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Hydrodynamics-Informed Neural Network for Simulating Dense
Crowd Motion Patterns

Anonymous Author(s)

ABSTRACT
With global occurrences of crowd crushes and stampedes, dense
crowd simulation has been drawing great attention. In this research,
our goal is to simulate dense crowdmotions under six classic motion
patterns, more specifically, to generate subsequent motions of dense
crowds from the given initial states. Since dense crowds share
similarities with fluids, such as continuity and fluidity, one common
approach for dense crowd simulation is to construct hydrodynamics-
based models, which consider dense crowds as fluids, guide crowd
motions with Navier-Stokes equations, and conduct dense crowd
simulation by solving governing equations. Despite the proposal
of these models, dense crowd simulation faces multiple challenges,
including the difficulty of directly solving Navier-Stokes equations
due to their nonlinear nature, the ignorance of distinctive crowd
characteristics which fluids lack, and the gaps in the evaluation
and validation of crowd simulation models. To address the above
challenges, we build a hydrodynamic model, which captures the
crowd physical properties (continuity, fluidity, etc.) with Navier-
Stokes equations and reflects the crowd social properties (sociality,
personality, etc.) with operators that describe crowd interactions
and crowd-environment interactions. To tackle the computational
problem, we propose to solve the governing equation based on
Navier-Stokes equations using neural networks, and introduce the
Hydrodynamics-Informed Neural Network (HINN) which preserves
the structure of the governing equation in its network architecture.
To facilitate the evaluation, we construct a new dense crowdmotion
video dataset called Dense Crowd Flow Dataset (DCFD), containing
six classic motion patterns (line, curve, circle, cross, cluster and
scatter) and 457 video clips, which can serve as the groundtruths
for various objective metrics. Numerous experiments are conducted
using HINN to simulate dense crowd motions under six motion
patterns with video clips from DCFD. Objective evaluation metrics
that concerns authenticity, fidelity and diversity demonstrate the
superior performance of our model in dense crowd simulation
compared to other simulation models.

CCS CONCEPTS
• Computing methodologies→ Computer vision.
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Figure 1: Crowds and fluids exhibit similarities as well as
differences. The first row highlights that both crowds and
fluids share continuity and fluidity (physical properties),
while the second row suggests that crowds can respond to the
environment and possess sociality and personality (social
properties) which fluids lack.

1 INTRODUCTION
Crowd simulation has long been popular within computer vision
for its extensive applications in fields of urban planning [10, 30],
emergency evacuation [3, 14], virtual reality [32, 45], video games
[48, 53], and more. With crowd crushes and stampedes occurring
frequently around the world, there is an increasingly urgent desire
for dense crowd simulation in particular. Through dense crowd
simulation, it becomes possible to predict crowd motions, prevent
potential accidents, and protect public safety.

Models for crowd simulation can be generally categorized into
microscopic (rule-based or agent-based) models and macroscopic
(hydrodynamics-based) models. Classic microscopic models, such
as Boids [41], Vicsek [51] and Social ForceModel (SFM) [15], require
each crowd member or agent to perceive and react individually to
the environment and others based on certain rules. Along this line of
thought, follow-up researches extend these models by considering
aspects of evacuation panic [5, 14, 34], collision avoidance [35, 49],
human psychology [8, 9, 37], etc. Thesemodels are normally applied
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for small-scale crowd simulation and are not suitable for large-
scale due to increased computational complexity and challenges in
capturing individual behaviors.

On the contrary, macroscopic models consider crowds as fluid-
like entities, utilizing hydrodynamics to handle the continuity and
fluidity of crowd motions, making them more suitable for large-
scale or dense crowd simulation. Proposed by Henderson [16] and
supplemented by Bradley [4], this approach to constructing hydro-
dynamic models for dense crowds involves regarding dense crowds
as fluids, guiding crowd motions with Navier-Stokes equations,
and conducting dense crowd simulation by solving the governing
equations.

Despite the advancement of hydrodynamic models, we are facing
three challenges for dense crowd simulation. Firstly, due to the
nonlinear nature of Navier-Stokes equations, the solving process
remains complicated whether for crowds or fluids. Previous works
[43, 50, 55] approximate the solution through Smoothed Particle
Hydrodynamics (SPH) [12], which is a computational method that
considers crowds or fluids as assemblies of individuals or elements
with associated properties and uses smoothing kernels to approach
their interactions. However, SPH compromises simulation accuracy
and introduces computational complexity as it is particle-based.
Secondly, as shown in Fig.1, other than similarities shared with
fluids (physical properties), crowds possess characteristics (social
properties) such as sociality and personality, whichmakes it difficult
to accomplish the simulation with pure hydrodynamics. Thirdly,
there are gaps in the evaluation of crowd simulation, particularly for
large-scale or dense crowds. Previous researches normally rely on
metrics such as time consumption [7, 33], computational complexity
[39, 47], and subjective judgment [11, 55]. However, these metrics
are not convincing enough and fail to reflect authenticity, fidelity
and diversity of the simulation.

To address the above challenges, we construct a hydrodynamic
model concerning both the physical and social properties of crowds.
We guide crowd motions with the momentum equation of Navier-
Stokes equations to capture physical properties, and incorporate
additional forces consistent with crowd interactions and crowd-
environment interactions into the governing equation to reflect
social properties. Then, inspired by Partial Differential Equation
(PDE)-Preserved Neural Network (PPNN) [27], we propose to solve
the governing equation using neural networks and introduce the
Hydrodynamics-Informed Neural Network (HINN) which preserves
the structure of the governing equation in its network architecture.
To facilitate the evaluation, we collect hundreds of video clips of six
classic dense crowd motion patterns, including line, curve, circle,
cross, cluster and scatter, to construct a real-world dense crowd
motion video dataset called the Dense Crowd Flow Dataset (DCFD).
The construction of DCFD enables us to employ objective metrics
about authenticity, fidelity and diversity for evaluation, including
Inception Score (IS) [42], Fréchet Inception Distance (FID) [17] and
Structural Similarity (SSIM) [52], by serving as the groundtruths.
We conduct numerous experiments using HINN to simulate dense
crowd motions under the six classic motion patterns with video
clips from DCFD, and evaluate the performances of our model and
other simulation models with objective metrics. Our contributions
are summarized as follows:

• We propose a hydrodynamic model which considers both
the similarities shared between crowds and fluids, as well
as the unique characteristics possessed by crowds, namely
physical and social properties.

• We design three operators to describe interactions within
dense crowds and between crowds and environments. These
operators can be applied to simulate six classic dense crowd
motion patterns.

• We construct a new real-world dense crowd video dataset
which contains six classic dense crowd motion patterns.
Experiments demonstrate the effectiveness of our approach
compared with other simulation models by using objective
evaluation metrics.

2 RELATEDWORK
2.1 Hydrodynamics-based Crowd Simulation
As crowds and fluids share continuity and fluidity, hydrodynamics-
based models aim to reflect crowd physical properties by drawing
upon insights from fluid dynamics. This approach was proposed
by Henderson [16], regarding loose crowds as gas, dense crowds
as liquid, and loose-dense transitions as phase transformation. To
go one step further, Bradley [4] guided dense crowd motions with
Navier-Stokes equations and accomplished dense crowd simulation
by solving the governing equations. On this basis, Hughes [20]
suggested to discard terms with little effect and introduce additional
terms to the governing equations based on the specific situation. For
the difficulty of solving Navier-Stokes equations directly, follow-
up researchers, such as Yuan [55] and van Toll [50], mostly used
SPH [12] to approximate the solution. However, SPH on the one
hand compromises accuracy, and on the other hand introduces
computational complexity as it is particle-based. Hence, the main
problem of such models lies in the absence of an accurate yet simple
computational method for Navier-Stokes equations.

In this research, we construct a hydrodynamic model to reflect
physical properties of dense crowd motions under the guidance of
Navier-Stokes equations. As a complement, we introduce additional
forces into the governing equation to capture social properties of
dense crowds. To tackle the aforementioned computational problem,
we propose to solve the governing equation with PDE-solving
neural networks.

2.2 PDE-Solving Neural Networks
Methods of solving PDE with neural networks can be basically
divided as data-driven and physics-informed. Data-driven neural
networks, including Convolutional Neural Networks (CNN) [13, 23]
and PDE-Net [28], learn differential operators using convolutional
kernels and fit the nonlinear response function by neural networks.
Such networks rely heavily on large amounts of data, struggle
with error accumulation and have poor generalizability. To tackle
these problems, Physics-Informed Neural Networks (PINNs) [40]
and its variants [21, 31] employ Deep Neural Networks (DNN) for
their well-known capability as universal function approximators
[18], exploit automatic differentiation, and utilize the prior physics
knowledge by incorporating PDE residuals into the loss function.
Besides, physics-informed variants of neural operators, such as
DeepONet [29] and Fourier Neural Operator (FNO) [26], learn the
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Figure 2: The schematic diagram of the proposed Hydrodynamics-Informed Neural Network (HINN), which consists of a
trainable network and a plug-in module that preserves the structure of the governing equation. The trainable network adopts a
Convolutional Residual Network (ConvResNet) [27] due to its demonstrated effectiveness in previous work on PPNN. The
plug-in module, called Hydrodynamics-Informed Module (HIM), uses the bilinear down-sampling and the bicubic up-sampling
to establish a multi-resolution setting. The governing equation for dense crowd simulation are calculated by two physical
operators and three social operators, which reflects the physical and social properties at the same time.

mapping from functional parametric dependence to the solution,
thus learn an entire family of PDE, instead of solving one instance.
However, this method of embedding PDE residuals into the loss
function depends largely on extensive adjustments of the hyper-
parameters to weigh each loss term. To this end, PDE-Preserved
Neural Network (PPNN) [27] embeds PDE into the neural network
architecture via connections between PDE operators and network
structures, which improves the generalizability as well as long-term
prediction accuracy at the same time.

In this research, to address the aforementioned computational
challenge faced by hydrodynamics-basedmodels, inspired by PPNN,
we propose HINN to solve our governing equation. HINN preserves
the structure of our governing equation based on Navier-Stokes
equations for dense crowd simulation within a plug-in module
called Hydrodynamics-Informed Module (HIM).

3 METHODOLOGY
3.1 Overview
Our goal is to build a hydrodynamic model that considers both the
physical and social properties for dense crowd simulation, more
specifically, for generating subsequent motions of dense crowds
from the given initial states. For a dense crowd video clip with𝑇 + 1
frames, 𝐹 = [𝑓0, 𝑓1, . . . , 𝑓𝑇 ], dense optical flows can be computed
between consecutive frames. These optical flows approximately
provide the velocity field U = [u0,u1, . . . ,u𝑇−1], where u𝑡 is the
velocity between two consecutive frames 𝑓𝑡 and 𝑓𝑡+1. Taking the
initial velocity u0 as input, the hydrodynamic model can predict the
velocity û1 for the next time-step. Subsequently, for any time-step
𝑡 > 0, the hydrodynamic model can predict the succeeding velocity
û𝑡+1 based on the previously predicted velocity û𝑡 . Consequently,
the predicted velocity field of this video clip can be denoted as
Û = [û0, û1, . . . , û𝑇−1], where û0 = u0. Then, our target is to
minimize the distance between groudtruths U and predictions Û,

which can be reformulated as an optimization problem:

min
Û=[û0,û1,...,û𝑇 −1 ]

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

(
U, Û

)
(1)

where𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (·, ·) can be various evaluationmetrics that measure
the distance between groudtruths U and predictions Û, including
Huber loss [19], IS, FID, SSIM, etc.

3.2 Framework
To simulate dense crowd motions, we construct a hydrodynamic
model that guides the crowd motions with a hydrodynamics-based
governing equation and solves the governing equation using a next-
step prediction network called HINN. As shown in Fig.2, HINN
contains two parts: a trainable network that can be any predictive
network [13, 23, 46], but we adopt ConvResNet here because of its
effectiveness demonstrated in PPNN; and a plug-in module called
HIM, which preserves the structure of the governing equation. At
any time-step 𝑡 , taking the previously predicted velocity û𝑡 as the
input, HIM converts it to low resolution by using bilinear down-
sampling, extracts the hidden feature preserved by the governing
equation in the low-resolution space, and uses bicubic up-sampling
to transform extracted feature back into original high-resolution
space as û′𝑡 . Then, the acceleration-related feature û′𝑡 is attached
to the input velocity û𝑡 , serving as the combined input for the
trainable network to predict the velocity û𝑡+1 for the next time-
step. This predicted velocity û𝑡+1 can further serve as the input
again to predict subsequent velocity. After 𝑇 steps, we obtain Û =

[û0, û1, . . . , û𝑇−1] that denotes the dense crowd motion generated
from the initial states.

For the governing equation, we consider both physical and social
properties of crowds. Since crowds share continuity and fluidity
with fluids, we capture the crowd physical properties according to
the following momentum equation of Navier-Stokes equations for

3
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incompressible fluids:

𝜕u
𝜕𝑡

+ (u · ∇)u = 𝜈∇2u − 1
𝜌
∇𝑝 + f (2)

where u is the velocity, 𝜈 is the viscosity, 𝜌 is the density, 𝑝 is
the pressure, and f is the external force. Generally, this equation
can be decomposed into five key components: the acceleration 𝜕u

𝜕𝑡 ,
the convective acceleration (u · ∇)u, the viscosity force 𝜈∇2u, the
pressure force − 1

𝜌 ∇𝑝 and the external forces f .
In this research, we regard dense crowd simulation as a two-

dimensional problem, in which case the momentum equation of
Navier-Stokes equations in horizontal and vertical directions can
be expressed as follows:

𝜕𝑢

𝜕𝑡
+
(
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦

)
= 𝜈

(
𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2

)
− 1
𝜌

𝜕𝑝

𝜕𝑥
+ 𝑓𝑥 (3)

𝜕𝑣

𝜕𝑡
+
(
𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣 𝜕𝑣

𝜕𝑦

)
= 𝜈

(
𝜕2𝑣

𝜕𝑥2 + 𝜕2𝑣

𝜕𝑦2

)
− 1
𝜌

𝜕𝑝

𝜕𝑦
+ 𝑓𝑦 (4)

where𝑢 and 𝑣 are the horizontal and vertical components of velocity,
𝑓𝑥 and 𝑓𝑦 are the horizontal and vertical components of external
forces respectively.

Meanwhile, to reflect social properties of dense crowd motions,
we introduce additional forces into the equation concerning the
characteristics that crowds possess while fluids lack. Combining
these two aspects, we formulate our governing equation for dense
crowd simulation considering the following terms, where the first
two terms reflect the physical properties and the others reflect the
social properties.

Convection force. Similar to fluids, this term is caused by the uneven
distribution of the velocity field. The relative velocity of crowds can
lead to collisions or tendencies to avoid collisions, bringing about
changes in the velocity field. Thus, we denote the convective force
for dense crowds as:

𝑓𝑐𝑜𝑛𝑥 = 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦
𝑓𝑐𝑜𝑛𝑦

= 𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣 𝜕𝑣

𝜕𝑦
(5)

To implement the convective force in HIM, we approximate the
first-order differentiation with the Sobel operators:

𝜕

𝜕𝑥
=


−1 0 1
−2 0 2
−1 0 1


𝜕

𝜕𝑦
=


−1 −2 −1
0 0 0
1 2 1

 (6)

Viscosity force. Originated from the uneven distribution of velocity
field as well, we calculate the viscosity force for dense crowds by:

𝑓𝑣𝑖𝑠𝑥 =
𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2 𝑓𝑣𝑖𝑠𝑦 =
𝜕2𝑣

𝜕𝑥2 + 𝜕2𝑣

𝜕𝑦2 (7)

To implement the viscosity force in HIM, we approach the second-
order differentiation using the Laplacian operator:

𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 = ∇2 =


0 1 0
1 −4 1
0 1 0

 (8)

Alignment force. As mentioned in Boids, pressure from surrounding
members can drive individual to move along with them, namely
to match their velocity. In this way, we represent the alignment
force for dense crowds as the difference to average velocity of the
surrounding area:

𝑓𝑎𝑙𝑖𝑥 =
1
𝑁

∑︁
𝑖∈�̊�

𝑢𝑖 − 𝑢 𝑓𝑎𝑙𝑖𝑦 =
1
𝑁

∑︁
𝑖∈�̊�

𝑣𝑖 − 𝑣 (9)

where 𝑈 is the surrounding area and 𝑁 is the number of grids
contained in the area. The alignment force can be implemented in
HIM by using the zero-centered mean filter.

Navigation force. Referring to SFM, individuals have their desired
velocities toward the destination, which manifests as the tendency
for people to follow the steps of those ahead of them in dense
crowds. To describe this tendency, the navigation force for dense
crowds can be expressed as:

𝑓𝑛𝑎𝑣𝑥 =
𝑢𝑒 − 𝑢
𝜏

𝑓𝑛𝑎𝑣𝑦 =
𝑣𝑒 − 𝑣
𝜏

(10)

where 𝑢𝑒 and 𝑣𝑒 are the horizontal and vertical components of the
desired velocity, which is the velocity of the person ahead, and 𝜏
is the relaxation time. To calculate the navigation force, we design
a forward discriminator in HIM that can determine the forward
direction of each individual, identify the person ahead, and thus
obtain the desired velocity for calculation.

Cohesion force. Individuals located at crowd boundaries normally
do not break away from the crowds easily, trying to resist dispersion
and maintain the overall shape of crowds. To capture this property,
we compute the cohesion force for dense crowds by:

𝑓𝑐𝑜ℎ𝑥 =


1 𝑙𝑒 𝑓 𝑡 𝑏𝑜𝑟𝑑𝑒𝑟

0 𝑖𝑛𝑛𝑒𝑟 𝑎𝑟𝑒𝑎

−1 𝑟𝑖𝑔ℎ𝑡 𝑏𝑜𝑟𝑑𝑒𝑟

𝑓𝑐𝑜ℎ𝑦
=


1 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑟𝑑𝑒𝑟

0 𝑖𝑛𝑛𝑒𝑟 𝑎𝑟𝑒𝑎

−1 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑟𝑑𝑒𝑟

(11)

To compute the cohesion force, in HIM, we employ the Canny edge
detector [6] to recognize the crowd boundaries.

To sum up, we propose our governing equation for dense crowd
simulation as:

𝑓𝑎𝑐𝑐𝑥 = 𝜆1 𝑓𝑐𝑜𝑛𝑥 + 𝜆2 𝑓𝑣𝑖𝑠𝑥 + 𝜆3 𝑓𝑎𝑙𝑖𝑥 + 𝜆4 𝑓𝑛𝑎𝑣𝑥 + 𝜆5 𝑓𝑐𝑜ℎ𝑥 (12)

𝑓𝑎𝑐𝑐𝑦 = 𝜆1 𝑓𝑐𝑜𝑛𝑦
+ 𝜆2 𝑓𝑣𝑖𝑠𝑦 + 𝜆3 𝑓𝑎𝑙𝑖𝑦 + 𝜆4 𝑓𝑛𝑎𝑣𝑦 + 𝜆5 𝑓𝑐𝑜ℎ𝑦

(13)

where 𝜆1, 𝜆2, 𝜆3, 𝜆4 and 𝜆5 are parameters.

3.3 Evaluation Metrics
The evaluation in crowd simulation faces considerable challenges.
Previous works normally adopt metrics such as time consumption,
computational complexity and subjective judgment, which fail to
reflect the authenticity, fidelity and diversity of the simulation. The
primary reason behind this issue is the lack of datasets that can
act as groundtruths. To this end, we construct a new dense crowd
motion video dataset called DCFD containing six different motion
patterns. Based on DCFD, we propose to employ the following
objectivemetrics to evaluate the performances of our hydrodynamic
model and other simulation models.
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Inception Score. Originally proposed for Generative Adversarial
Networks (GAN), IS evaluates the distinctiveness and variety of
generated images based on a pretrained classifier called InceptionV3.
To employ IS in dense crowd simulation, we modify the input and
output layers of InceptionV3 and retrain the classifier on DCFD
with a ratio of eight to two between the training set and the test
set. Then, IS for dense crowd simulation can be denoted as:

𝐾𝐿(𝑃,𝑄) = EÛ∼𝑃
[
log

(
𝑃 (Û)

)
− log

(
𝑄 (Û)

)]
(14)

𝐼𝑆 (𝐺) = exp
(
EÛ∼𝑃𝑔𝐾𝐿(𝑝 (𝑦 | Û), 𝑝 (𝑦))

)
(15)

where 𝐾𝐿(·, ·) is the Kullback-Leibler Divergence (KLD) [24],𝐺 is
the prediction set, and 𝑦 is the motion pattern of each velocity field
Û given by the classifier.

Fréchet Inception Distance. Based on InceptionV3 as well, FID takes
the groundtruths into account. FID treats the groundtruth set and
prediction set as two Gaussian distributions, calculates their mean
and covariance respectively, and measures the distance between
the groundtruths and predictions by:

𝐹𝐼𝐷 (𝐺,𝐺) = ∥𝑚 − �̂�∥2
2 + Trace

(
𝐶 +𝐶 − 2

√︁
𝐶𝐶

)
(16)

where 𝐺 is the groundtruth set and 𝐺 is the prediction set, (𝑚,𝐶)
and (�̂�,𝐶) are their mean and covariance respectively.

Structural Similarity. Designed for image quality assessment, SSIM
compares groundtruths and predictions in terms of three aspects
including the luminance, contrast and structure. To apply SSIM
to dense crowd simulation, we represent the velocities using heat
maps and compute SSIM by:

𝑙 (ℎ, ℎ̂) =
2𝜇ℎ𝜇ℎ̂
𝜇2
ℎ
+ 𝜇2

ℎ̂

𝑐 (ℎ, ℎ̂) =
2𝜎ℎ𝜎ℎ̂
𝜎2
ℎ
+ 𝜎2

ℎ̂

𝑠 (ℎ, ℎ̂) =
𝜎
ℎℎ̂

𝜎ℎ𝜎ℎ̂

(17)

𝑆𝑆𝐼𝑀 (𝐺,𝐺) = 1
𝑁𝑀

𝑁∑︁
𝑖=1

𝑀−1∑︁
𝑗=0

𝑙 (ℎ𝑖 𝑗 , ˆℎ𝑖 𝑗 )𝑐 (ℎ𝑖 𝑗 , ˆℎ𝑖 𝑗 )𝑠 (ℎ𝑖 𝑗 , ˆℎ𝑖 𝑗 ) (18)

where 𝑙 (·, ·) is the luminance comparison, 𝑐 (·, ·) is the contrast
comparison, and 𝑠 (·, ·) is the structure comparison; ℎ𝑖 𝑗 and ˆℎ𝑖 𝑗
are the heat maps corresponding to the velocity between the 𝑗𝑡ℎ
and ( 𝑗 + 1)𝑡ℎ frames of the 𝑖𝑡ℎ video in the groundtruth set and
prediction set respectively.

4 EXPERIMENTS
4.1 Crowd Dataset
To facilitate dense crowd researches as well as the evaluation and
validation of crowd simulation models, we construct a new dense
crowd motion video dataset called DCFD. DCFD contains dense
crowd motions of six classic patterns, including line, curve, circle,
cross, cluster, and scatter. These crowd motions are sourced from
various scenes, such as marathons, parades, intersections, etc. In
total, DCFD consists of 457 video clips, which are all collected from
Getty Images1. More than ninety percent of these video clips are
unique to DCFD and have not been included in previous datasets.
Each video clip is cropped into MP4 format with a size of 360 × 480
pixels, spanning approximately 120 frames. To utilize these dense
1https://www.gettyimages.com

crowd videos in our research, we also calculate the velocity field
of each video clip using the optical flows [1, 2]. As is shown in
Tab.1, most existing crowd video datasets are either not dense
enough or contain very few videos. Our DCFD surpasses these
datasets considering the crowd density, number of video clips and
crowd motion patterns, and notably contains velocity fields for all
video clips. All the video clips and velocity fields are sorted and
labeled manually by multiple annotators according to crowdmotion
patterns and are available in the dataset.

Table 1: Comparison between existing crowd datasets and
our DCFD in terms of the crowd density, number of video
clips, number of motion patterns and velocity field. Note that
we consider consecutive frames as one video when counting
the number of video clips.

Dataset Density Videos Patterns Velocity

GC [54] loose 1 × ×
UCF [1] loose 38 × ×
UCY [25] loose 4 × ×
ETH [38] loose 2 × ×

Subway Station [57] loose 1 × ×
CUHK Crowd [44] medium 474 8 ×

Collective Motion [56] medium 413 × ×
Marathon [2] dense 3 × ×
DCFD (ours) dense 457 6 ✓

4.2 Training Details
We implement our HINN with PyTorch [36] and conduct all the
experiments on a single Nvidia GeForce RTX 3090 GPU. The number
of simulation time steps 𝑇 in training and testing phase is 100. The
relaxation time 𝜏 in Eq.10 is set to 1. The parameters 𝜆1, 𝜆2, 𝜆3,
𝜆4, 𝜆5 in 𝑓𝑎𝑐𝑐𝑥 and 𝑓𝑎𝑐𝑐𝑦 are 1, -0.2, 0.5, 1 and 1 respectively. Here,
we select this group of parameters out of a simple comparison.
Particularly, 𝜆2 is negative since the convection acceleration and
the viscosity force for fluids lie on either side of Navier-Stokes
equations as shown in Eq.2. The training set and the test set are
split from DCFD at a ratio of seven to three. All experiments are
conducted with ADAM [22] as the optimizer, Huber loss as the
loss function, and IS, FID and SSIM as the evaluation metrics. More
details about the parameters can be seen in the supplementary.

4.3 Experimental Results
To examine the effectiveness of our proposed model, we compare
it with two kinds of simulation methods. One method is to treat
crowds as assemblies of individuals and constrain their behaviors
with rules, which can effectively reflect the social properties of
crowds. For this kind of method, we select traditional models such
as Boids and SFM based on their established performance in crowd
simulation. The other method is to guide crowd motions with the
original Navier-Stokes equations and solve the governing equations
with various PDE-solving networks, which focuses on the physical
properties of crowds. For this kind of method, we explore different
types of PDE-solving networks, including PDE-Net (data-driven),
NSFnets [21] (physics-informed), and the advanced PPNN. In order
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Table 2: Comparative performance of simulation models evaluated by Inception Score (IS), Fréchet Inception Distance (FID),
and Structural Similarity (SSIM).

Model Boids SFM PDE-Net NSFnets PPNN HINN (ours)

IS ↑ 1.327 1.367 1.481 1.212 1.770 1.721
FID ↓ 0.111 0.144 0.195 0.709 0.064 0.056

SSIM (%) ↓ 41.27 45.91 58.76 32.14 38.10 37.27

Boids SFM PDE-Net NSFnets PPNN HINN (ours)Groundtruth

𝒖
0

𝒖
5
0

an
d

 ෝ 𝒖
5
0

ෝ 𝒖
5
0
−
𝒖
5
0

𝒖
9
9

an
d

 ෝ 𝒖
9
9

ෝ 𝒖
9
9
−
𝒖
9
9

Figure 3: Comparison between groundtruth and simulations of the horizontal component of crowd motion under a "curve"
pattern at different time-steps. The first row depicts the given initial state. The second and fourth rows present the groundtruth
and corresponding simulations at time-step 50 and time-step 99 respectively. The third and fifth rows display error maps for
each model compared to the groundtruth at time-steps 50 and 99.

to conduct the comparison, we apply our HINN along with these
five simulation models to simulate dense crowd motions under six
classic motion patterns and evaluate them with IS, FID and SSIM.

According to the data presented in Tab.2, our proposed HINN
outperforms all the other simulation models in general, achieving
remarkable results in terms of IS, FID and SSIM. Considering classic
crowd simulation models, namely Boids and SFM, we can see that
they exhibit mediocre performance across all evaluated metrics,
which again demonstrates that microscopic models are not suitable
for simulating dense crowds. PDE-Net suffers from mode collapse
that it fails to generate crowd motions under "cross" and "scatter"
patterns, which contributes to its poor performance on groundtruth-
related metrics such as FID and SSIM. NSFnets performs slightly
better than our HINN on SSIM, but shows disastrous performance
on IS and FID, indicating its inadequacy in authenticity, fidelity and
diversity. Closest to our HINN, PPNN shows better performance

on IS but falls behind on FID and SSIM, suggesting that while it
effectively captures the crowd physical properties like continuity
and fluidity, it struggles to maintain authenticity and fidelity in the
simulation. Compared to these models, our HINN excels in terms
of FID and are able to achieve comparable performance on IS and
SSIM relative to the best-performing models.

In order to compare the performance of the simulation models
more intuitively, we present the groundtruth and corresponding
simulations using heat maps. As shown in Fig.3, the groundtruth is
generated from a dense crowd video that contains crowd motion
under a "curve" pattern. Given the initial state u0, Boids, SFM and
PDE-Net can barely simulate the crowd motion after 50 time-steps.
NSFnets merely restores the approximate overall shape, while over-
looking finer details of dense crowd motions. The performance of
PPNN at time-step 50 is actually acceptable. However, it appears
that the simulation of PPNN remains relatively unchanged over
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time, resulting in a larger error at time-step 99. Compared to these
simulation models, our HINN successfully simulates the entire
process of this "curve" motion, pays attention to intricate details of
crowd motions, and demonstrates its adaptability over time. The
simulations of more crowd motions under different motion patterns
can be found in the supplementary.

4.4 Ablation Study
In our governing equation for dense crowd simulation, we consider
both the physical properties and social properties of crowds. To
investigate the contribution of these two kinds of properties in
the dense crowd simulation, ablation studies are conducted for
physical and social operators. (1) w/o physical operators. We erase
the physical operators (𝑓𝑐𝑜𝑛 and 𝑓𝑣𝑖𝑠 ) from our governing equation,
relying solely on the operators that highlight crowd characteristics
distinct from fluids. (2) w/o social operators. We exclude the social
operators (𝑓𝑎𝑙𝑖 , 𝑓𝑛𝑎𝑣 and 𝑓𝑐𝑜ℎ) from our governing equation. In this
circumstance, dense crowds are treated purely as fluids, neglecting
the influence of crowd social behaviors. (3) w/o physical operators
and social operators, i.e. w/o HIM. We remove the plug-in HIM
which preserves our governing equation. In this scenario, our HINN
reduces to a ConvResNet.

From data in Tab.3, it can be seen that after removing the physical
and social operators from our governing equation, the simulation
performance degrades across all evaluated metrics. Among all these
models, HINN incorporated with physical operators demonstrates
the highest similarity to our HINN in terms of SSIM, indicating
the superior effectiveness of physical properties in maintaining
structural integrity of crowd motions. HINN utilizing the social
operators exhibits the closest alignment with our HINN based on
FID and the average loss, underscoring the superiority of social
properties in enhancing the fidelity and generating more realistic
simulations. Additionally, either the physical operators or social
operators may individually introduce a decrease in IS, but when we
combine these two kinds of operators together in our governing
equation, HINN achieves the best performance. To show influence
of physical and social operators on dense crowd simulation more
clearly, we exhibit a comparison of simulating crowd motion under
a "scatter" pattern using different models as shown in Fig.4. We can
observe that with physical operators (third and fifth rows), HINN
better restores the overall motion and continuity of crowd; while
with social operators (fourth and fifth rows), HINN can capture
more finer details of crowd motions. Containing both physical
and social operators, our HINN delivers the most comprehensive
simulation with minimal average loss.

Table 3: Contribution of the physical properties and social
properties in dense crowd simulation measured by IS, FID,
SSIM and the average loss (AL).

Model IS ↑ FID ↓ SSIM (%) ↓ AL ↓
HINN w/o HIM 1.704 0.060 38.12 8.653
HINN w/o social operators 1.698 0.065 37.32 8.543
HINN w/o physical operators 1.684 0.057 37.43 8.438
HINN (ours) 1.721 0.056 37.27 8.175
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Figure 4: Comparison between groundtruth and simulations
of crowd motion under a "cross" pattern at time-step 99. The
first and second column displays the horizontal and vertical
components of the groundtruth and simulations respectively.
The third column presents error maps of generated velocity
for each model compared to the groundtruth.

5 CONCLUSION
In this research, we propose a hydrodynamic model that addresses
both the crowd physical properties and social properties for dense
crowd simulation. Due to the challenge of directly solving the
governing equation that is based on Navier-Stokes equations, we
introduce the Hydrodynamics-Informed Neural Network (HINN)
inspired by PPNN, which preserves the structure of our governing
equation within the Hydrodynamics-Informed Module (HIM). To
support the evaluation, we construct a new dense crowd motion
video dataset called the Dense Crowd Flow Dataset (DCFD), which
contains six classic crowd motion patterns. Based on DCFD, we
utilize the objective metrics concerning authenticity, fidelity and
diversity to evaluate performance of our model alongside other
simulation models for simulating dense crowd motion patterns.
Numerous experiments have demonstrated that our proposedmodel
outperforms other simulationmodels and have shown the reliability
of generated dense crowd motions. In future, we will continue to
construct a more comprehensive dense crowd dataset with more
video clips and motion patterns. We will also explore more physical
and social operators which can reflect crowd properties so that we
can simulate more complicated crowd motions.
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