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In this supplementary document, we provide additional materials to supplement our main submission.
In Section A, we talk about the societal impacts of our work In Section B, we provide detailed
experimental settings as well as further evaluation results on CIFAR-10 and ImageNet. We also
provide the comparison with input transformation-based defense methods. In Section D, we give the
proofs w.r.t. Theorem 1 of the main submission. In Section E, we give the proofs w.r.t. Theorem 2 of
the main submission. The proofs of Theorem 3 are given in Section F.

In Section C, we provide the analysis and evaluation of decision-based attacks.

A Societal Impacts

Deep neural networks (DNNs) have been successfully applied in many safety-critical tasks, such as
autonomous driving, face recognition and verification, etc. And adversarial samples have posed a
serious threat to machine learning systems. For real-world applications, the DNN model as well as
the training dataset, are often hidden from users. Instead, only the model feedback for each query
(e.g., labels or confidence scores) are accessible. In this case, the product providers mainly face the
severe threats from query-based black-box attacks, which don’t require any knowledge about the
attacked models. In this work, we study a lightweight defense method RND against query-based
black-box attacks. We conduct the detailed theoretical and empirical analysis of performance of RND
against query-based black-box attacks. Extensive experiments verify our theoretical analysis and
show the effectiveness of our defense methods against several state-of-the-art query-based attacks.
Besides, RND can be directly combined with any off-the-shelf models and other defense strategies.

Therefore, RND is efficient and effective to defend query-based black-box attacks in real scenarios.
Without any extra modification, RND can be add to deployed machine learning systems to boost the
adversarial robustness.

†Corresponding author.
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B Experiments

We conduct all experiments on 2 Nvidia-V100 GPU. And we run all experiments 3 times and average
all results over 3 random seeds.

RND is very easy to implemented. The defenders add one line code in the Pytorch framework [22], x
= x + noise size * torch.randn like(x). noise size is the ν used in main submission. In inference time,
the defenders adopt this method after image transformations and before normalization.

B.1 Implementation Details of Black-Box Methods

The CIFAR-10 dataset contains 60,000 32×32 color images in 10 different classes, which can be
seperated into 50,000 training samples and 10,000 testing samples. These two datasets are licensed
under MIT. ImageNet contains 1,000 classes with 1.28 million images for training and 50k images
for validation. Imagenet is licensed under Custom (non-commercial).

We evaluate seven mainstreamed query-based attack methods: NES [16], ZOsignSGD [18], Bandit
Prior [17], SimBA [13], SignHunter [1], ECO [20], and Square attack [2]. For NES, ZOsignSGD,
Bandit Prior, SimBA, and SignHunter, we adopt the source code provided by the authors of SignHunter
1. For Square attack, we use the source code provided by the authers 2. For ECO, we adopt the source
code provided by the authors 3. For Signhunter, we only evaluate it under the `∞ attack, since its
performance under the `2 attack is worse than NES [1]. SimBA is only designed for `2 attack. For all
attacks, we adopt the hyperparameters recommended by the corresponding papers, which are also
shown in Table 1-7. For the evaluation on ImageNet, we use the randomly sampled 1000 images
provided by [15]4.

B.2 Implementation Details of Compared Methods

We compare our methods with adversarial training (AT) [11, 12], Feature Denoise [26], RSE [19]
and PNI [14]. For AT model, we adopt the pre-trained WideResNet-28-10 AT model 5 in CIFAR-10.
It utilizes the extra unlabeled data. For ImageNet, we adopt the pre-trained ResNet-50 AT model
in Robustness Library 6. It’s trained with 4/255 `∞ attack. For Feature Denoise, we adopt the pre-
trained ResNet-152 model 7. For RSE and PNI, we use source code 8 9 provided by the authors to train
the corresponding WideResNet-28-10 models. For standard training VGG model and WideResNet
models in CIFAR-10, we use the codes 10 11 to train them. For used models on ImageNet, we adopt
the pre-trained checkpoints provided by torchvision.

B.3 Implementation Details of Gaussian Augmentation Fine-tuning

For GF model, on CIFAR-10, we fine-tune WideResNet-28-10 model with random Gaussian noise
sampled fromN (0, 0.1I). We use the SGD optimizer with momentum 0.9 and weight decay 5∗10−4
We used a variation of the learning rate schedule from [24] to achieve superconvergence in 50 epochs,
which is piecewise linear from 0 to 0.001 over the first 20 epochs, down to 0.0005 over the next 20
epochs, and finally back down to 0 in the last 10 epochs.

On ImageNet, [23] released the ResNet-50 model fine-tuned with Gaussian noise sampled from
N (0, 0.5I) and we directly adopt it.

1https://github.com/ash-aldujaili/blackbox-adv-examples-signhunter
2https://github.com/max-andr/square-attack
3https://github.com/snu-mllab/parsimonious-blackbox-attack
4https://github.com/TransEmbedBA/TREMBA
5https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness
6https://github.com/MadryLab/robustness
7https://github.com/facebookresearch/ImageNet-Adversarial-Training
8https://github.com/xuanqing94/BayesianDefense
9https://github.com/elliothe/CVPR_2019_PNI

10https://github.com/kuangliu/pytorch-cifar
11https://github.com/DengpanFu/RobustAdversarialNetwork
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Table 1: Hyperparameters setup for NES

CIFAR-10 ImageNet
`∞ `2 `∞ `2

Hyperparameter
η (learning rate) 0.01 0.25 0.005 1
q (number of finite difference estimations per step) 30 60

Table 2: Hyperparameters setup for ZOsignSGD (ZS)

CIFAR-10 ImageNet
`∞ `2 `∞ `2

Hyperparameter
η (learning rate) 0.01 0.20 0.005 0.1
q (number of finite difference estimations per step) 30 60

Table 3: Hyperparameters setup for Bandit Prior

CIFAR-10 ImageNet
`∞ `2 `∞ `2

Hyperparameter
η (learning rate) 0.01 0.25 0.01 0.5
h (OCO learning rate) 0.1 0.0001
δ (Bandit exploration) 0.1 0.1
Tile Size (Data-dependent prior) 20 50

Table 4: Hyperparameters setup for SimBA

CIFAR-10 ImageNet
`2 `2

Hyperparameter
η (step size) 0.2 0.2

Table 5: Hyperparameters setup for SignHunter

CIFAR-10 ImageNet
`∞ `∞

Hyperparameter
η (step size) 0.05 0.05

Table 6: Hyperparameters setup for Square Attack (Square)

CIFAR-10 ImageNet
`∞ `2 `∞ `2

Hyperparameter
µ (Fraction of Pixel Changed) 0.05 ∼ 0.5 0.05 ∼ 0.5

Table 7: Hyperparameters setup for ECO

CIFAR-10 ImageNet
`∞ `∞

Hyperparameter
block size 4 16
block batch size 64 64
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B.4 Additional experimental results of Section 5.2
Experimental results of RND against Query-based `2 Attacks. Here we provide the defense
performance of RND with various settings of µ and ν against query-based black-box `2 attack. We
adopt the same parameter setting as `∞ attack. Figure 1 (a-d) and Figure 2 (a-d) present the defense
performance of RND with VGG-16 and WideResNet-16 against NES, ZS, Bandit and Square attack
on CIFAR-10, respectively. The experimental results on ImageNet are shown in Figure 3 (a-d).
From the results, we have similar observations with that against `∞ attack: 1) When ν = 0.0 (i.e.,
without RND), the attack failure rate of all `2 attack methods is very low at all values of µ and ν,
which verifies the poor robustness of the standard model against the query-based attacks. 2) For RND
with ν > 0, the attack failure rate of all attack methods generally increases as the value of νµ increases.
While for a certain value of µ (0.0001 or 0.001 for ZO attacks and 0.1 or 0.3 for Square attack), the
attack failure rate increases as the value of ν increases. These verify our theoretical analysis that the
ratio of ν

µ determines the upper bound of the convergence rate of query-based ZO attacks and the
probability of changing the sign. The larger the value of ν

µ results in the poorer attack performance
under the query-limited settings. The evaluations in terms of average and median number of queries
of successful attacks are shown in Table 8-16, respectively. For brevity, we only report the numerical
results with µ ∈ {0.0001, 0.001, 0.01} for ZO attacks and µ ∈ {0.1, 0.3, 0.5} for Square attack.
And, we set ν ∈ {0.0, 0.01, 0.02}. From the table, we can see that the average query number and
the median query number of successful attacks increases as the ratio of ν

µ increases. Thus RND
can improve the defense performance by increasing the attack failure rate and reducing the query
efficiency of black-box attacks. The results of RND with µ = 0.0001, 0.0005, 0.001, 0.005, 0.01
under `∞-attack on ImageNet is also provided in Figure 4.

(a) (b) (c) (d)
Figure 1: Attack failure rate (%) of query-based attacks on WideResNet-16 and CIFAR-10 under
different values of µ and ν. We adopt logarithm scale in subplot (a-c) for better illustration.

(a) (b) (c) (d)
Figure 2: Attack failure rate (%) of query-based attacks on VGG-16 and CIFAR-10 under different
values of µ and ν. We adopt logarithm scale in subplot (a-c) for better illustration.

(a) (b) (c) (d)
Figure 3: Attack failure rate (%) of query-based attacks on Inception v3 and ImageNet under different
values of µ and ν. We adopt logarithm scale in subplot (a-c) for better illustration.
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(a) (b) (c) (d)

Figure 4: Attack failure rate (%) of query-based attacks on Inception v3 and ImageNet under different
values of µ and ν. We adopt logarithm scale in subplot (a-c) for better illustration.

Table 8: The experimental results of NES, ZS, and Bandit attack on CIFAR-10, VGG-16 model. Each
value in this table means the average number of query of successful attack, the median of query, and
failure rate ∈ [0, 1].

Methods
µ/ν

10−4/0.0 10−4/0.01 10−4/0.02 10−3/0.0 10−3/0.01 10−3/0.02 10−2/0.0 10−2/0.01 10−2/0.02

NES (`∞) 281.0(180.0)/0.0 1602.2(570.0)/0.621 1660.3(580.0)/0.688 280.3(180.0)/0.0 1506.0(600.0)/0.437 1448.4(510.0)/0.484 267.3(180.0)/0.0 398.8(220.0)/0.0 693.4(330.0)/0.06
NES (`2) 380.2(30.0)/0.0 1981.4(810.0)/0.812 1974.2(760.0)/0.833 378.5(300.0)/0.0 1987.7(900.0)/0.606 1792.2(690.0)/0.656 374.8(270.0)/0.0 626.3(360.0)/0.03 1009.1(480.0)/0.12
ZOsignSGD (`∞) 246.8(155.0)/0.0 1707.4(620.0)/0.00 1729.1(627.0)/0.702 257.4(155.0)/0.00 1499.6(558.0)/0.485 1489.7(496.0)/0.493 342.4(155.0)/0.0 493.9(240.0)/0.03 828.8(372.0)/0.1
ZOsignSGD (`2) 337.0(275.0)/0.0 2249.0(868.0)/0.776 1785.6(744.0)/0.794 340.1(275.0)/0.0 1939.0(1147.0)/0.615 1851.8(899.0)/0.654 452.8(310.0)/0.145 706.1(465.0)/0.158 1254.7(682.0)/0.182
Bandit (`∞) 117.7(56.0)/0.00 402.5(20.0)/0.744 410.8(20.0)/0.768 115.8(52.0)/0.0 382.5(18.0)/0.677 436.4(21.0)/0.696 111.3(54.0)/0.0 168.4(36.0)/0.58 183.6(32.0)/0.622
Bandit (`2) 394.1(186.0)/0.0 987.2(820.0)/0.885 1000.4(80.0)/0.901 389.1(190.0)/0.0 981.9(82.0)/0.850 967.2(83.0)/0.865 393.0(182.0)/0.0 919.6(102.0)/0.854 912.4(100.0)/0.861

Table 9: The experimental results of Square attack on CIFAR-10, VGG-16 model. Each value in this
table means the average number of query of successful attack, the median of query, and failure rate
∈ [0, 1].

Methods
µ/ν

0.1/0.0 0.1/0.01 0.1/0.02 0.3/0.0 0.3/0.01 0.3/0.02 0.5/0.0 0.5/0.01 0.5/0.02

Square (`∞) 64.7(26.0)/0.0 196.3(25.0)/0.152 194.9(12.0)/0.215 101.6(37.0)/0.0 203.9(26.0)/0.08 235.1(19.0)/0.134 150.9(60.0)/0.0 194.2(20.0)/0.04 261.4(33.0)/0.105
Square (`2) 407.1(160.0)/0.0 381.4(40.0)/0.495 695.1(46.0)/0.637 470.4(199.0)/0.0 687.7(48.0)/0.448 552.9(54.0)/0.531 567.8(239.0)/0.0 626.3(60.0)/0.40 544.1(67.0)/0.479

Table 10: The experimental results of SignHunter, SimBA, and ECO on CIFAR-10, VGG-16 model.
Each value in this table means the average number of query of successful attack, the median of query,
and failure rate ∈ [0, 1].

Methods
ν 0.0 0.01 0.02

SignHunter (`∞) 106.8(570.0)/0.0 372.3(64.0)/0.208 459.2(55.0)/0.367
SimBA (`2) 308.0(136.0)/0.0 1707.4(623.0)/0.473 1352.8(172.0)/0.650
ECO (`∞) 207.5(146.0)/0.0 964.6(256.0)/0.609 904.3(232.0)/0.720

Table 11: The experimental results of NES, ZS, and Bandit attack on CIFAR-10, WideNet-16 model.
Each value in this table means the average number of query of successful attack, the median of query,
and failure rate ∈ [0, 1].

Methods
µ/ν

10−4/0.0 10−4/0.01 10−4/0.02 10−3/0.0 10−3/0.01 10−3/0.02 10−2/0.0 10−2/0.01 10−2/0.02

NES (`∞) 265.5(180.0)/0.00 1692.5(480.0)/0.606 1702.0(570.0)/0.645 250.4(180.0)/0.00 1626.0(630.0)/0.389 1572.8(570.0)/0.434 264.8(180)/0.0 352.6(210.0)/0.0 731.9(330)/0.03
NES (`2) 368.4(270.0)/0.0 1942.9(720.0)/0.774 1735.8(800.0)/0.815 374.9(270.0)/0.0 2046.5(990.0)0.549 1715.1(750.0)/0.636 304.4(240.0)/0.0 550.0(330.0)/0.0 1115.7(510.0)/0.07
ZOsignSGD (`∞) 188.4(124.0)/0.0 1657.7(496.0)/0.591 1638.0(523.0)/0.642 191.0(124.0)/0.0 1477.0(620.0)/0.424 1447.3(496.0)/0.453 190.1(124.0)/0.0 436.7(217.0)/0.012 747.5(341.0)/0.065
ZOsignSGD (`2) 295.3(248.0)/0.0 2181.4(868.0)/0.787 2254.5(850.0)/0.834 296.1(248.0)/0.0 2156.6(1209.0)/0.580 2136.2(1312.0)/0.603 580(310.0)/0.008 772.8(434.0)/0.071 1237.4(744.0)/0.125
Bandit (`∞) 92.51(44.0)/0.0 108.1(30.00)/0.647 124.7(31.0)/0.672 90.76(42.0)/0.0 382.5(40.0)/0.602 401.6(39.0)/0.625 91.98(42.0)/0.0 214.8(43.0)/0.461 345.7(43.0)/0.486
Bandit (`2) 281.6(158.0)/0.0 1592.2(160.0)/0.848 1611.3(152.0)/0.853 282.3(158.0)/0.0 1595.8(160.0)/0.831 1621.3(160.0)/0.832 275.12(158.0)/0.0 973.0(84.0)/0.812 1125.0(78.0)/0.822
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Table 12: The experimental results of Square attack on CIFAR-10, WideNet-16 model. Each value in
this table means the average number of query of successful attack, the median of query, and failure
rate ∈ [0, 1].

Methods
µ/ν

0.1/0.0 0.1/0.01 0.1/0.02 0.3/0.0 0.3/0.01 0.3/0.02 0.5/0.0 0.5/0.01 0.5/0.02

Square (`∞) 42.8(19.0)/0.0 185.1(27.0)/0.112 294.9(22.0)/0.190 121.6(27.0)/0.0 231.2(26.0)/0.08 245.2(19.0)/0.144 250.1(60.0)/0.0 294.2(23.0)/0.04 264.1(35.0)/0.105
Square (`2) 303.1(131.0)/0.0 964.3(103.0)/0.452 597.8(39.0)//0.567 293.4(131.0)/0.0 587.2(48.0)/0.346 589.4(61.0)/0.456 440.1(210.0)/0.0 626.3(60.0)/0.314 516.4(72.0)/0.414

Table 13: The experimental results of SignHunter, SimBA, and ECO on CIFAR-10, WideNet-16
model. Each value in this table means the average number of query of successful attack, the median
of query, and failure rate ∈ [0, 1].

Methods
ν 0.0 0.01 0.02

SignHunter (`∞) 95.0(55.0)/0.0 415.7(56.0)/0.271 651.8(59.0)/0.396
SimBA (`2) 241.2(138.0)/0.0 1813.0(702.0)/0.476 1359.1(187.0)/0.648
ECO (`∞) 157.6(76.0)/0.0 787.4(236.0)/0.533 788.8(218.0)/0.637

Table 14: The experimental results of NES, ZS, and Bandit on ImageNet, Inception v3 model. Each
value in this table means the average number of query of successful attack, the median of query, and
failure rate ∈ [0, 1].

Methods
µ/ν

10−4/0.0 10−4/0.01 10−4/0.02 10−3/0.0 10−3/0.01 10−3/0.02 10−2/0.0 10−2/0.01 10−2/0.02

NES (`∞) 1678.4(960.0)/0.139 3037.5(2040.0)/0.870 3010.6(2025.0)/0.893 1435.4(900.0)/0.117 3402.3(2280.0)/0.711 2532.8(1560.0)/0.762 1571.2(840.0)/0.05 1721.8(1080.0)/0.179 2143.4(1380.0)/0.313
NES (`2) 2016.5(1215.0)/0.264 1888.9(360.0)/0.925 1954.1(345.0)0.933 2021.1(1200.0)/0.276 2245.7(1200.0)/0.868 1814.2(720.0)/0.890 2048.6(1200.0)/0.256 1836.0(900.0)/0.444 2378.2(1440.0)/0.669
ZOsignSGD (`∞) 1312.9(671.0)/0.113 2232.6(1159.0)/0.845 1870.5(1132.0)/0.865 1316.7(671.0)/0.114 2244.3(1464.0)/0.771 2824.1(1586.0)/0.825 1544.2(793.0)/0.312 1678.5(1203.5)/0.334 2355.3(1708.0)/0.373
ZOsignSGD (`2) 1642.6(1350.0)/0.225 1389.9(445.0)/0.902 1389.9(427.0)/0.926 1442.6(1240.0)/0.275 1389.9(545.0)/0.812 1375.3(490.0)/0.864 1945.6(1100.0)/0.325 1745.6(985.0)/0.478 1245.4(785.0)/0.705
Bandit (`∞) 696.7(16.0)0.598 114.2(12.0)/0.711 122.5(12.0)/0.723 1422.6(104.0)/0.40 202.1(16.0)/0.613 195.4(16.0)/0.684 903.1(142.0)/0.050 288.4(18.0)/0.586 305.6(20.0)/0.604
Bandit (`2) 987.9(118.0)/0.861 583.6(60.0)0.891 656.4(42.0)/0.848 1483.5(990.0)/0.407 615.3(60.0)/0.902 578.6(60.0)/0.913 1327.2(636.0)/0.088 246.5(92.0)/0.911 235.2(91.0)/0.921

Table 15: The experimental results of Square attack on ImageNet, Inception v3 model. Each value in
this table means the average number of query of successful attack, the median of query, and failure
rate ∈ [0, 1].

Methods
µ/ν

0.1/0.0 0.1/0.01 0.1/0.02 0.3/0.0 0.3/0.01 0.3/0.02 0.5/0.0 0.5/0.01 0.5/0.02

Square (`∞) 247.1(23.0)/0.003 576.8(19.0)/0.149 207.4(18.0)/0.264 359.9(40.0)/0.05 339.6(25.0)/0.122 251.7(17.0)/0.207 457.0(66.0)/0.08 315.2(28.0)/0.106 296.3(16.0)/0.154
Square (`2) 1107.1(310.0)/0.08 1030.2(316.0)/0.723 997.8(390.0)//0.786 1247.5(409.0)/0.09 1187.2(480.0)/0.491 1089.4(461.0)/0.537 1340.1(510.0)/0.11 1226.3(460.0)/0.426 1236.4(480.0)/0.493

Table 16: The Experiment of SignHunter, SimBA, and ECO on ImageNet, Inception v3 model. Each
value in this table means the average number of query of successful attack, the median of query, and
failure rate ∈ [0, 1].

Methods
ν 0.0 0.01 0.02

SignHunter (`∞) 557.2(108.0)/0.056 163.4(50.0)/0.424 173.4(49.0)/0.532
SimBA (`2) 2077.4(1398.0)/0.195 223.6(21.0)/0.885 274.6(19.0)0.891
ECO (`∞) 853.2(258.0)/0.027 1043.2(485.0)/0.432 1236.9(691.0)/0.666

B.5 Additional experimental results of Section 5.3

Experimental results of RND against The Adaptive EOT Attack. We also evaluate the defense
performance of RND against EOT with `2 attack. The evaluations with adaptive query budget on
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NES and ZS of CIFAR-10 are shown in Table 19 and 20. From the Table, we observe that the attack
failure rate decreases as M increases on both datasets. However, the average number of queries
of successful attack also greatly increases as M increases, which demonstrates that the adaptive
EOT attack increases the attacking success rate with a sacrifice of query efficiency. We also observe
that the relative performance improvements induced by EOT under both `∞ and `2 attack generally
decrease as M increases, especially when M is rather large. For example, for NES with `∞ attack,
the relative improvement of M = 20 over that of M = 15 is only 0.004 in terms of attack failure
rate. Yet the average query number of M = 20 is 306 higher than that of M = 15. These validate
our theoretical analysis in Section 4.3 of the main submission that the attack improvement from EOT
is limited as M increases.

The experimental results under the fixed query budget on CIFAR-10 and ImageNet are reported in
Table 17 and 18, respectively. On these two datasets, the attack failure rate of all attacks generally
decreases as M increases. Yet we also observe the similar phenomenon that the relative performance
improvements induced by EOT decreases as M increases.

Table 17: The evaluation of EOT with `2 attack on CIFAR-10 under the fixed query budget setting.
The average number of query of successful attack as well as the attack failure rate are reported. For
all attacks, we set ν = 0.02 and set µ = 0.001 for NES, ZS, and Bandit. Each value in this table
means the average number of query of successful attack, the median of query, and failure rate ∈ [0, 1].
The higher failure rate, the better defense performance.

Methods M=1 M=5 M= 10

NES 1792/690/0.656 4736/2850/0.598 5167/3220/0.523
ZS 1939/1147/0.615 3921/3410/0.578 4135/4215/0.541
Bandit 912/100/0.861 662/160/0.782 698/193/0.745
Square 413/42/0.708 284/70/0.777 263/69/0.815
SimBA 1353/172/0.650 3852/1585/0.467 4103/2836/0.396

Table 18: The evaluation of EOT with `2 attack on ImageNet under the fixed query budget setting.
The average number of queries of successful attack as well as the attack failure rate are reported.

Methods M=0 M=5 M=10

NES 1814/0.890 4825.6/0.912 5801.3/0.925
ZS 1375/0.864 3055/0.887 4652/0.861
Bandit 195/0.684 698/0.579 873/0.0.553
Square 160.9/0.822 178.0/0.831 179.5/0.845
SimBA 274/0.891 468/0.878 517/0.869

Table 19: The evaluation of EOT with `∞ and `2 attack on CIFAR-10 under the adaptive query
budget setting. The average number of queries of successful attack as well as the attack failure rate
are reported. For all attacks, we choose the same parameter as the Table 17.

Datasets Methods M=1 M=5 M=10 M=15 M=20

CIFAR-10 NES(`∞) 1448/0.484 4078/0.361 5763/0.342 6126/0.331 6342/0.327
NES(`2) 1792/0.656 3074/0.513 3642/0.456 4023/0.432 4125/0.429
ZS(`∞) 1489/0.493 3189/0.354 5912/0.319 6159/0.293 7013/0.287
ZS(`2) 1852/0.654 4052/0.541 4619/0.498 4923/0.475 4867/0.472

Table 20: The evaluation of EOT with `∞ attack on ImageNet under the adaptive query budget setting.
The average number of queries of successful attack as well as the attack failure rate are reported. For
all attacks, we still set ν as 0.02 and increase µ to 0.01.

Datasets Methods M=1 M=5 M=10 M=15
ImageNet NES(`∞) 0.313 0.251 0.236 0.224

NES(`2) 0.669 0.603 0.576 0.551
ZS (`∞) 0.373 0.279 0.261 0.257
ZS(`2) 0.705 0.616 0.579 0.556
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B.6 Additional experimental results of Section 5.4

Experimental results of Compared Methods against `2 attack. We adopt the same experimental
setting reported in Section 5.4 of the main submission. The evaluation results on CIFAR-10 and
ImageNet are shown in Table 21. As shown in Table 21: 1) the clean model obtains the best
clean accuracy while poorest robustness under most attacks; 2) RND can improve the defense
performance of clean model on both datasets. Yet the random noise induced by RND will also
sacrifice the clean accuracy. 3) GT provides a better protection of clean accuracy under the random
noise induced by RND, so we can adopt a relative larger ν = 0.05 for RND-GT towards better
defense performance. RNG-GT can significantly improve the defense performance under all attack
methods while maintaining a satisfactory clean performance. Similar to the results of `∞ attack in
the main submission, compared with RSE, PNI, and Feature Denoise (FD), RND-GF achieves the
better defense effect against Bandit, SimBA, and ZS and maintain the much better clean accuracy and
low training cost. Combining AT with RND, RND-AT significantly improves the robustness against
all attacks and achieves best performance among all methods.

Table 21: The comparison of RND (ν = 0.02), GF, RND-GF (ν = 0.05), AT, RND-AT (ν = 0.05),
PNI, RSE, and FD on CIFAR-10 and Imagenet. The average number of queries of successful attack
and the attack failure rates are reported. The best and second best attack failure rate under each attack
are highlighted in bold and underlined respectively.

Datasets Methods Clean Acc NES(`2) ZS(`2) Bandit(`2) SimBA(`2) Square(`2)

CIFAR-10
(WideNet-28)

Clean Model 96.60% 729.1/0.025 967.4/0.224 619.0/0.03 457.2/0.04 631.3/0.03
RND 93.60% 1279.7/0.194 1476.1/0.446 1624.1/0.762 2112.6/0.549 1221.5/0.487
GF 91.72% 967.4/0.595 826.4/0.645 1543.5/0.274 1146.8/0.395 1626.5/0.328

RND-GF 92.40% 3209.8/0.661 2453.2/0.901 1362.1/0.838 1220.2/0.863 1415.3/0.692
RSE 84.12% 1293.6/0.387 1367.9/0.391 264.5/0.334 498.3/0.337 599.0/0.231
PNI 87.20% 1457.1/0.812 1939.5/0.843 897.9/0.861 945.0/0.857 485.2/0.826
AT 89.48% 1155.4/0.765 397.5/0.856 2163.2/0.588 1523.2/0.635 1935.4/0.677

RND-AT 87.40% 3044.4/0.849 2904.0/0.956 1603.5/0.931 1787.4/0.912 1292.8/0.842

ImageNet
(ResNet-50)

Clean Model 74.90% 1335.6/0.03 1254.2/0.216 856.0/0.0 1234.5/0.281 621.1/0.01
RND 73.00% 2027.8/0.509 2566.1/0.631 312.4/0.764 825.3/0.612 1563.1/0.481
GF 74.70% 1803.7/0.146 1902.1/0.194 896.3/0.056 1417.4/0.112 915.7/0.042

RND-GF 71.15% 1542.7/0.760 1625.5/0.820 511.4/0.875 777.2/ 0.829 1130.2/0.625
FD 54.20% 2048.4/0.724 709.3/0.812 2605.9/0.545 2607.9/0.613 1539.1/0.482
AT 61.60% 2365.1/0.782 639.3/0.912 2769.2/0.544 2638.2/0.651 1404.3/0.528

RND-AT 58.15% 2482.9/0.926 2395.4/0.937 1079.1/0.935 1210.5/0.953 175.0/0.80

B.7 The Comparison with Input Transformation-based Defense Methods

Apart from the compared randomization-based methods in main submission, we also compare RND
with input transformation-based defense methods, R&P [25], JPEG [10], and Bit-Red [27]. We take
the comparison on the ImageNet and Inception-v3 model. We adopt the NES, SignHunter, and Square
attacks. The maximal query number is 10000. For RND, we set the ν as 0.02. We report the `∞
attack results. The results w.r.t. the standard attack and the adaptive EOT attack with M = 5 are
given below tables. Compared to these input transformation-based defense methods, RND achieves
better results in both clean accuracy and defense performance.

Table 22: The evaluation of RND, R&P, JPEG, and Bit-Red against `∞ attack on ImageNet and
Inception-v3 model. We adopt NES, SignHunter, and Square attacks. Each value in this table means
the average number of query of successful attack and attack failure rate

Defense Methods clean accuracy NES(`) SignHunter(`) Square(`)

R&P 74.6% 1368.2/0.378 345.1/0.223 285.8/0.153
Bit-Red 62.5% 1548.6/0.092 145.4/0.048 356.2/0.021
JPEG 74.2% 1417.4/0.205 156.8/0.146 215.3/0.033
RND 76.6% 2143.4/0.413 173.4/0.532 251.7/0.207
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Table 23: The evaluation of RND, R&P, JPEG, and Bit-Red against `∞ EOT attack (M = 5) on
ImageNet and Inception-v3 model. We adopt NES, SignHunter, and Square attacks. Each value in
this table means the average number of query of successful attack and attack failure rate

Defense Methods clean accuracy NES(`) SignHunter(`) Square(`)

R&P 74.6% 2547.6/0.302 545.6/0.148 656.2/0.069
Bit-Red 62.5% 12682.3/0.031 612.3/0.010 689.3/0.004
JPEG 74.2% 2863.2/0.117 485.6/0.094 712.5/0.009
RND 76.6% 3240.2/0.365 336.5/0.456 0.9/0.121

C Analysis and Evaluation of Decision-based Attacks

In this section, we give the analysis of defense effect of RND against decision-based attacks.

For decision-based attacks, the attacker only obtain the classification label by querying the attacked
models. As mentioned in main submission, score-based attacks utilize the gradient estimation or
random search to find adversarial direction from the benign example to adversarial example with
wrong label. However, decision-based attack adopt the different idea to find adversarial examples.
Compared with score-based attacks, decision-based attacks first add the large perturbation which
make true the found examples in the initial phase can be misclassified. Then, to satisfy the requirement
of perturbation size, the attackers need to reduce the distance between found example and the benign
example and still have to make sure that the found example can be misclassified. Therefore, the
decision-based attacks conduct attacks from adversarial example with large perturbation to benign
examples. The found adversarial examples will eventually fall near the boundary [3, 4, 5, 6, 7, 9].

Decision-based attacks can be also separated into gradient estimation and random search-based attacks.
Gradient estimation attacks contain Sign-OPT attack [9] and OPT attack [7], and HopSkipJumpAttack
(HSJA) [4]. search-based attacks contain boundary attack [3], Sign Flip [6] and RayS [5]. To find
the adversarial examples near the decision boundary, binary search is widely used in these two
methods. Then, gradient estimation [4, 7, 9] or random search [5, 6] are conducted to find
attack direction near the decision boundary. Therefore, our analysis about ZO attacks and random
search still apply to decision attacks.

We conduct the evaluation of RND against decision-based attacks to verify our analysis. We evaluate
Sign-OPT attack, HSJA, Sign Flip, and Rays, because these four attack methods show the better
attack performance. We report the performance of RND on WideNet-28-10 and CIFAR-10. We also
utilize the Gaussian augmentation fine-tuning to fine the WideNet-28. The work in [4, 5, 6] adopt
the fixed size schedule. Therefore, we only tune the noise size µ of Sign-OPT attack like NES [16],
zosignsgd [18], Bandit [17], and Square attack [2]. The clean accuracy under different noise has
shown in main submission. The experiments results are shown in next tables.

The results in below tables show that: the attack failure rate of attack methods generally increases as
the value of ν

µ increases. These collaborate our theoretical analysis that the ratio of νµ determines
the probability of changing sign and the convergence rate of ZO attacks. The larger ν

µ , the
higher the probability of changing the sign and the convergence error of ZO attacks, which results in
the poor attack performance of decision-based attacks under the query-limited settings.

As shown in the below tables, RND can significant boost the defense performance of the Clean Model
against the decision-based attacks. Based on GF, RNG-GF further improves the defense performance
under all attack methods while maintaining the good clean accuracy.

Table 24: The experimental results of Sign-OPT `∞ attack on CIFAR-10, WideNet-28 model. Each
value in this table means the average number of query of successful attack, and failure rate ∈ [0, 1].

Methods
µ/ν

0.01/0.0 0.01/0.01 0.01/0.02 0.05/0.0 0.05/0.01 0.05/0.02 0.1/0.0 0.1/0.01 0.1/0.02

Sign-OPT (RND) 1999.5/0.028 1205.2/0.929 1008.7/0.935 2153.5/0.034 1235.2/0.890 1428.6/0.926 2477.6/0.044 1820.3/0.870 1959.6/0.921
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Table 25: The experimental results of HSJA, Sing Flip, and RayS attacks under `∞ norm on CIFAR-
10, WideNet-28 model. Each value in this table means the average number of query of successful
attack, and failure rate ∈ [0, 1].

Methods
ν 0.0 0.01 0.02

HSJA (`∞) 977.7/ 0.002 2792.6/0.593 3370.8/0.623
Sign Flip (`∞) 222.1/0.0 1095.0/0.360 564.4/0.540
RayS (`∞) 685.9/0.0 998.7/0.06 865.6/0.210

Table 26: The experimental results of Sign-OPT `∞ attack on CIFAR-10, WideNet-28 GF model.
Each value in this table means the average number of query of successful attack, and failure rate
∈ [0, 1].

Methods
µ/ν

0.01/0.0 0.01/0.02 0.01/0.05 0.05/0.0 0.05/0.02 0.05/0.05 0.1/0.0 0.1/0.02 0.1/0.05

Sign-OPT (RND-GF) 3257.6/0.651 2217.3/0.783 541.6/0.961 2950.4/0.670 2017.1/0.735 641.5/0.961 3969.1/0.682 1516.4/0.716 465.2/0.938

Table 27: The experimental results of HSJA, Sing Flip, and RayS attacks under `∞ norm on CIFAR-
10, WideNet-28 GF model. Each value in this table means the average number of query of successful
attack, and failure rate ∈ [0, 1].

Methods
ν 0.0 0.02 0.05

HSJA (`∞) 4629.8/0.11 4878.5/0.795 6177.2/0.952
Sign Flip (`∞) 2337.9/ 0.115 3134.9/0.736 1565.6/0.961
RayS (`∞) 1303.5/0.034 314.6/0.324 572.8/0.564

Table 28: The experimental results of Sign-OPT `∞ attack on ImageNet, Inception v3 model. Each
value in this table means the average number of query of successful attack, and failure rate ∈ [0, 1].

Methods
µ/ν

0.01/0.0 0.01/0.01 0.01/0.02 0.05/0.0 0.05/0.01 0.05/0.02 0.1/0.0 0.1/0.01 0.1/0.02

Sign-OPT (RND) 6901.5/0.174 2512.6/0.912 1903.5/0.976 6432.6/0.243 2465.6/0.884 1963.1/0.931 7602.5/0.391 2278.6/0.842 2603.4/0.926

Table 29: The experimental results of HSJA, Sing Flip, and RayS attacks under `∞ norm on ImageNet,
Inception v3 model. Each value in this table means the average number of query of successful attack,
and failure rate ∈ [0, 1].

Methods
ν 0.0 0.01 0.02

HSJA (`∞) 2912.9/ 0.150 3289.2/0.791 3370.8/0.879
Sign Flip (`∞) 2216.1/0.105 1485.2/0.756 1400.6/0.864
RayS (`∞) 1321.5/0.067 947.2/0.284 787.2/0.326
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D Proof of Section 4.2.1

We first give some function properties we will use in next sections:
Definition 1. The Gaussian-Smoothing function corresponding to f(x) with α > 0 is defined as
follows

fα(x) =
1

(2π)d/2

∫
f(x+ αa) · e− 1

2‖a‖
2
2 da. (1)

Here, α ≥ 0 is the smoothing parameter. And if f is convex and the subgradient g ∈ ∂f(x), then

fµ(x) ≥
1

(2π)d/2[detΣ]d/2

∫
[f(x) + µ〈g,u〉]e− 1

2‖u‖
2

du = f(x)

If f ∈ C0,0, then fµ ∈ C0,0 and L0 (fµ) ≤ L0(f). Indeed, for all x, y ∈ Rd we have

|fµ(x)− fµ(y)| ≤
1

(2π)d/2[detΣ]d/2

∫
|f(x+ µu)− f(y + µu)|e− 1

2‖u‖
2

du

≤ L0(f)‖x− y‖
If f ∈ C1,1, then fµ ∈ C1,1 and L1 (fµ) ≤ L1(f) :

‖∇fµ(x)−∇fµ(y)‖ ≤
1

(2π)d/2[detΣ]d/2

∫
E

‖∇f(x+ µu)−∇f(y + µu)‖e− 1
2‖u‖

2

du

≤ L1(f)‖x− y‖

For the gradients of fµ(x),

fµ(x) =
1

µd+1(2π)d/2[detΣ]d/2

∫
f(y)e

− 1
2µ2
‖y−x‖2

dy

∇fµ(x) =
1

µd+3(2π)d/2[detΣ]d/2

∫
f(y)e

− 1
2µ2
‖y−x‖2

(y − x)dy

=
1

µ(2π)d/2[detΣ]d/2

∫
f(x+ µu)e−

1
2‖u‖

2

u du

=
1

(2π)d/2[detΣ]d/2

∫
f(x+ µu)− f(x)

µ
e−

1
2‖u‖

2

u du

We can see that the gradient estimator gµ is the unbiased estimator of∇fµ(x). Denote by f ′(x,u)
the directional derivative of f at point x along direction u:

f ′(x,u) = 〈∇f(x),u〉 = lim
µ↓0

1

µ
[f(x+ µu)− f(x)]

∇f(x) = 1

(2π)d/2[detΣ]d/2

∫
f ′(x,u)e−

1
2‖u‖

2

u du

Next, we give some essential lemmas. The complete proofs are shown in [21].
Lemma 1. Let f be the Lipschitz-continuous function, |f(y)− f(x)| ≤ L0(f)‖y − x‖. Then

L1(fµ) =
d

1
2

µ
L0(f)

Lemma 2. For the smoothed version fµ of f , if both of them has Lipschitz-continuous gradient, then

L1(fµ) ≤ L1(f)

And we define the p-order moment of normal distribution as Mp. We need the upper bound for
moment of standard Gaussian distribution.
Lemma 3. For p ∈ [0, 2], we have

Mp ≤ dp/2

If p ≥ 2, then we have two-side bounds

dp/2 ≤Mp ≤ (p+ d)p/2
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D.1 The General Non-Convex Case

Recalling the optimization problem for attacker:

min
xadv

f(xadv)

St. ‖xadv − x‖p ≤ R
The gradient estimator g(x) in ZO attacks becomes

gµ,ν(x) =
f (x+ µu+ νv1)− f (x+ νv2)

µ
u (2)

Here, we use Euclidean norm in our all theoretical analysis.

We firstly define

fµ,ν(x) =
1

(2π)d/2

∫
fν(x+ µu)e−

1
2‖u‖

2

du

which is the smoothing version of fν(x).

We denote the sequence of standard Gaussian noises added by the attacker as U t = {u0,u1, . . . ,ut}.
The sequence of standard Gaussian noises added by the defender is denoted as Vt =
{v01,v02, . . . ,vt1,vt2}. The sequential solutions generated are denoted as {x0,x1, . . . ,xQ}, and
the benign example x is used as the initial solution, x0 = x. d = |X | denotes the input dimension.

Then we give the proof of Theorem 1.

Proof. According to the Lemma 1, f is the Lipschitz-continuous function, fν has the Lipschitz-
continuous gradient. So, according to the property of Lipschitz-continuous gradient,

fµ,ν(xt+1) ≤ fµ,ν(xt)− ηt〈∇fµ,ν(xt), gµ,ν(xt)〉+
1

2
η2tL1(fµ,ν)‖gµ,ν(xt)‖2 (3)

The gµ,ν(xt) can be decomposed into

gµ,ν(xt) = gµ(xt + νvt1) +
f(xt + µut + νvt1)− f(xt + νvt1) + f(xt + νvt1)− f(xt + νvt2)

µ
ut

≥ gµ(xt + νvt1)−
L0(f)ν‖vt1 − vt2‖ut

µ
(4)

And, following the above decomposition Eq.(4), the last square term of Eq.(3) is bounded by

‖gµ,ν(xt)‖2 ≤
(f(xt + µut + νvt1)− f(xt + νvt1))

2‖ut‖2

µ2
+

(f(xt + νvt1)− f(xt + νvt2))
2‖ut‖2

µ2

+
2|f(xt + µut + νvt1)− f(xt + νvt1)| ∗ |f(x+ νvt1)− f(x+ νvt2)|

µ2
‖ut‖2

≤‖gu(x+ νvt1)‖2 +
L0(f)

2ν2

µ2
‖vt1 − vt2‖2‖ut‖2 + 2

L0(f)
2ν

µ
‖vt1 − vt2‖‖ut‖3

(5)

Then, we take the expectation over ut, vt1 and vt2. And since vt1 and vt2 are identically independent
with each other, vt1 − vt2 is still Gaussian random variable. So, according to Lemma 3, we have

Eut,vt1,t2(fµ,ν(xt+1)) ≤fµ,ν(xt)− ηt‖∇fµ,ν(xt)‖2 +
1

2
η2tL1(fµ,ν)(L0(f)

2(d+ 4)2

+
2L0(f)

2ν2

µ2
d2 +

2
√
2L0(f)

2ν

µ
(d+ 3)

3
2 d

1
2 )

(6)

And then use Lemma 1, we have L1(fµ,ν) ≤ L0(fν) ≤ L0(f), so

Eut,vt1,t2(fµ,ν(xt+1)) ≤fµ,ν(xt)− ηt‖∇fµ,ν(xt)‖2 +
1

2
η2t
L0(f)

3

µ
(d+ 4)2d

1
2

+ η2t
L0(f)

3ν2

µ3
d

5
2 + η2t

√
2L0(f)

3ν

µ2
(d+ 3)

3
2 d
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We take the expectation on Ut, Vt and

EUt,Vt(fµ,ν(xt+1)) ≤EUt−1,Vt−1
(fµ,ν(xt))− ηtEUt,Vt(‖∇fµ,ν(xt)‖2) +

1

2
η2t
L0(f)

3

µ
(d+ 4)2d

1
2

+ η2t
L0(f)

3ν2

µ3
d

5
2 + η2t

√
2L0(f)

3ν

µ2
(d+ 3)

3
2 d

For our black-box attacks problem, data dimension is very high (105 ∼ 107). So, we have

EUt,Vt(fµ,ν(xt+1)) ≤EUt−1,Vt−1
(fµ,ν(xt))− ηtEUt,Vt(‖∇fµ,ν(xt)‖2)

+ η2tL0(f)
3d

5
2 (

1

2µ
+

√
2ν

µ2
+
ν2

µ3
)

Using the same reasoning, we get

EU0,V0(fµ,ν(x1)) ≤(fµ,ν(x0))− ηtEU0,V0(‖∇fµ,ν(x0)‖2)

+ η2tL0(f)
3d

5
2 (

1

2µ
+

√
2ν

µ2
+
ν2

µ3
)

Summing up these inequalities, denote SQ =
∑Q
t=0 ηt. And according to the property fµ(x) ≥ f(x),

we also have fµ,ν(x) ≥ fν(x). So we get

1

SQ

Q∑
t=0

ηtEUt,Vt(‖∇fµ,ν(xt)‖2) ≤
1

SQ
(fµ,ν(x0)− f∗ν ) +

1

SQ

Q∑
t=0

η2tL0(f)
3d

5
2 (

1

2µ
+

√
2ν

µ2
+
ν2

µ3
)

Here, in order to bound the gap ε between fµ,ν(x) and fν(x), we could choose µ ≤ µ̂ = ε

d
1
2 L0(f)

like without adding noise [21]. So we have

1

SQ

Q∑
t=0

ηtEUt,Vt(‖∇fµ,ν(xt)‖2) ≤
1

SQ
(fµ,ν(x0)− f∗ν ) +

1

SQ

Q∑
t=0

η2tL0(f)
4d3

ε
(
1

2
+

√
2ν

µ
+
ν2

µ2
)

We take the constant stepsize and set ηt = η. We also denote α = ν
µ . And we set ( 12 +

√
2α+ α2)

as γ(α) which is increasing function of the ratio ν
µ . We minimize the right hand side then get

η =

[
Rε

d3L3
0(f)(Q+ 1)

]1/2
1√
γ(α)

So we can get

1

Q+ 1

Q∑
t=0

EUt−1,Vt−1(‖∇fµ,ν(xt)‖2) ≤
2L0(f)

5
2R

1
2 d

3
2

(Q+ 1)
1
2 ε

1
2

√
γ(α) (7)

In order to guarantee the expected squared norm of the gradient of function fµ,ν of the order δ, the
lower bound for the expected number of queries is

O

(
γ(α)

d3L5
0(f)R

εδ2

)

E Proof of Section 4.2.2

E.1 The Non-Convex and Smooth Case

Now, the gradient estimator in ZO attacks becomes

g̃µ,ν(x) =
1

M

M∑
j=1

f(x+ µu+ νvj1)− f(x+ νvj2)

µ
µ (8)
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We denote the sequence of standard Gaussian noises added by the attacker as U t = {u0,u1, . . . ,ut}.
Note that here the definition of the sequential standard Gaussian noises added by the defende should
be updated to Vt = {v01, . . . ,v0M , . . . ,vt1, . . . ,vtM}. vij ∈ Vt contains vij1 and vij2.

Then we give the proof of Theorem 2.

Proof. Followed by proof of last section, according to the property of Lipschitz-continuous gradient,

fµ,ν(xt+1) ≤ fµ,ν(xt)− ηt〈∇fµ,ν(xt), g̃µ,ν(xt)〉+
1

2
η2tL1(fµ,ν)‖g̃µ,ν(xt)‖2 (9)

Followed by Eq.(4), the g̃µ,ν(xt) can be also decomposed into

g̃µ,ν(xt) ≥
M∑
j=1

1

M
gµ(xt + νvt1j)−

L0(f)ν‖vt1 − vt2‖ut
µ

(10)

Then, to bound the square term of gradient estimator, we use the decomposition

‖g̃µ,ν(xt)‖2 = ‖gµ(xt)‖2 + ‖(g̃µ,ν(xt)− gµ(xt))‖2 + 2〈gµ(xt), (g̃µ,ν(xt)− gµ(xt))〉 (11)

So, we have

Evt1−tM ,ut(fµ,ν(xt+1)) ≤fµ,ν(xt)− ηtEvt1−tM ,ut(〈∇fµ,ν(xt), g̃µ,ν(xt)〉)

+
1

2
η2tL1(fµ,ν)Evt1−tM ,ut(‖g̃µ,ν(xt)‖2)

≤fµ,ν(xt)− ηtEvt1−tM ,ut(〈∇fµ,ν(xt),
M∑
j=1

1

M
gµ(xt + νvt1j)〉)

+
1

2
η2tL1(fµ,ν)Evt1−tM ,ut(‖gµ(xt)‖2 + ‖(g̃µ,ν(xt)− gµ(xt))‖2

+ 2〈gµ(xt), (g̃µ,ν(xt)− gµ(xt))〉)
(12)

Since vt1−tM are iid random variables, the second term of above inequality is same as the second
term of Eq.(6). Then we need to bound the last square terms.

We set the expectation over v1j , Ev1j
(f(x+µu)+νv1j) asE1 and Ev2j

(f(x+νv2j) asE2. And we
also set B1 = E1− f(x+µu) and B2 = E2− f(x). We also set σ2

1 = V arv1j
(f(x+µu+ νv1j))

and σ2
2 = V arv2j

(f(x+ νv2j)). Then we bound the second term of above square terms.

Evt1−tM (‖(g̃µ,ν(xt)− gµ(xt))‖2) ≤(B2
1 +B2

2 +
σ2
1 + σ2

2

M
− 2B1B2)

1

µ2
‖u‖2

≤(2(B2
1 +B2

2) +
σ2
1 + σ2

2

M
)
1

µ2
‖u‖2

(13)

We can compute this square of sum directly and we need to bound B2 and σ2. By using the Taylor
expansion of f(x),

f(x+ µu+ νv1j) ≤f(x+ µu) +∇f(x+ µu)T νv1j +
1

2
ν2L1(f)‖v1j‖2

E1 ≤f(x+ µu) +
1

2
ν2L1(f)d

B1 =E1 − f(x+ µu) ≤ 1

2
ν2L1(f)d

B1 =E1 − f(x+ µu) ≥ −1

2
ν2L1(f)d

So, we have

f(x+µu+νv1j)−f(x+µu)−
1

2
ν2L1(f)d ≤ f(x+µu+νv1j)−E1 ≤ f(x+µu+νv1j)−f(x+µu)+

1

2
ν2L1(f)d
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Based on the above inequality, we have

Ev1j
((f(x+ µu+ νv1j)− E1)

2) ≤2Ev1j
((f(x+ µu+ νv1j)− f(x+ µu))2) +

1

2
ν4L1(f)

2d2

σ2
1 ≤2ν2L0(f)

2d+
1

2
ν4L1(f)

2d2

Then, the Eq.(13) becomes

Evt1−tM ,u(‖(g̃µ,ν(xt)− gµ(xt))‖2) ≤Eu((B
2
1 +B2

2 +
σ2
1 + σ2

2

M
− 2B1B2)

1

µ2
‖u‖2)

≤Eu((2(B
2
1 +B2

2) +
σ2
1 + σ2

2

M
)
1

µ2
‖u‖2)

≤ν
4

µ2
L1(f)

2d3 +
ν4

µ2M
L1(f)

2d3 + 4
ν2

µ2M
L0(f)

2d2

(14)

And the third term of square terms can be bounded by using B and E.

2(f(x+ µu)− f(x))(
M∑
j=1

(
f(x+ µu+ νv1j)− f(x+ νv2j)

M
)− f(x+ µu) + f(x))

1

µ2
‖u‖2

≤ 2(f(x+ µu)− f(x))(E1 − E2 − f(x+ µu) + f(x))
1

µ2
‖u‖2 #taking expectation over vt1−tM ,v2j

≤ 2
L0(f)µ‖u‖(B1 −B2)‖u‖2

µ2
#taking expectation over u

≤ 2
ν2

µ
L0(f)L1(f)d

5
2

(15)

So, we have

Evt1−tM ,ut‖g̃µ,ν(xt)‖2 ≤L0(f)
2(d+ 4)2 + 4

ν2L0(f)
2

µ2M
d2 + 2

ν2L0(f)L1(f)

µ
d

5
2

+
ν4L1(f)

2

µ2

M + 1

M
d3

And based on Lemma 2, the Eq.(21) becomes

Evt1−tM ,ut(fµ,ν(xt+1)) ≤fµ,ν(xt)− ηt‖∇fµ,ν(xt)‖2 +
1

2
η2tL1(fµ,ν)Evt1−tM ,ut(‖g̃µ,ν(xt)‖2)

≤fµ,ν(xt)− ηt‖∇fµ,ν(xt)‖2 + η2t (
L0(f)

2L1(f)

2
d2

+
2ν2L0(f)

2L1(f)

µ2M
d2 +

ν2L0(f)L1(f)
2

µ
d

5
2 +

ν4L1(f)
3(M + 1)

2µ2M
d3)

(16)

We take the expectation on Ut, Vt,

EUt,Vt(fµ,ν(xt+1)) ≤EUt−1,Vt−1
(fµ,ν(xt))− ηtEUt,Vt(‖∇fµ,ν(xt)‖2) + η2t (

L0(f)
2L1(f)

2
d2

+
2ν2L0(f)

2L1(f)

µ2M
d2 +

ν2L0(f)L1(f)
2

µ
d

5
2 +

ν4L1(f)
3(M + 1)

2µ2M
d3)

(17)
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Then we can get

1

SQ

Q∑
t=0

ηtEUt,Vt(‖∇fµ,ν(xt)‖2) ≤
1

SQ
(fµ,ν(x0)− f∗ν ) +

1

SQ

Q∑
t=0

η2t (
L0(f)

2L1(f)

2
d2

+
2ν2L0(f)

2L1(f)

µ2M
d2 +

ν2L0(f)L1(f)
2

µ
d

5
2

+
ν4L1(f)

3(M + 1)

2µ2M
d3)

(18)

F The Proof of Section 4.3

The direction searching of search-based attacks [1, 2, 8, 13, 20] can be formulated as

s(x) = I(f(x+ µu)− f(x) < 0) · µu
= I(h(x) < 0) · µu (19)

where u is the direction searching direction sampled from some pre-defined distributions, such as
gaussian noise in [8], orthogonal basis in [13] and squared perturbations in [2].

If the attackers take the attack direction u and objective function decreases, then u will be seen as
the potential attack direction.

Now, with the RND, the searched direction becomes

sν(x) = I(f(x+ µu+ νv1)− f(x+ νv2) < 0) · µu
= I(hν(x) < 0) · µu (20)

We give the Theorem 3 about the probability of Sign(h(x)) 6= Sign(hν(x)),

P (Sign(h(x)) 6= Sign(hν(x)) ≤ P (hν(x)− h(x)| ≥ |h(x)|)

≤ E[|hν(x)− h(x)|]
|h(x)|

according to the Markov’s inequality

≤
√
E[(hν(x)− h(x))2]

|h(x)|
according to the Jensen’s inequality

≤
√
E[2(f(x+ µu+ νv1)− f(x+ µu))2 + 2(f(x+ νv2)− f(x))2]

|h(x)|

≤
√
E[2L0(f)2ν2‖v1‖2 + 2L0(f)2ν2‖v2‖2]

|h(x)|
according to Lipchitzness of function

≤ 2L0(f)ν
√
d

|h(x)|
according to Lemma 3

(21)
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