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ABSTRACT

This paper explores stochastic adaptive gradient descent, i.e., stochastic AdaGrad-
Norm, with applications to linearly separable data sets. For the stochastic
AdaGrad-Norm equipped with a wide range of sampling noise, we demonstrate
its almost surely convergence result to the L2 max-margin solution. This means
that stochastic AdaGrad-Norm has an implicit bias that yields good generaliza-
tion, even without regularization terms. We show that the convergence rate of the
direction is o(1/ln

1−ϵ
2 n). Our approach takes a novel stance by explicitly char-

acterizing the L2 max-margin direction. By doing so, we overcome the challenge
that arises from the dependency between the stepsize and the gradient, and also
address the limitations in the traditional AdaGrad-Norm analysis.

1 INTRODUCTION

With the growth of computing power in recent years, various models like neural networks have
gained the ability to perfectly fit training data. These models, exceeding the data’s capacity, are
referred to as over-parametrized models. Over-parametrized models often exhibit numerous global
optimums, yielding a zero training loss, yet exhibiting substantial disparities in test performance (Wu
et al., 2018; Chatterji et al., 2022). Fascinatingly, investigations have indicated that optimization
algorithms tend to converge towards those optimal points associated with a good generalization
(Zhang et al., 2021). This intriguing phenomenon is referred to as the implicit bias of optimizers
and is widely speculated to exist (Neyshabur et al., 2014; Zhang et al., 2005; Keskar et al., 2017;
Wilson et al., 2017).

Evidence of implicit bias has been established under different settings. For the linear classification
task with cross-entropy loss, Soudry et al. (2018) demonstrate that gradient descent (GD) converges
to the L2 max-margin solution. This solution is also called the hard support vector machine (hard
SVM) solution, which is commonly known. This revelation underscores that even fundamental opti-
mizers like GD have an implicit bias. Subsequent endeavors have extended their work, adapting GD
into stochastic gradient descent (SGD), momentum-based SGD (mSGD), and deterministic adap-
tive gradient descent (AdaGrad-Diagonal) (Gunasekar et al. (2018); Qian & Qian (2019); Wang
et al. (2021b;a); Wu et al. (2021)). However, to the best of our knowledge, there is no work that
proves the existence of implicit bias in the stochastic AdaGrad-Norm method. It is worth doing this
since this method is widely used in most of the practical systems Duchi et al. (2010); Streeter &
Mcmahan (2010); Lacroix et al. (2018), machine learning, and so on.

The iterates generated by the stochastic AdaGrad-Norm method enjoy the following dynamics (see
Streeter & Mcmahan (2010); Ward et al. (2020)):

Sn = Sn−1 +
∥∥∇g(θn, ξn)∥∥2, θn+1 = θn − α0√

Sn

∇g(θn, ξn), (1)

where g(θ) refers to the objective function, ∇g(θ, ξn) is an unbiased estimation of the gradient
∇g(θ) with {ξn} being mutual independent. Sn is the cumulative stochastic gradient norm, and
α0 > 0 represents the constant step size. We define a σ-filtration Fn := σ{θ1, ξ1, ξ2, . . . , ξn−1}. A
critical question then arises:

Can stochastic AdaGrad-Norm converge to the L2 max-margin solution?

If the answer is true, we can show that stochastic AdaGrad-Norm has an implicit bias.
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Formulation of the convergence We investigate the linear classification problem with linearly
separable data set {(xi, yi)}Ni=1, where yi ∈ {0, 1}. The L2 max-margin solution set θ∗/∥θ∗∥ as the
set of all unit vectors that maximizes the margin between positive data (yi = 1) and negative data
(yi = 0), i.e.,

θ∗

∥θ∗∥
:=

{
θ

∥θ∥

∣∣∣∣ θ ∈ arg max
ϕ∈Rd

min
1≤i≤N

{ sgn(yi − 0.5)(x⊤i ϕ)

∥ϕ∥

}}
, (2)

where ∥ · ∥ denotes ℓ2 norm. Denote the cross-entropy loss g(θ) = 1
N

∑N
i=1 g(θ, xi), where

g(θ, xi) = −yi ln(ŷi) − (1 − yi) ln(1 − ŷi) and ŷi = 1

1+e−θ⊤xi
. Our main goal is to show that

running stochastic AdaGrad-Norm 1 on the cross-entropy loss g(θ) obtains θn
∥θn∥ → θ∗

∥θ∗∥ a.s. ,

For a detailed description of the problem formulation and its background, please refer to Section 2.

Challenges in Analyzing stochastic AdaGrad-Norm Compared to SGD, mSGD, and determin-
istic AdaGrad-Diagonal, the analysis of stochastic AdaGrad-Norm presents distinct challenges aris-
ing from the following four aspects.

(I) Given the σ-algebra Fn, the adaptive step size α0

/√∑n
i=1 ∥∇g(θi, ξi)∥2 in Equation 1

is a random variable, and is conditionally dependent of ∇g(θn, ξn). Handling the terms
α0√
Sn

∇f(θn)⊤∇g(θn, ξn) and α2
0

Sn

∥∥∇g(θn, ξn)∥∥2 becomes complicated due to this condi-
tional dependency, where f(θ) := 1− ((θ⊤θ∗)/((∥θ∥+ 1)∥θ∗∥)) and θ∗ is a max margin
vector. In fact, the conditional expectation terms cannot be straightforwardly calculated by
α0√
Sn

∇f(θn)⊤∇g(θn) and α2
0

Sn
Eξn

(∥∥∇g(θn, ξn)∥∥2). This challenge has been effectively
resolved in (Jin et al., 2022; Faw et al., 2022; Wang et al., 2023). Faw et al. (2022) ad-
dressed this issue by scaling down 1/

√
Sn to 1/

√
Sn−1 + ∥∇g(θn)∥2. In Jin et al. (2022);

Wang et al. (2023), authors transformed 1/
√
Sn into 1/

√
Sn−1 + 1/

√
Sn−1 − 1/

√
Sn to

obtain a new recurrence relation, where the conditional dependence issue no longer exists.
The technique employed in Jin et al. (2022) to solve this issue is also utilized in the proof
of this paper.

(II) Even when demonstrating the last-iterate convergence of the objective function g(θn) → 0,
it only implies θn → ∞, leaving the limit of the L2 max-margin direction, i.e., θn/∥θn∥,
unknown. Since the L2 max-margin direction is important in some machine learning prob-
lems, such as classification, we must conduct additional effort to establish convergence of
the L2 max-margin direction. Moreover, the relevant techniques used to prove the last-
iterate convergence for stochastic AdaGrad-Norm cannot be directly applied to establish
the corresponding results for implicit bias. We will explain why the techniques cannot be
transferred in Section 4 after Theorem 4.1.

(III) Previous results on the implicit bias of SGD and mSGD are based on the assumption that
the sampling noise is chosen properly (see Section 3 for more details). Specifically, they
assume the strong growth property holds for the sampling noise, i.e., Eξn ∥∇g(θ, ξn)∥2 ≤
M∥∇g(θn)∥2. In contrast, the stochastic AdaGrad-Norm method is not related to the
choice of sampling noise. Thus, the strong growth property is not required in our anal-
ysis.

(IV) For the stochastic AdaGrad-Norm, the properties of the generated iterate points θn are
sensitive to the distance between θn and the stationary point. Such a challenge does not
exist in previous settings. For example, considering deterministic or stochastic algorithms
under a quadratic growth condition, this challenge is successfully bypassed by considering
the dynamic system in different segments. However, for the stochastic AdaGrad-Norm, the
segment of iterates near and far from the stationary point is highly random, making the
previous technique unavailable. Therefore, it becomes challenging in this setting,

Related Works There are only a few work that is related to this topic. For example, Soudry et al.
(2018) prove that GD converges to the L2 max-margin solution for linear classification tasks with
exponential-tailed loss. Their result is improved by Nacson et al. (2019) latterly. For SGD and
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momentum-based SGD, Wang et al. (2021a) prove the convergence to the L2 max-margin solution
for linear classification task with exponential-tailed loss and regular sampling noise.

For deterministic AdaGrad-Diagonal, (Soudry et al., 2018; Gunasekar et al., 2018; Qian & Qian,
2019) claim that it does not converge to the L2 max-margin solution as the non-adaptive methods
do (e.g. SGD, GD). Instead, for stochastic AdaGrad-Norm, Jin et al. (2022) presents the last-iterate
convergence. Wang et al. (2023) and Faw et al. (2022) obtained the convergence rates of stochas-
tic AdaGrad-Norm. The characterization of the converging point (like implicit bias) of stochastic
AdaGrad-Norm remains unknown.

Contributions In this paper, we present a conclusive response to the aforementioned question.
Specifically, we provide rigorous proof demonstrating the convergence of the stochastic AdaGrad-
Norm method to the L2 max-margin solution almost surely. This result emphasizes that the resultant
classification hyperplane closely conforms to the solution obtained through the application of the
hard Support Vector Machine (see Theorems 4.2 and 4.3).

In comparison to previous works that mainly focused on regular sampling noise Wang et al. (2021b),
our study stands out by its ability to handle a wide range of stochastic settings (Assumption
3.1). Specifically, our study can be applied to any stochastic algorithms with bounded noise, i.e.,
∇g(θ, ξn) = ∇g(θ) + ξn, (for some ξn, supn≥1 ∥ξn∥ < +∞), and the stochastic algorithms with
regular sampling noise.

Our technical contributions are summarized as follows:

(I) We begin by adopting a divide-and-conquer approach, simultaneously applying a specific
indicator function at both ends of the stochastic dynamical system. This novel approach
allows us to analyze the generated iterate points’ properties properly. When the iterate
point is close to the stationary point, we leverage second-order information from the loss
function to provide a deeper characterization of the algorithm’s behavior. Conversely, when
the iterate point is far from the stationary point, we establish a local strong growth property.
Combining these two scenarios, and by exploiting the separability property inherent in the
dataset, we conclusively demonstrate that the AdaGrad-Norm algorithm converges towards
a max-margin solution.

(II) In a parallel line of investigation, we employ the martingale method to establish the almost
everywhere convergence result. This pivotal outcome enables us to convert the convergence
order of the partition vector into an order related to the iterates’ norm, specifically,

∥∥ θn
∥θn∥ −

θ∗

∥θ∗∥
∥∥2 = O(∥θn∥−α) (∀ 0 < α < 1) a.s.. By combining this result with the earlier

amplitude findings, we ultimately derive the convergence rate of the partition vector as
min1≤k≤n

∥∥ θk
∥θk∥ − θ∗

∥θ∗∥
∥∥ = o

(
ln−

1−ϵ
2 n

)
(∀ ϵ > 0) a.s..

2 PROBLEM FORMULATION

In this section, we give the detailed formulation of our aimed problem. We consider the linear
classification problem with linearly separable data set {(xi, yi)}Ni=1, where yi ∈ {0, 1}. Here,
separability means that there exists a vector θ0 ∈ Rd, such that for any yi = 1, θ⊤0 xi > 0, and for
any yi = 0, θ⊤0 xi < 0. Meanwhile, we call θ0 as a margin vector. The setting has been considered
in many existing works (Soudry et al. (2018); Wang et al. (2021a); Qian & Qian (2019)).

Denote ∥ · ∥ as the ℓ2 norm. Denote the L2 max-margin solution set θ∗/∥θ∗∥ as the set of all unit
vectors that maximizes the margin between the positive data (yi = 1) and the negative data (yi = 0),
which can be formulation by Equation 2. Equivalently, it is also common in the literature to denote
θ∗

∥θ∗∥ :=

{
θ

∥θ∥

∣∣∣∣ θ ∈ argminϕ∈Rd

{
∥ϕ∥

∣∣ sgn(yi − 0.5)(ϕ⊤xi) ≥ 1, ∀i
}}

. The two definitions are

equivalent.

We set the cross-entropy loss as our loss function, i.e., g(θ) = 1
N

∑N
i=1 g(θ, xi), where g(θ, xi) =

−yi ln(ŷi) − (1 − yi) ln(1 − ŷi) and ŷi = 1

1+e−θ⊤xi
. This loss function is widely used in logistic

regression. This is a special case of the exponential-tail loss, as discussed in Soudry et al. (2018);
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Wang et al. (2021a). Since the choice of cross-entropy loss does not affect the validity of our
analysis, while the use of exponential-tail loss does increase many tedious notations, we present
our results under the logistic regression setting in the rest of this paper for brevity. Our results can
easily be generalized to the stochastic AdaGrad-Norm method with tight exponential-tail loss 1. For
function g, we have the following property.
Property 1. The gradient of the loss function, denoted as ∇g(θ), satisfies Lipschitz continuity, i.e.,
∀ θ1, θ2 ∈ Rd, there is ∥∇g(θ1)−∇g(θ2)∥ ≤ c∥θ1 − θ2∥, where c is the Lipschitz constant of the
function ∇g(θ).

Due to the particularity of classification problems, the global optimal point do not exists. When θn
tends to infinity along a certain margin vector, the value of the loss function tends to zero. For any
ϵ > 0 and any margin vector e, there exists a positive constant N0 associated with e, such that for
any θ/∥θ∥ = e and ∥θ∥ > N0, we have g(θ) < ϵ, i.e.,

lim
∥θ∥→+∞,θ/∥θ∥=e

g(θ) = 0,

where e is a margin vector of the data set {(xi, yi)}Ni=1. However, we are more interested in the case
that e is a L2 max-margin vector, which has better generalization.

In the following, we will give the convergence results of the stochastic AdaGrad-Norm method,
described in (1), with the aforementioned objective function g(θ).

3 NOISE MODEL ASSUMPTION

The results we are going to present hold for the natural noise model induced by mini-batch sampling.
Nevertheless, to incorporate a broader family of noise model, such as the bounded variance model,
we present a general noise model under which we derive our main results.

We first give our assumption on the unbiased estimation ∇g(θ, ξn) of the gradient. Here, unbiased-
ness implies that Eξn ∇g(θ, ξn) = ∇g(θ).
Assumption 3.1. There exist M0 > 0, a > 0, such that the variance of ∇g(θ, ξn) satisfies

Eξn

∥∥∇g(θ, ξn)∥∥2 ≤M0

∥∥∇g(θ)∥∥2 + a.

Meanwhile, there exist δ0 > 0, K̂ > 0, such that when g(θ) < δ0, there is ∥∇g(θ, ξn)∥ ≤ K̂.

Remarkably, the Assumption 3.1 differs from that in the existing works on the implicit bias of
stochastic algorithms, in which regular sampling noise is taken into consideration. In contrast, we
consider all estimation noise in the assumption, which includes the regular sampling noise (see the
following remark).

Regular Sampling Noise The regular sampling noise is given by

∇g(θ, ξn) =
1

|Ci|
∑
x̄∈Ci

∇g(θ, x̄) ,

where Ci is a randomly selected mini-batch from the given data set. Through Lemma 8 in
Wang et al. (2021b), we know that sampling noise satisfies the strong growth condition, i.e.,
Eξn ∥∇g(θ, ξn)∥2 ≤ M̃∥∇g(θ)∥2.
Since any subset (mini-batch) of a linearly separable data set is separable, we know that θ satisfying
g(θ) < δ0 is a margin vector of {xi, yi} by Lemma A.10 with δ0 = (ln 2)/2N . Then by Lemma
A.8, we have

∥∇g(θ, ξn)∥ =
1

|Ci|

∥∥∥∥∥ ∑
x̄∈Ci

∇g(θ, x̄)

∥∥∥∥∥ ≤ 1

|Ci|
∑
x̄∈Ci

∥∥∇g(θ, x̄)∥∥ ≤ k2
|Ci|

∑
x̄∈Ci

g(θ, x̄)

≤ k2N

|Ci|
g(θ) <

k2
|Ci|

· ln 2
2

=: K̂.

Hence the regular sampling noise satisfies Assumption 3.1.
1We will demonstrate the easiness of this generalization in Appendix B.10.
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4 MAIN RESULTS

Now, we are ready to present our main results. Below, we present the last-iterate convergence result
of stochastic AdaGrad-Norm, which was first proven by Jin et al. (2022).
Theorem 4.1. (Theorem 3 in Jin et al. (2022)) Suppose that Assumption 3.1 holds. Consider the
classification problem with the cross-entropy loss on a linearly separable data set (Section 2). For
the stochastic AdaGrad-Norm method given in Equation 1 equipped with step size α0 > 0 and initial
parameter θ1 ∈ Rd, we have g(θn) → 0 a.s., and ∥θn∥ → +∞ a.s..

This proof to this theorem can be found in Jin et al. (2022), but in order to make the paper self-
contained, we provide the proof of this theorem in Appendix B.8. Below, we point out that the
method in Jin et al. (2022) cannot be directly applied to the analysis for the implicit bias. The
authors Jin et al. (2022) construct a recursive iterative inequity therein for g(θ), i.e.,

g(θn+1)− g(θn) ≤
k

Sn−1
+ cn (3)

with
∑+∞

n=1 cn < +∞ and k > 0. Then, their goal is to prove that the difference between
∥∇g(θn+1)∥2 and ∥∇g(θn)∥2 becoming sufficiently small as the iterations progress. To do so, they
try to bound ∥∇g(θn+1)∥2 − ∥∇g(θn)∥2 via g(θn+1) − g(θn) and inequity ∥∇g(θ)∥2 ≤ 2cg(θ)
for Lipschitz constant c of ∇g. However, to obtain the implicit bias, the techniques in Jin et al.
(2022) become unsuitable due to the nuanced nature of our constructed Lyapunov function, i.e.,
∥θn/∥θn∥− θ∗/∥θ∗∥∥2. Specifically, the terms ∇(∥θn/∥θn∥− θ

∗
/∥θ∗∥∥2)⊤∇g(θn, ξn)/

√
Sn and

∥θn/∥θn∥ − θ∗/∥θ∗∥∥2 lack a clear and evident quantitative relationship, making it difficult for us
to obtain Equation 3. Consequently, novel methods and techniques become imperative to address
this challenge.

Next, we present the almost surely convergence analysis of the L2 max-margin direction θn/∥θn∥.
Theorem 4.2. Suppose that Assumption 3.1 holds. Consider the classification problem with the
cross-entropy loss on a linearly separable data set (Section 2). For the stochastic AdaGrad-Norm
method given in Equation 1 equipped with step size α0 > 0 and initial parameter θ1 ∈ Rd, we have

θn
∥θn∥

→ θ∗

∥θ∗∥
a.s. ,

where θ∗/∥θ∗∥ is the L2 max-margin solution.

In Theorem 4.2, we prove that the stochastic AdaGrad-Norm method has the implicit bias to find
the L2 max-margin solution.

Since the full proof is long, we move it to Appendix B.9. A proof sketch now follows, offering an
overview of the core arguments constituting the proof.

Proof Sketch. Given

f(θ) := 1− θ⊤θ̂∗

∥θ∥+ 1

with θ̂∗ := θ∗/∥θ∗∥, which tends to
∥∥ θ
∥θ∥ − θ∗

∥θ∗∥
∥∥2 as θ → +∞. We then prove f(θn) → 0 a.s..

Step 1: In this step, we construct a recursive inequality for f(θn). We derive that

E
(
f(θn+1)

)
− E

(
f(θn)

)
≤ −E

((
θ̂∗∥θn∥ − θnθ

⊤θ̂∗

∥θn∥

(∥θn∥+ 1)2

)⊤
α0∇g(θn)√

Sn−1

)
+ E

(
Gn

)
, (4)

where

Gn :=

∣∣∣∣∣
(
θ̂∗∥θn∥ − θnθ

⊤θ̂∗

∥θn∥

(∥θn∥+ 1)2

)⊤

α0∇g(θn, ξn)
(

1√
Sn−1

− 1√
Sn

)∣∣∣∣∣+ Tnα
2
0∥∇g(θn, ξn)∥2

Sn

+
α0θ̂

∗⊤∇g(θn, ξn)
(∥θn∥+ 1)2

√
Sn−1

+
N2 max1≤i≤N{∥xi∥2}

2k21 ln
2 2

· ∥∇g(θn)∥
2√

Sn−1

,

5



Under review as a conference paper at ICLR 2024

where Tn is defined in Equation 66. It can be shown that
∑+∞

n=1 E(Gn) < +∞ (see the specific
proof in Appendix B.9). Thus, we focus on studying the first term on the right-hand side of Equation
4.

Step 2 In this step, we focus on decomposing the first term in Equation 4.

E

((
θ̂∗∥θn∥ − θnθ

⊤θ̂∗

∥θn∥

(∥θn∥+ 1)2

)⊤∇g(θn)√
Sn−1

)
≤ E

(
1

N
√
Sn−1

N∑
i=1

ψi
θn

⊤xi − θ̂∗⊤xi∥θn∥
(∥θn∥+ 1)2

)
:= E(Hn),

where the definition of fxi
(θ, xi) can refer Equation 41 in Appendix B.9 and ψi := sgn(yi − 0.5).

We then prove that the right-hand side of the above inequality is negative. Denote the index of the
support vector as in := {i|i = argmin1≤i≤N ψiθn

⊤xi/∥θn∥}, and in is a element of in. Then we
have ∃ k̂0 > 0, such that

Hn ≤ fxi
(θn, xin)∥θn∥

N(∥θn + 1∥)2
√
Sn−1

(∑
i∈in

ψi

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

)

+ k̂0

N∑
i/∈in

ψi

e(dn,i−dn,in )(∥θn∥+1)

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

))
,

(5)

where dn,i := |θ⊤n xi|
/
∥θn∥. The first term of the above inequality is negative.

Step 3: In this step, we give a bound of the second term of Equation 5. We employ the divide and
conquer method to handle the second term of Equation 5. We also classify the discussion based on
the distance between the partition vector θn/∥θn∥ and the max-margin vector θ̂∗. As a result, we
construct two events C+

n :=
{
∥(θn/∥θn∥) − θ̂∗∥ ≥ L

}
, C−

n :=
{
∥(θn/∥θn∥) − θ̂∗∥ < L

}
. In the

case where C−
n occurs, that is, when θ/∥θ∥ is to θ̂∗, we have the following geometric relationship

lemma:

Lemma 4.1. Let {xi}Ni=1 be d-dimensional vectors. Then there is a vector xθ such that∣∣θ⊤xθ∣∣/∥θ∥ := min1≤i≤N

{
|θ⊤xi|/∥θ∥

}
. Let θ∗/∥θ∗∥ as the max-margin vector. Then there

exists δ0 > 0, r̂ > 0, such that for all θ/∥θ∥ ∈ U(θ∗/∥θ∗∥, δ0)/{θ∗/∥θ∗∥}, where U(θ∗/∥θ∗∥, δ0)
means δ0-neighborhood of vector θ∗/∥θ∗∥, it holds

∣∣ θ⊤xi

∥θ∥ − θ∗xi

∥θ∗∥
∣∣ < r̂

∣∣ θ⊤xθ

∥θ∥ − θ∗xθ

∥θ∗∥
∣∣ (∀ i ∈ [1, N ]).

Through this lemma we can obtain following inequity:∑
i/∈in

1C−
n

ψi

e(dn,i−dn,in )(∥θn∥+1)

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

)
≤ k̂0ĉN

Û

∥θn∥+ 1

+ k̂0
Nr̂

eÛ

∣∣∣∣θn⊤xin
∥θn∥

− θ̂∗⊤xin

∣∣∣∣,
where Û is an undetermined constant. Similarly, where C+

n occurs, we get∑
i/∈in

1C+
n

ψi

e(dn,i−dn,in )(∥θn∥+1)

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

)
≤ N · M̃1

es′∥θn∥
+ k̂1

N

eÛ

∣∣∣∣θn⊤xin
∥θn∥

− θ̂∗⊤xin

∣∣∣∣,
where M1 is a constant. Combining, we get∑

i/∈in

ψi

e(dn,i−dn,in )(∥θn∥+1)

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

)
≤ (k̂0r̂ + k̂1)

N

eÛ

∣∣∣∣θn⊤xin
∥θn∥

− θ̂∗⊤xin

∣∣∣∣+ N · M̃1

es′∥θn∥

+ k̂0ĉN
Û

∥θn∥+ 1
.

By adjusting the value of Û , we can always cancel out the first term with the half of the negative
term in Equation 5, and then we only need to prove that the remainder term can be neglected. That
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is to prove

+∞∑
n=1

E
( fxi

(θn, xin)∥θn∥
N(∥θn + 1∥)2

√
Sn−1

·
(N · M̃1

es′∥θn∥
+ k̂0ĉN

Û

∥θn∥+ 1

))
< +∞.

Step 4 In this step, we will prove the convergence of the series sum in the final step of the third step.
We prove this conclusion by the following lemma:

Lemma 4.2. Consider the AdaGrad Equation 1 under our problem setting in Section 2 and Assump-
tion 3.1. We have for any α0 > 0, α > 0, θ1, there is

∑n
k=2 E

(
∥∇g(θk)∥2√

Sk−1g(θk) ln1+α(g(θk))

)
< +∞.

Step 5 Through the above steps, we have obtained the following recursive formula:

E(f(θn+1|Fn)− f(θn) ≤ −1

2

fxi(θn, xin)∥θn∥
N(∥θn + 1∥)2

√
Sn−1

∑
i∈in

ψi

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

)
+ cn,

where
∑+∞

n=1 cn < +∞. According to the martingale difference sum convergence theorem, we can
conclude that f(θn) convergence almost surely. Then, we prove by contradiction that this limit can
only be 0. We assume that this assumption is not 0, and immediately derive a contradiction from the
following result:

+∞∑
n=2

∥θn∥fxin
(θn, xin)

N(∥θn∥+ 1)2
√
Sn−1

> q1

+∞∑
n=1

(
ln ∥θn+1∥ − ln ∥θn∥

)
− q2

+∞∑
n=1

∥∇g(θn, ξn)∥2

∥θn∥2Sn
= +∞ a.s..

Therefore, we have proved this theorem.

The previous works (Soudry et al., 2018; Gunasekar et al., 2018; Qian & Qian, 2019) point out
that the L2 max-margin direction of the AdaGrad method depends on the initial point and step
size. Hence, it is not as predictable and robust as the non-adaptive methods (e.g., SGD, GD).
However, the claim only holds true for the deterministic AdaGrad-diagonal method, which is de-
scribed by the system θn+1 = θn − ηG

−1/2
n ∇g(θn) , where Gn ∈ Rd×d is a diagonal matrix

such that, ∀i : Gn[i, i] =
∑n

k=0 (∇g(θk)[i])
2
. Nonetheless, it is crucial to emphasize the sub-

stantial distinctions inherent in the properties of the algorithm under discussion when compared to
the stochastic AdaGrad-Norm method. Specifically, the stochastic AdaGrad-Norm method main-
tains a uniform step size consistently across all components, leading to fundamental differences
in the analytical methods and techniques that are used to prove the convergence of these two algo-
rithms. For the AdaGrad-diagonal algorithm, we are able to compute the key component, denoted as
−∇f(θn)⊤(θn+1−θn), which determines the update direction of the decision boundary, analogous
to Equation 42. This computation yields the following expression:

E(∇f(θn)⊤G
− 1

2
n ∇g(θn))

= E

(
1

N
√
Sn−1

N∑
i=1

sgn(yi − 0.5)fxi(θn, xi)

(
θn

⊤G
− 1

2
n xi − θ̂∗⊤G

− 1
2

n xi∥θn∥
(∥θn∥+ 1)2

− θn
⊤G

− 1
2

n xi
2(∥θn∥+ 1)2

∥∥∥∥ θn
∥θn∥

− θ̂∗
∥∥∥∥2
))

.

Here, we have omitted higher-order terms from consideration. It is worth noting that, given the
diagonal matrix structure of Gn with distinct diagonal elements, as the iterations progress, our pur-
suit effectively converges towards identifying the max-margin vector associated with the dataset
{G− 1

2∞ · xi, yi}Ni=1. This differs from the previous result.

Finally, we present the convergence rate analysis of the stochastic AdaGrad-Norm method, as shown
in Theorem A.4.

7
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Theorem 4.3. Suppose that Assumption 3.1 holds. Consider the classification problem with the
cross-entropy loss on a linearly separable data set (Section 2). For the stochastic AdaGrad-Norm
method given in Equation 1 equipped with step size α0 > 0 and initial parameter θ1 ∈ Rd, we have
min1≤k≤n

∥∥θk/∥θk∥ − θ∗/∥θ∗∥
∥∥ = o

(
1
/
ln

1−ϵ
2 n

)
(∀ 0 < ϵ < 1) a.s. . where θ∗/∥θ∗∥ is the L2

max-margin solution.

This theorem presents the convergence rate o
(
1
/
ln

1−ϵ
2 n

)
∀ ϵ > 0 a.s. of the L2 max-margin

direction. This achievement is also new to the literature.

Comparative analysis against corresponding GD results, given by Soudry et al. (2018), reveals that
the convergence rate for both g(θn) and θn/∥θn∥ within stochastic AdaGrad-Norm is comparatively
slower. This observation isn’t unexpected, as the stochastic AdaGrad-Norm method uses a decreas-
ing step size, which will be much smaller than that used in GD as iteration grows. However, for GD,
one has to verify whether the step size α satisfies α < 2β−1σ−2

max(X) (Soudry et al. (2018)), where
X is the data matrix, σmax(·) denotes the maximal singular value and β is a constant characterized by
loss function g. This checking rule requires an extra burden of hyperparameter tuning. In contrast,
the stochastic AdaGrad-Norm method uses simple step sizes.

The proof strategy of this theorem is very similar to that of Theorem 4.2. We only need to replace
the function f(θ) in the proof of Theorem 4.2 with ∥θ∥α · f(θ) (∀ 0 < α < 1). We directly provide
a proof here.

Proof. For any 0 < α < 1, we construct a function

r(θ) := ∥θ∥α · f(θ) (0 < α < 1),

where f is defined in Equation 65. Then we calculate ∇r(θ), acquiring

∇r(θ) = ∇(∥θ∥α)⊤f(θ) + (∇f(θ))⊤∥θ∥α =
α θ

∥θ∥ · f(θ)
∥θ∥1−α

+ ∥θ∥α∇f(θ),

and ∥∇2r(θ)∥ = O((∥θ∥+ 1)α−2). Meanwhile, we assign the Lipschitz constant of ∇2r(θ) as c1.
Then we get

r(θn+1)− r(θn) ≤ ∇r(θn)⊤(θn+1 − θn) + ∥∇2r(θn)∥ · ∥θn+1 − θn∥2 + c1∥θn+1 − θn∥3

≤ −α
α0(

θn
∥θn∥ )

⊤∇g(θn, ξn)f(θn)
√
Sn∥θn∥1−α

− ∥θn∥α
α0∇f(θn)⊤∇g(θn, ξn)√

Sn

+ q0
α2
0∥∇g(θn, ξn)∥2

(∥θn∥+ 1)2−αSn

+ c1α
3
0

∥∇g(θn, ξn)∥2

S3
n

.

(6)
Noting

∇f(θn) =
θ − θ̂∗∥θn∥
(∥θn∥+ 1)2

− θ

2(∥θ∥+ 1)2

∥∥∥∥ θn
∥θn∥

− θ̂∗
∥∥∥∥2 − θ̂∗

(∥θn∥+ 1)2

For the first term and second term in the right-hand of Equation 6, we know that

− E
(
α
α0(

θn
∥θ∥ )

⊤∇g(θn, ξn)f(θn)
√
Sn∥θn∥1−α

+ ∥θn∥α
α0∇f(θn)⊤∇g(θn, ξn)√

Sn

∣∣∣∣Fn

)
≤ −α

α0(
θn

∥θn∥ )
⊤∇g(θn)f(θn)

√
Sn∥θn∥1−α

+ ∥θn∥αHn + ∥θn∥α
α0√
Sn

∥θn∥2

2(∥θn∥+ 1)2
· θ

⊤
n∇g(θn)
∥θn∥2

∥∥∥∥ θn
∥θn∥

− θ̂∗
∥∥∥∥2,

where Hn is defined in Equation 43. Through Theorem 4.2, we know the vector θn/∥θn∥ tend to

the max margin vector almost surely, which means θ⊤
n ∇g(θn)
∥θn∥2 < 0 when n is sufficient large. Then

8
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we know

− E
(
α
α0(

θn
∥θ∥ )

⊤∇g(θn, ξn)f(θn)
√
Sn∥θn∥1−α

+ ∥θn∥α
α0∇f(θn)⊤∇g(θn, ξn)√

Sn

∣∣∣∣Fn

)
≤ (1− α)

α0(
θn

∥θn∥ )
⊤∇g(θn)f(θn)

√
Sn∥θn∥1−α

+ ∥θn∥αHn

+ ∥θn∥α
α0√
Sn

∣∣∣∣1− ∥θn∥2

(∥θn∥+ 1)2

∣∣∣∣ · |θ⊤n∇g(θn)|∥θn∥2
∣∣f(θn)∣∣

+ ∥θn∥α
α0√
Sn

∥θn∥2

(∥θn∥+ 1)2
· |θ

⊤
n∇g(θn)|
∥θn∥2

∣∣∣∣f(θn)− 1

2

∥∥∥∥ θn
∥θn∥

− θ̂∗
∥∥∥∥2∣∣∣∣

≤ ∥θn∥αHn +O

(
∥∇g(θn)∥2√

Sn−1g(θn) ln
2−α(g(θn))

)
.

Through Equation 52, we know

∥θn∥αHn = O

(
∥∇g(θn)∥2√

Sn−1g(θn) ln
2−α(g(θn))

)
.

Then we use Lemma 4.2, we get
+∞∑
n=1

−E
(
α
α0(

θn
∥θ∥ )

⊤∇g(θn, ξn)f(θn)
√
Sn∥θn∥1−α

+ ∥θn∥α
α0∇f(θn)⊤∇g(θn, ξn)√

Sn

∣∣∣∣Fn

)

< O

( +∞∑
n=1

∥∇g(θn)∥2√
Sn−1g(θn) ln

2−α(g(θn))

)
< +∞ a.s..

(7)

For the third term in the right-hand of Equation 6, we have ∃ Q1 > 0, such that
+∞∑
n=1

α2
0∥∇g(θn, ξn)∥2

(∥θn∥+ 1)2−αSn
≤ Q1

+∞∑
n=1

∥∇g(θn, ξn)∥2

ln2−α(g(θn))Sn

≤ Q1

+∞∑
n=1

∥∇g(θn, ξn)∥2

ln2−α(Sn)Sn

+Q1

+∞∑
n=1

∥∇g(θn, ξn)∥2g(θn)
ln2−α(g(θn))

√
Sn

.

(8)

For the fourth term in the right-hand of Equation 6, we know
+∞∑
n=1

c1α
3
0

∥∇g(θn, ξn)∥2

S3
n

< +∞ a.s. (9)

Substitute Equation 7, Equation 8 and Equation 9 into Equation 6, we get
+∞∑
n=1

(
E
(
r(θn+1)

∣∣Fn

)
− r(θn)

)
< +∞ a.s..

By The Martingale Convergence Theorem, we get limn→+∞ r(θn) < +∞ a.s. That is, for any
0 < α < 1, we have

f(θn) = O(∥θn∥−α) a.s..

By the arbitrariness of α, we know the O can be written as o, so

min
1≤k≤n

∥∥∥∥ θk
∥θk∥

− θ∗

∥θ∗∥

∥∥∥∥ = o
(

min
1≤k≤n

∥θk∥
−α
2

)
= o
(
ln−

α
2 min

1≤k≤n
g(θk)

)
(∀ 0 < α < 1) a.s..

Through Lemma A.4 and Lemma A.8, we know

min
1≤k≤n

g(θk) ≤

√
1

k21
min

1≤k≤n
{∥∇g(θk)∥2} ≤

√√√√√K̂n
nk1

+∞∑
k=2

∥∇g(θk)∥2√
Sk−1

= O(n−
1
4 ) a.s..

As a result, we know

min
1≤k≤n

∥∥∥∥ θk
∥θk∥

− θ∗

∥θ∗∥

∥∥∥∥ = o
(
ln−

1−ϵ
2 n

)
(∀ ϵ > 0) a.s..

This completes the proof.

9
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5 CONCLUSION

This paper focuses on the convergence analysis of the stochastic AdaGrad-Norm method, a widely
used variant of the AdaGrad method, with linearly separable data sets. While previous perspectives
often suggest that AdaGrad’s convergence might hinge on initialization and step size, our findings
present a contrasting view. Specifically, we establish that stochastic AdaGrad-Norm exhibits an
implicit bias, consistently converging towards the L2 max-margin solution, even without regulariza-
tion terms. Furthermore, we present the convergence rates for the L2 max-margin solution, offering
comprehensive insights into the algorithm’s convergence dynamics.

10
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A USEFUL LEMMAS

Lemma A.1. (Lemma 6 in Jin et al. (2022)) Suppose that {Xn} ∈ Rd is a non-negative sequence
of random variables. If it holds that

∑∞
n=0 E

(
Xn

)
< +∞, then

∑∞
n=0Xn < +∞ holds almost

surely.
Lemma A.2. (Wang et al., 2019) Suppose that {Xn} ∈ Rd is an L2 martingale difference sequence,
and (Xn,Fn) is an adaptive process. Suppose it holds that

∞∑
n=1

E(∥Xn∥2) < +∞, or
∞∑

n=1

E
(
∥Xn∥2

∣∣Fn−1

)
< +∞ .

Then, it holds
∑∞

k=0Xk < +∞ almost surely.
Lemma A.3. (Lemma 13 in Jin et al. (2022)) Consider the AdaGrad Equation 1 under our problem
setting given in Section 2 and Assumption 3.1. It holds that for any α0 > 0, θ1,

n∑
k=3

E
(∥∥∇g(θk)∥∥2

S
1
2+ϵ

k−1

)
< +∞.

Lemma A.4. Consider the AdaGrad Equation 1 under our problem setting in Section 2 and As-
sumption 3.1. We have for any α0 > 0, θ1, there is

+∞∑
n=2

E

(∥∥∇g(θn)∥∥2√
Sn−1

)
< +∞, and

+∞∑
n=2

∥∥∇g(θn)∥∥2√
Sn−1

< +∞ a.s..

Lemma A.5. Consider the AdaGrad Equation 1 under our problem setting in Section 2 and As-
sumption 3.1, and function f(θ) := 1 − θ⊤θ̂∗

∥θ∥+1 , where θ̂∗ (∥θ̂∗∥ = 1) is a max margin vector. We

have for any α0 > 0, θ1, ∃ r0 > 0, M̃0 > 0, such that

E
(
∇f(θn))⊤∇g(θn)√

Sn−1

)

≤ E

(
fxin

(θn, xin)∥θn∥
N(∥θn∥+ 1)2

√
Sn−1

(
1

2
ψin

(
θn

⊤xin
∥θn∥

− θ̂∗⊤xin

)
+

r0
∥θn∥+ 1

+
M̃0

es′∥θn∥

))

+
N max1≤i≤N{∥xi∥2}

4c ln 2
· E
(
∥∇g(θn)∥2√

Sn−1

)
,

where ψi := sgn(yi − 0.5) and

fxi
(θ, xi):=

{
f(θ, xi), if yi = 0 ,

1− f(θ, xi), if yi = 1,

f(θ, xi) :=
1

1 + e−sgn(yi−0.5)θ⊤xi
.

Lemma A.6. x1 and x2 are two d-dimensional. Then there is a vector θ ∈ Rd which hold∣∣θ⊤x1∣∣/∥θ∥ <
∣∣θ⊤x2∣∣/∥θ∥. We assign θ∗ := argmin{θ||θ⊤x1|=|θ⊤x2|} ∥θ∥. Then there exists

δ0 > 0, r̂ > 0, such that ∣∣∣∣θ⊤x2∥θ∥
− θ∗x2

∥θ∗∥

∣∣∣∣ < r̂

∣∣∣∣θ⊤x1∥θ∥
− θ∗x1

∥θ∗∥

∣∣∣∣ (10)

for any θ satisfying θ/∥θ∥ ∈ U(θ∗, δ0)/{θ∗}.
Lemma A.7. (Lemma 10 in Jin et al. (2022)) Suppose f(x) ∈ C1 (x ∈ RN ) with f(x) > −∞ and
its gradient satisfying the following Lipschitz condition∥∥∇f(x)−∇f(y)

∥∥ ≤ c∥x− y∥,

then ∀ x0 ∈ RN , there is ∥∥∇f(x0)∥∥2 ≤ 2c
(
f(x0)− f∗

)
,

where f∗ = infx∈ RN f(x).

13



Under review as a conference paper at ICLR 2024

Lemma A.8. {x̂i, ŷi} is a linear separable data set and ĝ(θ) is the loss of logistic regression. Then
we have that if θ is a margin vertor of {x̂i, ŷi}, the loss function will hold that

k1ĝ(θ) ≤ ∥∇ĝ(θ)∥ ≤ k2ĝ(θ),

where k1 > 0, k2 > 2 are two constant.
Lemma A.9. For a linear separable data set S, we assum its max-margin vertor as θ∗/∥θ∗∥, Then
exists a constant δ̃0 > 0, making for any θ/∥θ∥ ∈ U(θ∗/∥θ∗∥, δ̃0), θ/∥θ∥ is a margin vector.
Lemma A.10. If a vector θ ∈ Rd is not a margin vector, it will make g(θ) > (ln 2)/N.

B PROOFS OF LEMMAS AND THEOREMS

B.1 THE PROOF OF LEMMA A.4

Proof. Based on calculations, it is easy to observe that when ∥∇g(θ)∥ → 0, there is ∥∇2g(θ)∥ =
Θ(∥∇g(θ)∥) (Here, the norm represents the maximum eigenvalue of the Hessian matrix.). That
means existing d̃0 > 0, δ̃1 > 0, such that for any ∥∇g(θ)∥ < δ̃1, there is ∥∇2g(θ)∥ ≤ d̃0∥∇g(θ)∥.
Then we assign δ1 := min{ln 2/N, δ̃1/k2}. Lemma A.8 and Lemma A.10, we know when g(θ) <
δ1, there is ∥∇2g(θ)∥ ≤ d̃0∥∇g(θ)∥. Then we define S(δ2) := {θ|g(θ) < δ2 := min{δ0, δ1}},
where δ0 defined in Assumption 1. We know that within the set S(δ2), the Hessian matrix is Lipschitz
continuous. We define ĉ as the Lipschitz constant of the Hessian matrix. We consider an event
Bn := {θn ∈ S(δ2)}. Meanwhile, we assign its complementary event as B(−)

n . Then, through the
third-order Taylor expansion, we have

1Bn

(
g(θn+1)− g(θn)

)
≤ −1Bn

α0S
− 1

2
n ∇g(θn)⊤∇g(θn, ξn) + 1Bn

α2
0∥∇2g(θn)∥ · ∥∇g(θn, ξn)∥2

Sn

+ 1Bn

ĉα3
0∥∇g(θn, ξn)∥3

S
3
2
n

.

Combining Assumption 3.1, we can get

1Bn

(
g(θn+1)− g(θn)

)
≤ −1Bn

α0∇g(θn)⊤∇g(θn, ξn)√
Sn−1

+ 1Bn
t0

(
1√
Sn−1

− 1√
Sn

)
+ 1Bn

d̃0α
2
0∥∇g(θn)∥ · ∥∇g(θn, ξn)∥2

Sn
+ 1Bn

ĉK̂α3
0∥∇g(θn, ξn)∥2

S
3
2
n

,

(11)

where t0 = α0δ̂1K̂. For the third term on the right side, we have

1Bn

d̃0α
2
0∥∇g(θn)∥ · ∥∇g(θn, ξn)∥2

Sn
= 1

(
∥∇g(θn)∥ <

2α0d̃0K̂0√
Sn

)
1Bn

d̃0α
2
0∥∇g(θn)∥ · ∥∇g(θn, ξn)∥2

Sn

+ 1

(
∥∇g(θn)∥ ≥ 2α0d̃0K̂0√

Sn

)
1Bn

d̃0α
2
0∥∇g(θn)∥ · ∥∇g(θn, ξn)∥2

Sn
.

(12)
Then we can acquire

1Bn

d̃0α
2
0∥∇g(θn)∥ · ∥∇g(θn, ξn)∥2

Sn
≤ 2d̂20α

3
0K̂

21Bn

∥∇g(θn, ξn)∥2

S
3
2
n

+
α0

2K̂2
1Bn

∥∇g(θn)∥2∥∇g(θn, ξn)∥2√
Sn

.

Substitute above inequity into Equation 11, and make the mathematical expectation, getting

E
(

1Bn

(
g(θn+1)− g(θn)

))
≤ −1

2
E
(

1Bn

α0∥∇g(θn)∥2√
Sn−1

)
+ t0 E

(
1√
Sn−1

− 1√
Sn

)
+ E

(
(ĉK̂ + 2d̂20K̂

2)∥∇g(θn, ξn)∥2

S
3
2
n

)
.

(13)
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We make E
(
1Bn

(
g(θn+1)

)
to E

(
1Bn+1

(
g(θn+1)

)
+ E

(
(1Bn

− 1Bn+1
)
(
g(θn+1)

)
, acquiring

E
(

1Bn+1

(
g(θn+1)

)
− E

(
1Bng(θn)

))
≤ −1

2
E
(

1Bn

α0∥∇g(θn)∥2√
Sn−1

)
+ t0 E

(
1√
Sn−1

− 1√
Sn

)
+ E

(
(ĉK̂ + 2d̂20K̂

2)∥∇g(θn, ξn)∥2

S
3
2
n

)
− E

(
(1Bn

− 1Bn+1
)
(
g(θn+1)

)
.

(14)

We notice

− E
((

1Bn − 1Bn+1

)
g(θn+1)

)
= −E

((
1Bn − 1Bn1Bn+1

)
g(θn+1)

)
− E

((
1Bn1Bn+1 − 1Bn+1

)
g(θn+1)

)
≤ min{δ0, δ1} · E

((
1Bn − 1Bn1Bn+1

))
+min{δ0, δ1} · E

((
1Bn1Bn+1 − 1Bn+1

))
= min{δ0, δ1} · E

(
1Bn − 1Bn+1

)
.

we getting

E
(

1Bn+1

(
g(θn+1)

)
− E

(
1Bn

g(θn)
))

≤ −1

2
E
(

1Bn

α0∥∇g(θn)∥2√
Sn−1

)
+ t0 E

(
1√
Sn−1

− 1√
Sn

)
+ E

(
(ĉK̂ + 2d̂20K̂

2)∥∇g(θn, ξn)∥2

S
3
2
n

)
−min{δ0, δ1} · E

(
1Bn

− 1Bn+1

)
.

Then we make a sum, acquiring
+∞∑
n=1

E
(

1Bn

α0∥∇g(θn)∥2√
Sn−1

)
< +∞. (15)

Then we consider the case when B(−)
n occurs. We know ∇g must hold the Lipschitz condition; we

assign its Lipschitz constant as c. Then we get

1B(−)
n

(
g(θn+1)− g(θn)

)
≤ −1B(−)

n
α0S

− 1
2

n ∇g(θn)⊤∇g(θn, ξn) + 1B(−)
n

α2
0c∥∇g(θn, ξn)∥2

Sn
.

First, we have

1(−)
Bn

(
g(θn+1)− g(θn)

)
≤ −1(−)

Bn

α0∇g(θn)T∇g(θn, ξn)√
Sn

+ 1(−)
Bn

cα2
0

2

∥∥∇g(θn, ξn)∥∥2
Sn

≤ −1(−)
Bn

α0

2

(
1

M + 1

∥∥∇g(θn, ξn)∥∥2√
Sn

+ (M + 1)

∥∥∇g(θn)∥∥2√
Sn

)

+ 1(−)
Bn

α0

2

1√
Sn−1

∥∥∥ 1√
M + 1

∇g(θn, ξn)−
√
M + 1∇g(θn)

∥∥∥2 + 1(−)
Bn

cα2
0

2

∥∥∇g(θn, ξn)∥∥2
Sn

≤ 1(−)
Bn

α0

2
(M + 1)

(∥∥∇g(θn−1)
∥∥2√

Sn−1

−
∥∥∇g(θn)∥∥2√

Sn

)

+ 1(−)
Bn

α0

2

(
1

M + 1

∥∥∇g(θn, ξn)∥∥2√
Sn−1

+ 1(−)
Bn

(M − 1)
∥∥∇g(θn)∥∥2√
Sn−1

−
(M + 1)

∥∥∇g(θn−1)
∥∥2√

Sn−1

)

+ 1(−)
Bn

cα2
0

2

∥∥∇g(θn, ξn)∥∥2
Sn

+Xn,

(16)
where Xn is defined as follow

Xn := 1(−)
Bn

α0√
Sn−1

∇g(θn)T
(
∇g(θn)−∇g(θn, ξn)

)
,
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and M := 2M0 + 2(a/k21δ
2
2)− 1. Then we can find∥∥∇g(θn)∥∥2 =

∥∥∇g(θn−1) +
(
∇g(θn)−∇g(θn−1)

)∥∥2
≤
∥∥∇g(θn−1)

∥∥2 + 2α0c√
Sn−1

∥∥∇g(θn−1)
∥∥∥∥∇g(θn−1, ξn−1)

∥∥+ c2α2
0

∥∥∇g(θn−1, ξn−1)
∥∥2

Sn−1
.

(17)

Then we multiple M + 1
2 on the both side of above inequity, acquiring(

M +
1

2

)∥∥∇g(θn)∥∥2 ≤
(
M +

1

2

)∥∥∇g(θn−1)
∥∥2 + (M +

1

2

) 2α0c√
Sn−1

∥∥∇g(θn−1)
∥∥∥∥∇g(θn−1, ξn−1)

∥∥
+
(
M +

1

2

)
c2α2

0

∥∥∇g(θn−1, ξn−1)
∥∥2

Sn−1
.

Noting(
M+

1

2

) 2α0c√
Sn−1

∥∥∇g(θn−1)
∥∥∥∥∇g(θn−1, ξn−1)

∥∥ ≤ 1

2

∥∥∇g(θn−1)
∥∥2+2

(
M+

1

2

)2
α2
0c

2 ∥∇g(θn−1, ξn−1)∥2

Sn−1
.

We get that(
M+

1

2

)∥∥∇g(θn)∥∥2 ≤
(
M+1

)∥∥∇g(θn−1)
∥∥2+(2(M+

1

2

)2
α2
0c

2+
(
M+

1

2

)
c2α2

0

)
∥∇g(θn−1, ξn−1)∥2

Sn−1
,

that is

(M − 1)
∥∥∇g(θn)∥∥2 + M0 +

a
k2
1δ

2
2

M + 1

∥∥∇g(θn)∥∥2
≤ −

∥∥∇g(θn)∥∥2 + (M + 1
)∥∥∇g(θn−1)

∥∥2 + (2(M +
1

2

)2
α2
0c

2 +
(
M +

1

2

)
c2α2

0

)
∥∇g(θn−1, ξn−1)∥2

Sn−1
.

Then we multiple 1(−)
Bn
/
√
Sn−1 on both side of above inequity, and noting where 1(−)

Bn
= 1, there is

M0 +
a

k2
1δ

2
2

M + 1

∥∥∇g(θn)∥∥2 ≥ 1

M + 1
E(∥∇g(θn, ξn)∥2|Fn),

getting

(M − 1)E
(

1(−)
Bn

∥∥∇g(θn)∥∥2√
Sn−1

)
+

1

M + 1
E
(

1(−)
Bn

∥∇g(θn, ξn)∥2

Sn−1

)

≤ −E
(

1(−)
Bn

∥∥∇g(θn)∥∥2√
Sn−1

)
+
(
M + 1

)
E
(

1(−)
Bn

∥∥∇g(θn−1)
∥∥2√

Sn−1

)
+

(
2
(
M +

1

2

)2
α2
0c

2 +
(
M +

1

2

)
c2α2

0

)
E
(

1(−)
Bn

∥∇g(θn−1, ξn−1)∥2

S
3
2
n−1

)
.

(18)

Substitute it into Equation 16, we get

E
(
1(−)
Bn+1

(
g(θn+1)

)
− E

(
1(−)
Bn
g(θn)

))
≤ −α0

2
E
(

1(−)
Bn

∥∥∇g(θn)∥∥2√
Sn−1

)
+

(
2
(
M +

1

2

)2
α2
0c

2 +
(
M +

1

2

)
c2α2

0

)
E
(

1(−)
Bn

∥∇g(θn−1, ξn−1)∥2

S
3
2
n−1

)

+ E

(
1(−)
Bn

α0

2
(M + 1)

(∥∥∇g(θn−1)
∥∥2√

Sn−1

−
∥∥∇g(θn)∥∥2√

Sn

))
+
cα2

0

2
E
(
∥∇g(θn, ξn)∥2

Sn

)
+ E

(
(1Bn − 1Bn+1)

(
g(θn+1)

)
.

(19)

Then we use inequality 2aT b ≤ λ∥a∥2 + 1
λ∥b∥

2 (λ > 0) on Equation 17 to get∥∥∇g(θn)∥∥2 − ∥∥∇g(θn−1)
∥∥2 ≤

∥∥∇g(θn−1)
∥∥2

2(M + 1)

+
2α2

0c
2(M + 1)

Sn−1

∥∥∇g(θn−1, ξn−1)
∥∥2 + α2

0c
2

Sn−1

∥∥∇g(θn−1, ξn−1)
∥∥2. (20)
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Multiple both sides of Equation 20 by 1(−)
Bn
/
√
Sn−1 and notice Sn−2 ≤ Sn−1 ≤ Sn, then we have

1(−)
Bn

(∥∥∇g(θn)∥∥2√
Sn

−
∥∥∇g(θn−1)

∥∥2√
Sn−1

)

≤
1(−)
Bn

∥∥∇g(θn−1)
∥∥2

2(M + 1)
√
Sn−2

+
α2
0c

2(2M + 3)1(−)
Bn

S
3
2
n−1

∥∥∇g(θn−1, ξn−1)
∥∥2

≤
1(−)
Bn

1(−)
Bn−1

∥∥∇g(θn−1)
∥∥2

2(M + 1)
√
Sn−2

+ (1(−)
Bn

− 1(−)
Bn−1

1(−)
Bn

)

∥∥∇g(θn−1)
∥∥2

2(M + 1)
√
Sn−2

+
α2
0c

2(2M + 3)1(−)
Bn

S
3
2
n−1

∥∥∇g(θn−1, ξn−1)
∥∥2

≤
1(−)
Bn−1

∥∥∇g(θn−1)
∥∥2

2(M + 1)
√
Sn−2

+ 1Bn−1

∥∥∇g(θn−1)
∥∥2

2(M + 1)
√
Sn−2

+
α2
0c

2(2M + 3)1(−)
Bn

S
3
2
n−1

∥∥∇g(θn−1, ξn−1)
∥∥2.

(21)

Substitute Equation 21 into Equation 18, acquiring

E
(
1(−)
Bn+1

(
g(θn+1)

)
− E

(
1(−)
Bn
g(θn)

))
≤ −α0

4
E
(

1(−)
Bn

∥∥∇g(θn)∥∥2√
Sn−1

)
+

(
2
(
M +

1

2

)2
α2
0c

2 +
(
M +

1

2

)
c2α2

0

)
E
(

1(−)
Bn

∥∇g(θn−1, ξn−1)∥2

S
3
2
n−1

)

+
cα2

0

2
E
(
∥∇g(θn, ξn)∥2

Sn

)
+ E

(
α2
0c

2(2M + 3)(M + 1)1(−)
Bn

2S
3
2
n−1

∥∥∇g(θn−1, ξn−1)
∥∥2)

+ E
(
(1Bn − 1Bn+1)

(
g(θn+1)

)
+ E

(
1Bn−1

∥∥∇g(θn−1)
∥∥2

2(M + 1)
√
Sn−2

)
.

(22)

We know when B(−)
n occurs, through Lemma A.8, there is ∥∇g(θ)∥ > δ′2 := k1 ·min{δ0, δ1}. That

means

E
(
∥∇g(θn, ξn)∥2

∣∣Fn

)
≤M∥∇g(θn)∥2 + a ≤

(
M +

a

δ′22

)
∥∇g(θn)∥2.

so we get
n∑

k=1

E
(

1
B

(−)′
n

∥∥∇g(θk, ξk)∥∥2
Sk

)
≤

(
M +

a

δ22

)
E
(∥∥∇g(θk)∥∥2

Sk

)
.

Through Lemma A.3, we can get

E
(∥∥∇g(θk)∥∥2

Sk

)
< õE

(∥∥∇g(θk)∥∥2
S

3
4

k

)
< +∞.

We back to Equation 14, we can get

E
(
(1Bn

− 1Bn+1
)
(
g(θn+1)

)
≤ E

(
1Bn

g(θn)
))

− E
(

1Bn+1

(
g(θn+1)

)
+ t0 E

(
1√
Sn−1

− 1√
Sn

)
+ E

(
(ĉK̂ + 2d̂20K̂

2)∥∇g(θn, ξn)∥2

S
3
2
n

)
,

(23)

17



Under review as a conference paper at ICLR 2024

which means
+∞∑
n=1

E
(
(1Bn

− 1Bn+1
)
(
g(θn+1)

)
< +∞ (24)

Substitute Equation 23 and Equation 24 into Equation 22, and make a sum, we get
+∞∑
n=1

E
(

1(−)
Bn

α0∥∇g(θn)∥2√
Sn−1

)
< +∞. (25)

Combine Equation 15 and Equation 25, we get
+∞∑
n=1

E
(
α0∥∇g(θn)∥2√

Sn−1

)
< +∞.

With this, we complete the result.

B.2 THE PROOF OF LEMMA A.8

Proof. We can get

ĝ(θ) = − 1

N

N∑
i=1

(
ŷi ln

(
1

1 + esgn(ŷi−0.5)θ⊤x̂i

)
+ (1− ŷi) ln

(
1− 1

1 + esgn(ŷi−0.5)θ⊤x̂i

))
.

Due to θ is a margin vector, we can get

ĝ(θ) = − 1

N

N∑
i=1

ln

(
1− 1

1 + e|θ⊤x̂i|

)
.

Since 1/(1 + e|θ
⊤x̂i|) ∈ (0, 1/2), we can get following inequality

− 2 ln 2

1 + e|θ⊤x̂i|
≤ ln

(
1− 1

1 + e|θ⊤x̂i|

)
≤ − 1

1 + e|θ⊤x̂i|
.

That means
1

N

N∑
i=1

1

1 + e|θ⊤x̂i|
≤ ĝ(θ) ≤ 2 ln 2

N

N∑
i=1

1

1 + e|θ⊤x̂i|
. (26)

On the other hand, we can calculate

∥∇ĝ(θ)∥ =
1

N

∥∥∥∥∥
N∑
i=1

(
1

1 + e−θ⊤x̂i
− yi

)
x̂i

∥∥∥∥∥.
Due to θ is a margin vector, we can get

∥∇ĝ(θ)∥ =
1

N

∥∥∥∥∥
N∑
i=1

−sgn(yi − 0.5)

1 + e|θ⊤x̂i|
x̂i

∥∥∥∥∥.
First, we use the norm inequality, getting

∥∇ĝ(θ)∥ =
1

N

∥∥∥∥∥
N∑
i=1

−sgn(yi − 0.5)

1 + e|θ⊤x̂i|
x̂i

∥∥∥∥∥ ≤ max1≤i≤N{∥x̂i∥}
N

·
N∑
i=1

1

1 + e|θ⊤x̂i|
.

Second, we assume θ∗/∥θ∗∥ is the max margin vector of this data set, we getting

∥∇g(θ)∥ =
1

N

∥∥∥∥∥
N∑
i=1

−sgn(yi − 0.5)

1 + e|θ⊤x̂i|
x̂i

∥∥∥∥∥ ≥ 1

N

(
N∑
i=1

1

1 + e|θ⊤x̂i|

∣∣∣∣θ∗⊤x̂i∥θ∗∥

∣∣∣∣
)

≥ d∗

N

N∑
i=1

1

1 + e|θ⊤x̂i|
.

Then we can get

d∗

N

N∑
i=1

1

1 + e|θ⊤x̂i|
≤ ∥∇g(θ)∥ ≤ max1≤i≤N{∥x̂i∥}

N
·

N∑
i=1

1

1 + e|θ⊤x̂i|
. (27)

Combining Equation 26 and Equation 27, we can get the result.
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B.3 THE PROOF OF LEMMA A.10

Due to θ is not a margin vector of the data set {xi, yi}Ni=1, we know that there is at least one data
(xj , yj) has a wrong classification which is formed by θ. That means

−yj ln(ŷj)− (1− yj) ln(1− ŷj) > ln 2,

so we can get

g(θ) = − 1

N

N∑
i=1

(
yi ln(ŷi) + (1− yi) ln(1− ŷi)

)
>

ln 2

N
.

B.4 THE PROOF OF LEMMA A.6

Proof. Obviously, since θ∗ := argmin{θ||θ⊤x1|=|θ⊤x2|} ∥θ∥, we can get rank{x1, x2} =
rank{x1, x2, θ∗}. Then we assign S := span{x1, x2}. For any vector θ, we assign the vector which
θ projects on S as θ′. Without loss of generality, we can think θ∗⊤x1 = θ∗⊤x2 > 0. (if θ∗⊤xi < 0,
we can construct a new vector x′i := −xi to substitute xi.) Then we assign

φ := arccos
θ′

⊤
θ∗

∥θ′∥∥θ∗∥
,

φ1 := arccos
θ∗⊤x1

∥θ∗∥∥x1∥
, φ2 := arccos

θ∗⊤x2
∥θ∗∥∥x2∥

,

ϕ := arccos
θ⊤θ′

∥θ∥∥θ′∥
,

In order to prove Equation 10, we just need to prove exists δ′0 > 0, making the binary function

D(φ, ϕ) =
∥x1∥
∥x2∥

·
∣∣ cos(φ1 − φ) cos(ϕ)− cos(φ1)

∣∣
cos(φ2)− cos(φ2 + φ) cos(ϕ)

< r̂, (∀ 0 < φ, ϕ < δ′0). (28)

Absolutely, when φ and ϕ are small enough, we can cancel the absolute value, i.e.,

D(φ, ϕ) =
∥x1∥
∥x2∥

·
∣∣ cos(φ1 − φ) cos(ϕ)− cos(φ1)

∣∣
cos(φ2)− cos(φ2 + φ) cos(ϕ)

.

That means

lim sup
φ→0,ϕ→0

D(φ, ϕ)

≤ lim sup
φ→0,ϕ→0

∥x1∥
∥x2∥

·
∣∣ cos(φ1 − φ) cos(ϕ)− cos(φ1) cos(ϕ)

∣∣+ ∣∣ cos(φ1) cos(ϕ)− cos(φ1)
∣∣

cos(φ2)− cos(φ2 + φ) cos(ϕ)

≤ ∥x1∥
∥x2∥

·max

{
sin(φ1)

sin(φ2)
,
cos(φ1)

cos(φ2)

}
.

That means we can take

r̂ := 2
∥x1∥
∥x2∥

·max

{
sin(φ1)

sin(φ2)
,
cos(φ1)

cos(φ2)

}
to make Equation 10 holding.

B.5 THE PROOF OF LEMMA 4.1

Proof. The proof is similar to those to obtain the arguments in the proof of Lemma A.6.
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B.6 PROOF OF LEMMA 4.2

Proof. Given two unary function y1(x) = −1/α| lnx|α (0 < x < 1/4), y2(x) = 1 (x > 1/2).
We know that there is a smooth connecting function y3(x) (1/4 ≤ x ≤ 1/2), making the following
function

y(x) =


−1/α| lnx|α, if x < ln 2

N

1, if x > 1

y3(x), if ln 2
N ≤ x ≤ 1

is an infinite order continuous function.

We construct a function
h(θ) := y(g(θ)), (29)

and a set S(δ̂) := {θ|0 < g(θ) < δ̂}. We make δ̂ = (ln 2)/N. Then we use the taylor expansion
and the structure of g, getting that for any θ(1) ∈ S(δ̂) and θ(2) ∈ Rd, there exists three positive
constants d0, d1 and d2, making

h(θ(2))− h(θ(1)) ≤ ∇h(θ(1))⊤(θ(2) − θ(1)) +
d0

∥θ(1)∥2
∥θ(2) − θ(1)∥2

+ c0∥θ(2) − θ(1)∥3,
(30)

where ĉ is a constant that can not affect the result. For convenience, we assign

Tn :=
d0α

2
0

∥θn∥1+α
.

We construct an event An := {θn ∈ S(δ̂)} (δ̂ = (ln 2)/N). Combining Equation 30, we get

1An

(
h(θn+1)− h(θn)

)
≤ 1An

∇h(θn)⊤(θn+1 − θn) + 1An
Tn∥θn+1 − θn∥2

+ ĉ∥θn+1 − θn∥3

= −1An

(
∇g(θn)

)⊤∇g(θn, ξn)√
Sng(θn)| ln(g(θn))|1+α

+ 1An

Tn∥∇g(θn, ξn)∥2

Sn
+ 1An

c0α
3
0∥∇g(θn, ξn)∥3

S
3
2
n

.

(31)

Then we get

1An

(
h(θn+1)− h(θn)

)
≤ −1An

(
∇g(θn)

)⊤∇g(θn, ξn)√
Sng(θn)| ln(g(θn))|1+α

+ 1An

Tn∥∇g(θn, ξn)∥2

Sn
+ 1An

c0α
3
0∥∇g(θn, ξn)∥3

S
3
2
n

= −1An

(
∇g(θn)

)⊤∇g(θn, ξn)√
Sn−1g(θn)| ln(g(θn))|1+α

+ 1An

(
∇g(θn)

)⊤∇g(θn, ξn)
g(θn)| ln(g(θn))|1+α

(
1√
Sn−1

− 1√
Sn

)

+ 1An

Tn∥∇g(θn, ξn)∥2

Sn
+ 1An

c0α
3
0∥∇g(θn, ξn)∥3

S
3
2
n

.

Then we use an identical equation, i.e.,

1An
h(θn+1) = 1An+1

h(θn+1) +
(
1An

− 1An+1

)
h(θn+1),

getting

1An+1
h(θn+1)− 1An

h(θn)

≤ −1An

(
∇g(θn)

)⊤∇g(θn, ξn)√
Sn−1g(θn)| ln(g(θn))|1+α

+ 1An

(
∇g(θn)

)⊤∇g(θn, ξn)
g(θn)| ln(g(θn))|1+α

(
1√
Sn−1

− 1√
Sn

)

+ 1An

Tn∥∇g(θn, ξn)∥2

Sn
+ 1An

c0α
3
0∥∇g(θn, ξn)∥3

S
3
2
n

−
(
1An − 1An+1

)
h(θn+1).

(32)
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We make the mathematical expectation on the both side of Equation 32, getting

E
(
1An+1

h(θn+1)
)
− E

(
1An

h(θn)
)

≤ −E

(
1An

∥∥∇g(θn)∥∥2√
Sn−1g(θn)| ln(g(θn))|1+α

)
+ E

(
1An

(
∇g(θn)

)⊤∇g(θn, ξn)
g(θn)| ln(g(θn))|1+α

(
1√
Sn−1

− 1√
Sn

))

+ E
(

1An

Tn∥∇g(θn, ξn)∥2

Sn

)
+ E

(
1An

c0α
3
0∥∇g(θn, ξn)∥3

S
3
2
n

)
− E

((
1An − 1An+1

)
h(θn+1)

)
.

(33)
For the second item in Equation 33 right, through Assumption 3.1, there is

E

(
1An

(
∇g(θn)

)⊤∇g(θn, ξn)
g(θn)| ln(g(θn))|1+α

(
1√
Sn−1

− 1√
Sn

))
≤ δ̃0 E

(
1√
Sn−1

− 1√
Sn

)
. (34)

Next we get

− E
((

1An
− 1An+1

)
h(θn+1)

)
= −E

((
1An

− 1An
1An+1

)
h(θn+1)

)
− E

((
1An

1An+1
− 1An+1

)
h(θn+1)

)
≤ 1

ln
(
min{δ̂, 12}

) E((1An − 1An1An+1

))
+

1

ln
(
min{δ̂, 12}

) E((1An1An+1 − 1An+1

))
=

1

ln
(
min{δ̂, 12}

) E (1An − 1An+1

)
.

(35)
We make the sum of Equation 33, getting

E
(
1An+1

h(θn+1)
)
− E

(
I1h(θ1)

)
≤ −

n∑
k=2

E

(
1Ak

∥∥∇g(θk)∥∥2√
Sk−1g(θk)| ln(g(θk))|1+α

)

+

n∑
k=2

E

(
1Ak

(
∇g(θk)

)⊤∇g(θk, ξk)
g(θk)| ln(g(θk))|1+α

(
1√
Sk−1

− 1√
Sk

))

+

n∑
k=2

E
(

1Ak

Tk∥∇g(θk, ξk)∥2

Sk

)
+

n∑
k=1

E
(

1Ak

c0α
3
0∥∇g(θk, ξk)∥3

S
3
2

k

)

−
n∑

k=1

E
((

1Ak
− 1Ak+1

)
h(θk+1)

)
.

We can get that

+∞∑
n=2

E

(
1An

∥∥∇g(θn)∥∥2√
Sn−1g(θn)| ln(g(θn))|1+α

)
≤ E

(
I1h(θ1)

)
+

n∑
k=1

E

(
1Ak

(
∇g(θk)

)⊤∇g(θk, ξk)
g(θk)| ln(g(θk))|1+α

(
1√
Sk−1

− 1√
Sk

))

+

n∑
k=1

E
(

1Ak

Tk∥∇g(θk, ξk)∥2

Sk

)
+

n∑
k=1

E
(

1Ak

c0α0∥∇g(θk, ξk)∥3

S
3
2

k

)

−
n∑

k=1

E
((

1Ak
− 1Ak+1

)
h(θk+1)

)
.

(36)
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For the third term in the right side of Equation 36, we have
n∑

k=1

E
(

1Ak

Tk∥∇g(θk, ξk)∥2

Sk

)
=

n∑
k=1

E

(
1Ak

1
(

1√
Sk

< k̃g(θk)

)
d0∥∇g(θk, ξk)∥2

∥θk∥1+αSk

)

+

n∑
k=1

E

(
1Ak

1
(

1√
Sk

≥ k̃g(θk)

)
d0∥∇g(θk, ξk)∥2

∥θk∥1+αSk

)

≤
n∑

k=1

E
(

1Ak

d0k̃g(θk)∥∇g(θk, ξk)∥2

∥θk∥2Sk

)
+

n∑
k=1

E
(
4d0∥∇g(θk, ξk)∥2

Sk ln
1+α Sk

)
.

taking proper k̃, we can make
n∑

k=1

E
(

1Ak

Tk∥∇g(θk, ξk)∥2

Sk

)

≤ T1∥∇g(θ1, ξ1)∥2

S1
+

1

2

n∑
k=2

E

(
1Ak

∥∥∇g(θk)∥∥2√
Sk−1g(θk)| ln(g(θk))|1+α

)
+

n∑
k=2

E
(
4d̂0∥∇g(θk, ξk)∥2

Sk| lnSk|1+α

)

≤ 1

2

n∑
k=2

E

(
1Ak

∥∥∇g(θk)∥∥2√
Sk−1g(θk)| ln(g(θk)|1+α)

)
+ 4d̂0

∫ +∞

S2

1

x| lnx|1+α
dx+

T1∥∇g(θ1, ξ1)∥2

S1
.

(37)
Substitute Equation 34, Equation 35 and Equation 37 into Equation 36, getting

+∞∑
n=2

E

(
1An

∥∥∇g(θn)∥∥2√
Sn−1g(θn)| ln(g(θn))|1+α

)
< +∞. (38)

For the event A−
n := {θn /∈ S(δ̂)} (δ̂ = (ln 2)/N). Combining Equation 30, Through Lemma A.4,

we have
n∑

k=2

E

(
1−Ak

∥∥∇g(θk)∥∥2√
Sk−1g(θk)| ln(g(θk))|1+α

)
< c̃0

n∑
k=2

E

(∥∥∇g(θk)∥∥2√
Sk−1

)
< +∞, (39)

where c̃0 is a constant which can not effect the result. We calculate Equation 38+Equation 39,
getting

n∑
k=2

E

( ∥∥∇g(θk)∥∥2√
Sk−1g(θk)| ln(g(θk))|1+α

)
< +∞. (40)

B.7 PROOF OF LEMMA A.5

Proof. We know

g(θ) = − 1

N

N∑
i=1

(
yi ln

(
1

1 + e−sgn(yi−0.5)θ⊤xi

)
+ (1− yi) ln

(
1− 1

1 + e−sgn(yi−0.5)θ⊤xi

))
.

We defined
f(θ, xi) :=

1

1 + e−sgn(yi−0.5)θ⊤xi
,

and

fxi
(θ, xi):=

{
f(θ, xi), if yi = 0 ,

1− f(θ, xi), if yi = 1.
(41)

We can calculate the gradient

∇g(θ) = − 1

N

N∑
i=1

fxi
(θ, xi)xi.
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Then we get

− E
(
∇f(θn)⊤∇g(θn, ξn)√

Sn−1

)
= E

((
θ̂∗∥θn∥ − θnθ

⊤
n θ̂∗

∥θn∥

(∥θn∥+ 1)2

)⊤∇g(θn)√
Sn−1

)
+ E

((
θ̂∗

(∥θn∥+ 1)2

)⊤∇g(θn)√
Sn−1

)

= E

((
θ̂∗∥θn∥ − θnθ

⊤
n θ̂∗

∥θn∥

(∥θn∥+ 1)2

)⊤∇g(θn)√
Sn−1

)
− E

(
1

N
√
Sn−1

(
θ̂∗

(∥θn∥+ 1)2

)⊤ N∑
i=1

sgn(yi − 0.5)fxi(θn, xi)xi

)

≤ E

((
θ̂∗∥θn∥ − θnθ

⊤
n θ̂∗

∥θn∥

(∥θn∥+ 1)2

)⊤∇g(θn)√
Sn−1

)

= −E

(
1

N
√
Sn−1

(
θ̂∗∥θn∥ − θnθ

⊤
n θ̂∗

∥θn∥

(∥θn∥+ 1)2

)⊤ N∑
i=1

sgn(yi − 0.5)fxi
(θn, xi)xi

)

= −E

(
1

N
√
Sn−1

N∑
i=1

sgn(yi − 0.5)fxi(θn, xi)

(
θ̂∗∥θn∥ − θnθ

⊤
n θ̂∗

∥θn∥

(∥θn∥+ 1)2

)⊤

xi

)

= E

(
1

N
√
Sn−1

N∑
i=1

sgn(yi − 0.5)fxi
(θn, xi)

θ⊤
n θ̂∗θn

⊤xi

∥θn∥ − θ̂∗⊤xi∥θn∥
(∥θn∥+ 1)2

)

= E

(
1

N
√
Sn−1

N∑
i=1

sgn(yi − 0.5)fxi
(θn, xi)

(
θn

⊤xi − θ̂∗⊤xi∥θn∥
(∥θn∥+ 1)2

− θn
⊤xi

2(∥θn∥+ 1)2

∥∥∥∥ θn
∥θn∥

− θ̂∗
∥∥∥∥2
))

≤ E

(
1

N
√
Sn−1

N∑
i=1

sgn(yi − 0.5)fxi
(θn, xi)

θn
⊤xi − θ̂∗⊤xi∥θn∥
(∥θn∥+ 1)2

)
+ βn,

(42)
where

βn

:= E

(
1(θn is not a margin vector)

1

N
√
Sn−1

N∑
i=1

sgn(yi − 0.5)fxi
(θn, xi)

|θn⊤xi|
2(∥θn∥+ 1)2

∥∥∥∥ θn
∥θn∥

− θ̂∗
∥∥∥∥2
)
.

through Lemma A.10, we know following inequity

βn ≤ max1≤i≤N{∥xi∥2}
2

· E
(

1(θn is not a margin vector)
1√
Sn−1

)
≤ N2 max1≤i≤N{∥xi∥2}

2k21 ln
2 2

· E
(

1(θn is not a margin vector)
∥∇g(θn)∥2√

Sn−1

)
≤ N2 max1≤i≤N{∥xi∥2}

2k21 ln
2 2

· E
(
∥∇g(θn)∥2√

Sn−1

)

For convenient, we assign

Hn :=
1

N
√
Sn−1

N∑
i=1

ψifxi(θn, xi)
θn

⊤xi − θ∗⊤xi∥θn∥
(∥θn∥+ 1)2

, (43)

where ψi := sgn(yi − 0.5). We denote the index of the support vector as in := {i|i =

argmin1≤i≤N ψiθn
⊤xi/∥θn∥}, and in is a element of in. Then for Hn, we have ∃ k̂0 > 0, such
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that

Hn =
1

N
√
Sn−1

N∑
i=1

ψifxi(θn, xi)
θn

⊤xi − θ̂∗⊤xi∥θn∥
(∥θn∥+ 1)2

=
∥θn∥

N(∥θn + 1∥)2
√
Sn−1

(∑
i∈in

ψifxi
(θn, xi)

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

)
+
∑
i/∈in

ψifxi
(θn, xi)

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

))

=
fxi

(θn, xi)∥θn∥
N(∥θn + 1∥)2

√
Sn−1

((∑
i∈in

ψi
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

)
+
∑
i/∈in

ψi
fxi

(θn, xi)

fxin
(θn, xin)

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

))

≤ fxi(θn, xi)∥θn∥
N(∥θn + 1∥)2

√
Sn−1

((∑
i∈in

ψi
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

)
+ k̂0

∑
i/∈in

ψi

e(dn,i−dn,in )(∥θn∥+1)

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

))
,

where dn,i := |θ⊤n xi|
/
∥θn∥. Through Lemma A.6, we know that there exists δ̂1 > 0, r̂ > 0 making

when
∥∥(θn/∥θn∥) − θ̂∗

∥∥ < L := min{δ̂1, δ̃0}, (δ̃0 is defined in Lemma A.9) for any j ̸= in, there
is ∣∣∣∣θ⊤xj∥θ∥

− θ̂∗xj

∣∣∣∣ < r̂

∣∣∣∣θ⊤xin∥θ∥
− θ̂∗xin

∣∣∣∣.
We construct two events

C+
n :=

{∥∥∥∥ θn
∥θn∥

− θ̂∗
∥∥∥∥ ≥ L

}
, C−

n :=

{∥∥∥∥ θn
∥θn∥

− θ̂∗
∥∥∥∥ < L

}
,

and their characteristic function as 1C+
n
. Natruely, we can separate Hn as

Hn = 1C−
n
Hn + 1C+

n
Hn. (44)

For 1C−
n
Hn, we have

1C−
n
Hn ≤ 1C−

n

fxin
(θn, xin)∥θn∥

N(∥θn∥+ 1)2
√
Sn−1

(∑
i∈in

ψi

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

)

+ 1C−
n
k̂0
∑
i/∈in

ψi

e(dn,i−dn,in )(∥θn∥+1)

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

))
.

(45)

In Equation 45, we know the first term in the bracket is negative. For the second term, we have

1C−
n

N∑
i=1,i/∈in

ψi

e(dn,i−dn,in )(∥θn∥+1)

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

)
= 1C−

n

N∑
i=1,i/∈in

(
1
(
(dn,i − dn,in)(∥θn∥+ 1) < Û

)
+ 1
(
(dn,i − dn,in)(∥θn∥+ 1) ≥ Û

)) ψin

e(dn,i−dn,in )(∥θn∥+1)

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

)
.

(46)
where Û > 0 is an undetermined constant. We know where

(dn,i − dn,in)(∥θn∥+ 1) < Û,

which means

ψi

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

)
≤ 1
(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi ≥ 0

)
·
(
θ̂∗⊤xi −

θn
⊤xi

∥θn∥

)
≤ 1
(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi ≥ 0

)
·
(
θ⊤n xi
∥θn∥

− θ⊤n xin
∥θn∥

+
θ⊤n xin
∥θn∥

− θ∗⊤xin + θ∗⊤xin − θ̂∗⊤xi

)
≤ (dn,i − dn,in) ≤

Û

∥θn∥+ 1
.
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On the other hand, Due to the characteristic function 1C−
n
, we can confine Equation 46 on the set

C−
n . That means

1C−
n

∑
i/∈in

1
(
(dn,i − dn,in)(∥θn∥+ 1) < Û

) ψi

e(dn,i−dn,in )(∥θn∥+1)

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

)

≤ ĉN
Û

∥θn∥+ 1
,

(47)

and ∑
i/∈in

1
(
(dn,i − dn,in)(∥θn∥+ 1) ≥ Û

) ψi

e(dn,i−dn,in )(∥θn∥+1)

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

)

≤ Nr̂

eÛ

∣∣∣∣θn⊤xin
∥θn∥

− θ̂∗⊤xin

∣∣∣∣.
(48)

We substitute Equation 48 and Equation 47 into Equation 46, getting
N∑

i=1,i/∈in

ψi

e(dn,i−dn,in )(∥θn∥+1)

(
θn

⊤xi
∥θn∥

− θ̂∗⊤xi

)
≤ k̂0ĉN

Û

∥θn∥+ 1

+ k̂0
Nr̂

eÛ

∣∣∣∣θn⊤xin
∥θn∥

− θ̂∗⊤xin

∣∣∣∣.
(49)

We substitute Equation 49 into Equation 45, acquiring

1C−
n
Hn ≤ 1C−

n

fxin
(θn, xin)∥θn∥

N(∥θn∥+ 1)2
√
Sn−1

(
ψin

(
θn

⊤xin
∥θn∥

− θ̂∗⊤xin

)
+ k̂0ĉN

Û

∥θn∥+ 1

+ k̂0
Nr̂

eÛ

∣∣∣∣θn⊤xin
∥θn∥

− θ̂∗⊤xin

∣∣∣∣
)
.

We take the undetermined constant Û = ln
(
2k̂0Nr̂

)
, getting ∃ M̃ > 0, such that

1C−
n
Hn ≤ 1C−

n

fxin
(θn, xin)∥θn∥

N(∥θn∥+ 1)2
√
Sn−1

(
1

2
ψin

(
θn

⊤xin
∥θn∥

− θ̂∗⊤xin

)
+

M̃

∥θn∥+ 1

)
. (50)

For 1C+
n
Hn in Equation 44, we can use the similar techniques (from Equation 45 to Equation 50) to

acquire ∃ M̃1 > 0, shuch that

1C+
n
Hn ≤ 1C+

n

fxin
(θn, xin)∥θn∥

N(∥θn∥+ 1)2
√
Sn−1

(
1

2
ψin

(
θn

⊤xin
∥θn∥

− θ̂∗⊤xin

)
+

M̃1

es′∥θn∥

)
. (51)

Then we calculate Equation 51+Equation 50, getting ∃ r0 > 0, M̃0 > 0, such that

Hn ≤
fxin

(θn, xin)∥θn∥
N(∥θn∥+ 1)2

√
Sn−1

(
1

2
ψin

(
θn

⊤xin
∥θn∥

− θ̂∗⊤xin

)
+

r0
∥θn∥+ 1

+
M̃0

es′∥θn∥

)
. (52)

With this, we complete the proof.

B.8 PROOF OF THEOREM 4.1

Proof. For the sequence {Sn}, we separate the proof into two situation. The first situation is Sn <
+∞. In this situation, we use Lemma A.4 and Lemma A.2, getting

∥∇g(θn)∥2√
Sn−1

→ 0.

Combine limn→+∞ Sn < +∞, getting

∥∇g(θn)∥ → 0. (53)
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Then we consider the second situation Sn → +∞. Through Equation 13 and Equation 19, we can
get g(θn+1)− g(θn) as

g(θn+1)− g(θn) ≤ α̂0
1√
Sn−1

+ T̂n, (54)

where α̂0 > 0 is a constant and T̂n is a sequence which satisfies
∑+∞

n=1 T̂n < +∞ a.s.. Then we
can get

+∞∑
n=2

1√
Sn−1

≥ 1

a

+∞∑
n=1

E
(
∥∇g(θn, ξn)∥2

∣∣Fn

)
−M0∥∇g(θn)∥2√

Sn−1

≥ 1

a

+∞∑
n=2

E
(
∥∇g(θn, ξn)∥2

∣∣Fn

)√
Sn−1

− ζ0

=
1

a

+∞∑
n=2

∥∇g(θn, ξn)∥2√
Sn−1

+
1

a

+∞∑
n=2

E
(
∥∇g(θn, ξn)∥2

∣∣Fn

)
− ∥∇g(θn, ξn)∥2√

Sn−1

− ζ0,

(55)

where ζ0 :=
∑+∞

n=2M0∥∇g(θn)∥2
/
a
√
Sn−1 < +∞ a.s.. Next we aim to prove∑+∞

n=2 1/
√
Sn−1 = +∞ a.s. by contradiction. We assume

∑+∞
n=2 1/

√
Sn−1 < +∞ a.s.. Then

through Lemma A.2, we get that

1

a

+∞∑
n=2

E
(
∥∇g(θn, ξn)∥2

∣∣Fn

)
− ∥∇g(θn, ξn)∥2√

Sn−1

is convergence a.s.. Substitute it into Equation 55, acquiring

1

a

+∞∑
n=2

∥∇g(θn, ξn)∥2√
Sn−1

≤
+∞∑
n=2

1√
Sn−1

− 1

a

+∞∑
n=2

E
(
∥∇g(θn, ξn)∥2

∣∣Fn

)
− ∥∇g(θn, ξn)∥2√

Sn−1

+ ζ0 < +∞.

(56)

Howeve, we know
1

a

+∞∑
n=2

∥∇g(θn, ξn)∥2√
Sn−1

>
1

a

∫ +∞

S1

1√
x
dx = +∞.

It contradicts with Equation 56. That means

+∞∑
n=2

1√
Sn−1

= +∞.

Combining it with
+∞∑
n=2

∥∇g(θn)∥2√
Sn−1

< +∞ a.s., (57)

we acquire that there is a subsequence {∥∇g(θkn
)∥2} of {∥∇g(θn)∥2} which satisfies that

lim
n→+∞

∥∥∇g(θkn
)
∥∥2 = 0. (58)

Next we aim to prove limn→+∞ ∥∇g(θn)∥2 = 0. It is equivalent to prove that {∥∇g(θn)∥2} has
no positive accumulation points, that is to say, ∀e0 > 0, there are only finite values of {∥∇g(θn)∥}
larger than e0. And obviously, we just need to prove ∀0 < e0 < r, there are only finite val-
ues of {∥∇g(θn)∥} larger than r. We prove this by contradiction. We suppose ∃ 0 < e < a,
making the set S = {∥∇g(θn)∥2 > a} be an infinite set. We assign the Lipschitz coefficient of
∇g(θ) (θ ∈ Rd) as c. Then we assign b = e/8c and define o = min{b, e/4}. Due to Equa-
tion 58, we get there exists a subsequence {θpn

} of {θn} which satisfies ∥∇g(θpn
)∥ < o. We

rank S as a subsequence {∥∇g(θmn)∥2} of {∥∇g(θn)∥2}. Then there is an infinite subsequence
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{∥∇g(θmin
)∥2} of {∥∇g(θmn

)∥2} such that ∀n ∈ N+, ∃l, npn
∈ (mil ,mil+1

). For convenient,
we abbreviate {min} as {in}. And we construct another infinite sequence {qn} as follows

q1 = max
{
n : p1 < n < min{mil:mil

>p1},
∥∥∇g(θn)∥∥ ≤ o

}
,

q2 = min
{
n : n > q1,

∥∥∇g(θn)∥∥ > e
}
,

q2n−1 = max
{
n : min{mil : mil > q2n−3} < n < min{ml : ml > min{mil : mil > q2n−3},∥∥∇g(θn)∥∥ ≤ o},

q2n = min
{
n : n > q2n−1,

∥∥∇g(θn)∥∥ > e
}
.

Now we prove that ∃N0, when q2n > N0, it has e <
∥∥∇g(θq2n)∥∥ < r. The left side is obvious (the

definition of q2n). And for the right side, we know
∥∥∇g(θq2n−1)

∥∥ ≤ e. It follows from Equation 1
that

∥θn+1 − θn∥2 =
α2
0

Sn

∥∥∇g(θn, ξn)∥∥2
≤ α2

0

Sn−1

(∥∥∇g(θn, ξn)∥∥2 − E
(∥∥∇g(θn, ξn)∥∥2∣∣Fn

))
+

α2
0

Sn−1

(
M0

∥∥∇g(θn)∥∥2 + a
)
.

Through previous consequences we can easily find that

+∞∑
n=2

(
α2
0

Sn−1

(∥∥∇g(θn, ξn)∥∥2 − E
(∥∥∇g(θn, ξn)∥∥2∣∣Fn

))
+
α2
0M0

∥∥∇g(θn)∥∥2
Sn−1

)
< +∞ a.s..

Note that α2
0a/Sn−1 → 0, a.s.. We conclude

∥θn+1 − θn∥ → 0 a.s.. (59)

Then we get
∣∣∥∇g(θn+1)∥2 − ∥∇g(θn)∥2

∣∣ ≤
∣∣∥∇g(θn+1)∥ − ∥∇g(θn)∥

∣∣2 ≤ ∥∇g(θn+1) −
∇g(θn)∥2 ≤ c∥θn+1 − θn∥ → 0 a.s.. Then through Lemma A.7, we get

∥∇g(θn)∥2 ≤ 2cg(θn) (n ∈ [q2n−1, q2n]).

Then we get

e− o <
∥∥∇g(θq2n)∥∥2 − ∥∥∇g(θq2n−1)

∥∥2 < 2cg(θq2n)−
∥∥∇g(θq2n−1)

∥∥2
=

(
2c

q2n−q2n−1−1∑
i=0

g(θq2n−1+i+1)− g(θq2n−1+i)

)
+ 2cg(θq2n−1

)−
∥∥∇g(θq2n−1

)
∥∥2.

From Equation 54, we obtain

g(θq2n−1+i+1)− g(θq2n−1+i) ≤ α̂0
1√

Sq2n−1+i

+ T̂n.

So there is

e− o <

q2n−q2n−1−1∑
i=0

α̂0√
Sq2n−1+i

+

q2n−q2n−1−1∑
i=0

T̂q2n−1+i

+ 2cg(θq2n−1
)−

∥∥∇g(θq2n−1
)
∥∥2.

(60)

Due to ∥∇g(θq2n−1)∥2 < o < b, so we get that g(θq2n−1) < e/8c. Substitute it into Equation 60.
We get

q2n−q2n−1−1∑
i=0

1√
Sq2n−1+i

> α̂0 −
q2n−q2n−1−1∑

i=0

T̂q2n−1+i. (61)

27



Under review as a conference paper at ICLR 2024

Due to
∑+∞

n=1 T̂n is convergence almost surely. So we get that
∑q2n−q2n−1−1

i=0 T̂q2n−1+i → 0 a.s. by
Cauchy’s test for convergence. Combining 1/

√
Sq2n−1+i → 0 a.s., we get

q2n−q2n−1−1∑
i=1

1√
Sq2n−1+i

> α̂0 −
1√
Sq2n−1

−
q2n−q2n−1−1∑

i=0

T̂q2n−1+i →
α̂0

2
a.s., (62)

so there is
+∞∑
n=1

(
q2n−q2n−1−1∑

i=1

1√
Sq2n−1+i

)
= +∞ a.s.. (63)

But on the other hand, we know ∥∇g(θq2n−1+i)∥ > o (i > 0). Together with Equation 57, we get

+∞∑
n=1

(
q2n−q2n−1−1∑

i=1

1√
Sq2n−1+i

)
<

1

o

+∞∑
n=1

(
q2n−q2n−1−1∑

i=1

∥∥∇g(θq2n−1+i)
∥∥2√

Sq2n−1+i

)

<
1

o

n∑
n=3

∥∥∇g(θn)∥∥2√
Sn−1

< +∞ a.s..

(64)

It contradicts with Equation 63, so we get that ∥∇g(θn)∥ → 0 a.s.. Combining Equation 53, we
get ∥∇g(θn)∥ → 0 no matter Sn < +∞ a.s. or Sn = +∞. Through Lemma A.10 and Lemma
A.8, we get g(θn) → 0 a.s.. In the case of linear separable data set, g(θn) → 0 a.s. implies
∥θn∥ → +∞ a.s..

B.9 PROOF OF THEOREM 4.2

Proof. We assign θ̂∗ := θ∗/∥θ∗∥. Then, we assign

f(θ) := 1− θ⊤θ̂∗

∥θ∥+ 1
. (65)

Then we use the taylor expansion on f(θn+1)− f(θn), getting

f(θn+1)− f(θn) ≤ ∇f(θn)⊤(θn+1 − θn) + Tn∥θn+1 − θn∥2

= −α0∇f(θn)⊤∇g(θn, ξn)√
Sn

+
Tnα

2
0∥∇g(θn, ξn)∥2

Sn

≤ −α0∇f(θn)⊤∇g(θn, ξn)√
Sn−1

+
α0θ̂

∗⊤∇g(θn, ξn)
(∥θn∥+ 1)2

√
Sn−1

+

(
θ̂∗∥θn∥ − θnθ

⊤θ̂∗

∥θn∥

(∥θn∥+ 1)2

)⊤

α0∇g(θn, ξn)
(

1√
Sn−1

− 1√
Sn

)
+
Tnα

2
0∥∇g(θn, ξn)∥2

Sn
,

(66)

where

Tn := ĉ0

(
1

(∥θn∥+ 1)2
+

1

(∥θn+1∥+ 1)2

)
,

where ĉ0 is a constant which can not effect the result. For convenience, we assign

Gn :=

∣∣∣∣∣
(
θ̂∗∥θn∥ − θnθ

⊤θ̂∗

∥θn∥

(∥θn∥+ 1)2

)⊤

α0∇g(θn, ξn)
(

1√
Sn−1

− 1√
Sn

)∣∣∣∣∣+ Tnα
2
0∥∇g(θn, ξn)∥2

Sn

+
α0θ̂

∗⊤∇g(θn, ξn)
(∥θn∥+ 1)2

√
Sn−1

+
N2 max1≤i≤N{∥xi∥2}

2k21 ln
2 2

· ∥∇g(θn)∥
2√

Sn−1

.

Then we make the mathematical expectation of Equation 66, getting

E
(
f(θn+1)

)
− E

(
f(θn)

)
≤ α0 E

(
Hn

)
+ E

(
Gn

)
, (67)
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where Hn is defined in Equation 43. Then we make a sum of Equation 67, acquiring

α0

n∑
k=2

E
(
−Hk

)
≤ E

(
f(θ2)

)
+

n∑
k=2

E
(
Gk

)
.

obviously,

+∞∑
k=2

∥∥∥E (Gk

)∥∥∥ ≤
+∞∑
k=2

E
∥∥Gk

∥∥
≤

+∞∑
k=2

E

∥∥∥∥∥
(
θ̂∗∥θn∥ − θnθ

⊤θ̂∗

∥θn∥

(∥θn∥+ 1)2

)⊤

α0∇g(θn, ξn)
(

1√
Sn−1

− 1√
Sn

)∥∥∥∥∥+
+∞∑
n=2

E
(
Tnα

2
0∥∇g(θn, ξn)∥2

Sn

)

+

+∞∑
n=2

E

(
α0θ̂

∗⊤∇g(θn, ξn)
(∥θn∥+ 1)2

√
Sn−1

)
+
N max1≤i≤N{∥xi∥2}

4c ln 2
·
+∞∑
n=2

E
(
∥∇g(θn)∥2√

Sn−1

)
,

(68)
and for the first term on the right side of the above inequality, we have ∃ T̂ > 0, such that

+∞∑
k=2

E

∥∥∥∥∥
(
θ̂∗∥θn∥ − θnθ

⊤θ̂∗

∥θn∥

(∥θn∥+ 1)2

)⊤

α0∇g(θn, ξn)
(

1√
Sn−1

− 1√
Sn

)∥∥∥∥∥
≤ T̂

+∞∑
k=2

E

(∥∥∇g(θn, ξn)∥∥( 1√
Sn−1

− 1√
Sn

))
.

Through Assumption 3.1 and Lemma A.8, we can get that ∃ T̂0 > 0, T̂1 > 0, such that

T̂

+∞∑
n=2

E

(∥∥∇g(θn, ξn)∥∥( 1√
Sn−1

− 1√
Sn

))

≤ T̂

+∞∑
n=2

E

(
I
(
∥∇g(θn)∥ ≤ δ0

)∥∥∇g(θn, ξn)∥∥( 1√
Sn−1

− 1√
Sn

))

+ T̂

+∞∑
n=2

E

(
I
(
∥∇g(θn)∥ > δ0

)∥∥∇g(θn, ξn)∥∥( 1√
Sn−1

− 1√
Sn

))

≤ T̂0
1√
S1

+ T̂1

+∞∑
n=2

E
(
∥∇g(θn)∥2√

Sn−1

)
< +∞.

(69)

For the second term in Equation 68, Through Assumption 3.1 and Lemma 4.2, we have

+∞∑
n=2

E
(
Tnα

2
0∥∇g(θn, ξn)∥2

Sn

)

≤ ĉ0

(
+∞∑
n=1

E
(
α2
0∥∇g(θn, ξn)∥2

(∥θn∥+ 1)2Sn

)
+

+∞∑
n=1

E
(
α2
0∥∇g(θn, ξn)∥2

(∥θn+1∥+ 1)2Sn

))
< +∞.

For the third and forth term of equation 68, we can use Lemma A.4 and Lemma 4.1 to prove their
are convergence. That means ∃ K̂1 > 0, such that

n∑
k=1

E
(
−Hk

)
≤ K̂1 < +∞. (70)

Through equation 52, we get

Hn ≤
fxin

(θn, xin)∥θn∥
N(∥θn∥+ 1)2

√
Sn−1

(
1

2
ψin

(
θn

⊤xin
∥θn∥

− θ̂∗⊤xin

)
+

r0
∥θn∥+ 1

+
M̃0

es′∥θn∥

)
. (71)
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Substitute Equation 71 into Equation 70, we getting
+∞∑
n=2

E

(
ψin∥θn∥fxin

(θn, xin)

N(∥θn∥+ 1)2
√
Sn−1

(
θ̂∗⊤xin − θn

⊤xin
∥θn∥

))

≤ 2K̂1 + 2

+∞∑
n=2

E

(
1C−

n

∥θn∥fxin
(θn, xin)

N(∥θn∥+ 1)2
√
Sn−1

·
(

r0
∥θn∥+ 1

))
+

+∞∑
n=2

E

(
∥θn∥fxin

(θn, xin)

N(∥θn∥+ 1)2
√
Sn−1

· M̂0

es′∥θn∥

)
.

Then we calculate the third term of Equation 67. We know when θn ∈ A−
n , there is

∥θn∥
·(∥θn∥+ 1)3

≤ k̃0
1

ln2(g(θn))
= k̃0

1

| ln(g(θn))|1+1
,

where k̃0 is a constant where can not effect the result. Combine Lemma 4.2, We can get
+∞∑
n=2

E

(
1C−

n

fxin
(θn, xin)

N∥θn∥
√
Sn−1

·
(

r0
∥θn∥+ 1

))
≤ k̃1

+∞∑
n=2

E

(
g(θn)√

Sn−1| ln(g(θn))|1+1

)
< +∞.

Similarly, through Lemma 4.2, we can get
+∞∑
n=2

E

(
∥θn∥fxin

(θn, xin)

N(∥θn∥+ 1)2
√
Sn−1

· M̂0

es′∥θn∥

)
< +∞.

That means we can get
+∞∑
n=2

E

(
ψin∥θn∥fxin

(θn, xin)

N(1 + ∥θn∥)2
√
Sn−1

(
θ̂∗⊤xin − θn

⊤xin
∥θn∥

))
< +∞,

We simplify the above inequality, getting
+∞∑
n=2

E

(
∥θn∥fxin

(θn, xin)

N(∥θn∥+ 1)2
√
Sn−1

∣∣∣∣θ̂∗⊤xin − θn
⊤xin
∥θn∥

∣∣∣∣
)
< +∞.

Through Lemma A.1, we have
+∞∑
n=2

∥θn∥fxin
(θn, xin)

N(∥θn∥+ 1)2
√
Sn−1

∣∣∣∣θ̂∗⊤xin − θn
⊤xin
∥θn∥

∣∣∣∣ < +∞ a.s.. (72)

We back to Equation 66. We make a sum of Equation 66, getting

f(θn+1) = f(θ1) +

n∑
k=1

(
θ̂∗(∥θk∥+ 1)− θkθ

⊤
k θ̂∗

∥θk∥

(∥θk∥+ 1)2

)⊤
α0∇g(θk, ξk)√

Sk

+

n∑
k=1

ĉα2
0∥∇g(θn, ξn)∥2

Sn
.

(73)

For the first series sum, we have

n∑
k=2

(
θ̂∗(∥θk∥+ 1)− θkθ

⊤
k θ̂∗

∥θk∥

(∥θk∥+ 1)2

)⊤
α0∇g(θk, ξk)√

Sk

=

n∑
k=2

(
θ̂∗(∥θk∥+ 1)− θkθ

⊤
k θ̂∗

∥θk∥

(∥θk∥+ 1)2

)⊤
α0∇g(θk)√

Sk−1

−
n∑

k=2

(
θ̂∗(∥θk∥+ 1)− θkθ

⊤
k θ̂∗

∥θk∥

(∥θk∥+ 1)2

)⊤(
α0∇g(θk, ξk)√

Sk−1

− α0∇g(θk, ξk)√
Sk

)
+

n∑
k=2

ζk,

where {ζn} is a martingale difference sequence. Through Equation 69, Equation 72 and Lemma
A.2, we can get

n∑
k=2

(
θ̂∗(∥θk∥+ 1)− θkθ

⊤
k θ̂∗

∥θk∥

(∥θk∥+ 1)2

)⊤
α0∇g(θk, ξk)√

Sk
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convergence a.s.. Meanwhile, through Equation 72, we have
n∑

k=2

∣∣∣∣∣ ĉα2
0∥∇g(θk, ξk)∥2

Sk

∣∣∣∣∣ ≤
n∑

k=2

(
1

∥θk∥2
+

1

∥θk+1∥2

)
ĉ0α

2
0∥∇g(θk, ξk)∥2

Sk
< +∞ a.s..

That means
n∑

k=1

ĉα2
0∥∇g(θk, ξk)∥2

Sk

is absolute convergence a.s.. Naturally, it is convergence a.s.. Until now, we already prove two series
sums in Equation 73 are both convergence a.s.. That means f(θn) is convergence a.s.. We assign

c := lim
n→+∞

f(θn) a.s.,

where c < +∞ is a random variable about the trajectory. Through Theorem 4.1, we know

∥θn∥ → +∞.

That means

lim
n→+∞

∥θn∥+ 1

∥θn∥
= 1 a.s..

lim
n→+∞

1− θ⊤θ̂∗

∥θ∥
= lim

n→+∞
f(θn) = c,

so we can get that

lim
n→+∞

∥∥∥∥ θn
∥θn∥

− θ̂∗
∥∥∥∥2 = 2c a.s.

Next we aim to prove that c = 0 by contradiction. We assume c > c′ > 0. Then we can conclude
that

lim
n→+∞

∣∣∣∣θ̂∗⊤xin − θn
⊤xin
∥θn∥

∣∣∣∣ > r(c′) > 0 a.s..

We can further conclude that
+∞∑
n=2

∥θn∥fxin
(θn, xin)

N(∥θn∥+ 1)2
√
Sn−1

∣∣∣∣θ̂∗⊤xin − θn
⊤xin
∥θn∥

∣∣∣∣ > r(c′)

+∞∑
n=2

fxin
(θn, xin)

N∥θn∥
√
Sn−1

a.s.. (74)

We can get
+∞∑
n=2

fxin
(θn, xin)

N∥θn∥
√
Sn−1

> r̂′
+∞∑
n=2

∥θn∥fxin
(θn, xin)

N(∥θn∥+ 1)2
√
Sn−1

,

where r̂′ > 0 is a constant. Then we can get
+∞∑
n=2

∥θn∥fxin
(θn, xin)

N(∥θn∥+ 1)2
√
Sn−1

> q1

+∞∑
n=1

(
ln ∥θn+1∥ − ln ∥θn∥

)
− q2

+∞∑
n=1

∥∇g(θn, ξn)∥2

∥θn∥2Sn
= +∞ a.s.,

where q1 > 0 and q2 are two constants will can not effect the result. That means

+∞∑
n=2

∥θn∥fxin
(θn, xin)

N(∥θn∥+ 1)2
√
Sn−1

∣∣∣∣θ̂∗⊤xin − θn
⊤xin
∥θn∥

∣∣∣∣ = +∞,

which is contradict with Equation 73. That means

lim
n→+∞

∥∥∥∥ θn
∥θn∥

− θ̂∗
∥∥∥∥ = 0 a.s.,

that is
θn
∥θn∥

→ θ∗

∥θ∗∥
a.s..

With this, we complete the proof.
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B.10 GENERALIZING TO TIGHT EXPONENTIAL-TAIL LOSS

We show how our technique remains applicable when dealing with tight exponential-tail loss. This
demonstration reinforces the enduring relevance of Lemma A.8 under the exponential-tail loss set-
ting.

Before we give the main steps, we give the definition of ’tight exponential tail loss’, by adopting the
definition in Gunasekar et al. (2018).

Definition Consider a general classification problem, i.e., L(w) =
∑N

n=1 l(ynw
Txn), where

{xn, yn}2n=N is a dataset and labels yn ∈ {−1, 1} . Suppose the gradient l′(u) satisfies:

∀ u > u+ : l′(u) ≤ c(1 + e−u+u)e−au,

∀ u > u− : l′(u) ≥ c(1− e−u−u)e−au,
(75)

where u+ > 0, u− > 0, a > 0 are three constants, and limu→+∞ l(u) = limu→+∞ l′(u) =
0 , l′(u) < 0 , then we call L a tight exponential-tail loss (refer to Assumption 2, Definition 2, and
Assumption 3 in Gunasekar et al. (2018) for reference).

By solving the corresponding differential equation, we derive

∀ u > u+ : l(u) ≤ c′e−au, ∀ u > u− : l(u) ≥ c′′e−au. (76)

By combining the aforementioned inequalities and ∇L(w) =
∑N

n=1 l
′(w(t)Txn)ynxn, we can

derive a similar result to Lemma A.8 under the ’tight exponential tail loss’ setting. We will then
clarify it.

The left side of Lemma A.8 is derived as follows. Since {xn, yn} is a linearly separable
dataset, it has a maximum margin vector ω∗. The margin vector ω∗ satisfies the separation of
yn = 1, (ω∗)Txn > 0 and yn = −1, (ω∗)Txn < 0. In addition, it has a lower bound
r := minn{∥(ω∗)Txn∥} . Then, we acquire

∥∇L(θ)∥ =

∥∥∥∥ N∑
n=1

l′(ynω(t)
Txn)ynxn

∥∥∥∥ ≥
∣∣∣∣(ω∗)T

N∑
n=1

l′(ynω(t)
Txn)ynxn

∣∣∣∣
= ∥

N∑
n=1

l′(ynω(t)
Txn)yn(ω

∗)Txn∥.

Due to the conditions yn = 1, (ω∗)Txn > 0 and yn = −1, (ω∗)Txn < 0, all the signs of
{yn(ω∗)Txn} are the same. Then, we get

∥∇L(θ)∥ ≥
∥∥∥∥ N∑

n=1

l′(ynω(t)
Txn)ynω

∗Txn

∥∥∥∥ =

N∑
n=1

∥l′(ynω(t)Txn)∥ · ∥ynω∗Txn∥

≥ r

N∑
n=1

∥l′(ynω(t)Txn)∥.

For the right side of Lemma A.8, we use the triangle inequality, i.e.,

∥∇L(w)∥ =

∥∥∥∥ N∑
n=1

l′(w(t)Txn)ynxn

∥∥∥∥ ≤ r̂

N∑
n=1

|l′(w(t)Txn)|,

where r̂ > 0 is a given scalar.

According to Equation 76 and Equation 75, we can observe that Lemma A.8 still holds.
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