empirical performance of our estimator (2) and other methods on two real-world datasets:
the California house price dataset and the adult income dataset.

California house price dataset. We evaluate the performance of estimator (2) on the California house
price dataset (Mohapatra, 2022) of size n “ 20, 640 from Kaggle. There are 10 attributes among which we
use median house value as the samples y from target CDFs and all other attributes as the contexts x (d “ 9).
We standardize all the ordinal variables.

We apply the proposed estimator (2) and three other methods, MLE, empirical CDF (ECDF), and kernel
density estimation (KDE) to estimate contextual CDFs for this dataset. Specifically, for ECDF, given
samples yp1q, . . . , ypnq, the empirical CDF is as follows,

pFEptq :“ 1
n

n
ÿ

j“1
Iypjq ptq “

1
n

n
ÿ

j“1
1typjq ď tu. (26)

For KDE, we apply the function “density” in the R package “stats” with Gaussian, rectangular, and triangular
kernels. Note that only the samples y are used to estimate one CDF without considering the contexts x in
ECDF and KDE. For the proposed estimator and MLE, we assume the linear model (1). We consider the
following family of basis CDFs:

ϕipx, tq “ p1 ´ wqFN pt; β
p1q

N,ixi ` β
p0q

N,i, σ2
i q ` wFLpt; β

p1q

L,ixi ` β
p0q

L,i, biq, t P R, i P rds, (27)
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Figure 5: Means and 90% confidence intervals of un-normalized ℓ2-errors }pθλ ´ θ˚}, KS distances
KSp pFλpx, ¨q, F px, ¨qq, and self-normalized errors }pθλ ´ θ˚}Unpλq and }pθλ ´ θ˚}Σn against dimension d in
logarithmic scale in polynomial CDF synthetic data experiments.

where x “ px1, . . . , xdq is the context, FN p¨; µ, σ2q is the CDF of the Gaussian distribution Npµ, σ2q, FLp¨; µ, bq

is the CDF of the Laplace distribution Laplacepµ, bq, w is the weight of Laplace distributions, β
p1q

N,i (βp0q

N,i) is
the coefficient (intercept) in the Gaussian linear model of xi, and β

p1q

L,i (βp0q

L,i) is the coefficient (intercept) in
the Laplace linear model of xi.

We split the whole dataset into subsets of fractions 1{3, 1{2, and 1{6. 1{3 data points are used to estimate the
coefficients and intercepts under Gaussian or Laplace linear models separately by maximizing log likelihood.
For Laplace linear model, it corresponds to the least absolute residual regression which we solve using the
function “lad” in the R package “L1pack” (Osorio & Wolodzko, 2023). Afterwards, we estimate σ2

i ’s and bi’s
using the sample variance and the mean absolute deviation of the their corresponding residuals respectively.
Then, we apply different methods on the second subset (training dataset) of 1{2 data points. For the proposed
estimator, we calculate pθλ using (3) with S “ R, m “ γ0,100, and λ “ 0.1, 1, 5. For MLE, we can formulate
the likelihood function of the parameter θ in (1) with Φ specified in (27). Let pθMLE denote a maximizer of
likelihood function. Since under (1), MLE corresponds to solving a convex minimization problem in a convex
set (the probability simplex ∆d´1), we use the solver “SCS” in the R package “CVXR” (Fu et al., 2020) to
calculate pθMLE . Let pFE denote the ECDF calculated by (26) using the training dataset. Let pFKG, pFKR, and
pFKT denote the CDF calculated by KDE with Gaussian, rectangular, and triangular kernels respectively
using the training dataset. Given samples yp1q, . . . , ypnq, we define the L2-error of an estimated CDF pF as

1
n

n
ÿ

j“1
}Iypjq ´ pF }2

L2pS,mq, (28)

where we also set S “ R and m “ γ0,100. Note that when S “ R and m “ LebpRq, the L2-error in (28)
corresponds to the renowned Continuous Ranked Probability Score (CRPS) (Hersbach, 2000) used to assess
the performance of a CDF in approximating data distribution. We calculate L2-errors on the third subset
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Figure 6: Box plots of L2-errors in the California house price data experiment. “ECDF” refers to the empirical
CDF defined in (26). “KG”, “KR”, and “KT” refer to the kernel density estimation method using Gaussian,
rectangular, and triangular kernels respectively. “0.1”, “1.0”, and “5.0” refer to our estimator pθλ in (2) with
λ “ 0.1, 1.0, and 5.0 respectively.

(test dataset) of 1{6 data points for the four methods described previously. For ECDF and KDE, we plug
pFE , pFKG, pFKR, and pFKT in (28). For MLE and the proposed estimator, we calculate L2-errors using
1
n

řn
j“1 }Iypjq ´ pθJ

MLEΦj}2
L2pS,mq

and 1
n

řn
j“1 }Iypjq ´ pθJ

λ Φj}2
L2pS,mq

with different values of λ.

We run the experiments with w “ 0, 0.5, and 1 in (27). To get stable results, we permute the dataset
uniformly at random independently and repeat the experiments 100 times to calculate L2-errors. We draw
the box plots of the L2-errors of different methods with different values of w in Figure 6. As is shown in the
figure, ECDF and KDE have comparable L2-errors which are much larger than the other two methods. For
all choices of w and λ, our estimator (2) achieves the smallest L2-error than any other method, indicating
that its performance is very robust in the choices of basis CDFs and regularization level. Also, L2-error
of our estimator decreases with the value of λ as expected. Thus, with different basis contextual CDFs,
our estimator (2) has better performance in approximating target data distributions and the performance is
stable wrt the value of λ in (2).

Adult income dataset. The adult income dataset (Becker & Kohavi, 1996) was extracted from the 1994
census bureau database. The typical learning task is to predict whether income exceeds $50K/yr based on
other attributes in the census data. Thus, we use the attributes age, workclass, education, marital-status,
occupation, relationship, race, sex, capital-gain, capital-loss, hours-per-week, and native-country as the
contexts x (d “ 12), and use income (i.e., whether income exceeds $50K/yr) as the samples y from target
CDFs. We standardize all of the ordinal attributes. The total number of samples is n “ 48, 842.

Since the samples follow Bernoulli distributions, KDE is not considered. We apply our estimator (2), MLE,
and ECDF on this dataset. For our estimator and MLE, we assume model (1) and use the following mixtures
of logistic and probit models as basis CDFs:

ϕipx, tq “ wFBpt; flogipβ
p1q

L,ixi ` β
p0q

L,iqq ` p1 ´ wqFBpt; FN pβ
p1q

P,ixi ` β
p0q

P,i; 0, 1qq, i P rds, (29)

where t P R, x “ px1, . . . , xdq denotes the context, FBp¨; pq denotes the CDF of the Bernoulli distribution
with parameter p, flogipaq :“ 1{p1 ` e´aq for any a P R, w is the weight of the logistic model, β

p1q

L,i (βp0q

L,i)
denotes the coefficient (intercept) in the logistic model of xi, and β

p1q

P,i (βp0q

P,i) denotes the coefficient (intercept)
in the probit model of xi. We split the whole dataset into subsets of fractions 1{3, 1{2, and 1{6. 1{3 data
points are used to estimate the coefficients and intercepts in (29) with the function “glm” in the R package
“stats”.

We apply all methods on the second subset (training dataset) of 1{2 data points. For our estimator, we
calculate pθλ using (3) with S “ r0, 1s, m “ Lebpr0, 1sq, and λ “ 0.1, 1, 5. For MLE, we also use the solver
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Figure 7: Box plots of L2-errors in adult income data experiments. “ECDF” refers to the empirical CDF
defined in (26). “0.1”, “1.0”, and “5.0” refer to the estimator pθλ (2) with λ “ 0.1, 1.0, and 5.0 respectively.

“SCS” in the R package “CVXR” (Fu et al., 2020) to calculate pθMLE as in the previous example. We use pFE

to denote the ECDF calculated by (26) using the training dataset. Then, we calculate L2-errors (28) with
S “ r0, 1s and m “ Lebpr0, 1sq for the three methods on the third subset (test dataset) of 1/6 data points.

We run the experiments described above using w “ 0, 0.5, and 1 in (29) 100 times with the dataset permuted
randomly in each run to get stable results. In Figure 7, we report the calculated L2-errors in box plots.
According to the figure, our estimator (2) achieves the smallest L2-errors for all choices of λ and weight w
and ECDF has the largest L2-error for all choices of w. Moreover, the performance of our estimator is very
robust wrt λ and w. Thus, with a wide range of the basis contextual CDFs, our estimator (2) achieves good
and robust performance in approximating target data distributions.

8 Conclusion

In this paper, we propose a linear model for contextual CDFs and estimators for the coefficient parameter in
this model. We prove rOp

a

d{nq upper bounds on the estimation error of our estimator under the adversarial
and random settings, and show that the upper bounds are tight up to logarithmic factors by proving Ωp

a

d{nq

information theoretic lower bounds. Additionally, when a mismatch exists in the linear model, we prove that
the estimation error of our estimator only increases by an amount commensurate with the mismatch error.
Furthermore, we increase the generality of our linear model by expanding the parameter space into an infinite
dimensional Hilbert space. Within this framework, we generalize our estimator and subsequently establish
self-normalized upper bounds for this general estimator. Moreover, we elucidate the scaling of the estimation
error of our estimator empirically and showcase its practical utility on real-world datasets.

Our current work assumes that the bases are known a priori. So, a fruitful future research direction would
be to focus on the basis selection problem for CDF regression with possibly infinitely many base functions.
More generally, it is a promising future direction to consider the adaptive setting where the learner seeks to
learn both the basis Φ and the weight parameter θ˚ in (1) by querying samples from ϕi’s and F “ θJ

˚ Φ. A
closely related challenge is presented in multi-distribution learning where the learner strategically queries
samples from different distributions with the objective of minimizing the expected risk uniformly across all
distributions (Haghtalab et al., 2022; Awasthi et al., 2023). Leveraging our existing results on estimating
θ˚ based on Φ, we can decompose this learning problem into two subproblems: (i) the estimation of the
basis CDFs ϕi’s from their respective samples, and (ii) the planning of the queries to samples from different
distributions. As discussed in related works, numerous existing results address the estimation of a single
contextual CDF based on certain distributional assumptions, placing the primary challenge in solving (ii). A
natural idea is to initiate from the offline algorithm, akin to Wang et al. (2022): for each i P rds, the learner
queries a pre-specified number of samples from each distribution to estimate ϕi, and then queries samples
from F to estimate θ˚ with the learned Φ, where the allocation of queries to each distribution is determined
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by minimizing the upper bound of the estimation error of θ˚ under the constraint of a constant sum. Though
this approach is straightforward, we can conjecture whether the offline algorithm is optimal, considering that
the learning of θ˚ may not contribute much to the learning of each individual basis CDF. Moving forward,
we can explore online algorithms which adaptively determine the next oracle to query. The design of the
online algorithms in Wang et al. (2022) and Awasthi et al. (2023) are anticipated to offer valuable guidance
in this direction.

References
Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits.

Advances in neural information processing systems, 24, 2011a.

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Online least squares estimation with self-normalized
processes: An application to bandit problems. arXiv preprint arXiv:1102.2670, 2011b.

Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk. Mathematical
finance, 9(3):203–228, 1999.

Pranjal Awasthi, Nika Haghtalab, and Eric Zhao. Open problem: The sample complexity of multi-distribution
learning for vc classes. In The Thirty Sixth Annual Conference on Learning Theory, pp. 5943–5949. PMLR,
2023.

Kamyar Azizzadenesheli. Importance weight estimation and generalization in domain adaptation under label
shift, 2020. URL https://arxiv.org/abs/2011.14251.

Necdet Batir. Inequalities for the gamma function. Archiv der Mathematik, 91(6):554–563, Dec 2008. ISSN
1420-8938. doi: 10.1007/s00013-008-2856-9. URL https://doi.org/10.1007/s00013-008-2856-9.

Amir Beck. Introduction to nonlinear optimization: Theory, algorithms, and applications with MATLAB.
SIAM, 2014.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Donald A Berry, Robert W Chen, Alan Zame, David C Heath, and Larry A Shepp. Bandit problems with
infinitely many arms. The Annals of Statistics, 25(5):2103–2116, 1997.

Dimitri Bertsekas, Angelia Nedic, and Asuman Ozdaglar. Convex analysis and optimization, volume 1.
Athena Scientific, 2003.

Vladimir Bogachev. Measure Theory, volume 2. 01 2007. ISBN 978-3-540-34513-8. doi: 10.1007/
978-3-540-34514-5.

Francesco Paolo Cantelli. Sulla determinazione empirica delle leggi di probabilita. Giorn. Ist. Ital. Attuari, 4
(421-424), 1933.

Asaf Cassel, Shie Mannor, and Assaf Zeevi. A general framework for bandit problems beyond cumulative
objectives. Mathematics of Operations Research, 2023.

Victor Chernozhukov, Iván Fernández-Val, and Blaise Melly. Inference on counterfactual distributions.
Econometrica, 81(6):2205–2268, 2013.

Yeonseung Chung and David B Dunson. Nonparametric bayes conditional distribution modeling with variable
selection. Journal of the American Statistical Association, 104(488):1646–1660, 2009.

Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recognition, volume 31.
Springer Science & Business Media, 2013.

DLMF. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.5 of 2022-03-15.
URL http://dlmf.nist.gov/. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F.
Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

23

https://arxiv.org/abs/2011.14251
https://doi.org/10.1007/s00013-008-2856-9
http://dlmf.nist.gov/


Published in Transactions on Machine Learning Research (02/2024)

Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. Asymptotic minimax character of the sample distribution
function and of the classical multinomial estimator. The Annals of Mathematical Statistics, pp. 642–669,
1956.

R.M. Fano. Transmission of Information: A Statistical Theory of Communication. MIT Press Classics. MIT
Press, 1961. ISBN 9780262561693.

Frédéric Ferraty, Ali Laksaci, and Philippe Vieu. Estimating some characteristics of the conditional distribution
in nonparametric functional models. Statistical Inference for Stochastic Processes, 9:47–76, 2006.

Anqi Fu, Balasubramanian Narasimhan, and Stephen Boyd. CVXR: An R package for disciplined convex
optimization. Journal of Statistical Software, 94(14):1–34, 2020. doi: 10.18637/jss.v094.i14.

Valery Glivenko. Sulla determinazione empirica delle leggi di probabilita. Gion. Ist. Ital. Attauri., 4:92–99,
1933.

Nika Haghtalab, Michael Jordan, and Eric Zhao. On-demand sampling: Learning optimally from multiple
distributions. Advances in Neural Information Processing Systems, 35:406–419, 2022.

Peter Hall, Rodney CL Wolff, and Qiwei Yao. Methods for estimating a conditional distribution function.
Journal of the American Statistical association, 94:154–163, 1999.

Hans Hersbach. Decomposition of the continuous ranked probability score for ensemble prediction systems.
Weather and Forecasting, 15(5):559 – 570, 2000. doi: https://doi.org/10.1175/1520-0434(2000)015<0559:
DOTCRP>2.0.CO;2. URL https://journals.ametsoc.org/view/journals/wefo/15/5/1520-0434_
2000_015_0559_dotcrp_2_0_co_2.xml.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

Daniel Hsu, Sham Kakade, and Tong Zhang. A tail inequality for quadratic forms of subgaussian random
vectors. Electronic Communications in Probability, 17(none):1 – 6, 2012a. doi: 10.1214/ECP.v17-2079.
URL https://doi.org/10.1214/ECP.v17-2079.

Daniel Hsu, Sham M Kakade, and Tong Zhang. Random design analysis of ridge regression. In Conference
on learning theory, pp. 9–1. JMLR Workshop and Conference Proceedings, 2012b.

Audrey Huang, Leqi Liu, Zachary Lipton, and Kamyar Azizzadenesheli. Off-policy risk assessment in
contextual bandits. Advances in Neural Information Processing Systems, 34, 2021.

Audrey Huang, Liu Leqi, Zachary C Lipton, and Kamyar Azizzadenesheli. Off-policy risk assessment for
markov decision processes. In Artificial Intelligence and Statistics, 2022.

Nathan Kallus, Xiaojie Mao, and Masatoshi Uehara. Localized debiased machine learning: Efficient inference
on quantile treatment effects and beyond. arXiv preprint arXiv:1912.12945, 2019.

Roger Koenker and Gilbert Bassett Jr. Regression quantiles. Econometrica: journal of the Econometric
Society, pp. 33–50, 1978.

Roger Koenker, Samantha Leorato, and Franco Peracchi. Distributional vs. quantile regression. 2013.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020. doi: 10.1017/
9781108571401.

Mikhail Lifshits. Lectures on gaussian processes. In Lectures on Gaussian Processes, pp. 1–117. Springer,
2012.

Leqi Liu, Audrey Huang, Zachary Lipton, and Kamyar Azizzadenesheli. Supervised learning with general
risk functionals. In International Conference on Machine Learning, pp. 12570–12592. PMLR, 2022.

24

https://journals.ametsoc.org/view/journals/wefo/15/5/1520-0434_2000_015_0559_dotcrp_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/wefo/15/5/1520-0434_2000_015_0559_dotcrp_2_0_co_2.xml
https://doi.org/10.1214/ECP.v17-2079


Published in Transactions on Machine Learning Research (02/2024)

Anuran Makur. Information Contraction and Decomposition. Sc.D. thesis in Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA, May 2019.

Anuran Makur and Lizhong Zheng. Comparison of contraction coefficients for f -divergences. Problems of
Information Transmission, 56(2):103–156, April 2020.

Pascal Massart. The tight constant in the dvoretzky-kiefer-wolfowitz inequality. The annals of Probability,
pp. 1269–1283, 1990.

Shibu Mohapatra. California House Price, 2022. Retrieved August 2023 from https://www.kaggle.com/
datasets/shibumohapatra/house-price.

Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining. Introduction to linear regression analysis.
John Wiley & Sons, 2021.

F. Osorio and T. Wolodzko. Routines for L1 estimation, 2023. URL http://l1pack.mat.utfsm.cl. R
package version 0.41-24.

Victor H Peña, Tze Leung Lai, and Qi-Man Shao. Self-normalized processes: Limit theory and Statistical
Applications. Springer Science & Business Media, 2008.

Bernardo Ávila Pires and Csaba Szepesvári. Statistical linear estimation with penalized estimators: an
application to reinforcement learning. In Proceedings of the 29th International Coference on International
Conference on Machine Learning, 2012.

Barnabás Póczos, Aarti Singh, Alessandro Rinaldo, and Larry Wasserman. Distribution-free distribution
regression. In artificial intelligence and statistics. PMLR, 2013.

LA Prashanth, Cheng Jie, Michael Fu, Steve Marcus, and Csaba Szepesvári. Cumulative prospect theory
meets reinforcement learning: Prediction and control. In International Conference on Machine Learning,
pp. 1406–1415. PMLR, 2016.

Michael Reed and Barry Simon. Vi - bounded operators. In I: Functional Analysis, pp. 182–220. Elsevier Inc,
1972. ISBN 9780125850018.

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Mathematical
Society, 58(5):527 – 535, 1952.

R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. Journal of risk, 2:
21–42, 2000.

Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on stochastic programming:
modeling and theory. SIAM, 2014.

P. Stein. A note on the volume of a simplex. The American Mathematical Monthly, 73(3):299–301, 1966.
ISSN 00029890, 19300972. URL http://www.jstor.org/stable/2315353.

Francis Edward Su. Methods for quantifying rates of convergence for random walks on groups. Harvard
University, 1995.

Zoltán Szabó, Bharath K Sriperumbudur, Barnabás Póczos, and Arthur Gretton. Learning theory for
distribution regression. The Journal of Machine Learning Research, 17(1):5272–5311, 2016.

Ichiro Takeuchi, Quoc V Le, Timothy D Sears, and Alexander J Smola. Nonparametric quantile estimation.
Journal of Machine Learning Research, 7(45):1231–1264, 2006.

William R. Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3/4):285–294, 1933. ISSN 00063444. URL http://www.jstor.
org/stable/2332286.

25

https://www.kaggle.com/datasets/shibumohapatra/house-price
https://www.kaggle.com/datasets/shibumohapatra/house-price
http://l1pack.mat.utfsm.cl
http://www.jstor.org/stable/2315353
http://www.jstor.org/stable/2332286
http://www.jstor.org/stable/2332286


Published in Transactions on Machine Learning Research (02/2024)

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational
mathematics, 12(4):389–434, 2012.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018. doi:
10.1017/9781108231596.

Yifei Wang, Tavor Baharav, Yanjun Han, Jiantao Jiao, and David Tse. Beyond the best: Distribution
functional estimation in infinite-armed bandits. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 9262–
9273. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/3c2fd72a28fb98facf98546727320249-Paper-Conference.pdf.

Hermann Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen
(mit einer anwendung auf die theorie der hohlraumstrahlung). Mathematische Annalen, 71(4):441–479,
1912.

Julia L Wirch and Mary R Hardy. Distortion risk measures: Coherence and stochastic dominance. In
International congress on insurance: Mathematics and economics, 2001.

William Wong, Audrey Huang, Liu Leqi, Kamyar Azizzadenesheli, and Zachary C Lipton. Riskyzoo: A
library for risk-sensitive supervised learning. 2022.

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement learning for
linear mixture markov decision processes. In Conference on Learning Theory, pp. 4532–4576. PMLR, 2021.

26

https://proceedings.neurips.cc/paper_files/paper/2022/file/3c2fd72a28fb98facf98546727320249-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/3c2fd72a28fb98facf98546727320249-Paper-Conference.pdf


Published in Transactions on Machine Learning Research (02/2024)

A Discussion on the minimax lower bound for the estimation of CDFs

First, for any contextual CDFs F1 and F2, define the uniform KS distance by

KSpF1, F2q :“ sup
xPX

KSpF1px, ¨q, F2px, ¨qq.

Similar to the minimax ℓ2-risk defined in (12), we can define the minimax risk in terms of the uniform KS
distance for the estimation of the contextual CDF F . For any distribution family Q and the contextual CDF
function Ξ : Q Ñ r0, 1sX ˆR, the minimax risk in terms of the uniform KS distance is defined as

RpΞpQq; KSq :“ inf
Ξ̂

sup
QPQ

Ez„QrKSpΞ̂pzq, ΞpQqqs.

We follow the notation in Section 4. With a slight abuse of notation, let F pP q “ θpP qJΦ. For the random
setting, define the distribution family P0 :“

␣

bn
j“1 P

pjq

X PY |X;θ : θ P Rd, P
pjq

X P DX such that µminpΣnq “ 0
(

.
Then, we have the following results.
Proposition 20. For any sequence x1:n “ pxp1q, . . . , xpnqq P X n such that µminpUnq “ 0, we have

RpF pPx1:n q; KSq “ Ω p1q . (30)

For the random setting (Scheme II), we have

RpF pP0q; KSq “ Ω p1q . (31)

Proof of Proposition 20. According to the discussion below Theorem 8, the discussion above Corollary 9, and
Appendix C.2, it suffices to show (30) under the fixed design setting.

Let us consider the fixed design setting where ϕipx, ¨q are the CDFs of Bernoulli distributions for i P rds,
d ě 2. Let qji denote the zero probability of the Bernoulli distribution with CDF ϕipx

pjq, ¨q “ Φjip¨q. We set
S “ r0, 1s and m “ Leb. Then, we have Un “

řn
j“1 qjqJ

j where qj “ rqj1, . . . , qjdsJ.

For any θ˚ P ∆d´1, we have F pxpjq, tq “ θJ
˚ qj under model (1) for any t P r0, 1q. Suppose that qji “ q11 P r0, 1s

for any i P rds and j P rns. Then for any θ˚ P r0, 1s, the samples ypjq’s for j P rns are generated from the
same distribution which is the Bernoulli distribution with success probability 1 ´ q11. We have µminpUnq “ 0.
Thus, the condition of the proposition is satisfied.

For n ` 1, suppose that qn`1,1 “ 1 and qn`1,2 “ 0. Then, for any estimate F̌n of F , we have F̌npxpn`1q, 1{2q P

r0, 1s. If F̌npxpn`1q, 1{2q P r0, 1{2s, consider the case where θ˚ “ θp1q “ r1, 0, . . . , 0sJ. Then, we have
|F̌npxpn`1q, 1{2q ´ F pxpn`1q, 1{2q| ě 1{2. If F̌npxpn`1q, 1{2q P p1{2, 1s, consider the case where θ˚ “ θp2q “

r0, 1, . . . , 0sJ. Then, we also have |F̌npxpn`1q, 1{2q ´ F pxpn`1q, 1{2q| ě 1{2. Thus, we have

RpF pPx1:n q; KSq “ inf
F̌n

sup
P PP

x1:pnq

KSpF̌n, F q “ Ωp1q.

Thus, the minimax risk in terms of the uniform KS distance of any estimate of F is Ωp1q.

Recall that according to the discussion at the end of Section 3.2, for the plug-in estimate pFλ of F using our
projected estimator rθλ, we have the rOpmint1, d{

a

1 ` µminpUnquq upper bound in terms of the uniform KS
distance. Proposition 20 implies that this plug-in estimate pFλ is minimax optimal when µminpUnq “ 0.

It is worth noting that with the assumption that µminpUnq “ Θpnq, the

rOpmint1, d{
a

1 ` µminpUnquq “ rOpd{
?

nq

upper bound of pFλ implies that the minimax lower bound in estimating F is improved. Thus, we can see
that µminpUnq or µminpΣnq plays an important role in the estimation of F .
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B Proofs of upper bounds for the finite dimensional model

We first briefly expand on the notation for the proofs of our theoretical results. For any topological space
A, let BpAq denote the Borel σ-algebra of A. For any two measurable spaces, pA1, A1q and pA2, A2q, a
function f : A1 Ñ A2 is A1{A2-measurable if for any E P A2, we have f´1pEq P A1. When A2 is the
Borel σ-algebra on A2, we sometimes write f is A1-measurable to mean that f is A1{A2-measurable for
brevity. When A1 is the Borel σ-algebra on A1 and A2 is the Borel σ-algebra on A2, we sometimes simply
write f is measurable to mean that f is A1{A2-measurable for brevity. For any two σ-finite measure spaces
pA1, A1, ν1q and pA2, A2, ν2q, let A1 ˆ A1 :“ tpa1, a2q : a1 P A1, a2 P A2u denote the product space, let
A1 b A2 :“ σptE1 ˆ E2 : E1 P A1, E2 P A2uq denote the product σ-algebra of A1 and A2 on A1 ˆ A2, and let
ν1 bν2 denote the product measure of ν1 and ν2 on pA1 ˆA2, A1 bA2q (i.e., ν1 bν2pE1 ˆE2q “ ν1pE1qν2pE2q

for any E1 P A1 and E2 P A2) whose existence is guaranteed by Carathéodory’s extension theorem. Then,
pA1 ˆ A2, A1 b A2, ν1 b ν2q is the product measure space of pA1, A1, ν1q and pA2, A2, ν2q. When A1 “ A2
and A1 “ A2, we will write A2

1 to represent A1 b A1. When A1 “ A2, A1 “ A2, and ν1 “ ν2, we will write
ν2

1 to represent ν1 b ν1.

Note that according to our assumptions, X is a Polish space equipped with the Borel σ-algebra BpX q,
ϕi : X ˆ S Ñ r0, 1s is pBpX q b BpSqq{Bpr0, 1sq-measurable for each i P rds, and e : X ˆ S Ñ r´1, 1s is
pBpX q b BpSqq{Bpr´1, 1sq-measurable.

In the proofs of the main results, we consider an arbitrary probability measure m on pS, BpSqq. Since there
is no ambiguity, for brevity, we omit “dm” in the notation for integrals. Note that some quantities defined
below depend on the chosen probability measure m.

B.1 Proofs of Theorem 1 and Proposition 2

In the proofs of Theorem 1 (Appendix B.1.1) and Proposition 2 (Appendix B.1.2), we use the following
measure-theoretic treatment of probability spaces. (The notation we use can be found at the beginning of
Appendix B.) The underlying probability space for the sample tpxpjq, ypjqqujPN is pr0, 1sN, Bpr0, 1sqN,Pq, where
r0, 1sN “ tpξp1q, ξp2q, . . . q : ξpjq P r0, 1su, and,

Bpr0, 1sqN :“ σptB1 ˆ ¨ ¨ ¨ ˆ Bn : B1, . . . , Bn P Bpr0, 1sq, n P Nuq

is the σ-algebra generated by all finite products of Borel sets on r0, 1s, and P|r0,1sn “ Lebn
“ bn

j“1Leb with Leb
being the Lebesgue measure on pr0, 1s, Bpr0, 1sqq. The existence of the above probability space is guaranteed
by Kolmogorov’s extension theorem. Define the random vector Ξ “ pΞpjqqjPN on pr0, 1sN, Bpr0, 1sqNq to be the
identity mapping, i.e., Ξ : r0, 1sN Ñ r0, 1sN, pξpjqqjPN ÞÑ pξpjqqjPN. Then, P is also the probability measure on
pr0, 1sN, Bpr0, 1sNqq induced by Ξ, and Ξ follows the uniform distribution on r0, 1sN. Suppose tpxpjq, ypjqqujPN
is sampled according to Scheme I with F defined in (1). Then, according to Bogachev (2007, Proposition
10.7.6), for each j P N, there exist some pBpX q b BpSqqj´1 b Bpr0, 1sq{BpX q-measurable function,

h
pjq

X : pX ˆ Sqj´1 ˆ r0, 1s Ñ X ,

and pBpX q b BpSqqj´1 b BpX q b Bpr0, 1sq{BpSq-measurable function

h
pjq

Y : pX ˆ Sqj´1 ˆ X ˆ r0, 1s Ñ S

such that

xpjq “ h
pjq

X pxp1q, yp1q, . . . , xpj´1q, ypj´1q, Ξp2j´1qq,

ypjq “ h
pjq

Y pxp1q, yp1q, . . . , xpj´1q, ypj´1q, xpjq, Ξp2jqq,

and,

E
”

1

!

h
pjq

Y pxp1q, yp1q, . . . , xpj´1q, ypj´1q, xpjq, Ξp2jqq ď t
)

ˇ

ˇFj´1

ı

“ θJ
˚ Φpxpjq, tq (32)
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for any t P S and j P N, where Fj :“ σ
`␣

Ξpkq : k P r2j ` 1s
(˘

is the sub σ-algebra of Bpr0, 1sqN generated by
the random variables Ξp1q, . . . , Ξp2j`1q. By definition, we have that ypjq is Fj{BpSq-measurable for each j P N
and tFju8

j“0 forms a filtration of pr0, 1sN, Bpr0, 1sqN,Pq. Therefore,
␣

ypjq
(

jPN is tFjujPN-adapted.

By the above construction, for each j P N, xpjq : r0, 1sN Ñ X , ξ ÞÑ xpjqpξq is a Fj´1{BpX q-measurable function.
Thus, for each j P N, the function rhX : r0, 1sNˆS Ñ X ˆS, pξ, tq ÞÑ pxpjqpξq, tq is pFj´1bBpSqq{pBpX qbBpSqq-
measurable. Since ϕi : X ˆ S Ñ r0, 1s, px, tq ÞÑ ϕipx, tq is BpX q b BpSq{Bpr0, 1sq-measurable, we know that
rϕ

pjq

i : r0, 1sN ˆ S Ñ r0, 1s, pξ, tq ÞÑ ϕipx
pjqpξq, tq is pFj´1 b BpSqq{Bpr0, 1sq-measurable. Therefore, the vector-

valued function Φj : r0, 1sN ˆS Ñ r0, 1sd, pξ, tq ÞÑ rϕ1pxpjqpξq, tq, . . . , ϕdpxpjqpξq, tqs “ rrϕ
pjq

1 pξ, tq, . . . , rϕ
pjq

d pξ, tqs

is pFj´1 b BpSqq{Bpr0, 1sdq-measurable for each j P N.

B.1.1 Proof of Theorem 1

Proof. Define Vj :“
ş

S
IypjqΦj ´

ş

S
θJ

˚ ΦjΦj . Since we have proved above that for each j P N, ypjq is Fj-
measurable and the function S ˆ S Q py, tq ÞÑ 1ty ď tu P r0, 1s is BpSq2-measurable, we have that Iypjq :
r0, 1sN ˆ S Ñ r0, 1s, Iypjq pξ, tq “ 1typjqpξq ď tu is Fj b BpSq-measurable. Since we have also proved above
that for each j P N, Φj is Fj´1 b BpSq-measurable, by Fubini’s theorem and (32), we have that

ş

S
θJ

˚ ΦjΦj is
Fj´1-measurable, Vj is Fj-measurable, and

ErVj |Fj´1s “E
„
ż

S

IypjqΦj

ˇ

ˇFj´1

ȷ

´

ż

S

θJ
˚ ΦjΦj

“

ż

S

E
“

Iypjq

ˇ

ˇFj´1
‰

Φj ´

ż

S

θJ
˚ ΦjΦj

“

ż

S

θJ
˚ ΦjΦj ´

ż

S

θJ
˚ ΦjΦj

“0. (33)

For any α P Rd, define M0pαq “ 1. Then, M0pαq is F0-measurable for any α P Rd. For n P N, define
Mnpαq :“ exp

␣

αJWn ´ 1
2 }α}2

Un

(

with Wn :“
řn

j“1 Vj and Un “
řn

j“1
ş

S
ΦjΦJ

j . Since Φj is Fj´1 b BpSq-
measurable and Vj is Fj-measurable, by Fubini’s theorem, Un is Fn´1-measurable and Wn is Fn-measurable
for each n P N. Thus, Mnpαq is also Fn-measurable for any α P Rd and n P N. Moreover, note that
the function Rd ˆ Rd ˆ Rdˆd Ñ p0, 8q, pα, W, Uq ÞÑ exp

␣

αJW ´ 1
2 }α}2

U

(

is measurable. Hence, Mn :
r0, 1sN ˆRd Ñ p0, 8q, pξ, αq ÞÑ exp

␣

αJWnpξq ´ 1
2 }α}2

Unpξq

(

is Fn b BpRdq-measurable. Thus, for any α P Rd,
tMnpαquně0 is tFnuně0-adapted. Besides, for any α P Rd and n P N, we have

ErMnpαq|Fn´1s “Mn´1pαqE
„

exp
"

αJVn ´
1
2αJ

ˆ
ż

S

ΦnΦJ
n

˙

α

*
ˇ

ˇ

ˇ

ˇ

Fn´1

ȷ

“Mn´1pαq
E
“

exp
␣

αJVn

(

|Fn´1
‰

exp
!

1
2
ş

S
pαJΦnq

2
) . (34)

Since ´
ş

S
|αJΦn| ď αJVn ď

ş

S
|αJΦn| almost surely (a.s.), we have

E
“

exp
␣

αJVn

(

|Fn´1
‰

ď exp
#

4
8

ˆ
ż

S

|αJΦn|

˙2
+

(35)

ď exp
"

1
2

ż

S

`

αJΦn

˘2
*

, (36)

where (35) follows from Hoeffding’s lemma (Hoeffding, 1963), and (36) follows from the Cauchy-Schwarz
inequality and the fact that

ş

S
1 “ mpSq “ 1. Then, by (34) and (36), we have

ErMnpαq|Fn´1s ďMn´1pαq
exp

!

1
2
ş

S

`

αJΦn

˘2
)

exp
!

1
2
ş

S
pαJΦnq

2
) “ Mn´1pαq. (37)
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Since M0pαq “ 1 and Mnpαq ě 0, for any α P Rd, tMnpαquně0 is a super-martingale.

Now for any n ě 0, define ĎMn :“
ş

Rd Mnpαqhpαqdα, with dα denoting Lebpdαq where the Lebesgue measure
is on pRd, BpRdqq and

hpαq “

ˆ

λ

2π

˙
d
2

exp
"

´
λ

2 αJα

*

“

ˆ

λ

2π

˙
d
2

exp
"

´
1
2}α}2

λId

*

. (38)

Recall that Unpλq “ Un ` λId. Then, for n ě 1, we have

ĎMn “

ˆ

λ

2π

˙
d
2
ż

Rd

exp
"

αJWn ´
1
2}α}2

Un
´

1
2}α}2

λId

*

dα

“

ˆ

λ

2π

˙
d
2
ż

Rd

exp
"

1
2}Wn}2

Unpλq´1 ´
1
2}α ´ Unpλq´1Wn}2

Unpλq

*

dα (39)

“
λ

d
2

detpUnpλqq
1
2

exp
ˆ

1
2}Wn}2

Unpλq´1

˙

¨

1
p2πq

d
2 detpUnpλqq´ 1

2

ż

Rd

exp
"

´
1
2}α ´ Unpλq´1Wn}2

Unpλq

*

dα

“
λ

d
2

detpUnpλqq
1
2

exp
ˆ

1
2}Wn}2

Unpλq´1

˙

, (40)

where (39) follows from the calculation below:

}Wn}2
Unpλq´1 ´ }α ´ Unpλq´1Wn}2

Unpλq

“ }Wn}2
Unpλq´1 ´

`

αJ ´ W J
n Unpλq´1˘Unpλq

`

α ´ Unpλq´1Wn

˘

“ }Wn}2
Unpλq´1 ´ }α}Unpλq ´ }Wn}2

Unpλq´1 ` 2αJWn

“ 2αJWn ´ }α}λId
´ }α}Un

. (41)

For n “ 0, ĎM0 “
ş

Rd M0pαqhpαqdα “
ş

Rd hpαqdα “ 1.

Moreover, since we have shown that Mn is Fn b BpRdq-measurable, by Fubini’s theorem and (37), ĎMn is
Fn-measurable for any n ě 0 and for any n P N,

E
“

ĎMn|Fn´1
‰

“E
„
ż

Rd

Mnpαqhpαqdα

ˇ

ˇ

ˇ

ˇ

Fn´1

ȷ

“

ż

Rd

E rMnpαq|Fn´1s hpαqdα

ď

ż

Rd

Mn´1pαqhpαqdα

“ĎMn´1. (42)

Thus, tĎMnuně0 is also a super-martingale. By Doob’s maximal inequality for super-martingales,

P
„

sup
nPN

ĎMn ě δ

ȷ

ď
ErĎM0s

δ
“

1
δ

which, together with (40), implies that

P

«

Dn P N s.t. }Wn}Unpλq´1 ě

c

log detpUnpλqq

λd
` 2 log 1

δ

ff

ď δ. (43)
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Since

θ˚ “

˜

n
ÿ

j“1

ż

S

ΦjΦJ
j ` λId

¸´1 ˜ n
ÿ

j“1

ż

S

ΦjΦJ
j θ˚ ` λθ˚

¸

, (44)

by (3), we have

pθλ ´ θ˚ “ Unpλq´1

˜

n
ÿ

j“1
Vj ´ λθ˚

¸

“ Unpλq´1Wn ´ Unpλq´1pλθ˚q.

Thus, by the triangle inequality,

}pθλ ´ θ˚}Unpλq ď }Unpλq´1Wn}Unpλq ` λ}Unpλq´1θ˚}Unpλq

“ }Wn}Unpλq´1 ` }λθ˚}Unpλq´1

ď }Wn}Unpλq´1 `
?

λ}θ˚}, (45)

where the last inequality follows from the facts that Unpλq´1 “ 1
λ

`

I ´ Unpλq´1Un

˘

and }I ´Unpλq´1Un}2 ď 1.

By (43) and (45), with probability at least 1 ´ δ, for all n P N, we have

}pθλ ´ θ˚}Unpλq ď

c

log detpUnpλqq

λd
` 2 log 1

δ
`

?
λ}θ˚}. (46)

By the arithmetic mean-geometric mean (AM–GM) inequality, we have

log detpUnpλqq ď d log
ˆ

trace pUnpλqq

d

˙

“ d log
˜

1
d

trace
˜

n
ÿ

j“1

ż

S

ΦjΦJ
j ` λId

¸¸

.

Since

trace
˜

n
ÿ

j“1

ż

S

ΦjΦJ
j ` λId

¸

“ dλ `

n
ÿ

j“1

ż

S

trace
`

ΦjΦJ
j

˘

“ dλ `

n
ÿ

j“1

ż

S

}Φj}2
2

ď dλ ` nd,

we have
log detpUnpλqq ď d log

ˆ

1
d

pdλ ` ndq

˙

“ d log pλ ` nq . (47)

By (46) and (47), for any λ ą 0, δ P p0, 1q, with probability at least 1 ´ δ, for all n P N, we have

}pθλ ´ θ˚}Unpλq ď

c

d log
´

1 `
n

λ

¯

` 2 log 1
δ

`
?

λ}θ˚}. (48)

Thus, Theorem 1 is proved for any probability measure m on pS, BpSqq.

B.1.2 Proof of Proposition 2

Proof. When UN is non-singular for some fixed N P N, since
ş

S
ΦjΦJ

j is positive semi-definite for any j P N,
it immediately follows that Un are non-singular for any n ě N . Then, pθ is unique and is given by (3) with
λ “ 0 for any n ě N , i.e.,

pθ “

˜

n
ÿ

j“1

ż

S

ΦjΦJ
j

¸´1 ˜ n
ÿ

j“1

ż

S

IypjqΦj

¸
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for any n ě N . Since

θ˚ “

˜

n
ÿ

j“1

ż

S

ΦjΦJ
j

¸´1 ˜ n
ÿ

j“1

ż

S

ΦjΦJ
j θ˚

¸

, (49)

we have
pθ ´ θ˚ “ U´1

n Wn. (50)

By definition and the triangle inequality for integrals, we have

}Vj} ď

ż

S

|Iypjq ´ θJ
˚ Φj |}Φj} ď

ż

S

?
d “

?
d, (51)

which also implies that
n
ÿ

j“1
Er}Vj}2|Fj´1s ď

n
ÿ

j“1
d “ nd. (52)

Since Wn “
řn

j“1 Vj , by (33), (51), (52), and Hsu et al. (2012a, Proposition 1.2), we have

Pr}Wn} ě
?

nd `
?

8nda ` p4{3q
?

das ď e´a

for any a ą 0. Thus, for any δ P p0, 1q and n P N, with probability at least 1 ´ δ, we have

}Wn} ď
?

nd `

c

8nd log 1
δ

`
4
3

?
d log 1

δ
. (53)

Since Un is positive definite, by (53), we have

}Wn}U´1
n

“

b

W J
n U´1

n Wn ď
}Wn}

a

µminpUnq
ď

?
nd `

b

8nd log 1
δ ` 4

3
?

d log 1
δ

a

µminpUnq
(54)

with probability at least 1 ´ δ. Hence, by (50), and (54), we have that for any n ě N ,

}pθ ´ θ˚}Un “ }U´1
n Wn}Un

“ }Wn}U´1
n

ď

?
nd `

b

8nd log 1
δ ` 4

3
?

d log 1
δ

a

µminpUnq

with probability at least 1 ´ δ. In conclusion, Proposition 2 is proved for any probability measure m on
pS, BpSqq.

B.2 Proofs of Theorem 4 and Proposition 5

In this section, we follow the same construction of the probability space as in Appendix B.1. In particular,
noting that Scheme II is a special case of Scheme I, we consider the underlying probability space for the
sample tpxpjq, ypjqqujPN to be pr0, 1sN, Bpr0, 1sqN,Pq. Define the random vector Ξ to be the identity mapping
from r0, 1sN onto itself as in Appendix B.1. Then, Ξ follows the uniform distribution on r0, 1sN. Suppose
tpxpjq, ypjqqujPN is sampled according to Scheme II with F defined in (1). Then, according to Bogachev (2007,
Proposition 10.7.6), for each j P N, there exist some Bpr0, 1sq{BpX q-measurable function h

pjq

X : r0, 1s Ñ X
and BpX q b Bpr0, 1sq{BpSq-measurable function h

pjq

Y : X ˆ r0, 1s Ñ S such that xpjq “ h
pjq

X pΞp2j´1qq,
ypjq “ h

pjq

Y pxpjq, Ξp2jqq, and

E
”

1

!

h
pjq

Y pxpjq, Ξp2jqq ď t
)
ˇ

ˇ

ˇ
Fj´1

ı

“ θJ
˚ Φpxpjq, tq

for any t P S and j P N, where Fj :“ σ
`␣

Ξpkq : k P r2j ` 1s
(˘

is the sub σ-algebra of Bpr0, 1sqN generated
by the random variables Ξp1q, . . . , Ξp2j`1q. With the same proof provided at the beginning of Appendix
B.1,

␣

ypjq
(

jPN is tFjujPN-adapted and Φj is pFj´1 b BpSqq{Bpr0, 1sdq-measurable for each j P N. Moreover,
txpjqujPN is independent, which implies that tΦjptqujPN is independent for any t P S and typjqujPN is
independent.
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B.2.1 Proof of Theorem 4

Proof. By definition and Fubini’s theorem, we have Σpjq “ E
“ş

S
ΦjΦJ

j

‰

“
ş

S
E
“

ΦjΦJ
j

‰

for each j P rns,
Σn “

řn
j“1 Σpjq “ E rUns.

For the proof, we need to define ∆n :“ Σ´ 1
2

n pUn ´ Σnq Σ´ 1
2

n , rΣpjq
n :“ Σ´ 1

2
n ΣpjqΣ´ 1

2
n , and rΦjptq :“ Σ´ 1

2
n Φjptq

for any t P R and j P rns. For any j P N, we have

}Σpjq}2 “ µmax

´

Σpjq
¯

“ µmax

ˆ

E
„
ż

S

ΦjΦJ
j

ȷ˙

ď E
„
ż

S

}Φj}2
2

ȷ

ď d. (55)

By the assumption that µminpΣpjqq ě σmin for all j P N and Weyl’s inequality (Weyl, 1912), we have

µmin pΣnq ě nσmin. (56)

By (55) and (56), for each j P rns, we have

µmax

´

rΣpjq
n

¯

ď
µmax

`

Σpjq
˘

µmin pΣnq
ď

d

nσmin
. (57)

Consider the following random matrix for j P rns:

Zj :“
ż

S

rΦj
rΦJ

j ´ rΣpjq
n “ Σ´ 1

2
n

ˆ
ż

S

ΦjΦJ
j ´ Σpjq

˙

Σ´ 1
2

n .

We have that

∆n “

n
ÿ

j“1
Zj , (58)

and for any j P rns, we have,

ErZjs “ 0, (59)

and, furthermore, we have,

}Zj}2 “ maxtµmaxpZjq, ´µminpZjqu

ď max
"

µmax

ˆ
ż

S

rΦj
rΦJ

j

˙

, µmax

´

rΣpjq
n

¯

*

ď
d

nσmin
(60)

where (60) follows from (57) and

µmax

ˆ
ż

S

rΦj
rΦJ

j

˙

ď

ż

S

}rΦj}2 ď
1

µminpΣnq

ż

S

}Φj}2 ď
d

nσmin
.

By (58), (59), (60), and Tropp (2012, Theorem 1.3), we have

P rµmin p∆nq ď ´as ď d exp
ˆ

´
nσ2

mina2

8d2

˙

(61)

for any a ě 0. Thus, with probability at least 1 ´ δ,

µmin p∆nq ě ´
d

σmin

d

8
n

log
ˆ

d

δ

˙

. (62)
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Since ∆n “ Σ´ 1
2

n UnΣ´ 1
2

n ´ Id, we have µminpΣ´ 1
2

n UnΣ´ 1
2

n q “ µminp∆nq ` 1 which together with the fact that
Un “ Σ

1
2
n Σ´ 1

2
n UnΣ´ 1

2
n Σ

1
2
n implies that

µminpUnq ě µminpΣnqµminpΣ´ 1
2

n UnΣ´ 1
2

n q “ µminpΣnqpµminp∆nq ` 1q. (63)

By (63), we have

µminp∆nq ě ´
1
2 ùñ µminpUnq ě

1
2µminpΣnq ě

n

2 σmin ą 0. (64)

Note that when Un is positive definite, we have

Σ
1
2
n U´1

n Σ
1
2
n “ Σ

1
2
n U

´ 1
2

n

´

Σ
1
2
n U

´ 1
2

n

¯J

,

U
´ 1

2
n ΣnU

´ 1
2

n “

´

Σ
1
2
n U

´ 1
2

n

¯J

Σ
1
2
n U

´ 1
2

n .

Thus,

}U
´ 1

2
n ΣnU

´ 1
2

n }2 “}Σ
1
2
n U´1

n Σ
1
2
n }2

“

›

›

›

›

´

Σ´ 1
2

n UnΣ´ 1
2

n

¯´1
›

›

›

›

2

“}pId ` ∆nq´1}2

“
1

µminpId ` ∆nq

“
1

1 ` µmin p∆nq
. (65)

By (64) and (65), we have

µminp∆nq ě ´
1
2 ùñ µminpUnq ě

n

2 σmin and }U
´ 1

2
n ΣnU

´ 1
2

n }2 ď 2. (66)

By (62), for any δ P p0, 1q, if n ě 32d2

σ2
min

logpd{δq, we have µminp∆nq ě ´ 1
2 with probability at least 1 ´ δ. Then,

by (66), we have

}U
´ 1

2
n ΣnU

´ 1
2

n }2 ď 2 and µminpUnq ě
n

2 σmin. (67)

with probability at least 1 ´ δ.

Still define Wn :“
řn

i“1
`ş

S
IypjqΦj ´

ş

S
θJ

˚ ΦjΦj

˘

. By (50), we have pθ ´ θ˚ “ U´1
n Wn and }pθ ´ θ˚}Un “

}Wn}U´1
n

.
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By (7), (67), and the union bound, for any δ1 P p0, 1q and δ2 P p0, 1 ´ δ1q, if n ě 32d2

σ2
min

log d
δ1

, we have

}pθ ´ θ˚}Σn
“

b

W J
n U

´ 1
2

n U
´ 1

2
n ΣnU

´ 1
2

n U
´ 1

2
n Wn

ď

c

}U
´ 1

2
n ΣnU

´ 1
2

n }2}Wn}2
U´1

n

“

b

}U
´ 1

2
n ΣnU

´ 1
2

n }2}pθ ´ θ˚}2
Un

ď
?

2}pθ ´ θ˚}Un

ď

?
2nd ` 4

b

nd log 1
δ2

` 4
3

?
2d log 1

δ2
a

µminpUnq

ď

2
?

nd ` 4
b

2nd log 1
δ2

` 8
3

?
d log 1

δ2
?

nσmin

“

2
?

d ` 4
b

2d log 1
δ2

` 8
3
a

d{n log 1
δ2

?
σmin

with probability at least 1 ´ δ1 ´ δ2.

By letting δ1 “ δ2 “ δ, (8) is proved. In conclusion, Theorem 4 is proved for any probability measure m on
pS, BpSqq.

B.2.2 Proof of Proposition 5

Proof. Since

Σ´ 1
2

n UnpλqΣ´ 1
2

n “ Σ´ 1
2

n pΣn ` λId ` Un ´ Σnq Σ´ 1
2

n “ Id ` λΣ´1
n ` ∆n

and λΣ´1
n is positive semi-definite for any λ ě 0, we have

}Σ
1
2
n Unpλq´1Σ

1
2
n }2 “

›

›

›

›

´

Σ´ 1
2

n UnpλqΣ´ 1
2

n

¯´1
›

›

›

›

2

“}pId ` λΣ´1
n ` ∆nq´1}2

“
1

µminpId ` λΣ´1
n ` ∆nq

ď
1

1 ` µmin p∆nq
. (68)

Since

Σ
1
2
n Unpλq´1Σ

1
2
n “ Σ

1
2
n Unpλq´ 1

2

´

Σ
1
2
n Unpλq´ 1

2

¯J

,

Unpλq´ 1
2 ΣnUnpλq´ 1

2 “

´

Σ
1
2
n Unpλq´ 1

2

¯J

Σ
1
2
n Unpλq´ 1

2 ,

by (68), we have

}Unpλq´ 1
2 ΣnUnpλq´ 1

2 }2 “ }Σ
1
2
n Unpλq´1Σ

1
2
n }2 ď

1
1 ` µmin p∆nq

.

Define Rn “
řn

i“1 Vj ´ λθ˚ where Vj :“
ş

S
IypjqΦj ´

ş

S
θJ

˚ ΦjΦj . Then, by (3) and (44), we have

pθλ ´ θ˚ “ Unpλq´1Rn.
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Thus,

}pθλ ´ θ˚}2
Σn

“ RJ
n Unpλq´ 1

2 Unpλq´ 1
2 ΣnUnpλq´ 1

2 Unpλq´ 1
2 Rn

ď }Unpλq´ 1
2 ΣnUnpλq´ 1

2 }2}Rn}2
Unpλq´1

“ }Unpλq´ 1
2 ΣnUnpλq´ 1

2 }2}pθλ ´ θ˚}2
Unpλq.

By the above inequality, (62), and (6) in Theorem 1, for any n P N, δ1 P p0, 1q, δ2 P p0, 1 ´ δ1q, we have

}pθλ ´ θ˚}Σn
ď

}pθλ ´ θ˚}Unpλq
a

1 ` µminp∆nq

ď

b

d log
`

1 ` n
λ

˘

` 2 log 1
δ2

`
?

λ}θ˚}
c

1 ´ d
σmin

b

8
n log

`

d
δ

˘

with probability at least 1 ´ δ1 ´ δ2. Then, when n ě 32d2

σ2
min

logpd{δ1q, by the above inequality, we have

}pθλ ´ θ}Σn
ď

d

2
ˆ

d log
´

1 `
n

λ

¯

` 2 log 1
δ2

˙

`
?

2λ}θ˚} (69)

with probability at least 1 ´ δ1 ´ δ2. Thus, (9) is obtained from (69) by setting δ1 “ δ2 “ δ P p0, 1{2q.
Proposition 5 is proved for any probability measure m on pS, BpSqq.

B.3 Proof of Theorem 7

Proof. Notice that by Fubini’s theorem, we have ErUnpλqs “ Σnpλq and

Eruns “ E

«

n
ÿ

j“1

ż

S

ΦjΦJ
j θ˚dm

ff

“ E

«

n
ÿ

j“1

ż

S

ΦjΦJ
j dm

ff

θ˚ “ Σnθ˚.

Similar to the proof of Azizzadenesheli (2020, Lemma 4.3), by Pires & Szepesvári (2012, Theorem 3.4), we
have that with probability at least 1 ´ δ,

}Σnpλqqθλ ´ Σnθ˚} ď}Σnpλqθ˚ ´ Σnθ˚} ` 2∆U
n pδq}θ˚} ` 2}un ´ Eruns}

“pλ ` 2∆U
n pδqq}θ˚} ` 2}un ´ Eruns}.

Since

}Σnpλqqθλ ´ Σnθ˚} “ }Σnpqθλ ´ θ˚q ` λqθλ},

we have

}Σnpqθλ ´ θ˚q} ď λ}qθλ} ` pλ ` 2∆U
n pδqq}θ˚} ` 2}un ´ Eruns}

which also implies that

}qθλ ´ θ˚} ď
1

µminpΣnq

”

λ}qθλ} ` pλ ` 2∆U
n pδqq}θ˚} ` 2}un ´ Eruns}

ı

(70)

Note that for any j P rns,
›

›

›

›

ż

S

IypjqΦj ´

ż

S

E
“

θJ
˚ ΦjΦj

‰

›

›

›

›

ď
?

d.
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According to Hsu et al. (2012a, Proposition 1.2), for any δ P p0, 1q and n P N, with probability at least 1 ´ δ,
we have

}un ´ Eruns} ď
?

nd `
a

8nd logp1{δq `
4
3

?
d logp1{δq.

Then, by (70), for any δ P p0, 1q, δ1 P p0, 1 ´ δq, and any λ ě 0, with probability at least 1 ´ δ ` δ1, we have

}qθλ ´ θ˚} ď
1

µminpΣnq

”

λ}qθλ} ` pλ ` 2d
a

8n logpd{δ1qq}θ˚}

` 2
´?

nd `
a

8nd logp1{δ2q `
4
3

?
d logp1{δ2q

¯ı

.

For λ “ 0, we have

}qθ ´ θ˚} ď
1

µminpΣnq

„

2d
a

8n logpd{δ1q}θ˚} ` 2
ˆ

?
nd `

a

8nd logp1{δ2q `
4
3

?
d logp1{δ2q

˙ȷ

.

Setting δ “ δ1, we obtain (11).

C Proofs of minimax lower bounds

In this section, we prove Theorem 8 and Proposition 9.

C.1 Proof of Theorem 8

Proof. First, we show that RpθpPd
x1:n qq “ Ωp1q under the regime that µminpUnq “ 0. Suppose that ϕip¨, ¨q “

ϕ1p¨, ¨q for any 1 ď i ď d. In this case, we have µminpUnq “ 0 and θpP q can be arbitrary θ P ∆d´1 for any
P P Pd

x1:n . For any estimator θ̌ P ∆d´1, there exists θ1 P ∆d´1 such that }θ̌ ´ θ1} “ Ωp1q by the property of
∆d´1. Then, there always exists P P Pd

x1:n such that θpP q “ θ1 and hence, EP

”

}θ̌pyp1q, . . . , ypnqq ´ θpP q}

ı

ď

supθp1q,θp2qP∆d´1 }θp1q ´ θp2q} “ Ωp1q. Thus, we have, RpθpPd
x1:n qq “ Ωp1q under the regime that µminpUnq “ 0.

Next, we show that RpθpPd
x1:n qq “ Ωp

b

d
1`µminpUnq

q under the regime that µminpUnq ą 0 using Fano’s
method (Fano, 1961). In order to apply Fano’s method, we first construct separated subset for ∆d´1.

Let dℓ2 denote the ℓ2 distance. For δ P p0, 1q, let P p∆d´1, dℓ2 , δq denote the δ-packing number of the set
∆d´1. Then, we have the following lower bound on P p∆d´1, dℓ2 , δq.

Lemma 21. For any d ě 2, we have

P p∆d´1, dℓ2 , δ0q ą 2d. (71)

where

δ0 :“
?

e

2
?

πd

˜?
d

3

¸
1

d´1 ˆ 1
?

2

˙
d

d´1

ě

?
2e

12
?

πd
. (72)

The proof of Lemma 21 uses the volume method and is provided in Appendix H.

Lemma 21 implies that there exits a δ0-separated subset V1 of ∆d´1 of size |V1| ě 2d. Define Va :“ tlapθq : θ P

V1u where lapθq “

”

aθ1, . . . , aθd´1, 1 ´ a
řd´1

i“1 θi

ıJ

for 0 ď a ă 1
supθPV1

řd´1
i“1 θi

. Then, for any θp1q, θp2q P V1

and any j P rns, we have

}lapθp1qq ´ lapθp2qq} “

g

f

f

ea2
d
ÿ

i“1

´

θ
p1q

i ´ θ
p2q

i

¯2
“ a}θp1q ´ θp2q}
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Thus, we have
}lapθp1qq ´ lapθp2qq} ď a sup

x,yP∆d´1
}x ´ y} “

?
2a (73)

and
}lapθp1qq ´ lapθp2qq} ě aδ0

which implies that Va is a paδ0q-separated subset of ∆d´1 of size |Va| ě 2d.

Let DpQ1}Q2q and χ2pQ1}Q2q denote the Kullback-Leibler (KL) divergence and χ2-divergence between two
probability measures Q1 and Q2 on R, respectively, where Q1 is absolutely continuous w.r.t. Q2. Their
definitions are given below:

DpQ1}Q2q :“
ż

R
log

ˆ

dQ1

dQ2

˙

dQ1 and χ2pQ1}Q2q :“
ż

R

ˆ

dQ1

dQ2
´ 1

˙2
dQ2,

where dQ1
dQ2

denotes the Radon-Nikodym derivative of Q1 w.r.t. Q2.

Lemma 22. For any d ě 2, there exists some nonempty subset BB
d Ď Bd such that for any n ě d, we have

D
´

bn
j“1P Φ

Y |xpjq,θp1q

›

›

›
bn

j“1 P Φ
Y |xpjq,θp2q

¯

ď
8a2

d
p1 ` 2µmin pUnqq (74)

and µminpUnq ą 0 for any θp1q, θp2q P Va and any Φ P BB
d .

Proof of Lemma 22. For any θp1q, θp2q P Va, and Φ P Bd, we have

D
´

P Φ
Y |xpjq,θp1q }P Φ

Y |xpjq,θp2q

¯

ď χ2
´

P Φ
Y |xpjq,θp1q }P Φ

Y |xpjq,θp2q

¯

(75)

where (75) follows from the bound on KL divergence w.r.t. χ2-divergence (Su, 1995) (also see Makur (2019,
Lemma 2.3) or Makur & Zheng (2020, Lemma 3) and the references therein). By the tensorization of KL
divergence, we have

D
´

bn
j“1P Φ

Y |xpjq,θp1q

›

›

›
bn

j“1 P Φ
Y |xpjq,θp2q

¯

“

n
ÿ

j“1
D
´

P Φ
Y |xpjq,θp1q }P Φ

Y |xpjq,θp2q

¯

. (76)

Now, we consider a special case where Φ consists of CDFs of Bernoulli distributions. Under this Bernoulli
setting, we set S “ r0, 1s and m “ Leb. Specifically, for any p “ ppjiqjPrns,iPrds P r0, 1snˆd, define Φp

jiptq :“
PrZi ď ts with Zj „ Bernoullippjiq for any i P rds and j P rns. Then, for any θ P ∆d´1 and j P rns, we
have that

řd
i“1 θiΦp

jiptq “ PrZ
pjq

θ ď ts with Z
pjq

θ „ BernoullippJ
j θq where pj “ rpj1, . . . , pjdsJ. Let P B

ρ be the
probability measure induced by the Bernoulli distribution with parameter ρ P r0, 1s. Define qji :“ 1 ´ pji

and qj :“ rqj1, . . . , qjdsJ for any j P rns and i P rds. By definition, the χ2-divergence between two different
Bernoulli distributions with parameters pJ

j θp1q and pJ
j θp2q is

χ2
´

P Φp

Y |xpjq;θp1q

›

›

›
P Φp

Y |xpjq;θp2q

¯

“χ2
´

P B
pJ

j
θp1q

›

›

›
P B

pJ
j

θp2q

¯

“

`

qJ
j

`

θp1q ´ θp2q
˘˘2

pJ
j θp2q

`

`

qJ
j

`

θp1q ´ θp2q
˘˘2

qJ
j θp2q

“

`

qJ
j

`

θp1q ´ θp2q
˘˘2

`

qJ
j θp2q

˘

pJ
j θp2q

ď
2a2 řd

i“1 q2
ji

`

qJ
j θp2q

˘

pJ
j θp2q

(77)
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where (77) is by Cauchy-Schwarz inequality and (73). Since S “ r0, 1s, m “ Leb, and Φjptq “ qj for any
t P r0, 1q and j P rns, we have

Un “

n
ÿ

j“1

ż

S

ΦjΦJ
j dm “

n
ÿ

j“1
qjqJ

j .

Assume d ě 2. Suppose that for any j P rds and i P rds, pj satisfies that

1 ´
1
d3 ď pji ď 1 ´

1
2d3 and µmin

˜

d
ÿ

j“1
qjqJ

j

¸

ą 0. (78)

Since µmin

´

řd
j“1 qjqJ

j

¯

ą 0 if tqjujPrds is linearly independent, such vectors pj ’s exist. For example, we can
set pjj “ 1 ´ 1

d3 for any j P rds and pji “ 1 ´ 1
2d3 for any i, j P rds with i ‰ j. Then, it is clear that qj ’s are

linearly and thus, µmin

´

řd
j“1 qjqJ

j

¯

ą 0. Therefore, µminpUnq ą 0 for any d ě n.

Now, for any j ě d ` 1 and i P rds, suppose that pj satisfies

1 ´
µminpRj´1q

d2 ď pji ď 1 ´
µminpRj´1q

2d2 , (79)

where Rj :“ qjqJ
j ` 1

n

řj´1
k“1 qkqJ

k for any j ě d. Then, according to the condition that µminpUdq ą 0, we
have

0 ă µmin

ˆ

1
n

Ud

˙

ď µminpRjq ď
1
d

tracepRjq “
1
d

˜

qJ
j qj `

1
n

j´1
ÿ

k“1
qJ

k qk

¸

ď 2

for any j ě d, which implies that 0 ă
µminpRj´1q

d2 ď 2
d2 ď 1

d . Thus, for any j ě d and i P rds, the above pji’s
are indeed defined in r0, 1s and qji satisfies µminpRj´1q

2d2 ď qji ď
µminpRj´1q

d2 .

For notational convenience, define Rj :“ 1
d Id for any 0 ď j ď n ´ 1. Then, we have
řd

i“1 q2
ji

qJ
j θp2q

ď
2
d

µminpRj´1q

and

pJ
j θp2q ě 1 ´

µminpRj´1q

d2 ě 1 ´
2
d2 ě

1
2 .

It follows that
2a2 řd

i“1 q2
ji

`

qJ
j θp2q

˘

pJ
j θp2q

ď
8a2µminpRj´1q

d
(80)

which, together with (75) and (77), implies that

D
´

P Φp

Y |xpjq,θp1q }P Φp

Y |xpjq,θp2q

¯

ď
8a2µminpRj´1q

d
. (81)

Then, by (76), we have

D
´

bn
j“1P Φp

Y |xpjq,θp1q

›

›

›
bn

j“1 P Φp

Y |xpjq,θp2q

¯

ď
8a2

d

n
ÿ

j“1
µminpRj´1qq

ď
8a2

d

˜

1 `

n
ÿ

j“d

µminpRjq

¸

ď
8a2

d

˜

1 ` µmin

˜

n
ÿ

j“d

Rj

¸¸
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where the second inequality follows from the fact that µminpRjq “ 1
d for any 0 ď j ď d ´ 1 and µminpRnq ě 0.

The last inequality follows from Weyl’s inequality (Weyl, 1912). Note that

n
ÿ

j“d

Rj “

n
ÿ

j“d

qjqJ
j `

d´1
ÿ

j“1

n ´ d ` 1
n

qjqJ
j `

n´1
ÿ

j“d

n ´ j

n
qjqJ

j ĺ 2
n
ÿ

j“1
qjqJ

j “ 2Un

where we say A ĺ B for two square matrices A and B of the same size if µminpB ´ Aq ě 0. Therefore, by
Weyl’s inequality (Weyl, 1912) again, we have µmin

´

řn
j“d Rj

¯

ď 2µminpUnq and

D
´

bn
j“1P Φp

Y |xpjq,θp1q

›

›

›
bn

j“1 P Φp

Y |xpjq,θp2q

¯

ď
8a2

d
p1 ` 2µmin pUnqq .

for any θp1q, θp2q P Va.

In conclusion, we have proved that µminpUnq ą 0 and (74) holds for any θp1q, θp2q P Va and any Φ P BB
d with

BB
d :“ tΦp : pji’s satisfy (78) for any i, j P rds and (79) for any j ě d ` 1 and i P rdsu .

As is shown in the discussions below (78) and (79), BB
d ‰ H.

Now, define PB,d
x1:n :“

!

bn
j“1P Φ

Y |xpjq;θ : θ P ∆d´1, Φ P BB
d

)

Ď PB,d
x1:n with BB

d specified in Lemma 22. Then, by
Lemma 22, (72), (81), and Fano’s method (Fano, 1961), we have

RpθpPd
x1:n qq ěRpθpPB,d

x1:n qq (82)
“ inf

θ̂
sup

P PPB,d

x1:n

EP r}θ̂pyp1q, . . . , ypnqq ´ θpP q}s

ěaδ0

¨

˝1 ´
supθp1q,θp2qPVa

D
´

bn
j“1Fθp1q pxpjq, ¨q

›

›

›
bn

j“1 Fθp2q pxpjq, ¨q

¯

` log 2
log |Va|

˛

‚

ěaδ0

˜

1 ´

8a2

d p1 ` 2µminpUnqq ` log 2
d log 2

¸

ě
a

?
2e

12
?

πd

ˆ

1 ´
8a2p1 ` 2µminpUnqq ` d log 2

d2 logp2q

˙

(83)

where (82) follows from the fact that PB,d
x1:n Ď Px1:n .

Choosing a “ Θp d?
1`p1`µminpUnqq

q, by (83), we have RpθpPd
x1:n qq “ Ωp

b

d
1`µminpUnq

q under the regime that
µminpUnq ą 0.

Given the above results, we can conclude that

RpθpPx1:n qq “ Ω
˜

min
#

1,

d

d

1 ` µminpUnq

+¸

.

C.2 Proof of Corollary 9

Proof. Assume that Xp1q, . . . , Xpnq are independent random variables in X . For any fixed sequence
x1:n “ pxp1q, . . . , xpnqq P X n, denote by Pd

X,Y ;x1:n Ď Pd
n the family of the joint distributions of
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pY p1q, Xp2q, . . . , Y pnq, Xpnqq whose marginal distribution on pXp1q, . . . , Xpnqq is 1x1:n , i.e., the delta mass
on x1:n. Then, we have Σn “ Un almost surely (a.s.) and

RpθpPqq “ inf
θ̂

sup
P PPd

n

EP r}θ̂pyp1q, . . . , ypnqq ´ θpP q}s

“ inf
θ̂

sup
P PPd

n

EP

”

EP

”

}θ̂pyp1q, . . . , ypnqq ´ θpP q}|Xp1q, . . . , Xpnq
ıı

ě inf
θ̂

sup
P PPd

X,Y ;x1:n

EP

”

}θ̂pyp1q, . . . , ypnqq ´ θpP q}|xp1q, . . . , xpnq
ı

“ Ω
˜

min
#

1,

d

d

1 ` µminpΣnq

+¸

(84)

Thus, RpθpPd
nqq “ Ω

´

min
!

1,
b

d
1`µminpΣnq

)¯

.

D Proofs of upper bounds for the infinite dimensional model

In this section, we prove Theorem 19.

Proof of Theorem 19. For θ˚ P Hσ,e, define the function for any m P N

rθ˚,m :“ Unθ˚ `

m
ÿ

i“1

xei, θ˚y

σ2
i

ei.

Then, we have rθ˚,m P L2pΩ, nq. For any i P rms, we have

xei, rθ˚,my “xei, Unθ˚y `
xei, θ˚y

σ2
i

“xUnei, θ˚y `
xei, θ˚y

σ2
i

“

ˆ

λi `
1
σ2

i

˙

xei, θ˚y.

For any i ě m ` 1, we have

xei, rθ˚,my “ xei, Unθ˚y “ λixei, θ˚y.

Thus, we have

U´1
n,σ

rθ˚,m “

8
ÿ

i“1

σ2
i xei, rθ˚,my

1 ` λiσ2
i

ei “

m
ÿ

i“1
xei, θ˚yei `

8
ÿ

i“m`1

λiσ
2
i xei, θ˚y

1 ` λiσ2
i

ei

and

}θ˚ ´ U´1
n,σ

rθ˚,m}2 “

8
ÿ

i“m`1

|xei, θ˚y|2

p1 ` λiσ2
i q2

Since limiÑ8 λi “ 0 “ limiÑ σi and
ř8

i“1 |xei, θ˚y|2 ă 8, we have

lim
mÑ8

8
ÿ

i“m`1

|xei, θ˚y|2

p1 ` λiσ2
i q2 “ 0.

41



Published in Transactions on Machine Learning Research (02/2024)

Thus, defining θ˚,m :“ U´1
n,σ

rθ˚,m, we have θ˚,m Ñ θ˚ as m Ñ 8 in L2pΩ, nq. Moreover, by the definition of
Un, we have

θ˚,mpωq “ U´1
n,σ

rθ˚,m “ U´1
n,σ

˜

n
ÿ

j“1

ż

S

Ψjpθ˚, tqΦjpω, tqmpdtq `

m
ÿ

i“1

xei, θ˚y

σ2
i

eipωq

¸

for n-a.e. ω P Ω.

We follow the same probability space constructed in Appendix B.1. Define

Vjpωq “

ż

S

Iypjq ptqΦjpω, tqmpdtq ´

ż

S

Ψjpθ˚, tqΦjpω, tqmpdtq

for any j P rns and n-a.e. ω P Ω. Since Φ is pBpX qbFΩ bBpRqq{Bpr0, 1sq-measurable, according to the similar
arguments as in Appendix B.1.1, we have that Vj is FΩ b Fj-measurable for any j P rns. For n-a.e. ω P Ω,
we have |

ş

S
Iypjq ptqΦjpω, tqmpdtq| ď

ş

S
mpdtq “ 1 and |

ş

S
Ψjpθ˚, tqΦjpω, tqmpdtq| ď

ş

S
mpdtq “ 1. Thus, We

have ´1 ď Vjpωq ď 1 for n-a.e. ω P Ω and Vj P L2pΩ, nq because npΩq ă 8. By Fubini’s theorem, for any
j P rns and n-a.e. ω P Ω, we have

ErVjpωq|Fj´1s “

ż

S

ErIypjq ptq|Fj´1sΦjpω, tqmpdtq ´

ż

S

Ψjpθ˚, tqΦjpω, tqmpdtq

“

ż

S

Ψjpθ˚, tqΦjpω, tqmpdtq ´

ż

S

Ψjpθ˚, tqΦjpω, tqmpdtq

“0.

For any α P L2pΩ, nq, define M0pαq :“ 1. For any n P N and α P L2pΩ, nq, define Wn :“
řn

j“1 Vj and
Mnpαq :“ exp

␣

xα, Wny ´ 1
2 }α}2

Un

(

with }α}2
Un

“ xα, Unαy. We have that

Lemma 23. For any α P L2pΩ, nq, Mnpαqně0 is a non-negative super-martingale.

The proof of Lemma 23 is similar to that in Appendix B.1.1 and is provided in Appendix J. By Lemma 23,
we have

ErMnpαqs ď ErM0pαqs “ 1.

Since U´1
n,σ is a bounded linear operator on L2pΩ, nq, we have U´1

n,σWn P L2pΩ, nq. There exists pwiqiPN P RN

such that U´1
n,σWn “

ř8

i“1 wiei.

Let tζiuiě1 be a sequence of independent normal distributed random variables such that ζi „ Np0, 1q for any
i P N and Fζ :“ σ pζ1, ζ2, . . . q is independent of F8 :“ σ pYj“1Fjq.

Define βi :“ σiζi for any i P N. By the monotone convergence theorem, we have

E

«

8
ÿ

i“1
β2

i

ff

“ E

«

8
ÿ

i“1
σ2

i ζ2
i

ff

“

8
ÿ

i“1
σ2

i E
“

ζ2
i

‰

“

8
ÿ

i“1
σ2

i ă 8.

Thus, we have
ř8

i“1 β2
i ă 8 a.s., which implies that t

řm
i“1 βieiumě1 and t

řm
i“1 σiζieiumě1 converges in

L2pΩ, nq a.s.. In particular, we have β :“
ř8

i“1 σiβiei P L2pΩ, nq with }β}2 ă 8 a.s..

Define ĎMn :“ ErMnpβq|F8s. Then, ĎMn ě 0. Since Mnpαq is Fn-measurable for any fixed α P L2pΩ, nq and
Fβ and F8 are independent, we have that ĎMn is Fn-measurable. Then, we have

ErĎMn|Fn´1s “ErMnpβq|Fn´1s

“ErErMnpβq|Fζ , Fn´1s|Fn´1s

ďErErMn´1pβq|Fζ , Fn´1s|Fn´1s

“ErErMn´1pβq|Fζ , F8s|Fn´1s

“ErErMn´1pβq|F8s|Fn´1s

“ĎMn´1
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and

Er|ĎMn|s “ ErĎMns “ ErMnpβqs “ ErErMnpβq|Fβss ď 1.

Thus, tĎMnuně0 is a non-negative super-martingale.

Since }Un} ď nnpΩq and Un is positive, we have 0 ď λi “ xei, Uneiy ď nnpΩq for any i P N. Define
w1

i :“ xei, Wny for any i P N. Define Hm :“
řm

i“1 βiw
1
i ´ 1

2
řm

i“1 λiβ
2
i for any m P N and H8 :“ xβ, Wny ´

1
2 }β}2

Un
“

ř8

i“1 βiw
1
i ´ 1

2
ř8

i“1 λiβ
2
i . Then, we have Mnpβq “ exppH8q. Moreover, we prove the following

convergence result.

Lemma 24.

ErexppHmq|F8s Ñ ErMnpβq|F8s “ ĎMn

as m Ñ 8 a.s..

The proof of Lemma 24 uses the conditional dominated convergence theorem and is provided in Appendix J.
Specifically, we first show that limmÑ8 |Hm ´ H8| “ 0 a.s.. Then, we verify that the dominating function of
exppHmq,

exp
´

n
8
ÿ

i“1
|σiζi| `

1
2

8
ÿ

i“1
λiσ

2
i ζ2

i

¯

,

is integrable. Since ζ1, ζ2, . . . are independent and Np0, 1q-distributed random variables, we can use the
monotone convergence theorem to calculate Erexp

`

n
ř8

i“1 |σiζi| ` 1
2
ř8

i“1 λiσ
2
i ζ2

i

˘

s. Then, it suffices to verify
the convergence of the resulting series; e.g., the conditions that |σi| ă 1?

λi
, @i P N and

ř8

i“1 |σi| ă 8 are
needed to show that

8
ź

i“1

ˆ

2ΦNp0,1q

´

n|σi|{

b

1 ´ λiσ2
i

¯

˙

exists as a non-negative real number, where ΦNp0,1q denotes the CDF of the Np0, 1q distribution.

For any m P N, define βm “
řm

i“1 βiei and Wn,m “
řm

i“1 w1
iei. Then, we have βm, Wn,m P L2

σpΩ, nq and

}Wn,m}2
U´1

n,σ
´ }βm ´ U´1

n,σWn,m}2
Un,σ

“ 2xβm, Wn,my ´ }βm}2
Un,σ

For any m P N, we have

ErexppHmq|F8s “E
„

exp
"

xβm, Wn,my ´
1
2}βm}2

Un

*

ˇ

ˇ

ˇ
F8

ȷ

“E

«

exp
#

xβm, Wn,my ´
1
2}βm}2

Un,σ
`

1
2

m
ÿ

i“1
ζ2

i

+

ˇ

ˇ

ˇ
F8

ff

“ exp
ˆ

1
2}Wn,m}2

U´1
n,σ

˙

E

«

exp
#

1
2

m
ÿ

j“1
ζ2

i ´
1
2}βm ´ U´1

n,σWn,m}2
Un,σ

+

ˇ

ˇ

ˇ
F8

ff

“ exp
ˆ

1
2}Wn,m}2

U´1
n,σ

˙
ż

Rm

exp
"

´
1
2}βm ´ U´1

n,σWn,m}2
Un,σ

*

1
?

2π
dζ1 ¨ ¨ ¨

1
?

2π
dζm

“ exp
ˆ

1
2}Wn,m}2

U´1
n,σ

˙
ż

Rm

exp
#

´
1
2

m
ÿ

i“1

ˆ

λi `
1
σ2

i

˙

β2
i

+

1
?

2π
dζ1 ¨ ¨ ¨

1
?

2π
dζm

“ exp
ˆ

1
2}Wn,m}2

U´1
n,σ

˙
ż

Rm

exp
#

´
1
2

m
ÿ

i“1

`

1 ` λiσ
2
i

˘

ζ2
i

+

1
?

2π
dζ1 ¨ ¨ ¨

1
?

2π
dζm

“
1

a

śm
i“1p1 ` λiσ2

i q
exp

ˆ

1
2}Wn,m}2

U´1
n,σ

˙
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Since λiσ
2
i ě 0 for any i P N and

ř8

i“1 λiσ
2
i ă 8, we have

1 ď

8
ź

i“1
p1 ` λiσ

2
i q ă 8.

Since

}Wn,m}2
U´1

n,σ
“

m
ÿ

i“1

ˆ

λi `
1
σ2

i

˙´1
pw1

iq
2 “

m
ÿ

i“1

σ2
i pw1

iq
2

1 ` λiσ2
i

and
8
ÿ

i“1

σ2
i pw1

iq
2

1 ` λiσ2
i

ď sup
kPN

σ2
k

8
ÿ

i“1
pw1

iq
2 “ sup

kPN
σ2

k}Wn}2 ă 8,

we have

lim
mÑ8

}Wn,m}2
U´1

n,σ
“

8
ÿ

i“1

σ2
i pw1

iq
2

1 ` λiσ2
i

“ }Wn}2
U´1

n,σ
ă 8.

In conclusion, we have

ĎMn “ lim
mÑ8

ErexppHmq|F8s “
1

b

ś8

i“1p1 ` λiσ2
i q

exp
ˆ

1
2}Wn}2

U´1
n,σ

˙

Since tĎMnuně0 is a super-martingale. By Doob’s maximal inequality for super-martingales,

P
„

sup
nPN

ĎMn ě δ

ȷ

ď
ErĎM0s

δ
“

1
δ

which, implies that,

P

»

–Dn P N s.t. }Wn}U´1
n,σ

ě

g

f

f

elog
˜

8
ź

i“1
p1 ` λiσ2

i q

¸

` 2 log 1
δ

fi

fl ď δ. (85)

Define the finite rank operator ςm : Hσ,e Ñ L2pΩ, nq, θ ÞÑ
řm

i“1
xei,θy

σ2
i

ei. Since

pθσ ´ θ˚,m “ U´1
n,σ pWn ´ ςmθ˚q “ U´1

n,σWn ´ U´1
n,σςmθ˚,

by the triangle inequality, we have

}pθσ ´ θ˚,m}Un,σ ď }U´1
n,σWn}Un,σ ` }U´1

n,σςmθ˚}Un,σ

“ }Wn}U´1
n,σ

` }ςmθ˚}U´1
n,σ

“ }Wn}U´1
n,σ

`

g

f

f

e

m
ÿ

i“1

|θ˚,i|
2

p1 ` λiσ2
i qσ2

i

ď }Wn}U´1
n,σ

`

g

f

f

e

m
ÿ

i“1

|θ˚,i|
2

σ2
i

Besides, we have

}θ˚,m ´ θ˚}2
Un,σ

“

8
ÿ

i“m`1

´

λi ` 1
σ2

i

¯

|xei, θ˚y|2

p1 ` λiσ2
i q2 “

8
ÿ

i“m`1

|xei, θ˚y|2

σ2
i p1 ` λiσ2

i q
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Since limiÑ8 λi “ 0 “ limiÑ σi and
ř8

i“1
|xei,θ˚y|

2

σ2
i

ă 8, we have

lim
mÑ8

}θ˚,m ´ θ˚}2
Un,σ

“ lim
mÑ8

8
ÿ

i“m`1

|xei, θ˚y|2

σ2
i p1 ` λiσ2

i q2 “ 0.

Thus,

}pθσ ´ θ˚}Un,σ ď lim sup
mÑ8

}pθσ ´ θ˚,m}Un,σ ď }Wn}U´1
n,σ

`

g

f

f

e

8
ÿ

i“1

|θ˚,i|
2

σ2
i

“ }Wn}U´1
n,σ

` }θ˚}σ,e.

With probability at least 1 ´ δ, for all n P N, we have

}pθσ ´ θ˚}Un,σ ď

g

f

f

e

˜

8
ÿ

i“1
log p1 ` λiσ2

i q

¸

` 2 log 1
δ

` }θ˚}σ,e.

Since 0 ď λi “ xei, Uneiy ď nnpΩq for any i P N, the above inequality implies that

}pθσ ´ θ˚}Un,σ ď

g

f

f

e

˜

8
ÿ

i“1
log p1 ` nnpΩqσ2

i q

¸

` 2 log 1
δ

` }θ˚}σ,e.

E Proof of Lemma 6

Proof. For any n P N, define ∆U
n :“ }Un ´ Σn} and Zj :“

ş

S
ΦjΦJ

j ´ Σn for j P rns. We have ErZjs “ 0 and
›

›

›

›

ż

S

ΦjΦJ
j

›

›

›

›

2
“ µmax

ˆ
ż

S

ΦjΦJ
j

˙

ď

ż

S

}Φj}2
2 ď d,

}Σpjq}2 “ µmax

´

Σpjq
¯

“ µmax

ˆ

E
„
ż

S

ΦjΦJ
j

ȷ˙

ď E
„
ż

S

}Φj}2
2

ȷ

ď d.

Thus, for each j P rns, we have

}Zj} ď max
"
›

›

›

›

ż

S

ΦjΦJ
j

›

›

›

›

2
, }Σpjq}2

*

ď d.

By (Tropp, 2012, Theorem 1.3), for any a ě 0, we have

Pr∆U
n ě as ď d exp

ˆ

´
a2

8nd2

˙

.

In other words, for any δ P p0, 1q, with probability at least 1 ´ δ, we have

∆U
n ď d

a

8n logpd{δq.

Thus, we can set ∆U
n pδq ě d

a

8n logpd{δq.

F Proofs of theoretical results in Section 6.2

In this section, we provide the proofs of the stated theoretical results in Section 6.2.
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Proof of Lemma 12. By Fubini’s theorem, for any θ P L2pΩ, nq, we have

pUnθqpωq “

ż

Ω
θpω1q

n
ÿ

j“1

ż

S

Φjpω, tqΦjpω1, tqmpdtqnpdω1q.

Define the function

un : Ω2 Ñ R, pω, ω1q ÞÑ

n
ÿ

j“1

ż

S

Φjpω, tqΦjpω1, tqmpdtq.

Then, we have pUnθqpωq “
ş

Ω unpω, ω1qθpω1qnpdω1q. Since Φjpω, tq P r0, 1s for any ω P Ω, t P S and m is a
probability measure on S, we have unpω, ω1q P r0, ns for any ω, ω1 P Ω and

ż

Ω

ż

Ω
|unpω, ω1q|2npdωqnpdω1q ď n2npΩq2.

Thus, un P L2pΩ2, n2q and Un is Hilbert-Schmidt integral operator for any n P N. Thus, it is also a compact
operator.

Because unpω, ω1q “
řn

j“1
ş

S
Φjpω, tqΦjpω1, tqmpdtq “ unpω1, ωq P R, Un is self-adjoint. For any θ P L2pΩ, nq,

we have

}Unθ}2 “

ż

Ω

ˇ

ˇ

ˇ

ˇ

ż

Ω
θpω1qunpω, ω1qnpdω1q

ˇ

ˇ

ˇ

ˇ

2
npdωq

ď

ż

Ω

ż

Ω
|θpω1q|2npdω1q

ż

Ω
|unpω, ω1q|2npdω1qnpdωq

ďn2npΩq2}θ}2

and

xUnθ, θy “

ż

Ω

ż

Ω
unpω, ω1qθpω1qθpωqnpω1qnpωq

“

n
ÿ

j“1

ż

S

xθp¨q, Φjp¨, tqy2mpdtq

ě0.

Thus, Un is a positive operator with }Un} ď nnpΩq. Note that xUnθ, θy “ 0 iff xθp¨q, Φjp¨, tqy “ 0 for m-a.e.
t P S for all j P rns. Since Un is compact, if dimpL2pΩ, nqq “ 8, Un is not invertible.

Proof of Corollary 14. By Lemma 12, since }Un} ď nnpΩq and Un is positive, we have 0 ď λi “ xei, Uneiy ď

nnpΩq for any i P N. Since Un is a compact operator and teiuiPN is an orthonormal basis consisting of
eigenfunctions of Un, by the Riesz-Schauder theorem (see e.g., Reed & Simon, 1972), we have that λi Ñ 0.

Proof of Lemma 15. For any f, g P L2
σpΩ, nq and α P R, we have

8
ÿ

i“1

|αxei, fy ` xei, gy|2

σ4
i

ď

8
ÿ

i“1

|α|2|xei, fy|2 ` |xei, gy|2 ` 2|α||xei, fy||xei, gy|

σ4
i

ď|α|2
8
ÿ

i“1

|xei, fy|2

σ4
i

`

8
ÿ

i“1

|xei, gy|2

σ4
i

` 2|α|

g

f

f

e

8
ÿ

i“1

|xei, fy|2

σ4
i

8
ÿ

i“1

|xei, gy|2

σ4
i

ă8

Then, we have αf ` g P L2
σpΩ, nq and L2

σpΩ, nq is a linear subspace of L2pΩ, nq.
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Proof of Lemma 16. For any α P R and f, g P L2
σpΩ, nq, we have αf ` g P L2

σpΩ, nq,

Un,σpαf ` gq “ lim
mÑ8

m
ÿ

i“1

ˆ

λi `
1
σ2

i

˙

xei, αf ` gyei

“ lim
mÑ8

«

α
m
ÿ

i“1

ˆ

λi `
1
σ2

i

˙

xei, fyei `

m
ÿ

i“1

ˆ

λi `
1
σ2

i

˙

xei, gyei

ff

“αUn,σf ` Un,σg,

and

}Un,σf}2 “

8
ÿ

i“1

ˆ

λi `
1
σ2

i

˙2
|xei, fy|2

ě inf
kPN

ˆ

λk `
1

σ2
k

˙2 8
ÿ

i“1
|xei, fy|2

ě
1

supkPN σ4
k

}f}2

Thus, Un,σ is a linear operator. Since 0 ď supiPN σ2
i ă 8, we can conclude that }Un,σf} “ 0 iff f “ 0.

Therefore, Un,σ is injective.

For any θ “
ř8

i“1xei, θyei P L2pΩ, nq, we have

8
ÿ

i“1

σ4
i |xei, θy|2

p1 ` λiσ2
i q2 ď sup

kPN
σ4

k

8
ÿ

i“1
|xei, θy|2 ă 8.

and
8
ÿ

i“1

|xei, θy|2

p1 ` λiσ2
i q2 ď

8
ÿ

i“1
|xei, θy|2 ă 8.

Thus, we know that θ̌ :“
ř8

i“1
σ2

i xei,θy

1`λiσ2
i

ei P L2
σpΩ, nq. Since

Un,σ θ̌ “

8
ÿ

i“1

ˆ

λi `
1
σ2

i

˙

σ2
i xei, θy

1 ` λiσ2
i

ei “

8
ÿ

i“1
xei, θyei “ θ,

we can conclude that

U´1
n,σθ “ θ̌ “

8
ÿ

i“1

σ2
i xei, θy

1 ` λiσ2
i

ei

and Un,σ is a bijective linear operator from L2
σpΩ, nq onto L2pΩ, nq. Then, U´1

n,σ exists as a bijective
linear operator from L2pΩ, nq onto L2

σpΩ, nq. Since for any f P L2
σpΩ, nq, we have proved that }f} ď

supkPN σ2
k}Un,σf}, we have }U´1

n,σ} ď supiPN σ2
i and U´1

n,σ is a bounded linear operator on L2pΩ, nq.

Proof of Lemma 17. Since limiÑ8 σi “ 0, there exists some N P N such that σi ď 1 for any i ě N . Then,
for any θ P Hσ,e, we have

8
ÿ

i“1

|xei, θy|2

σ4
i

ď

N
ÿ

i“1

|xei, θy|2

σ4
i

`

8
ÿ

i“N`1

|xei, θy|2

σ2
i

ď

N
ÿ

i“1

|xei, θy|2

σ4
i

`

8
ÿ

i“1

|xei, θy|2

σ2
i

ă 8.

Thus, we have θ P L2
σpΩ, nq.
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G Proof of Proposition 18

Proof. First, we show that
řn

j“1
ş

S
Iypjq ptqΦjp¨, tqmpdtq P L2pΩ, nq. Indeed, we have

}

n
ÿ

j“1

ż

S

Iypjq ptqΦjp¨, tqmpdtq}2 ď

n
ÿ

j“1
}

ż

S

Iypjq ptqΦjp¨, tqmpdtq}2

ď

n
ÿ

j“1
}

ż

S

|Iypjq ptqΦjp¨, tq|mpdtq}2

ďnnpΩq

ď8.

Define θ0 :“ U´1
n,σ

´

řn
j“1

ş

S
Iypjq ptqΦjp¨, tqmpdtq

¯

. We show that θ0 P L2
σpΩ, nq. Then, by Lemma 17, we have

θ0 P Hσ,e. Since λi ě 0 for any i P N, we have

8
ÿ

i“1

1
σ4

i

|xei, θy|2 ď

8
ÿ

i“1

ˆ

λi `
1
σ2

i

˙2
|xei, θ0y|2

ď }Un,σθ0}2

“ }

n
ÿ

j“1

ż

S

Iypjq ptqΦjp¨, tqmpdtq}2 ă 8.

Thus, θ0 P L2
σpΩ, nq. Then, for any j P rns, we have

|Ψjpθ0, tq| “|xθ0p¨q, Φjp¨, tqy|

ď

ż

Ω
|θ0pωqΦjpω, tq|npdωq

ď}θ0}}Φjp¨, tq}

ď
a

npΩq}θ0}

ă8,

which implies that

Lpθ0; σq “

n
ÿ

j“1
}Iypjq p¨q ´ Ψjpθ0, tq}L2pS,mq ` }θ0}σ,e ă 8

since mpSq “ 1 and |Iypjq ptq| ď 1 for any j P rns and t P S.

For any θ P Hσ,e, we have

Lpθ0 ` θ; σq “Lpθ0q `

n
ÿ

j“1

ż

S

|Ψjpθ, tq|2mpdtq `

8
ÿ

i“1

|xei, θy|2

σ2
i

`

n
ÿ

j“1

ż

S

Ψjpθ, tqpΨjpθ0, tq ´ Iypjq ptqqmpdtq `

8
ÿ

i“1

xei, θyxei, θ0y

σ2
i

.
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Notice that by Fubini’s theorem, we have
n
ÿ

j“1

ż

S

Ψjpθ, tqΨjpθ0, tqmpdtq “

n
ÿ

j“1

ż

S

ż

Ω

ż

Ω
θpωqΦjpω, tqθ0pω1qΦjpω1, tqnpdω1qnpdωqmpdtq

“

ż

Ω
θpωq

ż

Ω
θ0pω1q

˜

n
ÿ

j“1

ż

S

Φjpω, tqΦjpω1, tqmpdtq

¸

npdω1qnpdωq

“

ż

Ω
θpωq

ż

Ω
θ0pω1qunpω, ω1qnpdω1qnpdωq

“xθ, Unθ0y,

n
ÿ

j“1

ż

S

Ψjpθ, tqIypjq ptqmpdtq “

n
ÿ

j“1

ż

S

ż

Ω
θpωqΦjpω, tqIypjq ptqnpdωqmpdtq

“

ż

Ω
θpωq

˜

n
ÿ

j“1

ż

S

Iypjq ptqΦjpω, tqmpdtq

¸

npdωq

“xθp¨q,
n
ÿ

j“1

ż

S

Iypjq ptqΦjp¨, tqmpdtqy,

and
8
ÿ

i“1

xei, θyxei, θ0y

σ2
i

“

8
ÿ

i“1
xθ,

xei, θ0y

σ2
i

eiy

Since we have proved that
8
ÿ

i“1

|xei, θ0y|2

σ4
i

ă 8,

we can conclude that
ř8

i“1xθ, xei,θ0y

σ2
i

eiy “ xθ,
ř8

i“1
xei,θ0y

σ2
i

eiy. Thus,

n
ÿ

j“1

ż

S

Ψjpθ, tqpΨjpθ0, tq ´ Iypjq ptqqmpdtq `

8
ÿ

i“1

xei, θyxei, θ0y

σ2
i

“xθp¨q, pUnθ0qp¨q `

8
ÿ

i“1

xei, θ0y

σ2
i

eip¨q ´

n
ÿ

j“1

ż

S

Iypjq ptqΦjp¨, tqmpdtqy

“xθp¨q, pUn,σθ0qp¨q ´

n
ÿ

j“1

ż

S

Iypjq ptqΦjp¨, tqmpdtqy

“xθp¨q,
n
ÿ

j“1

ż

S

Iypjq ptqΦjp¨, tqmpdtq ´

n
ÿ

j“1

ż

S

Iypjq ptqΦjp¨, tqmpdtqy

“0.

Then, we have

Lpθ0 ` θ; σq “Lpθ0q `

n
ÿ

j“1

ż

S

|Ψjpθ, tq|2mpdtq `

8
ÿ

i“1

|xei, θy|2

σ2
i

ě Lpθ0; σq.

Since 1
σ2

i
ą 0 for all i P N, we have that

ř8

i“1
|xei,θy|

2

σ2
i

ą 0 for any θ P Hσ,e with θ ‰ 0. Since Lpθ0; σq ă 8,
we can conclude that Lpθ; σq ą Lpθ0; σq for any θ P Hσ,eztθ0u and pθσ “ θ0.
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H Proof of Lemma 21

Proof. By Vershynin (2018, Proposition 4.2.12), we have

P p∆d´1, dℓ2 , δq ě
Volp∆d´1q

VolpBd´1
δ p0qq

(86)

where Bd´1
δ p0q :“ tx P Rd´1 : }x}2 ď δu and for any E Ď Rd´1, VolpEq is the volume of E under the

Lebesgue measure in Rd´1. According to Stein (1966); DLMF, We have

Volp∆d´1q “

?
d

pd ´ 1q! , (87)

VolpBd´1
δ p0qq “

p
?

πδqd´1

Γp d`1
2 q

. (88)

Thus,

P p∆d´1, dℓ2 , δq ě
Γp d`1

2 q
?

d

pd ´ 1q!p
?

πδqd´1

“
Γp d`1

2 q
?

d

Γpdqp
?

πδqd´1 . (89)

When d ě 3, we have d`1
2 ě 2 and d ě 2. According to Batir (2008, Theorem 1.5), we have 2ppx ´

1{2q{eqx´1{2 ă Γpxq ă 3ppx ´ 1{2q{eqx´1{2 for any x ě 2. Thus, for d ě 3, we have

Γp d`1
2 q

Γpdq
ą

2
3

`

d
2e

˘d{2

´

d´1{2
e

¯d´1{2 .

We verify that the above inequality also holds when d “ 2. Therefore, for any d ě 2, we have

Γp d`1
2 q

Γpdq
ą

2
3

`

d
2e

˘d{2

´

d´1{2
e

¯d´1{2

which implies that

P p∆d´1, dℓ2 , δq ą
2
?

d

3p
?

πδqd´1

`

d
2e

˘d{2

´

d´1{2
e

¯d´1{2

ě
2
?

d

3p
?

πδqd´1

`

d
2e

˘d{2

`

d
e

˘d´1{2

“
2
?

d

3p
?

πδqd´1
1

2d{2 e
d´1

2 d´
d´1

2 . (90)

Let δ “ δ0 “
?

e

2
?

πd

´?
d

3

¯
1

d´1
´

1?
2

¯
d

d´1 . Then, by (90), we have

P p∆d´1, dℓ2 , δ0q ą 2d

which is exactly (71). For d ě 2, we have δ0 ě
?

e

4
?

πd

´?
d

3

¯
1

d´1 . Consider the function fpxq “ 1
x´1 log

´?
x

3

¯

with x ě 2. We have that

f 1pxq “
1 ´ 1

x ´ log x ` 2 log 3
2px ´ 1q2 .
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Since the function g : x ÞÑ ´ 1
x ´ log x is a decreasing function when x ě 2 and f 1p2q ą 0, f 1pe5q ă 0, we

have that f first increases and then decreases when x increases from 2 to infinity. Since limxÑ8 fpxq “ 0,

fp2q “ logp
?

2{3q, we have that fpxq ě fp2q “ logp
?

2{3q. Therefore, for any d ě 2, we have
´?

d
3

¯
1

d´1
ě

?
2{3

and
δ0 ě

?
2e

12
?

πd

which gives (72).

I Proofs of upper bounds for the mismatched model

In this Section, we prove Theorem 10 in Appendix I.1 and Corollary 11 in Appendix I.2.

I.1 Proof of Theorem 10

Proof. In the setting of Theorem 10, the sample tpxpjq, ypjqqujPN is generated according to Scheme I, and
similar to setting of Appendix B.1, we consider the underlying probability space for the sample to be
pr0, 1sN, Bpr0, 1sqN,Pq which is already defined at the beginning of Appendix B.1. Define the random vector Ξ
to be the identity mapping from r0, 1sN onto itself as in Appendix B.1. Then, Ξ follows the uniform distribution
on r0, 1sN. Suppose tpxpjq, ypjqqujPN is sampled according to Scheme I with F defined in (15). Then, according
to Bogachev (2007, Proposition 10.7.6), for each j P N, there exist some pBpX q b BpSqqj´1 b Bpr0, 1sq{BpX q-
measurable function h

pjq

X : pX ˆSqj´1 ˆr0, 1s Ñ X and pBpX qbBpSqqj´1 bBpX qbBpr0, 1sq{BpSq-measurable
function h

pjq

Y : pX ˆ Sqj´1 ˆ X ˆ r0, 1s Ñ S such that xpjq “ h
pjq

X pxp1q, yp1q, . . . , xpj´1q, ypj´1q, Ξp2j´1qq,
ypjq “ h

pjq

Y pxp1q, yp1q, . . . , xpj´1q, ypj´1q, xpjq, Ξp2jqq, and

E
”

1

!

h
pjq

Y pxp1q, yp1q, . . . , xpj´1q, ypj´1q, xpjq, Ξp2jqq ď t
)

ˇ

ˇFj´1

ı

“ θJ
˚ Φpxpjq, tq ` epxpjq, tq (91)

for any t P S and j P N, where Fj :“ σ
`␣

Ξpkq : k P r2j ` 1s
(˘

. With the same proof provided at the
beginning of Appendix B.1,

␣

ypjq
(

jPN is tFjujPN-adapted, xpjq is Fj´1{BpX q-measurable, and Φj is pFj´1 b

BpSqq{Bpr0, 1sdq-measurable for each j P N. Since e : X ˆ S Ñ r´1, 1s, px, tq ÞÑ epx, tq is BpX q b BpSq-
measurable and xpjq is Fj´1{BpX q-measurable, we have that ej : r0, 1sN ˆ S Ñ r´1, 1s, pξ, tq ÞÑ epxpjqpξq, tq
is Fj´1 b BpSq-measurable.

Define Vj :“
ş

S
Iypjq Φj ´

ş

S
pθJ

˚ Φj `ejqΦj . Since Iypjq is Fj bBpSq-measurable and ej and Φj are Fj´1 bBpSq-
measurable, by Fubini’s theorem and (91), We have

ErVj |Fj´1s “E
„
ż

S

IypjqΦj

ˇ

ˇ

ˇ
Fj´1

ȷ

´

ż

S

pθJ
˚ Φj ` ejqΦj

“

ż

S

E
“

Iypjq |Fj´1
‰

Φj ´

ż

S

pθJ
˚ Φj ` ejqΦj

“

ż

S

pθJ
˚ Φj ` ejqΦj ´

ż

S

pθJ
˚ Φj ` ejqΦj

“0.

For any α P Rd, if n “ 0, define Mnpαq “ 1. If n ě 1, define Mnpαq :“ exp
␣

αJWn ´ 1
2 }α}2

Un

(

for
Wn :“

řn
j“1 Vj and Un “

řn
j“1

ş

S
ΦjΦJ

j . Then, with the similar proof as in Appendix B.1.1, we can show
that Wn is Fn-measurable, Un is Fn´1-measurable, and Mn is Fn b BpRdq-measurable for any n P N. Thus,
for any α P Rd, tMnpαquně0 is tFnuně0-adapted. Moreover, for any α P Rd and n P N, we have

ErMnpαq|Fn´1s “Mn´1pαqE
„

exp
"

αJVn ´
1
2αJ

ˆ
ż

S

ΦnΦJ
n

˙

α

*

ˇ

ˇ

ˇ
Fn´1

ȷ

“Mn´1pαq
E
“

exp
␣

αJVn

(

|Fn´1
‰

exp
!

1
2
ş

S
pαJΦnq

2
) . (92)
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Since ´
ş

S
|αJΦn| ď αJVn ď

ş

S
|αJΦn| a.s., we have

E
“

exp
␣

αJVn

(

|Fn´1
‰

ď exp
#

4
8

ˆ
ż

S

|αJΦn|

˙2
+

ď exp
"

1
2

ż

S

`

αJΦn

˘2
*

(93)

ď exp
"

1
2

ż

S

`

αJΦn

˘2
*

(94)

where (93) is by Cauchy-Schwarz inequality and
ş

S
1 “ mpSq “ 1. Then, by (92) and (94), we have

ErMnpαq|Fn´1s ďMn´1pαq

exp
!

1
2
ş

S

`

αJΦn

˘2
)

exp
!

1
2
ş

S
pαJΦnq

2
) “ Mn´1pαq.

Thus, for any α P Rd, tMnpαquně0 is a super-martingale.

Now define ĎMn :“
ş

Rd Mnpαqhpαqdα for

hpαq “

ˆ

λ

2π

˙
d
2

exp
"

´
λ

2 αJα

*

“

ˆ

λ

2π

˙
d
2

exp
"

´
1
2}α}2

λId

*

.

Then, with the same calculation as (40) in Appendix B.1.1, we have ĎMn “ λd{2

detpUnpλqq1{2 exp
´

1
2 }Wn}2

Unpλq´1

¯

.
By Fubini’s theorem, Mn is Fn bBpRdq-measurable implies that ĎMn is Fn-measurable for any n ě 0. With the
same analysis as (42), tĎMnuně0 is a super-martingale. By Doob’s maximal inequality for super-martingales,
we have that

P
„

sup
nPN

ĎMn ě δ

ȷ

ď
ErĎM0s

δ
“

1
δ

which implies that for any N P N,

P

«

Dn P rN s s.t. }Wn}Unpλq´1 ě

c

log detpUnpλqq

λd
` 2 log 1

δ

ff

ď δ.

According to (47), we have

}Wn}Unpλq´1 ď

c

d log
´

1 `
n

λ

¯

` 2 log 1
δ

(95)

for all n P N with probability at least 1 ´ δ.

By (3), (44), and the definition of Vj , we have

pθλ ´ θ˚ “ Unpλq´1

˜

n
ÿ

j“1
Vj ` En ´ λθ˚

¸

“ Unpλq´1Wn ` Unpλq´1pEn ´ λθ˚q. (96)

where En “
řn

j“1
ş

S
ejΦj by definition. Thus,

}pθλ ´ θ˚}Unpλq ď }Unpλq´1Wn}Unpλq ` }Unpλq´1pEn ´ λθ˚q}Unpλq

ď }Wn}Unpλq´1 ` }λθ˚}Unpλq´1 ` }En}Unpλq´1

ď }Wn}Unpλq´1 `
?

λ}θ˚} ` }En}Unpλq´1 (97)

where (97) is because of Unpλq´1 “ 1
λ

`

I ´ Unpλq´1Un

˘

and }I ´ Unpλq´1Un}2 ď 1.

By (95) and (97), for any δ P p0, 1q, with probability at least 1 ´ δ, we have

}pθλ ´ θ˚}Unpλq ď

c

d log
´

1 `
n

λ

¯

` 2 log 1
δ

`
?

λ}θ˚} ` }En}Unpλq´1 . (98)
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for all n P N. Since Unpλq ´ λId is positive semi-definite, (98) immediately implies that

}pθλ ´ θ}Unpλq ď

c

d log
´

1 `
n

λ

¯

` 2 log 1
δ

`
?

λ}θ˚} `
1

?
λ

}En} (99)

which is exactly (16).

I.2 Proof of Corollary 11

Proof. In the setting of Corollary 11, the sample tpxpjq, ypjqqujPN is generated according to Scheme II. In
the following proof, we consider the underlying probability space for the sample tpxpjq, ypjqqujPN to be
pr0, 1sN, Bpr0, 1sqN,Pq which has already been defined at the beginning of Appendix B.1. Define the random
vector Ξ to be the identity mapping from r0, 1sN onto itself as in Appendix B.1. Then, Ξ follows the uniform
distribution on r0, 1sN. Suppose tpxpjq, ypjqqujPN is sampled according to Scheme II with F defined in (15).
Then, according to Bogachev (2007, Proposition 10.7.6), for each j P N, there exist some Bpr0, 1sq{BpX q-
measurable function h

pjq

X : r0, 1s Ñ X and BpX q b Bpr0, 1sq{BpSq-measurable function h
pjq

Y : X ˆ r0, 1s Ñ S

such that xpjq “ h
pjq

X pΞp2j´1qq, ypjq “ h
pjq

Y pxpjq, Ξp2jqq, and

E
”

1

!

h
pjq

Y pxpjq, Ξp2jqq ď t
)

ˇ

ˇFj´1

ı

“ θJ
˚ Φpxpjq, tq ` epxpjq, tq (100)

for any t P S and j P N, where Fj :“ σ
`␣

Ξpkq : k P r2j ` 1s
(˘

. With the same proof provided at the beginning
of Appendix B.1,

␣

ypjq
(

jPN is tFjujPN-adapted and Φj is pFj´1 b BpSqq{Bpr0, 1sdq-measurable for each j P N.
Moreover, txpjqujPN is independent, which implies that tΦjptqujPN is independent for any t P S, tejptqujPN is
independent for any t P S, and typjqujPN is independent.

Let bjptq :“ ErejptqΦjptqs for t P S and j P rns. Then, by Fubini’s theorem, bj is measurable with
bjiptq P r´1, 1s for t P S, j P N and i P rds. By definition and Fubini’s theorem, we have Bn “

řn
j“1

ş

S
bj .

Define Vj :“
ş

S
IypjqΦj ´

ş

S
θJ

˚ ΦjΦj ´
ş

S
bj . By Fubini’s theorem and (100), we have

ErVjs “E
„
ż

S

pIypjq ´ θJ
˚ ΦjqΦj

ȷ

´

ż

S

bj

“

ż

S

E
“

pIypjq ´ θJ
˚ ΦjqΦj

‰

´

ż

S

bj

“

ż

S

E
“

ErIypjq ´ θJ
˚ Φj |Fj´1sΦj

‰

´

ż

S

bj

“

ż

S

E rejΦjs ´

ż

S

bj

“

ż

S

bj ´

ż

S

bj

“0.

For any α P Rd, if n “ 0, define Mnpαq “ 1. If n ě 1, define Mnpαq :“ exp
␣

αJWn ´ 1
2 }α}2

Un

(

for
Wn :“

řn
j“1 Vj and Un “

řn
j“1

ş

S
ΦjΦJ

j . Similar to Appendix I.1, we can show that Mn is Fn b BpRdq-
measurable for any n ě 0. Moreover, for any n P N,

ErMnpαq|Fn´1s “Mn´1pαqE
„

exp
"

αJVn ´
1
2αJ

ˆ
ż

S

ΦnΦJ
n

˙

α

*

ˇ

ˇ

ˇ
Fn´1

ȷ

“Mn´1pαq
E
“

exp
␣

αJVn

(

|Fn´1
‰

exp
!

1
2
ş

S
pαJΦnq

2
) (101)
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with ´
ş

S
|αJΦn| ´

ş

S
αJbn ď αJVn ď

ş

S
|αJΦn| ´

ş

S
αJbn a.s.. Thus,

E
“

exp
␣

αJVn

(

|Fn´1
‰

ď exp
#

4
8

ˆ
ż

S

|αJΦn|

˙2
+

ď exp
"

1
2

ż

S

`

αJΦn

˘2
*

ď exp
"

1
2

ż

S

`

αJΦn

˘2
*

(102)

Then, by (101) and (102), we have

ErMnpαq|Fn´1s ďMn´1pαq

exp
!

1
2
ş

S

`

αJΦn

˘2
)

exp
!

1
2
ş

S
pαJΦnq

2
) “ Mn´1pαq.

Thus, for any α P Rd, tMnpαquně0 is a super-martingale. With the same approach as in Appendix I.1, for
any λ P p0, 8q, we can show that

}pθλ ´ θ˚}Unpλq ď

c

d log
´

1 `
n

λ

¯

` 2 log 1
δ

`
?

λ}θ˚} `
1

?
λ

}Bn} (103)

for all n P N with probability at least 1 ´ δ. Then, using the same analysis as in Appendix B.2.2, we can
show that for any δ1 P p0, 1q, δ2 P p0, 1 ´ δ1q, and n ě 32d2

σ2
min

logpd{δ1q, we have

}pθλ ´ θ˚}Σn ď

d

2
ˆ

d log
ˆ

1 `
1
λ

˙

` 2 log 1
δ2

˙

`
?

2λ}θ˚} `

c

2
λ

}Bn}

with probability at least 1 ´ δ1 ´ δ2. Then, (17) is obtained by setting δ1 “ δ2 “ δ P p0, 1{2q.

J Proofs of the lemmas in Appendix D

In this section, we provide the proofs of the technical lemmas in Appendix D.

Proof of Lemma 23. For any n P N, since Vj is FΩbFj-measurable for any j P rns and Wn “
řn

j“1 Vj , we have
that Wn is also FΩbFj-measurable. According to the similar arguments as in Appendix B.1.1, we know that Un

is FΩ bFn´1-measurable. Thus, by Fubini’s theorem, for any α P L2pΩ, nq, Mnpαq “ exp
␣

xα, Wny ´ 1
2 }α}2

Un

(

is Fn-measurable, which implies that tMnpαquně0 is tFnuně0-adapted. For any n P N, we have that

ErMnpαq|Fn´1s “Mn´1pαqE
„

exp
"

xα, Vny ´
1
2

ż

S

Ψnpα, tq2mpdtq

*

ˇ

ˇ

ˇ
Fn´1

ȷ

“Mn´1pαq
E rexp txα, Vnyu |Fn´1s

exp
␣ 1

2
ş

S
Ψnpα, tq2mpdtq

( .

Since ´
ş

S
|Ψnpα, tq|mpdtq ď xα, Vny ď

ş

S
|Ψnpα, tq|mpdtq, according to Hoeffding’s lemma (Hoeffding, 1963)

and Cauchy-Schwarz inequality, we have

E rexp txα, Vnyu |Fn´1s ď exp
#

4
8

ˆ
ż

S

|Ψnpα, tq|mpdtq

˙2
+

ď exp
"

1
2

ż

S

Ψnpα, tq2mpdtq

*

ď exp
"

1
2

ż

S

Ψnpα, tq2mpdtq

*

.
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Then, we have

ErMnpαq|Fn´1s ďMn´1pαq
exp

␣ 1
2
ş

S
Ψnpα, tq2mpdtq

(

exp
␣ 1

2
ş

S
Ψnpα, tq2mpdtq

( “ Mn´1pαq.

Since M0pαq “ 1 and Mnpαq ě 0, for any α P L2pΩ, nq, tMnpαquně0 is a non-negative super-martingale.

Proof of Lemma 24. For any m P N, we have

|H8 ´ Hm| “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“m`1
pβiw

1
i ´

1
2λiβ

2
i q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

g

f

f

e

8
ÿ

i“m`1
β2

i

g

f

f

e

8
ÿ

i“m`1
pw1

iq
2 ` nnpΩq

8
ÿ

i“m`1
β2

i .

Since
ř8

i“1pw1
iq

2 “ }Wn}2 ă 8 and
ř8

i“1 β2
i ă 8 a.s., we have that limmÑ8 |Hm ´ H8| “ 0 a.s.. Thus,

lim
mÑ8

|exppHmq ´ Mnpβq| “ lim
mÑ8

|exppHmq ´ exppH8q| “ 0.

Since |Wn| ď n a.s., we have

| exppHmq| ď exp
ˆ

|xβ, Wny| `
1
2}β}2

Un

˙

ď exp
˜

n
8
ÿ

i“1
|σiζi| `

1
2

8
ÿ

i“1
λiσ

2
i ζ2

i

¸

for all m P N a.s..

Moreover, for any m P N, by the independence of tζiuiPN, if |σi| ă 1?
λi

for all i P N, then we have

E

«

exp
˜

n
m
ÿ

i“1
|σiζi| `

1
2

m
ÿ

i“1
λiσ

2
i ζ2

i

¸ff

“

m
ź

i“1
E
„

exp
ˆ

|σiζi| `
1
2λiσ

2
i ζ2

i

˙ȷ

“

m
ź

i“1
exp

ˆ

n|σiζi| `
1
2 pλiσ

2
i ´ 1qζ2

i

˙

dζi
?

2π

“

m
ź

i“1

2
a

1 ´ λiσ2
i

exp
ˆ

n2σ2
i

2p1 ´ λiσ2
i q

˙

ΦNp0,1q

˜

n|σi|
a

1 ´ λiσ2
i

¸

where ΦNp0,1q denotes the CDF of the Np0, 1q distribution. By the monotone convergence theorem, we have

E

«

exp
˜

n
8
ÿ

i“1
|σiζi| `

1
2

8
ÿ

i“1
λiσ

2
i ζ2

i

¸ff

“

8
ź

i“1

2
a

1 ´ λiσ2
i

exp
ˆ

n2σ2
i

2p1 ´ λiσ2
i q

˙

ΦNp0,1q

˜

n|σi|
a

1 ´ λiσ2
i

¸

ď
1

b

ś8

i“1p1 ´ λiσ2
i q

exp
˜

n2

2

8
ÿ

i“1

σ2
i

1 ´ λiσ2
i

¸

8
ź

i“1

«

1 ` 2ΦNp0,1q

˜

n|σi|
a

1 ´ λiσ2
i

¸

´ 1
ff
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Since limiÑ8 λiσ
2
i “ 0 and

ř8

i“1 σ2
i ă 8, we have

8
ÿ

i“1

σ2
i

1 ´ λiσ2
i

ă 8 and
8
ÿ

i“1
λiσ

2
i ă 8,

which also implies that
8
ź

i“1
p1 ´ λiσ

2
i q ă 8.

For any sequence taiuiPN such that ai ą 0 and
ř8

i“1 ai ă 8, we have limiÑ8 ai “ 0 and

lim
iÑ8

2ΦNp0,1qpaiq ´ 1
ai

“ lim
iÑ8

1
?

π

exp
´

´
a2

i

2

¯

pai ` opaiqq

ai
“

1
?

π
.

Since
ř8

i“1 |ai| ă 8, we can conclude that

8
ÿ

i“1
p2ΦNp0,1qpaiq ´ 1q ă 8.

Therefore, if we assume that
ř8

i“1 |σi| ă 8, we have
ř8

i“1
n|σi|?
1´λiσ2

i

ă 8 and

8
ź

i“1

«

1 ` 2ΦNp0,1q

˜

n|σi|
a

1 ´ λiσ2
i

¸

´ 1
ff

ă 8.

In conclusion, we have

E

«

exp
˜

n
8
ÿ

i“1
|σiζi| `

1
2

8
ÿ

i“1
λiσ

2
i ζ2

i

¸ff

ă 8.

Then, by the conditional dominated convergence theorem, we have

ErexppHmq|F8s Ñ ErMnpβq|F8s “ ĎMn

as m Ñ 8 a.s..
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